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ABSTRACT

As robots are increasingly migrating out of factories and research laboratories and
into our everyday lives, they should move and act in environments designed for humans.
For this reason, the need of anthropomorphic movements is of utmost importance. The
objective of this thesis is to solve the inverse kinematics problem of redundant robot arms
that results to anthropomorphic configurations. The swivel angle of the elbow was used as
a human arm motion parameter for the robot arm to mimic. The swivel angle is defined as
the rotation angle of the plane defined by the upper and lower arm around a virtual axis that
connects the shoulder and wrist joints. Using kinematic data recorded from human subjects
during every-day life tasks, the linear sensorimotor transformation model was validated and
used to estimate the swivel angle, given the desired end-effector position. Defining the de-
sired swivel angle simplifies the kinematic redundancy of the robot arm. The proposed
method was tested with an anthropomorphic redundant robot arm and the computed mo-
tion profiles were compared to the ones of the human subjects. This thesis shows that the
method computes anthropomorphic configurations for the robot arm, even if the robot arm
has different link lengths than the human arm and starts its motion at random configura-

tions.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Artemiadis, for the
continuous support throughout my Master’s program, for his patience, motivation, enthu-
siasm, immense knowledge and the opportunity to work in the lab. I thank my fellow lab
mates in the HORC lab for the stimulating discussions and for all the fun we have had in
the last two years. Last but not the least, I would like to thank my parents for their love and

support.

il



TABLE OF CONTENTS

Page

LISTOF TABLES . . . . . . . e e e v

LISTOFFIGURES . . . . . . e vi
CHAPTER

I INTRODUCTION . . . . . . o e e e e e 1

L1 Motivation . . . . . . . . oo e e 2

1.2 Objective . . . . . . . e 3

1.3 Overview . . . . .. e 3

2 BACKGROUND LITERATURE . . . . . . ... ... .. . . ... 5

2.1 Introduction . . . . . . . . . ... 5

2.2 KinematicRedundancy . . . .. ... ... ... .. .. ... .. ..., . 6

2.3 Classical Methods to Resolve Redundancy . . . . . ... ... ....... 6

2.4 Bio-inspired Methods to Resolve Redundancy . . . . . .. ... ... ... 7

2.5 Redundant Degree of Freedom: Swivel Angle . . . . . ... ... ... .. 8

2.6 Velocity Manipulability Ellipsoid and Redundancy . . . . . ... ... .. 11

2.7 Linear Sensorimotor Transformation Model . . . . . .. .. ... ... .. 13

3 METHODOLOGY . . . . . . e e 18

3.1 Human Arm Kinematics . . . . . .. .. ... ... ... ... ... 19

32 RobotArmModel . . . . . ... 20

3.3 Reduction of Joint Variables . . . . .. ... ... ... ... .. ... 21

3.4 Redundancy Resolution . . . . . ... ... ... ... ... 22

Quantify Anthropomorphism For The Robot Arm . . . . . . ... ... .. 22

Swivel Angle Estimation . . . . . .. ... ... ... . ... 23

3.5 Wrist Position Correction . . . . . . . .. . ... L 25

3.6 Solution for Inverse Kinematic Problem . . . . .. ... ... ... .... 26

3.7 Experimental Set-up . . . . . . . ... L 28

Introduction . . . . . . ... L 28



CHAPTER Page

Experimental Protocol . . . . . . . . ... ... L L oo 28

Data Collection . . . . . . . . ... ... 29

4 DATA ANALYSIS AND RESULTS . . . . ... .. ... ... ... . 31
4.1 DataProcessing . . . . . . . ..o 31
4.2 Method Evaluation . . . ... ... ... .. ... ... ... .. ... 32

5 DISCUSSIONS . . . . . e 40
5.1 Conclusion . . . . .. ... 40

52 Future Work . . . . ... L 41
REFERENCES . . . . . . e 42

v



Table

2.1
3.1
3.2
4.1
4.2
4.3
4.4

LIST OF TABLES

From [33]: Linear relationship between the intrinsic and extrinsic coordinates .
Human Arm D-H Parameters . . . . . . . . ... .. .. ... .. .......
LWR4+ KUKA Arm Model D-H parameters . . . . . . .. ... ... .....
Linear relationship between the intrinsic and extrinsic coordinates . . . . . . .
Linear relationship between the intrinsic and extrinsic coordinates for Subject 1
Linear relationship between the intrinsic and extrinsic coordinates for Subject 2

Linear relationship between the intrinsic and extrinsic coordinates for Subject 3

Page

16
19
20
32



Figure

2.1

22

2.3

24

2.5

2.6

LIST OF FIGURES

From [40], the explanation of the human arm redundancy. Even after fixing the
hand position and orientation, the elbow can move along a part of the circle
shown in the figure, implying that the arm has one redundant degree of freedom.
Coordinate frame at the center of the elbow circle and the swivel angle that
allows the parametrizations of the elbow position by a single variable. . . . . .
New coordinate system composed of Py, Pe, Ps where x-axis is defined as a
unit vector along (Py — Pg) and y-axis sits on the plane S. The new frame on
the shoulder is defined for the convenience of the calculation. Manipulability
ellipsoid on the wrist position: uy, uy, and us indicate the three major axes of
the ellipsoid with magnitude of 67, 6, ando3. . . . . . . .. ... ... ...
From [15]: graphical representation of its redundancy resolution criterion in-
dicating that for the given wrist position (P, (f;)) at any given time #;, there is a
virtual path (Vp(t;)) toward the subjects’ heads (P,,), where i =0,1,2,3---.

It shows the specific elbow position for the given wrist position that maximizes
the manipulability projected on the virtual trajectory. In this configuration Py,
P, Pe and Py are on the same plane. . . . . . . . . ... ... ... .. ....
From [15]: (a) and (b) shows exemplary plots of Py, (7) for all task types from
one subject. Upper and lower rows indicate the front and side views of (look-
ing at the right shoulder) Pm with respect to the shoulder (reference frame) in
millimeter scale. Black empty circles indicate the right arm shoulder position
Pgh. Py, is individually estimated for each experiment and marked as a different

color depending on the task type. . . . . . . . . .. ... L.

vi

Page

9

12



Figure

2.7

3.1
3.2
33

34

3.5

4.1

From [34]: Orientation angles of the arm and forearm. The angles 0 and n
define the elevation and the yaw of the upper arm and 8 and « represent the
elevation and yaw of the forearm. Elevation is defined as the angle between the
limb segment and the vertical axis and is measured in a vertical plane. Yaw is
the angle between the limb segment and the anterior direction, measured in the
horizontal plane. . . . . . . . . . .. L
Kinematic models of the human and robotarms. . . . . . . ... ... .. ...
Wrist position with respect to the end-effector frame . . . . . ... ... ...
It shows the specific elbow position for the given wrist position that maximizes
the manipulability projected on the virtual trajectory. In this configuration Py,
P, P and Py, for both the human and robot arm are on the same plane. . . . . .
Orientation angles of the arm and forearm. The angles 60 and 1 define the
elevation and the yaw of the upper arm and 8 and o represent the elevation
and yaw of the forearm. Elevation is defined as the angle between the limb
segment and the vertical axis and is measured in a vertical plane. Yaw is the
angle between the limb segment and the anterior direction, measured in the
horizontal plane. . . . . . . . . . .. L L
Experimental setup: The subjects were seated on a chair with a distance avoid-
ing a full stretch of the arm. An active motion capture system was placed on the
right side of the subjects. Position tracking sensors were put on the subjects’
shoulder, upper arm, forearm and palm. . . . . . . ... .. ... ... ...
Dependence of intrinsic coordinates on extrinsic parameters across all tasks
and subjects. The y axis represents the actual orientation angles and the x axis
represents estimated value from the the linear combination of target parameters

which gave the best fittothedata. . . . . . .. ... ... ... .. ......

vii

Page



Figure
4.2 Correlation Coefficient Matrix for all subjects and tasks. For each orientation

angle, from 6 to 3, three rows represent three subjects’ data respectively. X
axis represents the number of the task type. Similar pattern of values was
observed across subjects. . . . . . ... Lo
4.3 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 1 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . . .. ... .. ... ...
4.4 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 2 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . . .. ... .. ... ...
4.5 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 3 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . . ... ... ... ....
4.6 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 4 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . .. ... ... ... ...
4.7 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 5 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . . . ... ... ... ...
4.8 Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 6 task across all subjects.
Each row is from subject 1,2,3, respectively. . . . . . .. .. .. ... ... ..
4.9 The mean error with associated standard deviation (one sided) of the swivel
angle from the combined linear model (¢) with respect to types of tasks. . . . .
4.10 Snapshots of the human arm performing 3D motions and the robot arm driven

by the proposed method. . . . . . ... ... ... Lo

viii

Page

35



Chapter 1

INTRODUCTION

As the spectrum of application for robotic devices increases, the consideration of their
configurations during interactions is essential. In certain complex industrial tasks, stable,
fast and accurate robot positioning is required; while in a number of non-industrial tasks
(e.g. domestic robotics, robotic-assisted surgery etc.) dexterity and intelligent positioning
is required to avoid obstacles [2 1], joint limits [ | 9] or singular configurations [23]. Robotic
redundancy in manipulators usually solves these problems. However, the main difficulty
of redundant robotic manipulators is that the task cannot define the joint motions uniquely.
That is to say there is a superabundance of variables (joints) to position and orient the end
effector. One attempt to solve this is to introduce kinematic and dynamic criteria. An
alternate idea is to use the idea of human imitation. This concept is far removed from the
initial design of robotic manipulators: factory oriented. Industrial robots have been used
on manufacturing for a long time with their benefits to improve the quality and efficiency
and replace human workers in tasks that may threaten human safety and health. Despite
their rather long history, the physical presence of humans is still not allowed in the robot’s
workspace while it is working. On the other hand, service robotics have become a new and
expanding area of robot application, such as home robotics. Therefore, there grows a fast
interest in the humanoid robots supporting the expectations that the future robots will be
required to work directly with human counterparts. Hence, they should feature human-like

characteristics in their abilities and behavior especially in motion [28].

The investigation of human arm motion, in order to define a human model that
leads to principles allowing more natural and effective interactions, has been thoroughly
studied [27]. In [4], the hypothesis was demonstrated that it was possible to associate
cost functions to each human arm joint and The arm performed movements that optimized

these cost functions. Since then, a variety of methods similar to this have been used to



explain the principles of human arm motor control such as: dynamic principles [9, 10, 12],
neuro-physiological and psychophysical [6,30,36], as well as combinations of those [4,17].
However, the majority of these cost functions are used with global optimization methods

which are computationally expensive and not suitable for real-time implementation.

Human motion capture has been widely used for the generation of kinematic models
describing human and humanoid robot motions [38]. There have been efforts to generate
human-like motion by imitating the human arm as closely as possible [13]. Similarly, some
works are based on minimizing posture differences between the robot and human arm,
using a specific recorded data set [3,24]. Therefore, the robot configurations are exclusively
based on the recorded data set. There are also some biomimetic approaches based on
the dependencies among the human joint angles [1, 7]. In [7], the authors generalized
the inverse kinematic solution by encompassing joint limitation, singularity avoidance and
optimum manipulability measures. However, the proposed work requires the robot arm
with similar structure and length of the human arm, while its iterative solution method is

not efficient for real-time processing.
1.1 Motivation

The increasing demand of robots which can interact, communicate and collaborate with
humans requires human-like behavior, which will allow the human subject to be able to
understand the robot’s intentions and seamlessly collaborate with the robot. Its application

fields range widely from service robotics to therapeutic devices [7].

In order for the human-robot cooperation to be intuitive, the robot configurations
should be anthropomorphic [2,28]. A solution to the inverse kinematic configuration of the
manipulator must obey the constraints of anthropomorphism. This is not straightforward,
since the human arm is redundant, i.e. it has 7 degrees of freedom (DOFs), while only 6
DOFs are required for a given position and orientation of the arm endpoint. This creates

a challenge for the redundant robot inverse kinematics that need to be solved in a similar
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way to that of the human arm, in order to guarantee seamless integration [ 14, 15,22].

The scopes of previously proposed criteria are limited in several key areas while
resolving the human arm redundancy and mimicking the human arm movements and those
deficiencies suggest: (1) there is no full understanding of anthropomorphism; (2) most
criteria are task dependent; (3) there exists high level computational cost and numerical
instability problems. All of this calls for a new redundancy resolution criterion that is
developed based on human arm kinematics data collected during a wide variety of daily
activities. It also demands a control strategy that is not dependent on a robot structure
identical to the human arm - since none exist or are immediately feasible. Therefore is
must be applied to robot arms which have different structure and length from human arms.

Moreover, it should be numerically stable and computationally efficient.
1.2 Objective

In this thesis, the problem of generating human-like motions is considered from the kine-
matic point of view, taking into account data recorded during a wide variety of everyday life
tasks. A hypothesis from neurophysiology is applied for generating human-like motions of
a redundant anthropomorphic robot arm. The human arm swivel angle (the rotation angle of
the plane defined by the upper and lower arm around a virtual axis that connects the shoul-
der and wrist joints [15]) is used as a parameter for the robot arm to mimic, and therefore
the problem of the inverse kinematics is simplified. A linear sensorimotor transformation
model (see Chapter 2) is validated and used to estimate the desired swivel angle using
previous knowledge of human arm motion. Finally the proposed controller’s performance

is evaluated on a 7 DOFs robot arm (LWR 4+, KUKA).
1.3  Overview

Chapter 2 explores the previous publications and studies related to this objective. In the
beginning, the section reviews the benefits and applications of redundant structures. The

next section introduces a few studies initiated towards studying the redundancy of the hu-



man arm and methods to infer laws for biomimetic robot inverse kinematics. Chapter 3
introduces the proposed method for a closed-form inverse kinematic solution for anthropo-
morphic motion. It provides a thorough explanation of all stages of the methodology for
the study. Chapter 4 presents the demonstration of the linear sensorimotor transformation
model maps the extrinsic coordinates on a natural arm posture using the intrinsic coordi-
nates and performance estimation results of the swivel angle. It also provides a discussion
on the results and method evaluation. Finally, Chapter 5 summarizes the findings of the

thesis and insight into continuing and future work.



Chapter 2

BACKGROUND LITERATURE

The exploitation of kinematic redundancy for the generation of human-like robot arm mo-
tions has been previously investigated. Since the method proposed in this thesis is based off
from the evolving methods, it is important to review all these methods. Accordingly, this
chapter begins with the methods employed previously. The approach to track the motion of
the upper limbs, the study of the redundancy of the human arm and methods to infer laws
for biomimetic robot inverse kinematics are discussed in the section that follows. The last

section helps give context to the rationale of this thesis.
2.1 Introduction

From a mechanical point of view, a robot resembling the human should be kinematically
redundant, i.e., its mechanism should possess a higher degree of mobility than that required
for a given motion task defined in operational space. The kinematic redundancy contributes
to robot dexterity and flexible coping with unpredictable changes in its environment [28].
It makes possible the avoidance of mechanical limits in robot joints [19], the avoidance
of obstacles [21], the avoidance of singularities [41], a fault tolerant operation [&], the
optimization of robot kinematics and dynamics [! 1, 42], the distribution of joint motions
in a human-like manner [25] and so on. Unfortunately, redundancy usually causes the
problem of complex kinematics. Since their joint configuration is not determined uniquely,
a set of kinematic and dynamic criteria have been introduced to achieve a unique solution.
During the last decade though, the robots are getting closer to humans, thus introducing
the need for anthropomorphic motion to allow improved interaction. Towards this goal,
the investigation of human arm motion has been reported in the past, including approaches
of mimicking the human arm movements, cost functions to model motion principles of
human arm movements. Again, all the previously proposed criteria have shown that they

have limitations in resolving the human arm redundancy and mimicking the human arm



movements.
2.2 Kinematic Redundancy

Redundant robots have received increased attention during the last decades in order to avoid
obstacles, joint limits, or to optimize robot kinematics and dynamics. Maciejewski [21]
presented work to determine the required joint angle rates for the manipulator under the
constraints of multiple goals, the primary goal described by the specified end-effector tra-
jectory and secondary goals describing the obstacle avoidance criteria. The decomposition
of the solution into a particular and a homogeneous component effectively illustrates the
priority of the multiple goals that was exact end-effector control with redundant degrees of
freedom maximizing the distance to obstacles. In [19], Alain proposed a two-level adap-
tive control of the redundant kinematics of multi-body mechanisms. A special form of the
general solution of sets of linear equations was used and the adaptive qualities of a six DOF
manipulator illustrated the theoretical results. In [11], two different types of methods for
resolving kinematic redundancies of manipulators by the effect on joint torque were exam-
ined. One method chose the joint acceleration null-space vector to minimize joint torque
in a least squares sense while contrasting methods employing only the pseudo-inverse with
and without weighting by the inertia matrix. The results showed an unexpected stability
problem during long trajectories for the null-space methods and for the inertia-weighted
pseudo-inverse method, but more seldom for the unweighted pseudo-inverse method. Evi-
dently, a whiplash action developed over time that thrust the endpoint off the intended path,

and extremely high torques were required to overcome these natural movement dynamics.
2.3 Classical Methods to Resolve Redundancy

The presence of a higher degree of mobility in the robot mechanism, than is required for
a given motion in operational space means that the same end-effector’s trajectory can be
realized with many different configuration motions. Hence, the problem of selecting a
particular motion among the available joint motions arises. The standard methods to deal

with this problem are divided into two groups, i.e., global and local methods. The global
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methods require the prior knowledge about the full end-effector’s trajectory, since they
look for joint motions that provide the global optimum of the adopted criterion. On the
contrary, local methods perform only local optimization of the criterion and need only
information about the instantaneous pose of the end-effector. For on-line robot operation
and especially in the physical presence of humans, local methods for redundancy resolution
are required [28]. Therefore, the local methods are more applicable in controlling the robot
manipulators. In [26, 28], a distributed positioning method was used by partitioning of the
robot joints into “smooth” and “accelerated” ones in order to achieve human-like motion.
The method was applied to control the motion of a redundant anthropomorphic arm during
the writing task. The reason for the usual inclination of letters in human handwriting was
revealed and the relation between the inclination, legibility and certain secondary objectives
(fingers’ involvement, energy consumption and motors’ thermal load) was discussed. It was
shown that for some prescribed level of legibility, there exists an optimal inclination that

minimizes the secondary objective.
2.4 Bio-inspired Methods to Resolve Redundancy

For everyday life tasks (e.g. drawing, handwriting), approaches of mimicking the human
arm movements have been proposed. Some studies have been also done in order to generate
human-like motion by imitating human arm motion as closely as possible. In most of these
studies, the human motion is measured using a motion capture system and then converted
to motion for a humanoid robot arm [24]. In [I3], a method was proposed to convert
the captured marker data of human arm motions to robot motion using an optimization
scheme. The position and orientation of the human hand, along with the orientation of
the upper arm, were imitated by a humanoid robot arm. However, this method was not
able to generate human like motions, given a desired three dimensional (3D) position for
the robot end-effector. Again, previous research like this can not generate new human-
like motion, which is quite important for the kinematic control of anthropomorphic robot

arms and humanoids, where the range of possible configurations should not be limited to
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the ones recorded from humans. Cost functions have also been proposed to model motion
principles of human arm movements. In [5], an investigation was conducted to look for
measurable values corresponding to the hypothetical cost functions and conclusion were
made that the hypothetical cost functions were not independent of the physiological costs
necessary to hold the joint at a given angle, and they seemed to depend on joint angle
and on the force which is necessary to hold the joint in a given position. However, these
functions are quite complex to be used for the inverse kinematics of robots, while they
are usually addressing not only the kinematic, but also manipulator dynamics and kinetics.
Biomimetic approaches based on the dependencies of the joint angles were applied in the
inverse kinematics algorithms [1, 7]. In [I], the human arm multi-joint coordination was
analyzed in order to synthesize motion patterns for robot arms. A Bayesian Network was
used for the probabilistic description of the human arm multi-joint coordination. Then an
objective function was defined based on the inter-joint dependency, which was incorporated
into a closed-loop inverse kinematics algorithm for a redundant robot arm. However, in [ 7],
the proposed method requires the robot arm with similar structure of the human arm. Also
its iterative solution method is not efficient for real-time processing and in [ 1], even though
its method can be applied to a robot arm with different structures from that of human arms,

it is still difficult to build the relationship between the human and robot joints.
2.5 Redundant Degree of Freedom: Swivel Angle

As shown in Fig. 2.1, a simple physical explanation of the redundant degree of freedom
is based on the observation that if the wrist is held fixed, the elbow can still swivel along
a circle plane which is perpendicular to the axis from the shoulder to the wrist [37, 40].
Therefore, for a fixed position of the shoulder in space, along with a given position and
orientation of the wrist, the human arm configuration is fully defined if and only if the

position of the elbow joint is fully specified [15].

The workspace of this structure was first methodically analyzed by Korein [16]. He

observed that the first two shoulder joints restrict the tip of the elbow to lie on a spherical
8



Figure 2.1: From [40], the explanation of the human arm redundancy. Even after fixing the
hand position and orientation, the elbow can move along a part of the circle shown in the
figure, implying that the arm has one redundant degree of freedom.

plane. The potential elbow configurations was determined by the joint limits of the first
two joints by intersecting the elbow circle with the plane. In addition to the joint limits, the
twist induced by the third joint also restricts the elbow to lie on a circular plane which is
perpendicular to the axis from the shoulder to the wrist. On the other hand, the wrist joints
will also restrain the elbow position along with their joint limits. By taking the intersection
of all sets of valid elbow arcs, Korein derived the restrictions on the elbow position induced

by all the joint limits.

Another approach to solving this problem is based on the same observation as Kor-
ein’s. It gives an explicit formula for the joint angles and their derivatives as a function of
the swivel angle (¢). This is an advantage when an objective function is used to select an
appropriate value of ¢ since it is often necessary to express the objective function in terms
of the joint angles. In Fig. 2.2, P, Pe and Py, represent the position of the shoulder, the
elbow, and the computed location of the wrist based on the given position and orientation
of the end effector. As the swivel angle ¢ varies, the elbow traces an arc of a circle lying
on a plane which is perpendicular to the wrist-to-shoulder axis. In order to measure ¢, we

define the normal vector of the plane by the unit vector in the direction from the shoulder



Figure 2.2: Coordinate frame at the center of the elbow circle and the swivel angle that
allows the parametrizations of the elbow position by a single variable.

to the wrist,
Py —Ps

n= ——
[Py —Ps ||

2.1)

P. as the center of the circle and unit vector i, V as the coordinate system on the plane. @

is set as the projection of an arbitrary axis a onto the plane of the circle,
i=— (2.2)

and V=i X @i. The center of the circle P, and its radius R can be computed from simple

trigonometry:
| Py —Ps >+ U 12
o) = 2.3
cos(a) [Py P, U (2.3)
P, = cos(a)Uii (2.4)
R =sin(a)U (2.5)

where U and L are the length of the upper arm and the lower arm respectively.

Finally, the position of the elbow can be expressed as a function of ¢ such that,

P. = R|cos (¢)ii+sin (¢)V] + P, (2.6)
10



2.6 Velocity Manipulability Ellipsoid and Redundancy

For the combined manipulator joint velocities satisfying the condition stated as }_}!_; Oiz =1,
the end effector velocity as a function of the arm joint velocity is described by an ellipsoid
known as the velocity manipulability ellipsoid [15]. The orientation of the ellipsoid with its
three major axes is defined by the eigenvectors of the Jacobian and the lengths of the major
axes are defined by the eigenvalues of the Jacobian [ 8]. The largest among the major axes
of the manipulability ellipsoid defines the direction of the highest potential for velocity

on the wrist and the best mapping between the arm joint space and the wrist Cartesian

space [20].

Figure 2.3: New coordinate system composed of Py, Pe, Py where x-axis is defined as a
unit vector along (Py — Pg) and y-axis sits on the plane S. The new frame on the shoulder
is defined for the convenience of the calculation. Manipulability ellipsoid on the wrist
position: uy, Uy, and uz indicate the three major axes of the ellipsoid with magnitude of o,
0>, and 03.

In [15], the longest axis of the manipulability ellipsoid is aligned along plane S
(shown in Fig. 2.3) and its magnitude o7 (defined by the largest eigenvalue of Jacobian,
A1) and direction uy (defined by the eigenvector of Jacobian) were both expressed as a

function of the swivel angel (¢), the length of the lower arm (L) and the distance from the
11



wrist to the shoulder (L,,;).

2 2

\/ (Lus? + L2)” — 4Ly 2sin(9)’

¢ = I (2.8)
1
w= |- 2.9)
L2sin(¢)*  tan(9)
0

Figure 2.4: From [15]: graphical representation of its redundancy resolution criterion indi-
cating that for the given wrist position (P,(t;)) at any given time f;, there is a virtual path
(Vp(t;)) toward the subjects’ heads (P,,), where i =0,1,2,3---.

From equations above, it’s easy to see that uy always lies on Plane S. The report [ 5]
hypothesized that, for the natural reaching and grasping tasks, the value of swivel angel
selected by human motor control system to resolve the arm redundancy should be selected
to efficiently retract the palm to the head. Therefore, there should exist a virtual target
point (P, ) on the head that was set to efficiently retract the palm to the virtual target at any
time during the arm movement toward an actual target (shown in Fig. 2.4). Mathematically

speaking, the selected swivel angle for the natural arm posture was chosen in a way that
12



Figure 2.5: It shows the specific elbow position for the given wrist position that maximizes
the manipulability projected on the virtual trajectory. In this configuration Py,, P, Pe and
Py, are on the same plane.

the projection of the longest axis of the manipulability ellipsoid onto the virtual trajectory
(Pm —Pyw) was maximized. Based on Eq. 2.7, 2.8, 2.9, it is easy to prove that the projection
is maximized when ¢ is selected such that Py, locates on Plane S shown in Fig. 2.5. Fig.
2.6 shows the real time trajectory of Py, with respect to the right arm shoulder position. It
appears that the trajectory was around the head region but the actual Py, was not identical
for each trial. More importantly, this hypothesis has a problem that the tasks for the subjects
are limited to simple reaching and grasping and there is no proof that it can be applied to
more complicated tasks such as writing. Also, the method to solve the inverse kinematic
problem requires the initial configuration of the human arm to be known, a feature that is

not readily available in real-life scenarios.
2.7 Linear Sensorimotor Transformation Model

In order to understand the secret of human arm movements, Soechting [33, 34] defined an
extrinsic frame of reference to represent the location of a point relative to a human subject’s
shoulder, and an intrinsic frame of reference to represent the orientation of the arm and

forearm. Then the relationships between those two reference coordinates was examined
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(&) (b)

Figure 2.6: From [15]: (a) and (b) shows exemplary plots of Pp,(¢) for all task types from
one subject. Upper and lower rows indicate the front and side views of (looking at the right
shoulder) Pm with respect to the shoulder (reference frame) in millimeter scale. Black
empty circles indicate the right arm shoulder position Pgy. Py, is individually estimated for
each experiment and marked as a different color depending on the task type.

and proposed. It was concluded that this transformation was one step in the process of
transforming a visually derived representation of target location into an appropriate pattern
of muscle activity. From the measured position of the shoulder, elbow, and wrist, the
orientation angles of the arm and forearm were computed (shown in Fig. 2.7). Two angles
define the orientation of the upper arm: yaw (1) and elevation (0), and two more define
the orientation of the forearm: yaw (&) and elevation (). The elevations (6 and ) define
the angles between each limb segment and the vertical axis and are measured in a vertical
plane. The yaw angles (1] and ) define the angles between each of the limb segments and
the anterior direction, measured in the horizontal plane. The extrinsic coordinates are the
wrist position expressed in the spherical coordinates, where R denotes the radial distance,
x the azimuth, and y the elevation. The reason to choose the spherical coordinates rather
than Cartesian or cylindrical is the former leads to a more compact representation of the

linear relation [35]. Both the intrinsic and extrinsic coordinates are most easily defined
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shoulder

wrist

Figure 2.7: From [34]: Orientation angles of the arm and forearm. The angles 6 and 7
define the elevation and the yaw of the upper arm and 8 and o represent the elevation and
yaw of the forearm. Elevation is defined as the angle between the limb segment and the
vertical axis and is measured in a vertical plane. Yaw is the angle between the limb segment
and the anterior direction, measured in the horizontal plane.

with reference to the Cartesian coordinates illustrated in Fig. 2.7. The relationship between

these two coordinates can be easily found:

P,,(x) = Usin(0)sin(n) + Lsin(P)sin(cx) (2.10)
P, (y) = Usin(0)cos(n) + Lsin(B)cos(cx) (2.11)
P,(z) = —Ucos(0)+ Lcos(B) (2.12)

where P, (x), P,(y) and P,(z) designate the Cartesian components of the wrist position
with respect to the shoulder frame. U and L represent the length of the upper arm and the

lower arm.

The wrist position in the Cartesian coordinates can be transformed to the spherical
coordinates by:

R2=P,(x)*+P,(y)* + Pu(2)* (2.13)

) = 5
15

(2.14)



Table 2.1: From [33]: Linear relationship between the intrinsic and extrinsic coordinates

i OrientationAngles LinearFunction r?

1 0 0.110R+09y —4 0.88
2 n 0.056R+0.79x +52.6 0.91
3 o —0.021R+0.96x +8 0.94
4 B 0.033R—0.95y +47.6 0.86

tan(y) = Py (%) (2.15)

VPO P

To understand the nature of the transformation between extrinsic and intrinsic co-
ordinates in the two motor tasks, Soechting characterized quantitatively how each of the
intrinsic parameters depend on each of the extrinsic variables. They examined this under
two experimental conditions: 1) pointing to a virtual target in the dark and 2) pointing to
a target which was physically present and both it and the arm were visible to the subjects.
They found that when subjects pointed to a virtual target in the dark, each of the four intrin-
sic parameters which describe the orientation of the arm and forearm (6, 1, &, ) depended
in a close to linear fashion on one or two of the extrinsic parameters which describe the spa-
tial location of the target (R, x, ). Table 2.1 shows the results from their experiments. As
shown in Table 2.1, the two elevation angles (6 and ) depend on target distance (R) and
elevation (y), whereas the two yaw angles (1 and o) depend primarily on target azimuth
(x) with a weaker dependence on y. When subjects made accurate movements to a target,
these relationships between intrinsic and extrinsic coordinates became significantly more
nonlinear. This conclusion was supported by the combined data from all four subjects in

each experimental condition.

Based on the observation, the following hypotheses were derived in [34]: movement
inaccuracy results because the subjects map the target location into the space of intrinsic
parameters, and this mapping involves quasi-linear approximations. Accurate movements

appeal to corrections which introduce substantial nonlinearities into the relationship be-
16



tween intrinsic and extrinsic parameters. Their hypotheses were strengthened by results
in [31,32,39]. Thus, there is experimental evidence that is consistent with this hypoth-
esis that there exist linear mappings between extrinsic and intrinsic coordinates both for
continuous as well as for point-to-point movements. Furthermore, such linear mappings
can account for the observed movement errors. Therefore, the assumption that coordi-
nated movement involves sensorimotor transformations between different kinematic rep-
resentations (intrinsic and extrinsic) and the hypothesis that these transformations are ac-
complished by means of linear approximations can account for the performance of a large
variety of motor tasks. Despite the fact that it needs the robot arm to have a similar arm
length with that of the human arm, it still provides a good mathematical quantification of
anthropomorphism with no limitation on the robot arm structure (as long as the upper and
lower arm are well defined). Furthermore, this linear relationship can give us good esti-
mations for the orientation angles and the elbow and wrist positions are simply a function
of those orientation angles. Knowing the elbow and wrist positions, it is easy to obtain
a unique inverse kinematic solution for the joint angles. Therefore, this method offers an
analytical solution for the joint angles, which can avoid the high level computational cost

for real-time implementation into control systems.
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Chapter 3

METHODOLOGY

This chapter presents the full framework for solving the inverse kinematics problem of
redundant robot arms that results to anthropomorphic configurations. As mentioned in
Chapter 2, Soechting [33, 34] demonstrated a linear sensorimotor transformation model
that maps the extrinsic coordinates on a natural arm posture using the intrinsic coordinates
providing a mathematical description of anthropomorphism for human arm motions. There
is also experimental evidence showing that this linear mapping exists for both continuous
and point to point movements. Therefore, their theory can account for a large variety of
motor tasks even though only one simple task was validated in their report. However, it
requires the length of the robot arm similar to that of the human arm. Because the linear
relationship is a function of the arm length, the large difference will affect the estimation

results.

As discussed in Chapter 2, the swivel angle was considered as a main factor to
quantify the redundancy. The swivel angle concept has already been used by many stud-
ies [14,15,22,37]. In [15], the relationship between the swivel angle and the velocity
manipulability ellipsoid of the wrist was analyzed and the swivel angle was selected such
that the projection of the largest manipulability vector onto the virtual trajectory connecting
the wrist with the head region is maximized. Even though this method has its limitation in
the application on more complex tasks and the requirements for initial configurations for
the human arm, it still contributed a relationship between the swivel angle and the longest
axis of the velocity manipulability ellipsoid (see Eq. 2.7, 2.8, 2.9). This gives a way to
quantify the anthropomorphism of the robot arm configuration based on a given human
arm posture: the swivel angle of the robot arm should be as close as possible to that of the
human. Here it should be noted that it will set us free from the requirements for the length

and structure of the robot arm.
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Table 3.1: Human Arm D-H Parameters

i o; a; | d; 9,'

190°[ 00 a1

2190° 10 0| g2+90°
3190° [ 0 | L | g3+90°
41[90° [ 0 [ 0 | gart180°
5(90°] 0 | Ly | g5+180°
6190°] 0 0| got+90°
71790° (L3 | 0 | g7+ 180°

Although most of the past studies have been trying to quantify anthropomorphism,
most works on biomimetic motion generation for robots are based on minimizing posture
difference between the robot and the human arm, using a specific recorded data set and
there are only a handful studies that focused on defining the foundation rules of the human
arm motion which still have limitations. This proposed method will combine those two
methods mentioned above in order to obtain an anthropomorphic solution for the inverse

kinematic of 7-DoF robot arm given the position and orientation of the end-effector.
3.1 Human Arm Kinematics

As it shown in Fig. 3.1, the human arm consists of a series of rigid links connected by three
anatomical joints (shoulder joint, elbow joint, and wrist joint) while neglecting the scapular
and clavicle motions [16]. In this study, 7 DOFs were analyzed for simplicity: shoulder
flexion-extension, shoulder abduction-adduction, shoulder lateral-medial rotation, elbow
flexion-extension, elbow pronation-supination, wrist flexion-extension and wrist pronation-
supination: which can be simulated by 7 corresponding joint angles, i.e. ¢1, g2, g3, g4, g5,
g6, q7 for the human arm. The Denavit-Hartenberg (DH) parameters of the kinematic model
of the arm that we used are listed in Table 3.1 [7,29] where Ly, L, L3 are the lengths of the

upper arm, forearm and palm respectively'.

!Offsets in 6; are used for having the arm at rest position (pointing down) when ¢; =0,i = 1,...7.
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Elbow

Wrist

Figure 3.1: Kinematic models of the human and robot arms.

Table 3.2: LWR4+ KUKA Arm Model D-H parameters

i o, | a| d; 0;
190°[0]0 | ¢
2090° 0] 0 [q
3090° 0Ly | g3
4190° 0] 0 | qa
5 90° | 0 | L f | 95
690°[ 00 |qe
7 0° 0 Lh q7

3.2 Robot Arm Model
Fig. 3.1 also shows the reference and link coordinate systems of the 7 DOFs robot arm
(LWR4+, KUKA) using the DH convention [29]. The values of the DH parameters are
listed in Table 3.2, where L, Ly and L;, are the link lengths of robot upper-arm, forearm
and hand respectively. There are several differences between the human arm and the robot

arm:
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1. The human arm has a spherical wrist ( gs, g6 and g7 axes intersect at a single point)

while the robot arm does not.

2. The length of the LWR4+ KUKA arm is almost twice as much as that of the human

arm.

3.3 Reduction of Joint Variables

Shoulder

Figure 3.2: Wrist position with respect to the end-effector frame

For a given position and orientation of the end-effector with respect to the base
frame, the wrist position can be easily defined. As shown in Fig. 3.2, once the end-
effector position and orientation are specified in terms of pee and Ree= [ ns a ], the
homogeneous transformation relating the description a point in the end-effector frame to

the description of the same point in base frame can be represented as

n s a
T = Pec (3.1)

€
0 00 1

then the wrist position in the end-effector frame can be represented as

dy
Pye = |d, 3.2)
d;
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where dy, dy, d, are the coordinates of the wrist center with respect to the origin of the

end-effector frame.

This allows direct computation of the wrist position with respect to the base frame
given the end-effector frame [29]. In our case, the base frame is located at the center of the
shoulder for both arm models shown in Fig. 3.1. The position of the wrist Py in the base

frame can be found as:

=T1P (3.3)

Given a desired position and orientation of the end-effector, the problem is split into

two parts:

1. Using Eq. 3.3 compute the wrist position: since the wrist position is only a function
of the first 4 joint angles (¢1-q4) we define a method to solve for those joints. This
step involves redundancy in joint angles and it is going to be solved in a way to

guarantee anthropomorphism (see Redundancy resolution section).

2. Knowing ¢1-¢g4 and the desired position and orientation of the end-effector frame,
analytically solve for g5-q7. Therefore, the structure difference of these two arms

can be neglected.

3.4 Redundancy Resolution
Quantify Anthropomorphism For The Robot Arm

There is evidence from previous works that the position of the elbow joint in space is an
important parameter of anthropomorphism for arm configurations [2, I5]. In [15,37], the
redundancy of the arm was formulated by defining the swivel angle, the rotation angle
of the plane defined by the upper and lower arm around a virtual axis that connects the
shoulder and wrist joints. The position of the elbow can be expressed as a function of
the swivel angle by Eq. 2.6. It was also mathematically proven that the direction and

the magnitude of the longest axis of the velocity manipulability ellipsoid of the wrist is
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simply a function of the swivel angle and the arm length. As shown in Fig. 3.3, u} and
oy represent the direction and magnitude of the longest axis of the velocity manipulability
ellipsoid on the wrist for the robot arm. P and P, represent the shoulder and elbow position
for the robot arm and P and P, represent the shoulder and elbow position for the human
arm. Here it should be noted that P and P, coincide. The projection of u} onto u; can be
maximized if and only if u] is located on Plane S (Plane S is formed by the shoulder, elbow
and position of the human arm.) which is determined by the swivel angle with a given wrist
position (see proof in [15]). Therefore, the swivel angle of the robot arm should be chosen
as close as possible to that of the human arm as they both seek to achieve maximization
of manipulability ellipsoids for a given task. This method will not be constrained by the
limitation of the difference of the arm structure and length as long as an elbow-equivalent
point is defined on the robot arm. Once the value of the swivel angle is determined, the
elbow position can be computed by Eq. 2.6. With the positions of the wrist and elbow, as
well at the 3D position and orientation of the rigid body of the end effector, we are able to
analytically give a unique solution to the inverse kinematic problem, and therefore compute

the 7 joint angles of the upper limb.

Swivel Angle Estimation

Based on the linear sensorimotor transformation model discussed in Chapter 2, the ori-
entation angles of the upper arm and the forearm can be obtained only knowing the wrist
position. From the measured position of the shoulder, elbow, and wrist, the orientation
angles of the arm and forearm were computed (shown in Fig. 3.4). Here it should be noted
that, due to the convenience of the calculation, the way to set the base reference frame co-
incident with the base frame located on the center of the human shoulder which is different
from that in Fig. 2.7. The intrinsic coordinates consist of angles defined the upper arm
elevation and yaw and the forearm elevation and yaw. Two angles define the orientation of
the upper arm: yaw (1) and elevation (0), and two more define the orientation of the fore-

arm: yaw (o) and elevation (). The elevations (6 and f3) define the angles between each
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Figure 3.3: It shows the specific elbow position for the given wrist position that maximizes
the manipulability projected on the virtual trajectory. In this configuration Py, Pg, P and
Py, for both the human and robot arm are on the same plane.

limb segment and the vertical axis and are measured in a vertical plane. The yaw angles
(n and ) define the angles between each of the limb segments and the anterior direction,
measured in the horizontal plane.The extrinsic coordinates are the wrist position expressed
in the spherical coordinates, where R denotes the radial distance, ) the azimuth, and v the
elevation. Therefore, as is shown in Fig. 3.4, the elbow position in this coordinate system

can be expressed as:

P,(x) = —Ucos(0) (3.4)
P.(y) = —Usin(0)cos(n) (3.5)
P.(z) = Usin(0)sin(n) (3.6)

Where P,(x), P.(y) and P,(z) designate the components of the elbow position with respect

to the shoulder frame. U represents the length of the upper arm.

The swivel angle can be obtained knowing the elbow position (computed by Eq.

3.4, 3.5, 3.6) and wrist position (computed by Eq. 2.10, 2.11, 2.12). Finally, the swivel
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azim'ih X shoulder

wrist , .
elevation B

Figure 3.4: Orientation angles of the arm and forearm. The angles 6 and 1 define the
elevation and the yaw of the upper arm and 3 and o represent the elevation and yaw of the
forearm. Elevation is defined as the angle between the limb segment and the vertical axis
and is measured in a vertical plane. Yaw is the angle between the limb segment and the
anterior direction, measured in the horizontal plane.

angle is selected using (Eq. 2.6):

(Pe_Pc) 'l_i (Pe_Pc> 'V
[ Pe—Pe | " [| Pe—Pc ||

¢ = atan2( ) (3.7)

where P, represents the elbow position, unit vector i, vV as the coordinate system on the

plane shown in Fig. 2.2 and P, is the origin of the coordinate system.
3.5 Wrist Position Correction

Since the sensorimotor transformation model is only an approximation, the wrist position
given by the determined angles 0, 1, &, B does not exactly coincide with the target one.
However, the difference between the actual wrist position and the estimated is relatively
small. Therefore, the error will not have big affect on the linear relationship. We can
simply correct the wrist position with minimum change for each joint so that the human arm
configuration will still approach to the linear transformation model while maintaining the

correct wrist position. Let e represents the difference between the actual wrist position and
25



the estimated one (3 x 1 vector), J the Jacobian based on the estimated arm configuration
(J is only a function of g1, g2, ¢3 and g4, a 3 X 4 matrix), dq the change of the joint angles

(4 x 1 vector, only g1, g2, g3 and g4 are needed here), then

8q=1J"(q1,92,93,q4)€ (3.8)

qu =q+6q (3.9)

where q is the current estimation for q;, g2, g3 and g4; qq is the estimation for those joint

angles after correction; J' is pseudo inverse of J.

Here it should be noted that all these joint angles are the estimation for the human
model. After the correction of the joint angles, the updated elbow and wrist position can be
obtained with forward kinematic and the swivel angle can be revised using Eq. 3.7. Once
the swivel angle of the human is obtained, the elbow position for the robot arm can be
computed by Eq. 2.6 (set the swivel angle of the robot arm equal to that of the human) and
the wrist position of the robot arm can be computed by Eq. 3.3. With computed the elbow
and wrist position of the robot arm and the location of the end-effector (given), a unique

solution for all the joint angles can be obtained.

3.6 Solution for Inverse Kinematic Problem
T T
Let pe = { Xe Ye Ze } , Pw = { Xw Yw Zw ] be the position of the elbow and wrist

with respect to the base frame. The position of the elbow is computed by Eq. 2.6, with the
estimation of the swivel angle, using Eq. 3.7. The position of the wrist is computed using

Eq. 3.3. Let the desired position and orientation of the end-effector be given by

g Sq4 a4 Pd
T = . (3.10)

0 0 0 1
Since the position of the wrist and elbow are computed, then the solution for the first 4 joint

angles has a closed form which is shown below:

q1 = arctan2(ye, x,) (3.11)
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q2 = arctan2(y/ (x¢)2 + (ve)?, z¢) (3.12)

q3 = arctan2(—Msz, M) (3.13)
qa = arctan2(y/ (M) + (M3)2, M, — L) (3.14)
where
M = x,,cos(q1) cos(qa) + ywsin(g1) cos(qa) — zy sin(qa) (3.15)
M, = —x,,cos(q1)sin(qa) — yysin(q1) sin(ga2) — z, cos(q2) (3.16)
M3 = x,,sin(q1) + ywcos(qa) (3.17)

It should be noted that although multiple solutions could arise, they are eliminated by

violating the human joint limitations.

In order to solve for g5-g7, we can articulate the inverse kinematics problem into
two sub-problems. After solving the inverse kinematics for g; to g4, we can compute the
transformation matrix from the base frame to the wrist frame, Tg (91,92,93,94)- Then, the

transformation matrix from the wrist frame to the end-effector frame can be computed as

n)(c4) S)(c4) a)(c4) p)(c4)
4 @ @ 4
4 |y Sy 4y Dy e T
T7 (QS7Q67 617) - () ) @) @) = <T4> T (3.18)
n; Sz az Pz
0 0 0 1

X

T T T
wheren® — [ MOEOEC } 5@ = { S g @ } Lal) = [ d® @ o }

are the orientation vectors and p#) = { p)(f) p§4) p§4) ] is the position vector of the
end-effector reference system with respect to the one at the wrist. Since T# (g5,96,97) is
known, the joint angles g5, gg, g7 can be computed using Eq. 3.18. The analytical solution

is given by:

qs = arctan2(a§4) , a)(f)) (3.19)
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g6 = arctanZ(\/(ay)) + (a,(c4)) ,a£4)) (3.20)

g7 = arctan2(n®?, —s¥) 3.21)
for g5 € [0, ), and
qs = arctan2( —a§4), —a)(f)) (3.22)
go = arctan2(—/ (@2 + (a*)2,a) (3.23)
g7 = arctan2(—ntV s\¥) (3.24)

for g5 € (—m,0).

3.7 Experimental Set-up
Introduction

The subjects were seated on a chair with a distance avoiding a full stretch of the arm (sin-
gular configuration). The subjects faced the table and their body were positioned such that
the table and the subjects’ body center lines were aligned. An active motion capture system
was used to track the motion of the arm, as well as compute the human arm configuration.
A reference system was defined at the shoulder of the human subject (X,Y,Z). It is defined

so that the subjects torso coincides with the X — Z plane as shown in Fig. 3.5.

Experimental Protocol

Three right-handed healthy subjects (two males and one female) participated in the exper-
iment. The protocols were approved by the Office of Research Integrity and Assurance,
Arizona State University. As explained above, each subject was tested in a sitting posture
with his/her torso restrained from torsional movements. Six types of experimental tasks
were selected from activities of daily living: (Type 1) arm reaching and pointing, (Type
2) placing a water bottle in discrete locations, (Type 3) placing a small ball in discrete
locations, (Type 4) eating, (Type 5) face and head touching and (Type 6) writing. These
tasks are chosen based on the basic Activities of Daily Life (ADLSs) and each task lasted 20

seconds. No initial information of the configuration of the human arm and the robot arm is
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Figure 3.5: Experimental setup: The subjects were seated on a chair with a distance avoid-
ing a full stretch of the arm. An active motion capture system was placed on the right side
of the subjects. Position tracking sensors were put on the subjects’ shoulder, upper arm,
forearm and palm.

needed. In Type 1 task, the subjects were asked to move in the shape of a spiral in order to
exam all possible reaching movements. In Type 2 and Type 3 tasks, the subjects grasped
the objects with the orientation of the wrist up to subjects’ discretion. The two objects
were selected to see the effect of the wrist orientation on the swivel angle during object
manipulations. Given the ball geometry, it has a negligible effect on the wrist orientation
as opposed to the water bottle that dictates a specific final orientation. In Type 4 task, the
subject grasped food from discrete locations and put it into their mouth. In Type 5 task, the
subject touched discrete locations on his or her head and face continuously. In Type 6 task,
the subject wrote on a piece of paper and he/she was asked to write big enough in order to

avoid moving his/her wrist only.

Data Collection

The kinematic data of the human arm were collected using an active motion capture system.
Markers were put on the rigid bodies of upper arm, forearm and palm respectively in order

to calculate the centers of rotation. In order to estimate the biological joint centers shoulder,
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elbow and wrist, a calibration experiment was used which required the human subject to
attempt to move all joints simultaneously while capturing the position sensor data from the
suit of markers and the position of the biological centers with respect to the rigid body that
precedes the kinematic chain of the arm was estimated with a least squares method. Having
the 3D position of the wrist and elbow, as well as the 3D position and orientation of the
rigid body of the palm, a unique solution to the inverse kinematic problem can be found

and therefore the 7 joint angles of the upper limb can be obtained.
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Chapter 4

DATA ANALYSIS AND RESULTS
4.1 Data Processing

As explained earlier, the goal of the study is to define anthropomorphism in robot motion
and drive robot to anthropomorphic configurations. The linear relationship between the
intrinsic and extrinsic coordinates are validated and then applied to estimate the swivel
angle of the robot arm for an anthropomorphic configuration. Given the elbow and wrist
position of the human subjects, we can solve for the actual orientation angles of the upper
arm and the forearm with Eq. 2.10, 2.11, 2.12, 3.4, 3.5, 3.6. The spherical coordinates
of the wrist position can be computed using Eq. 2.13, 2.14, 2.15. Assume the linear

relationship between the intrinsic and extrinsic coordinates can be expressed as:
0 =ay+aR+ax+azy “4.1)
Using the least squares approach, the minimum of the function

k
S(ao,a1,a2,a3) =Y (6a(i) — (a0 +arRi+ a2 + azyh))* (4.2)
1

Where 6,(i) is the actual elevation of the upper arm; R, y and y are the radial

distance, azimuth, and elevation of the wrist; k =0,1,2,3,---.

Function § measures the sum across trials of the difference between the measured
value of 6 and the value predicted by the linear model. To minimize S, the best linear model
to fit the data can be obtained. The same thing was done to 1, 8 and o. The combined linear
relation between the wrist position and the orientation angles across all tasks and subjects
is shown in Fig. 4.1. In addition, the statistics are given in Table 4.1. It can be seen that
the results are similar to Soechting’s results. Here it is needed to emphasize that there was
only one simple pointing task in Soechting’s experiment while 6 types of more complicated
tasks had been conducted in this research. Fig. 4.2 shows the correlation coefficient (%)

across all subjects and tasks. Due to the arm length difference of the human subjects, the
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Table 4.1: Linear relationship between the intrinsic and extrinsic coordinates

OrientationAngle LinearFunction r
0 0.2678R+0.5735y +66.46 | 0.80
—0.1516R+1.052x +80.51 | 0.91
0.3248R+0.9347x — 154.7 | 0.95
0.1471R—0.981y +24.49 | 0.92

BN =] ~
=R

parameters in the linear relationship will slightly differ from subjects as well as the value
of r2. Tables 4.2, 4.3 and 4.4 show the linear relationship for each subject for all tasks. As
shown in Table 4.2, 4.3 and 4.4 the difference in the parameters for the linear relationship
is not significant. Comparing the coefficient determination for each type of tasks from Fig.
4.2, there is relatively little difference of residual (r?). The correlation coefficients on the
same task are very similar across subjects, however, for particular orientation angles, the
coefficients can differ across tasks. For Type 1 task, the correlation coefficients for all
subjects and orientation angles (6, 11, ¢, B) are close to one and the mean value of 72 is
0.95. As the tasks get more complicated, the relationship becomes more nonlinear. For
Type 2, 3, 4, 6 tasks, the mean value of % of the elevation angles (0 and ) decreased to
0.75. For Type 5 task, its correlation coefficient of the yaw angles (1, ¢) dropped more
significantly to 0.65. This indicates that the subjects share similar correlations for each task
while the task difference has more significant affect on the linear relationship and because
of the difference in the involvement of each part of the arm, the affect will differ from task
to task. Also, by comparing Type 2 and Type 3 tasks, their correlation coefficients are very
close implying that hand orientation caused by the different types of object did not affect

the linearity.
4.2 Method Evaluation

The proposed method was used in order to control a robot arm (LWR4+, KUKA) to reach
the desired position and orientation which was identical to that of the human subject during

each trial. For the performance estimation, the mean and standard deviation of the absolute
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Figure 4.1: Dependence of intrinsic coordinates on extrinsic parameters across all tasks
and subjects. The y axis represents the actual orientation angles and the x axis represents
estimated value from the the linear combination of target parameters which gave the best
fit to the data.

difference between the measured swivel angle collected from the subjects during the exper-
iments and the estimated swivel angle of the robot arm based on the proposed criterion are
calculated. The performance estimation results are plotted on all tasks and subjects. Fig-
ures 4.3,4.4, 4.5, 4.6,4.7, 4.8 show the comparison of the human and the robot arm swivel
angles for Type 1 to Type 6 tasks, respectively. The periodic nature of these plots are due to
the multiple repetitions of the same task. It should be noted that the peaks in each plot were
pauses between the previous and the next movement. In Fig. 4.9, a Graphical Analysis

of the data indicates that the mean errors vary from different types of tasks. It should be
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Table 4.2: Linear relationship between the intrinsic and extrinsic coordinates for Subject 1

i || OrientationAngle LinearFunction r?

1 0 0.0250R+0.5974y + 68 0.82
2 n —0.1542R 4+ 0.5796) +80.81 | 0.91
3 o 0.3318R+0.9974 —157.6 | 0.95
4 B 0.1328R—0.9441y +31.01 | 0.93

Table 4.3: Linear relationship between the intrinsic and extrinsic coordinates for Subject 2

OrientationAngle LinearFunction r?

0 0.03015R +-0.5796y +-65.57 | 0.80
—0.1406R +1.036 +77.61 | 0.91
0.3132R+0.9163 —151.1 | 0.95
0.1597R—-0.9784y +20.51 | 0.93

W =~
= RIS

Table 4.4: Linear relationship between the intrinsic and extrinsic coordinates for Subject 3

i || OrientationAngle LinearFunction r?

1 0 0.02495R +0.5266y +65.39 | 0.78
2 n —0.157R+1.049x +82.15 | 0.90
3 o 0.3176R+0.8887x — 154.6 | 0.94
4 B 0.149R +1.054y +20.99 0.92

noted that due to the length difference from the end effector to the wrist, the wrist position
of the robot arm will be slightly different from that of the human arm which will cause
some errors in the estimation of the swivel angle. Also, there is no initial information for
the configuration of the human and robot arm but the estimation results are still very close
to the actual swivel angles with 13° mean error across all tasks and subjects. Comparing
the results for Type 2 and Type 3 tasks, it implies that the hand orientation caused by the
different types of object does not have significant affect on the estimation results which

matches the results of the orientation angles shown in Fig. 4.2.

In order to show that the swivel angle is indeed a possible metric of anthropomor-
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Figure 4.2: Correlation Coefficient Matrix for all subjects and tasks. For each orientation
angle, from 6 to 3, three rows represent three subjects’ data respectively. X axis represents
the number of the task type. Similar pattern of values was observed across subjects.

phism, we tried to compare the human and robot arm configurations during the tested tasks.
These are shown in Fig. 4.10. It must be noted that the joint angles of the human and robot
arm will be different due to the difference in the link lengths of the two. Despite this, the
robot arm configurations are very similar to the ones of the human, proving that the swivel

angle is representative of anthropomorphism in robot motions.
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Figure 4.3: Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 1 task across all subjects. Each row is
from subject 1,2,3, respectively.
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Figure 4.4: Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 2 task across all subjects. Each row is
from subject 1,2,3, respectively.
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human (measured) swivel angle (solid line) for Type 3 task across all subjects. Each row is
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Figure 4.6: Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 4 task across all subjects. Each row is
from subject 1,2,3, respectively.
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human (measured) swivel angle (solid line) for Type 5 task across all subjects. Each row is
from subject 1,2,3, respectively.
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Figure 4.8: Comparison between the robot (computed) swivel angle (dotted line) and the
human (measured) swivel angle (solid line) for Type 6 task across all subjects. Each row is
from subject 1,2,3, respectively.
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Mul ti pl e Conpari son Results of Sw vel Angle
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Figure 4.9: The mean error with associated standard deviation (one sided) of the swivel
angle from the combined linear model (¢) with respect to types of tasks.

Figure 4.10: Snapshots of the human arm performing 3D motions and the robot arm driven
by the proposed method.
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Chapter 5

DISCUSSIONS

In this thesis we consider the problem of generating human-like motions from the kinematic
point of view, taking into account data recorded during a wide variety of everyday life tasks.
We use findings from neurophysiology that note the importance of the elbow position and
orientation in anthropomorphic arm movements. The swivel angle of the elbow is used as a
human arm motion parameter for the robot arm to mimic. Using experimental data recorded
from a human subject during every-day life tasks, we validate the linear relations between
intrinsic and extrinsic coordinates that estimates the swivel angle, given the desired end-
effector position. Requiring a desired swivel angle simplifies the kinematic redundancy of

the robot arm.

As shown in Chapter 4, there is a linear relationship between the intrinsic and
extrinsic coordinates across all subjects, and the parameters of the linear relationship will
vary slightly due to the arm length difference. The complexity of the task has some minor
affect on the linearity. However, the mean value of correlation coefficients of all orientation
joint angles is 0.9, indicating that the linearity still plays an important role in the human
arm motion. As shown in Fig. 4.9, the estimation results are very close to the actual swivel
angles with 13° mean error across all tasks and subjects, again with no initial information
for the configuration of the human and robot arm. Fig. 4.10 also shows that the swivel

angle can be used as a metric of anthropomorphism.

5.1 Conclusion
The proposed method is tested with an anthropomorphic redundant robot arm and the com-
puted motion profiles are compared to the ones of the human subject. It is shown that the
method computes anthropomorphic configurations for the robot arm, even if the robot arm

has different link lengths than the human arm, or starts its motion from random configu-

rations. This can be useful in a wide range of robot arms that interface with humans and
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are operated in human-cluttered environments. Especially in humanoid robots, the method
can be directly used in order to obtain anthropomorphic arm motions, while it can be easily
extended to dual arm configurations, describing the joint angle dependencies in dual arm
robotic systems. The novelty of the proposed method can be found in two main points.
First, the method uses the concept that the positioning of the elbow joint is a decisive factor
of anthropomorphic configurations in humans. Based on that, we define the swivel angle
and design our inverse kinematic problem in order to provide similar (but not identical)
robot swivel angles with those of the human during every-day life tasks. This results in an
analytic closed-form solution of the inverse kinematic problem. Secondly, the method is
generalizable, since it can be used in a wide variety of redundant robot arms, as long as an

elbow-equivalent point is defined on the robot arm.
5.2 Future Work

While this control scheme solves many aspects of current difficulties in robotic interaction,
it needs further investigation to characterize all types of human motion. While the idea
of manipulation is integral to human motion, other considerations are pertinent, such as
force. More experimentation and observation is required to develop a more robust control
system for the manipulator to interact with humans in every-day life. This development
requires not only a kinematic analysis of human motion but one which is driven by end
effector forces and torques or motion impedances. Only upon the combination of all these

considerations will a truly generalizable, anthropomorphic manipulator evolve.
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