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ABSTRACT

Structural integrity is an important characteristic of performance for critical

components used in applications such as aeronautics, materials, construction and trans-

portation. When appraising the structural integrity of these components, evaluation

methods must be accurate. In addition to possessing capability to perform damage de-

tection, the ability to monitor the level of damage over time can provide extremely use-

ful information in assessing the operational worthiness of a structure and in determining

whether the structure should be repaired or removed from service.

In this work, a sequential Bayesian approach with active sensing is employed

for monitoring crack growth within fatigue-loaded materials. The monitoring approach

is based on predicting crack damage state dynamics and modeling crack length obser-

vations. Since fatigue loading of a structural component can change while in service, an

interacting multiple model technique is employed to estimate probabilities of different

loading modes and incorporate this information in the crack length estimation problem.

For the observation model, features are obtained from regions of high signal energy in

the time-frequency plane and modeled for each crack length damage condition. Al-

though this observation model approach exhibits high classification accuracy, the reso-

lution characteristics can change depending upon the extent of the damage. Therefore,

several different transmission waveforms and receiver sensors are considered to create

multiple modes for making observations of crack damage. Resolution characteristics

of the different observation modes are assessed using a predicted mean squared error

criterion and observations are obtained using the predicted, optimal observation modes

based on these characteristics.

Calculation of the predicted mean square error metric can be computationally in-

tensive, especially if performed in real time, and an approximation method is proposed.

With this approach, the real time computational burden is decreased significantly and
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the number of possible observation modes can be increased.

Using sensor measurements from real experiments, the overall sequential Bayesian

estimation approach, with the adaptive capability of varying the state dynamics and ob-

servation modes, is demonstrated for tracking crack damage.
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Chapter 1

INTRODUCTION

1.1 Motivation

When evaluating the integrity of critical civil, military, transportation, and other

structures and systems, it is crucial that accurate conclusions are obtained. From a safety

standpoint, failure of a critical structure can result in bodily injury and loss of life. From

an economic standpoint, the amount of time, money, and other investments that must be

made to address a failure incident can be enormous. The failure incident must be inves-

tigated and possible causes must be determined. Testing must be performed to recreate

and simulate the failure as well as to devise and test proposed remedies to prevent sim-

ilar future incidents. Assuming appropriate solutions to the problem are determined,

there can be significant expenditures for implementing and monitoring them, as well as

expenditures related to legal liabilities and compensation for parties affected by a fail-

ure incident. There can also be significant damage with respect to the reputations of the

businesses, personnel, or other organizations deemed to be responsible for allowing an

unanticipated failure to occur. Future business and revenue could be severely affected.

Faults and damage within structures exist at various levels, and in appraising the

condition of a structure, it is advantageous if one can define the presence of damage, as

well as the level of damage. Worden and Delieu-Barton [3] provide specific definitions

of the concepts of faults, damage, and defects within structures. A fault is when the

structure can no longer operate satisfactorily. If one defines the quality of a structure

or system as its fitness for purpose of its ability to meet customer or user requirements,

it suffices to define a fault as a change in the system that produces an unacceptable

reduction in quality. Damage is when the structure is no longer operating in its ideal

condition but can still function satisfactorily, i.e., in a sub-optimal manner. A defect is

inherent in the material and statistically all materials will contain some unknown amount

1



of defects, this means that the structure can operate at its design condition even if the

constituent materials contain defects.

Farrar and Worden [4] emphasize that the concept of flaws within structures

begins at the material level, and that all materials possess some degree of defects. As

structures are put into service and experience different types of loading scenarios, the

faults or defects might grow into more significant damage states. This emphasizes the

need for accurate evaluation methods for critical structures and systems, since defects

exist to some extent in all structures.

During the design and development of critical structures, destructive testing is

commonly used to determine or validate the strength and other properties of structures,

components, and materials. Representative specimens are mechanically tested under

various loads and conditions to evaluate strength capabilities under these situations.

Extreme loading conditions are often employed, possibly up to specimen breakage, to

obtain measurements within the ultimate strength range of the structure. Artificial flaws

can be incorporated into specimens to determine knockdowns in strength characteris-

tics for different levels of damage. Destructive testing often includes procedures where

specimens are physically sectioned and internal regions are examined visually, micro-

scopically or with other evaluation methods. Therefore, destructive testing is commonly

used during the preliminary design and development of structural components. Even af-

ter a component is designed, developed, and put into production, destructive testing is

often performed periodically for quality control evaluations using a small sampling of

structures pulled from production or service. Although destructive testing information

can be valuable, it generally renders the structure of interest unsuitable for its intended

operation. There are obvious economic and practical limitations with respect to the ex-

tensive use of destructive testing for obtaining structural information and assessing part

quality.
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In addition to destructive testing, there are a variety of less damaging procedures

used to monitor structural quality and obtain information with respect to the health

condition of critical structures. In these methods, minimal alteration, if any, occurs to

the evaluated components, so that structural integrity is not compromised. Obviously,

these are the types of procedures that can be used to evaluate and monitor components

currently in or intended for service.

As described by Farrar, Worden, and Dulieu-Barton [3, 4], there are several key

multidisciplinary areas used for monitoring actual components and assessing damage.

These include statistical process control, nondestructive evaluation, structural health

monitoring, condition monitoring, and damage prognosis. Note that there can be signif-

icant overlap within these various areas.

Statistical process control and the related concept of statistical quality control

pertain to the general philosophy of inherently creating quality within a product dur-

ing design and manufacturing. Parameters that are particularly critical for part quality

are specifically identified and weighed accordingly. This is done so that higher quality

awareness is given to parameters that play key roles in determining the quality of a com-

ponent. Statistical techniques are used to actively monitor and analyze the parameters

and methods of evaluating these parameters [5].

Nondestructive evaluation (NDE) refers to a collection of quality assessment

techniques that evaluate parts and components using methods that cause insignificant or

no damage to the part or component. NDE is commonly performed as a quality control

procedure during manufacturing of a part and after the part is put into service, especially

when proper performance of the part is critical. A key characteristic of NDE is that it is

usually performed off-line, and hence, the component typically has to be removed from

manufacturing or service for evaluation. Radiography, ultrasonic inspection, magnetic

particle inspection, liquid penetrant inspection, eddy current inspection, and acoustic
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emission are some of the most commonly-used NDE methods.

Structural health monitoring (SHM) [6, 7] represents an alternative approach

towards NDE of critical structures. In SHM, sensors are attached or otherwise incorpo-

rated into a structural component, and information from the embedded sensors is used

to monitor the structural integrity of the component. Unlike NDE, a common objective

of SHM is that articles can be monitored while in service, rather than having to be taken

offline and inspected. Since damage detection can occur in-between periodic inspection

and maintenance procedures, this can improve system quality and safety. Furthermore,

since components are monitored while in service, this can also reduce the frequency

in which they are removed from service for maintenance and inspection. When main-

tenance is required, previous information obtained from SHM could be beneficial in

isolating and resolving structural problems.

Although SHM offers many advantages, it also poses certain challenges. In

some cases, embedding a sensor into a structure can perturb the system, creating a

structural discontinuity and small flaw within a region that does not have discontinuities

to begin with. In weight critical structures, such as those used in aerospace, weight

concerns inherently place limitations with respect to the level of sophistication of on-

board SHM systems. Other factors that have to be considered include the methods of

attaching sensors to the structure of interest, the types of transmission channels used to

transmit SHM data, and the anticipated service environments that the structure and the

SHM system encounter. Furthermore, the attachment and operation of the sensors must

not interfere with the critical operation of the monitored components. Hence, for many

potential applications, the use of SHM is still in a developmental stage.

Common approaches used in SHM include Lamb wave based and optical fiber

based methods. When using Lamb wave propagation, signals are transmitted into a ma-

terial of interest, and piezoelectric materials are commonly used in the transmission and
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receiver sensing devices [8]. Lamb wave propagation along a material depends upon

the density, elastic properties and thicknesses of the material, as well as the signal’s

frequency components. When Lamb waves encounter interfaces, such as those caused

by defects within the material, the wave propagation velocity changes, and hence, fre-

quency, phase and modal relationships also change. These types of changes can be used

to detect and classify defects within materials. With fiber Bragg grating methods, light

is sent through fibers possessing grated optical sensors within the optical fibers. When

light is sent into the grated sensors, a portion of the light is reflected, and the spacing

of the grating determines which wavelengths are most affected. When the material is

loaded, this causes straining within the material and sensor grating, thereby shifting the

wavelengths that are most affected by the grating. When changes occur to the material

due to flaws or defects, the strain characteristics of the material and attached grated sen-

sors also change. Changes in wavelength behavior can be used to determine changes in

the structural condition of a material.

Note that there can be considerable overlap between approaches traditionally

categorized as either NDE or SHM. Limited scope SHM could be used for real time

monitoring structures for possible damage, and in the event SHM data detects possible

damage, the structure could be pulled off-line for more intensive evaluations using SHM

and NDE. Alternatively, SHM sensors internally embedded within a structure might

have better capability of detecting internal damage, or damage in limited access areas,

as compared to conventional NDE methods. Therefore, information obtained using one

approach can be used to supplement information obtained with the other.

The objectives of condition monitoring (CM) are somewhat similar to SHM.

Like SHM, CM tends to be used in an on-line manner. However, the typical SHM ob-

jective is to directly monitor the structural condition of a component, whereas the typical

CM objective is to monitor some external force or event that regularly impacts the com-

ponent and eventually causes predictable degradation over time. The degradation of the
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component can be correlated with the magnitude and frequency of the external forces or

events. CM is often used in rotating structures or structures that are subjected to signifi-

cant vibration while in service. In such structures, the number of rotations or the amount

of vibration can be monitored using accelerometers, seismic transducers, piezoelectric

transducers, or other types of sensors.

Damage prognosis (DP) is a closely-related and somewhat overlapping area of

study with respect to assessing structural integrity. Whereas the intentions of NDE and

SHM often focus on measuring the current condition of a structure, damage prognosis

generally includes predictive assessments related to defining the remaining service life

of a damaged structure or the allowable conditions under which a damaged structure

can still operate in a reliable, safe manner. Methods and models are created for predict-

ing damage growth and future conditions of a structure. Various approaches have been

devised to model fatigue crack growth during the past century. In the 1960s, Paris and

fellow researchers [9, 10] proposed that crack growth state could be modeled using the

stress intensity factor range associated with the loading conditions, as well as other key

material and fatigue-related parameters. In recent years, more-sophisticated physics-

based and multi-scale modeling methods [11] have been used. The objective of these

methods is to model physical processes governing crack growth and overall fatigue be-

havior, and where the multi-scale methods have endeavored to model the physical pro-

cesses and interactions from the microscopic level up through the macroscopicl struc-

tural levels. Various statistical, pattern recognition methods have been employed to in-

corporate past damage information for predicting future damage conditions. tMohanty,

Liu, Chattopadhyay, and collaborators [12–15] employed Gaussian Process statistical

pattern recognition methods for estimating residual useful life and general damage esti-

mation within structures.

Successful implementation of damage evaluation approaches requires accurate

and efficient feature extraction and data analysis techniques. The various data analysis
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techniques, including filtering, feature extraction and statistical methods, can be applied

to data obtained using both an off-line, NDE style inspection, or an in-service, SHM

style, real-time monitoring. Regardless of the approach used to obtain the data, anal-

ysis approaches should possess high capability of detecting and accurately classifying

damage state within structures.

1.2 Prior Work on Damage Detection

A number of studies involving active sensing have been performed to improve

the ability to detect and locate damage within structures. Kessler, et al. [16] varied

frequency, amplitude, envelope shape, and other parameters related to tone burst wave-

forms transmitted as Lamb waves in composite laminates, and evaluated the suitability

of the resulting waveforms using a general assessment of time domain plots and wavelet

transform coefficients. Sohn, et al. [17] employed a wavelet-based approach towards de-

tection of simulated delaminations in composites, where they defined a damage index

metric based upon a damaged/undamaged ratio of wavelet transform time marginals.

Fasel, et al. [18] examined the use of sinusoids with various chaotic signal envelopes.

Received signals were modeled using autoregressive time series models, and statistics

of the residual error signals were compared for undamaged and damaged specimens. A

genetic algorithm was used to modify the chaotic signal envelope to increase statistical

differences between residues of the damaged condition specimens as compared to those

associated with the undamaged, baseline condition. Lee and Staszewski [19,20] studied

the propagation of Lamb waves within materials for detecting and locating damage. A

local interaction simulation approach (LISA) was used, along with power spectral den-

sity, wavelet analysis, and time-space wave propagation analysis approaches. Kuttig, et

al. [21], and Raghavan, et al. [22], employed chirplets to represent regions of Lamb wave

dispersive mode energy for detecting and locating damage. Borkowski, et. al, [23] de-

veloped a fully-coupled, electromechanical elastodynamic model for Lamb wave prop-

agation applicable to heterogeneous, anisotropic material systems, where mechanisms
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related to Lamb wave dispersion, coupling, and interaction with material defects were

addressed. In experimental studies involving SHM, there can be significant time and

cost when exploring and fine tuning experimental parameters, especially when materi-

als, geometries, and general specimen design can vary. One key advantage stated in [23]

is the proposed model can be used to predict Lamb wave behavior within arbitrary spec-

imen designs such that experimental parameters can be defined in a more intelligent,

efficient manner.

In monitoring the progression of damage, parameters related to a damage growth

models need to be estimated. With the massive increase in computational power during

the last few decades, the use of computer simulation and sampling methods have dramat-

ically increased the ability to perform parameter and state estimation. These techniques

are particularly useful when the estimation problem includes mathematically intractable

quantities or when there are other difficulties in obtaining samples of quantities of inter-

est. In [24], the Markov chain Monte Carlo (MCMC) method [25] was used for damage

estimation; it is an example of computer simulation methods commonly employed in

these types of situations.

A variety of advanced signal processing and estimation methods have been pro-

posed for SHM applications. In [26, 27], the matching pursuit decomposition (MPD)

[28] was used for feature extraction in damage detection applications to create compact

time-frequency representations of signals corresponding to different damage conditions.

The MPD was combined with the statistical hidden Markov model (HMM) approach to

model different damage conditions for use in SHM damage classification [29, 30]. Se-

quential Monte Carlo techniques have also been employed for monitoring of progressive

damage in structures [2, 30].
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1.3 Proposed Thesis Work

In this work, we build upon previous signal processing SHM efforts, and propose

an overall SHM-based sequential Bayesian estimation approach with several improve-

ments to expand the capability for adapting to different loading and damage conditions.

Within the basic sequential Bayesian methodology, we employ physics-based

models such as Paris law to provide estimates of crack rate and damage propagation

within a fatigue environment. We use an active sensing approach to develop our ob-

servation model. This model integrates the MPD time-frequency method and hidden

Markov models (HMMs) to create and learn feature vectors from signals correspond-

ing to different damage conditions. When new sensor measurements are obtained, the

trained HMMs can be used to classify observations with respect to crack length. We

show how the combination of MPD and HMMs can be used to obtain accurate crack

length observations. As compared to previous work using MPD and HMMs for damage

classification, in which there were typically several different levels of damage, within

this work, we specifically show how the MPD-HMM approach can be to obtain accu-

rate damage estimation in situations involving large numbers (e.g., up to 32) of possible

damage levels.

Within our proposed approach, we recognize that the ability to monitor condi-

tions can change, and we address this by including different model variations. Since dy-

namic systems and structural components can be subjected to multiple types of fatigue

loading conditions, we propose an interacting multiple model (IMM) approach [31–33]

to weigh the probabilities of different loading conditions and loading models. The IMM

is an efficient filtering method that has been successfully used in other applications such

as object and target tracking. Different types of movements and maneuvers of an ob-

ject, as well as different fatigue loading conditions, can be modeled separately. The

IMM approach can help recognize changes to the state dynamics and weigh the corre-

9



sponding models accordingly, thereby expanding the capability for monitoring different

conditions.

Within this work, using an active sensing approach towards crack length ob-

servation, we explore the use of different transmission waveforms, as well as differ-

ent receiver sensors used to capture the transmitted signal information. Although the

MPD-HMM based observation model demonstrates exceptional capability for recog-

nizing different damage conditions, the ability to resolve different levels of damage can

vary with changes to the damage condition and observation-related parameters. As a

result, for different estimated levels of damage, we improve damage resolution capabil-

ity by selecting the optimal transmission waveform at each time step. In this selection

approach, we adapt the predicted mean-squared error (MSE) of estimation as our per-

formance metric [34]. The use of this metric relates to differences that can occur in the

modeling capability of HMM models that have been trained with different waveforms

given a particular crack length damage condition.

Previous work by Zhou [30] discussed the use of an MSE-based approach for

sensor scheduling in SHM applications; however, it was also recognized there can be

severe limitations on the number of possible sensor combinations due to increased com-

putational burden as this number increases. Therefore, we develop an approximate MSE

approach, where most of the computation burden can be performed off-line. Although

this approach produces an approximation of the MSE metric, we show how this ap-

proximation approach produces results that are in good agreement with the real-time

approach. Since the approximation approach reduces the real-time computational bur-

den substantially, this allows a significant increase in the number of possible transmis-

sion waveforms, receiver sensors, and other parameters used for observing the damage

condition. We demonstrate this with an example involving three different transmission

waveforms and five different receiver sensors.
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In performing sequential Bayesian estimation, certain quantities might exhibit

levels of variation that are larger than desired, and therefore, we demonstrate several

approaches for reducing variation. When extracting parameters related to the Paris

Law crack propagation model, the inherent power law structure of the model makes

parameter estimation particularly susceptible to extreme levels of variability. Using as-

sumed distributions of the parameters, we demonstrate a Markov chain Monte Carlo

approach to define acceptable, constrained values for the parameters. When obtaining

crack length observations within extreme noise environments, the resulting crack length

estimates can also exhibit significant levels of noise and crack rate inconsistency. Em-

ploying the assumed linear log-scale relationship between the crack growth rate and the

corresponding stress intensity factor range, we extract noisy, localized crack rate values

from our noisy crack length estimates and use the linear log-scale relationship to smooth

over the noise.

Figure 1.1 shows key components within our work. Within the diagram, given

we have a crack length estimate at time step k−1, our overall objective is to obtain an

estimate of the crack state damage at fatigue time step k. In general, the state dynamics

model provides an initial estimate of the distribution of the crack length at time step k.

However, given there can be multiple loading conditions, multiple approaches towards

modeling the propagation, or other variations in the damage propagation, the IMM ap-

proach provides flexibility for addressing the different possibilities. As the damage

condition of the structure changes, or as other factors cause changes in methods used

to observe the damage condition, the MSE approach allows us to assess and select the

best predicted mode(s) for observing the damage. If there are more than a handful of

possible modes of observing the damage, computational costs associated with calculat-

ing the MSE metric can become significant. Therefore, from a practical implementation

standpoint, we demonstrate an approximation approach towards calculating an MSE

estimate, such that a larger number of observation parameters (e.g, transmission wave-
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forms, receiver sensors, etc.) can be evaluated for making the damage observation. For

our observation model, we use an MPD-HMM approach for observing the crack length

damage. As compared to previous efforts employing an MPD-HMM approach, we show

how this observation model can be used to obtain accurate damage classification when

there are numerous possible levels of damage.

Figure 1.1: Overall adaptive sequential Bayesian approach.

1.4 Report Organization

This report is organized as follows. In Chapter 2, we give background regard-

ing several of the key analytical and estimation tools employed within our basic overall

damage monitoring approach. Chapter 3 consists of a brief historical overview of ba-

sic fracture mechanics concepts, since the state dynamics models used within our work

possess a fundamental fracture mechanics basis. The use of the IMM approach to com-

bine or select from several different state dynamics models is described in Chapter 4, as

this method is used to. Chapter 5 describes a predictive mean squared error approach

for combining or selecting from various modes of observing damage to improve the ro-

bustness in making these observations. Finally, in Chapter 6, concluding remarks and

potential future work are discussed.
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Chapter 2

SIGNAL PROCESSING ALGORITHMS FOR DAMAGE TRACKING

In this chapter, we describe the basic analytical tools utilized within our overall

crack growth tracking methods. Our overall method uses a sequential Bayesian anal-

ysis approach, so we briefly discuss Bayes theorem and Bayesian analysis, including

the general concepts of prior and posterior knowledge, and later in the chapter, we con-

sider sequential Bayesian analysis. Markov chain Monte Carlo methods can be used

for parameter refinement in our state dynamics model, and hidden Markov modeling

is used to perform statistical pattern recognition of signal feature vectors correspond-

ing to different damage conditions. Therefore, the basic idea of the Markov property

and how it can be used to create Markov chains are discussed, and later in the chapter,

Markov chain Monte Carlo and hidden Markov modeling techniques are addressed. For

our crack length observations, we transmit short duration signals through a structural

material of interest and receive the signals at various sensors positioned on the mate-

rial. The received signal features are analyzed within the time-frequency plane, where

the time-frequency signal features, in conjunction with hidden Markov modeling, are

used to observe the crack length damage condition within the material. Therefore, we

briefly discuss time-frequency signal processing, and then focus upon matching pursuit

decomposition (MPD), which is the method employed to extract signal features within

the time-frequency plane. We then discuss hidden Markov modeling (HMMs), which is

a statistical, artificial learning method used to correlate the MPD, time-frequency signal

features with different crack length damage conditions. The extraction of received sig-

nal features using MPD, and the crack length recognition of the MPD information by

the hidden Markov models (HMMs), forms the based of our crack length observation

model. Finally, we discuss the use of the MPD-HMM observation model in a reverse,

emission mode, where we can use trained HMMs to generate predicted sequences of
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MPD feature vectors. The predicted sequences of MPD feature vectors can then be ana-

lyzed by trained HMMs to give probabilities of predicted crack lengths. These predicted

crack length probabilities are used to estimate error characteristics of the predicted ob-

servations. We employ several different options for modeling damage propagation or

for observing the damage, and we use predicted error characteristics for deciding among

the different available options.

2.1 Bayesian analysis

General approaches towards classification, decision, and general data analysis

often rely upon Bayesian approaches. The original ideas were proposed in 1763 by Rev-

erend Thomas Bayes [35], and the statistical concept known as Bayes theorem has been

a powerful tool in statistical inference and data analysis [36–39]. The inherent struc-

ture of Bayes theorem and Bayesian data analysis is well suited for iterative estimation

methods and many iterative, computer-based estimation methods employ a sequential,

Bayesian approach [40].

Given a set of parameters θ and a set of related observations y, the relationships

between conditional and joint probabilities can be arranged such that it is possible to

reverse the conditioning of one variable upon the other. Given p(y,θ) = p(y|θ)p(θ),

and p(y,θ) = p(θ |y)p(y), then one conditional probability can be derived using the

other:

p(θ |y) = p(y|θ) p(θ)
p(y)

or p(y|θ) = p(θ |y) p(y)
p(θ)

(2.1)

Alternatively, one can view Bayes Theorem as a way of updating the prior

knowledge or belief of some event given a new observation (or new evidence) related to

the event. Focusing upon the first expression in (2.1), the term p(θ) can be thought of

as the prior distribution of the parameters θ . After obtaining an observation y, knowing

the likelihood of the observation y given the parameters θ , and knowing the probability

of the observation p(y), then the posterior distribution p(y|θ) can be calculated.

14



In an iterative, Bayesian approach to estimation of parameters θ given an ob-

servation y, several steps are typically performed. These include predicting θ using

the available prior information p(θ), obtaining an observation y related to θ , where the

likelihood of the observation is p(y|θ), and updating the prior information to obtain

posterior knowledge of the parameter given the observation p(θ |y) using (2.1). In a

sequential time step approach, if the posterior at time step k (i.e., p(θk|yk)) can be used

in creating the prior for the next time step p(θk+1), a Bayesian procedure can be per-

formed in an iterative, sequential manner, and this is generally referred to as sequential

Bayes estimation. In many applications, the updated, posterior probability from one

time step is used without modification as the prior probability for the next time step

(i.e.,p(θk+1) = p(θk|yk)).

In the expressions shown in (2.1), it is common to express the denominator as

an expectation of the observations given the parameters. For example, we can express

p(y) as:

p(y) =


∫

p(y|θ) p(θ) dθ , for θ continuous.

∑ p(y|θ) p(θ), for θ discrete.

where the integral (continuous case) or summation (discrete case) is performed over the

possible range of values for θ . In the discrete case, (2.1) becomes:

p(θ |y) = p(y|θ) p(θ)
∑ p(y|θ) p(θ)

or p(y|θ) = p(θ |y) p(y)
∑ p(θ |y) p(y)

(2.2)

where the denominators in (2.2) act as normalizing constants so that the posterior prob-

ability sums up to one. In many situations, it is only necessary to determine relative

probabilities up to some proportionality:

p(θ |y) ∝ p(y|θ) p(θ) or p(y|θ) ∝ p(θ |y) p(y) (2.3)

2.2 Markov chains

Consider a system of N states X = {x1,x2, . . . ,xN}, where a sequence of these

states Q = {q0,q1,q2, . . .} is generated at time steps k≥ 0. Given a state xi at time step k,
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if the probability of the next state x j at time step k+1 is Pr(x j|xi), where this probability

depends only upon the current state xi and is independent of previous states and previous

transitions, then the sequence exhibits the Markov property. The sequence exhibiting the

Markov property is called a Markov chain, or a Markov process, and Pr(·|·) is called the

transition kernel of the chain [41]. If a system possesses the Markov property, this can

be especially useful in a Bayesian context. For example, in Bayesian, computer-based

estimations that assume the Markov property, only the most recent prior p(θ) has to

be stored before making observation y and updating to obtain the posterior p(θ |y). All

previous observations and priors do not have to be stored, thereby simplifying computer

storage and computational requirements.

Using the notation pi j to represent the transition probability from state i to

state j, these probabilities
{

pi j
}

can be assembled into a state transition probability

matrix P. Figure 2.1 shows an example state transition diagram, along with its corre-

sponding state transition probability matrix. In this example, there are several instances

where a state is allowed to transition back to itself, creating a self transition.

Figure 2.1: Example of a Markov chain state diagram (left) and a transition matrix
(right).

Given N possible states, the transition probability matrix P is a N×N square

matrix. Furthermore, each row contains the probabilities of transitioning from state i to
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state j, and therefore, the sum of the elements of each row must sum up to 1:

N

∑
j=1

pi j = 1

When discussing Markov chains and Markov processes, it is common to use π

notation to designate the probability of being in some state, for example, using π j to

designate the probability of being in state j, or alternatively, to denote the proportion of

time spent in state j during a long-run Markov chain. Since π j represents a probability,

the sum of all probabilities π j must equal one:

N

∑
j=1

π j = 1

Note that the collection of the {π j} probabilities represents a probability distribution of

the states, where this distribution is commonly notated as a row vector π:

π =
[
πi π j . . .

]
(2.4)

In addition, since each element π j of row vector π represents a probability of

being in state i, and each element pi j of the state transition matrix P represents the

probability of transitioning from state i to state j, the sum of the product πi pi j over all

states i = 1, . . ., N is equal to the probability π j (i.e., the probability of being in state j):

π j =
N

∑
i=1

πi pi j

Using the vector-matrix versions of these quantities, common interests associated with

long-run Markov chains pertains to determining if a stationary distribution π exists,

where the key characteristic of the stationary distribution is that π = πP, and if the

stationary distribution exists, under what conditions does it exist.

A Markov chain is irreducible when there is a positive probability that every

state i can transition to every state j ( j = i included) in a finite number of steps. An

irreducible Markov chain is aperiodic if for some time step t ≥ 0 and some state j,

Pr(xt = j | x0 = j) > 0 and Pr(xt+1 = j | x0 = j) > 0
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. Therefore, a Markov chain is aperiodic when the number of steps to return to the same

state is not a multiple of a number greater than one. The detailed balance condition

occurs when

πi pi j = π j p ji, ∀ i 6= j. (2.5)

With the detailed balance condition, there is equal probability within the Markov chain

of a transition from state j to state i as there is of a transition from state i to state j.

2.3 Markov Chain Monte Carlo Methods

Within our work, there are situtations in which it is desired to obtain refined esti-

mates of model parameters used within our crack damage monitoring approach. In some

cases, the initial estimates of model parameters can vary greatly. Given previously-

obtained or real-time crack length observations, and given various target values and

defined constraints, techniques such as Markov chain Monte Carlo can be used to re-

fine parameter values within the defined constraints. In this section, we briefly discuss

Markov chain Monte Carlo techniques.

Although a common Markov chain problem relates to determining if and un-

der what conditions the stationary distribution π exists, Markov chain Monte Carlo

(MCMC) methods often assume that π is a known target distribution. A typical ob-

jective of MCMC applications is to obtain samples from this distribution, especially in

situations where π is a multivariate distribution or otherwise presents difficulties when

it is desire to obtain samples from π . Rather than attempting to obtain samples directly

from π , in MCMC, we obtain samples from a proposal distribution q(·), and then,

using MCMC procedures, samples obtained from the proposal distribution eventually

converge to the desired target distribution π .

Various notational, terminology, and conceptual differences exist between gen-

eral Markov chain and MCMC procedures. In the previous discussion of Markov chains,

we discussed a state transition probability matrix P possessing elements pi j, where these
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elements represented the probability of transitioning from state i to state j. In MCMC,

the analogous transition matrix is commonly notated as Q with matrix elements q(x,y),

where q(x,y) represents a transition probability from x to y. However, in the context

of MCMC, q(x,y) is thought of as the probability of a proposed (and not necessarily

accepted) transition – given a current value x in the Markov chain, q(x,y) represents a

probability of obtaining a proposed value y to be the next value in the Markov chain.

Given the current sample x and proposed sample y, MCMC methods also include a

probability α(x,y) of accepting y as the next value in the Markov chain. If y is rejected,

the current value x is used again as the next value in the Markov chain. To be consistent

with MCMC notation commonly used in literature, we are using both x and also y to

represent state quantities in our MCMC Markov chain, where x represents the current

state quantity in the chain, and y represents a proposed state quantity to be added to the

chain. This is specifically mentioned because in other discussions within this document,

y and variations of y are used to represent observations of a state, rather than the value

of the state. With respect to other notational differences, in MCMC notation, π(x) and

π(y) are commonly used to designate the probabilities of states x and y, respectively,

whereas in our discussion of Markov chains, we used subscripts i and j to designate

different states, and used the notation πi and π j to denote the probabilities of being in

state i and state j.

One of the most common types of MCMC methods is the Metropolis-Hastings

algorithm and this are discussed below.

2.3.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings (M-H) algorithm was originally developed by Metropo-

lis, Rosenbluth, Rosenbluth, Teller, and Teller [42] in 1953 and was subsequently gen-

eralized by Hastings [43] in 1970. However, it was not until the mid 1990s before it

became popular, when increased computational capability became available and pro-
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ponents of the algorithm, including Tierney [44], illustrated its usefulness. The 1995

tutorial by Chib and Greenberg also provides a good overview of M-H methods [45].

Referring to (2.5) for the detailed balance condition for Markov chains, the anal-

ogous expression for the M-H algorithm is

π(x) q(x,y) α̇(x,y) = π(y) q(y,x) α̇(y,x) (2.6)

where α̇(x,y) and α̇(y,x) are the probabilities of accepting a proposed transition from

x to y and from y to x, respectively, and where the specific values of these acceptance

probabilities allow for the equality condition. If we take the ratio of the two values and

redefine this quantity as α(x,y) = α̇(x,y)/α̇(y,x), then we can define a new, combined

acceptance probability for the transition from state x to proposed state y:

α(x,y) =
π(y) q(y,x)
π(x) q(x,y)

(2.7)

To account for situations in which α(x,y)> 1, the probability of accepting the proposed

sample is defined as follows:

Pr(accept y) = min {α(x,y), 1} (2.8)

Therefore, given that we are currently at time step t in the Markov chain, and the current
value is x, the M-H algorithm will generate the sample at time step t +1 as follows:

1. Generate a proposed sample y from the proposal distribution q(x,y) and obtain
the probability of the proposed sample y.

2. Calculate the probabilities π(y) and q(y,x) using the proposed sample y and cur-
rent sample x.

3. Calculate the probability π(x) (or retrieve from storage if it was calculated and
stored in the previous M-H iteration).

4. Calculate α(x,y) using (2.7). If α(x,y) ≥ 1, accept the proposed sample y for
time step t +1.

5. If α(x,y) < 1, draw a random sample u ∼ U [0,1]. If α(x,y) > u, accept the
proposed sample y for time step t +1. Otherwise, use the current state x for time
step t +1.
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If the proposal density is symmetric such that q(y,x) = q(x,y), then (2.7) simplifies to:

α(x,y) =
π(y)
π(x)

(2.9)

In a version of M-H known as independent Metropolis-Hastings, the proposal

density is only concerned with the next proposed value y and is “independent” of the

current value x in the chain, so that q(x,y) becomes q(y) and q(y,x) becomes q(x), and

then (2.7) becomes:

α(x,y) =
π(y) q(x)
π(x) q(y)

(2.10)

Note that using the term “independent” in (2.10) is not completely accurate since the

acceptance of proposed value y depends upon the current value x.

2.3.2 MCMC implementation

In implementing MCMC, there are typically several issues that arise. These

include selecting the proper models, selecting the proper distributions, choosing an ap-

propriate Markov chain length, and choosing an appropriate burn-in length, which is the

length of the initial portion of the chain (before convergence) that is typically ignored.

A number of studies have been performed to study convergence diagnostics of

Markov chains, especially with respect to implementing the proper burn-in and overall

chain lengths. One of the first studies to address MCMC convergence issues was per-

formed by Gelman and Rubin [46]. In addition, Robert and Casella [47], as well as a

collection of works edited by Gilks, Richardson and Spiegelhalter [41], provide addi-

tional information regarding MCMC convergence. A summary of MCMC convergence

methods has been provided by Cowles and Carlin [48]. Typical approaches to check

for convergence include the use of multiple sequences, multiple starting points and/or

graphical methods to provide multiple and alternative sources of evidence to detect con-

vergence. In many cases, researchers have used previous experience and trial and error

to determine burn-in and overall lengths. If results are not satisfactory, then lengths are

increased.
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Note that the use of multiple sequences can also be used to improve indepen-

dence of samples resulting from MCMC methods. Instead of using the last L samples

(after burn-in) from a single chain to represent samples from a distribution, the last

sample(s) obtained from multiple chains could be collected to create a sequence with

inherently more independent samples.

2.3.3 Simulated annealing

In computer simulation and estimation methods such as MCMC, the use of sim-

ulated annealing can be useful to improve the ability of the estimation procedure to

converge to a global optimal estimate, rather than settling on a suboptimal, local esti-

mate [25]. The term “annealing” refers to a metallurgical procedure in which a metal is

raised above its critical temperature and then is slowly cooled to room temperature. At

temperature, the material softens, which allows internal stresses within the material to

relieve and dislocations within the material to redistribute, such that ductility and uni-

formity of the material is improved. In computer-based estimation techniques involving

simulated annealing, samples are initially drawn from a sampling distribution possess-

ing relatively wide sampling boundaries such that global optimal regions are included.

Eventually, after the estimation procedure has progressed and estimates have started to

converge, the width of the sampling boundaries is slowly decreased such that sampling

becomes more and more focused towards an eventual region of convergence.

Simulated annealing can be performed at more than one level. For example,

in our work, we perform the M-H algorithm multiple times, and we include simulated

annealing within each M-H run and also between different M-H runs. Within a M-

H run, during the “burn-in” period, simulated annealing is performed by reducing the

variance of the proposed samples after every M-H sampling iteration. After “burn-in,”

the variance is held constant, and a set of M-H samples is obtained, the mean of the post

“burn-in” samples is obtained, and this mean value is used as the initial value for the
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next M-H run. Prior to beginning the next M-H run, the initial variance is widened to

begin the “burn-in” period, but this initial variance is reduced as compared to the initial

variance of the previous M-H run. Therefore, within each M-H run, simulated annealing

is performed by reducing the variance during the “burn-in” period, and between M-H

runs, simulated annealing is performed by reducing the overall variance values used in

the next M-H run as compared to the previous M-H run.

2.4 Sequential Importance Sampling

Sequential importance sampling (SIS) is another computer-based method that

has gained significant popularity during the past several decades with the increases in

computational capability. In SIS, the concept of importance sampling is performed in an

iterative manner to estimate and track a dynamically changing state quantity. Whereas

MCMC methods tend to focus on fixed target distributions and generating samples from

such distributions, SIS methods typically focus on the estimation and tracking of param-

eters within dynamic states.

SIS involves several intermingling concepts, including particle filters, impor-

tance sampling, and sequential Bayesian estimation of dynamic state quantities. There-

fore, we will first give a brief overview on particle filters, followed by a discussion on

importance sampling and how particle filters can be used in this application. We will

then examine overall concepts related to sequential estimation and tracking of dynamic

states. After discussing the general, overall approach, we will then discuss the SIS ap-

proach. We will then discuss various implementation issues and methods that have been

used to deal with SIS implementation.

2.4.1 Particle filters

Estimation in the SIS procedure is performed using particle filters. Particle fil-

ters consist of a collection of discrete support values, also known as particles, which

are stored with a corresponding set of weight values, where each weight designates the

23



importance of the corresponding particle value. The collection of paired particles and

weights is created in a manner so that the collection can be related to the distribution of

one or more parameters of interest.

Figure 2.2 shows two example particle filter diagrams where the particle filters

are depicted at given iterations within a SIS procedure. In these diagrams, the particle

values are represented by the location of the circles along a value axis, and their corre-

sponding weights are represented by the sizes of the circles. Note that a particle filter

can represent a distribution related to some multi-modal quantity possessing peaks at

more than just one location. Traditional mathematical estimation methods might have

difficulty estimating or tracking a multi-modal quantity, whereas particle filters are less

hindered for characterizing such distributions.

Figure 2.2: Particle filter representations. (a) Mono-modal (single peak) particle distri-
bution. (b) Bi-modal particle distribution (two peaks).

As with other iterative Bayesian estimation methods such as the Kalman Filter

[49], given a dynamically-changing state vector of interest x, where we possess the

ability to make observations y that are related to the state, a typical objective with SIS

is to approximate the posterior distribution p(xk|y1:k) of the state as if evolves over

time, where the notation 1 : k is used to denote iterations 1 through k. However, with
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SIS, particle filter representations are employed to represent a distribution related to the

state. Assume we have Np particles x(i), i =
{

1,2, . . . ,Np
}

that have been sampled from

some appropriate proposal density and each particle possesses an associated weight w(i).

Using the notation
{

x(i)k ,w(i)
k

}
to represent the {value, weight} pair of the ith particle of

a particle filter at iteration k, and where the particle weights have been normalized such

that ∑i w(i)
k = 1, then the approximation of the distribution can be expressed as:

p(xk | y1:k)≈∑
i

w(i)
k δ

(
xk−x(i)k

)
. (2.11)

From the approximation of the state distribution at various iterations, we can obtain

estimates related to the state distribution, such as mean and variance.

2.4.2 Importance sampling

Assume we are trying to estimate a posterior distribution of a state vector x at

iteration k, given observations y from iterations 1 : k. In other words, we are trying to

estimate p(xk|y1:k). Unfortunately, this distribution may be difficult, if not impossible,

to express in closed form, and it might also be difficult, if not impossible, to obtain

samples from the distribution. Therefore, as with the previous discussion of MCMC

methods, we choose a proposal distribution q(xk|y1:k) to obtain samples, where the

distribution q(·) can be written in closed form and it is relatively easy to obtain samples

from the distribution.

More generally, given that the state vector x is distributed according to p(xk|y1:k),

it is often desired to estimate characteristics of a function of the state vector h(xk). For

example, the expectation over the state distribution p(xk) can be expressed as:

Ep [h(xk)] =
∫

h(xk) p(xk|y1:k)dx. (2.12)

Assuming samples will be drawn from proposal distribution q(xk|y1:k), and assuming

we can obtain some measure of an estimate for the ratio of densities

p(xk|y1:k)

q(xk|y1:k)
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we can express the integral in Equation (2.12) as:∫
h(xk) p(xk|y1:k)dx =

∫
h(xk)

(
p(xk|y1:k)

q(xk|y1:k)

)
q(xk|y1:k)dx

= Eq

[
h(xk)

(
p(xk|y1:k)

q(xk|y1:k)

)]
. (2.13)

For a particle filter with Np particles xk =
{

x(i)k

}
, i = 1 : Np, the expectation in

(2.13) can be approximated as:

Eq

[
h(x)

(
p(x)
q(x)

)]
≈ 1

Np

Np

∑
i=1

h
(

x(i)k

) p
(

x(i)k |y1:k

)
q
(

x(i)k |y1:k

)
=

Np

∑
i=1

h
(

x(i)k

)
w(i)

k

where

w(i)
k =

1
Np

 p
(

x(i)k |y1:k

)
q
(

x(i)k |y1:k

)
 ∝

p
(

x(i)k |y1:k

)
q
(

x(i)k |y1:k

) (2.14)

represents the weight of the ith particle.

Therefore, using a particle filter and a proposal density q(·), an approximate

measure of the expectation of a function h(x) can be obtained.

2.5 General sequential estimation of dynamic states

Several methods are available to estimate and track dynamically changing states,

and in this section, we examine general principles related to such estimation procedures.

Following the discussion in [50], given a dynamically changing state vector x,

the inherent dynamics of x can be represented by:

xk = fk (xk−1,vk−1) (2.15)

where fk is some function at iteration k, possibly non-linear, which propagates the state x

from iteration k−1 to iteration k, and vk−1 is the process noise, possibly non-Gaussian,

associated with state x and the process f(·).

Using the sequential Bayesian estimation approach, assuming we already have a

prior distribution estimate of the propagated state x at iteration k, to obtain the posterior
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estimate at iteration k, an observation yk is made, typically in the presence of some type

of observation noise. The observation at iteration k can be represented by:

yk = hk (xk,nk) (2.16)

where hk is some observation function at iteration k, possibly non-linear, which relates

the state xk to the observation yk, and nk is the observation noise, possibly non-Gaussian,

associated with the observation yk.

Within the sequential Bayesian approach, the prior distribution can be expressed

as:

p(xk | y1:k−1) =
∫

p(xk,xk−1 | y1:k−1)dxk−1. (2.17)

The joint density on the right side of (2.17) can be factored to produce the Chapman-

Kolmogorov equation:

p(xk|y1:k−1) =
∫

p(xk|xk−1,y1:k−1) p(xk−1|y1:k−1) dxk−1

Assuming a Markov process, where p(xk|x0:k−1,y1:k−1) = p(xk | xk−1), the expression

for the prior distribution becomes:

p(xk | y1:k−1) =
∫

p(xk | xk−1) p(xk−1|y1:k−1) dxk−1. (2.18)

After estimation of the prior distribution in (2.18), an observation generally becomes

available, and this new information is used to update the prior distribution p(xk | y1:k−1)

to the posterior distribution p(xk | y1:k). The posterior distribution can be re-expressed
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as follows:

p(xk | y1:k) = p(xk|y1:k−1,yk)

=
p(xk,y1:k−1,yk)

p(y1:k−1,yk)

=
p(yk|xk,y1:k−1) p(xk,y1:k−1)

p(y1:k−1,yk,)

=
p(yk|xk,y1:k−1) p(xk|y1:k−1) p(y1:k−1)

p(y1:k−1,yk) p(y1:k−1)

=
p(yk|xk,y1:k−1) p(xk|y1:k−1)

p(y1:k−1|yk)
(2.19)

In the numerator of (2.19), if we assume we have memoryless observations, i.e.,

p(yk|xk,y1:k−1) = p(yk|xk) ,

and furthermore, if we express the denominator in (2.19) as an integration over all dxk,

then the expression for the posterior distribution becomes:

p(xk|y1:k) =
p(yk|xk) p(xk|y1:k−1)∫

p(yk|xk) p(xk|y1:k−1) dxk
(2.20)

Note that the expression (2.20) for the posterior distribution depends upon the

likelihood function p(yk|xk), which depends upon the observation model shown in

(2.16). Also note that the form of the denominator in (2.20) is consistent with the dis-

cussion concerning the denominator in (2.2), where the denominator essentially serves

as a scaling constant to normalize the density.

Therefore, several key equation models are addressed during sequential Bayesian

estimation. The dynamics model, shown in (2.15), represents the propagation of the

state of interest as it moves from one time step to the next. The observation model

(2.16) represents a relationship of our observations with respect to the state during these

time steps. The expression for the prior distribution of the state, shown in (2.18), por-

trays our knowledge of the state prior to making an observation at the given iteration,

and the expression for the posterior distribution, shown in (2.20), represents the updated

knowledge of the state after making the observation.
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If the dynamics and observation functions in (2.15) and (2.16) are linear and the

corresponding types of noise are Gaussian, then the Kalman filter (KF) [49] can be used

to obtain optimal estimates of the state vector. In addition, variations of the KF, such as

the extended Kalman filter (EKF) [51], are available for situations in which deviations

from linearity and Gaussian noise are not too severe. If these assumptions are not valid,

expressions for the prior (2.18) and posterior (2.20) distributions are typically difficult, if

not impossible, to express in convenient closed form, especially with a multidimensional

state vector x. Therefore, SIS procedures, which are discussed next, offer an alternative

approach to numerical estimation methods.

2.5.1 Sequential Bayesian estimation using SIS

With SIS, importance sampling is performed in an iterative manner so that in-

formation and estimates obtained during previous iterations are not completely thrown

away, but are used to develop the next estimates. As shown with general importance

sampling in (2.14), calculation of particle weights is proportional to the ratio of the

distribution of interest to the proposal distribution. With SIS, as shown in [50], and

assuming the importance density only depends upon the latest observation and the pre-

vious state, a recursive expression relating the weights to the previous weights is as

follows:

w(i)
k ∝

p
(

yk|x
(i)
k

)
p
(

x(i)k |x
(i)
k−1

)
q
(

x(i)k |x
(i)
k−1,yk

) w(i)
k−1 (2.21)

Therefore, in SIS, assuming we draw samples x(i)k ∼ q
(

x(i)k−1|x
(i)
k−1,yk

)
at time

step k, we can then use (2.21) to obtain the updated weights w(i)
k corresponding to the

particles. This will give us the collection of
{

x(i)k ,w(i)
k

}
particle-weight pairs to con-

struct the particle filter at time step k, as previously discussed and depicted in Figure 2.2.

An interesting simplification occurs if we can use the prior distribution p
(

x(i)k | x
(i)
k−1

)
as the proposal distribution q

(
x(i)k |x

(i)
k−1,yk

)
. This simplified version is sometimes re-
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ferred to as the naive proposal distribution. In this case, the weight update expression

becomes:

w(i)
k ∝ p

(
yk|x

(i)
k

)
w(i)

k−1 (2.22)

Figure 2.3 depicts several iterations of a particle filter. Observations and es-

timates obtained during the iterations cause the particle filter to reweigh the particle

weights in accordance with (2.21) or (2.22), where particles representing better esti-

mates of the state are weighted heavier than particles representing poorer estimates of

the state.

Figure 2.3: Particle filter weight convergence and degeneration.

2.5.1.1 Particle degeneration, resampling, and rejuvenation

As shown by the last frame in Figure 2.3, after only a few iterations, particle

filters tend to converge to a situation where only a few particles are weighted signifi-

cantly. Most other particles possess insignificant weights and contribute very little to

the estimation process, and therefore, computations involving these particles are largely

wasteful. This situation is known as particle degeneration. To improve efficiency and
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reduce the number of computations involving insignificant particles, it is common to

perform a procedure known as resampling. In this procedure, the particle filter weights

are used to create a cumulative distribution function (cdf) of the particle values, and

new particle values are sampled from the cdf based upon the sizes of the corresponding

steps in the cdf. As shown in Figure 2.4, this produces a situation where all particles are

weighted equally, but there are a greater number of particles in regions where particles

of the previous iteration possessed higher weights. Note that as random process noise

is added to the particles in accordance with the state dynamics model (2.15), replicate

particle values will spread apart to create more of a continuous distribution in the region.

Figure 2.4: Resampling.

Resampling can be performed when the effective percentage of contributing par-

ticles falls below a preset threshold value. In this case, an estimate for the effective

number of particles is:

Neff =
1

∑
i

(
w(i)

k

)2 (2.23)

where w(i)
k is the normalized weight of the ith particle after iteration k. It is also common

in many applications to perform resampling after each iteration to ensure that the next

iteration has a complete set of contributing particles. If resampling is applied every

iteration and the proposal distribution used is the naive distribution p
(

x(i)k |x
(i)
k−1

)
, the

resulting procedure has been deemed the sampling importance resampling (SIR) filter
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[50]. Since resampling is performed every iteration and all weight values are equal after

the resampling procedure, the weight update expression in (2.22) becomes:

w(i)
k ∝ p

(
yk|x

(i)
k

)
. (2.24)

As an alternative to resampling, Lee and Chia [52] have proposed the use of

MCMC to create a set of rejuvenated particles, which they claim possess a reduced

amount of noise accumulated over various SIR iterations. In this procedure, an (m+1)-

step batch observation approach is used where observations consist of the current and m-

step future observations (yk:k+m), where the term future refers to iterations that occurred

after the current iteration of interest, which is physically possible when the “current”

iteration actually occurred previously and is now being evaluated. In this approach, a

naive proposal distribution is used to update the weights:

w(i)
k ∝ p

(
yk:k+m | x

(i)
k ,y1:k−1

)
w(i)

k−1.

After updating the weights, a Kullback-Leibler (KL) distance is calculated at each iter-

ation:

κ (wk,wk−1) =
N

∑
i=1

w(i)
k

(
logw(i)

k − logw(i)
k−1

)
.

If the KL distance is less than a designated threshold value, then the MCMC particle

rejuvenation is performed using the independent M-H algorithm, where the proposal

density is a normal distribution, and where the sample mean and covariance of the latest

set of particles are used as the normal distribution parameters. The target density is

p(xk|yk:k+m). As discussed earlier, for independent M-H, the probability of accepting

the proposed sample is given by (2.8) and (2.10).

2.6 Two-dimensional, time-frequency signal representations

Within our sequential Bayesian, crack growth tracking method, after making

an initial prediction of the crack length distribution at a particular time step, we then

transmit a signal waveform and make an observation of the received waveform, where
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this observation is used to update the predicted crack length distribution. In addition

to more familiar, one-dimension signal representations, such as time-domain and fre-

quency domain signal representations, a signal can also be described simultaneously

in both dimensions using time-frequency representations. Although one-dimensional,

Fourier-based analysis methods are very important in the analysis of signals and numer-

ous other engineering problems, many real-world signals and problems are inherently

non-stationary. In our application, having a signal representation in two dimensions can

be useful in characterizing the time-varying nature that occurs within our received signal

waveforms, where different time-frequency signal features can correspond to different

structural damage conditions.

In the 1940’s, Dennis Gabor recognized there were limitations using Fourier

approaches to analyze many real-world signals [53]. For example, the Fourier transform

is specifically defined for time = −∞ to +∞, whereas real-world signals are finite in

length and furthermore, can possess non-stationarity. Gabor was specifically cognizant

of these facts, and gave particular interest to studying signals with respect to localized

characteristics within a two-dimensional, time-frequency viewpoint.

When representing a signal simultaneously with respect to both time and fre-

quency, note that time and frequency are inversely related. Therefore, there is an inher-

ent tradeoff between the amount of resolution that can be obtained in the time dimension

with the amount of resolution that can be obtained simultaneously in the frequency di-

mension. Based upon Heisenberg’s original concept of the Uncertainty Principle, Weyl,

and later, Gabor (in his studies mentioned above) adapted the Uncertainty Principle

concept towards signal processing and time-frequency relationships. In the context of

time-frequency, the Uncertainty Principle is sometimes referred to as the Heisenberg-

Gabor Uncertainty Principle, which includes the following time duration - frequency
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bandwidth relationship:

TsBs ≥
1

4π
. (2.25)

In (2.25), which is known as the Gabor limit, Ts is the time duration resolution (in

seconds), Bs is the frequency bandwidth resolution (in Hertz), and the time-bandwidth

product TsBs cannot be less than 1/4π . Using the Cauchy-Schwarz inequality, the lower

limit equality condition can be realized when the time-domain signal is a Gaussian,

where the Fourier transform is also a Gaussian, such that it is possible to have a linear-

dependent, inverse relationship between the time-domain and frequency-domain repre-

sentations. In this case, this results in a two-dimensional Gaussian in the time-frequency

plane possessing a highly localized concentration of signal energy. A basic Gaussian

signal can be described by:

g(t) =Ce−κt2
(2.26)

where C controls the amplitude of the Gaussian signal and κ controls the Gaussian

“spreading”.

Many types of time-frequency representations (TFRs) have been and continue

to be developed [54–56]. However, with the Heisenberg-Gabor Uncertainty Principle,

the Gabor limit (2.25), and the inherent trade-off between time resolution and frequency

resolution, the choice of a particular type of TFR, and specific parameter values asso-

ciated with a selected TFR, depend heavily upon the desired time-frequency resolution

characteristics. In the next section, we discuss a method that can be used to extract key

features of a signal within time-frequency space, where these key signal features can

be represented by localized signal structures. The use of localized signal structures has

advantages with respect to time-frequency resolution. Furthermore, the localized signal

structures can be utilized as features within pattern recognition techniques.
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2.6.1 Matching Pursuit Decomposition

Matching pursuit decomposition (MPD) is one approach for representing sig-

nals within the time-frequency plane [28]. Considering Gabor’s focus upon localized

signal energy within time-frequency space, the MPD procedure exploits this concept by

projecting a signal onto a dictionary of localized signal structures that have been po-

sitioned within the time-frequency plane. After determining which dictionary element

corresponds to the greatest magnitude inner product (i.e., the best matching dictionary

element), this dictionary element is weighted by the value of the inner product and then

subtracted from the signal, creating a residual signal. This procedure is then performed

on the residual signal, and is repeated iteratively on each subsequent residual signal un-

til a sufficient amount of the signal energy has been extracted. The original signal can

then be approximated by a summation of the weighted dictionary elements that were

extracted from the signal during the MPD procedure.

One advantage of the MPD approach relates to the high resolution characteris-

tics that can be obtained by creating TFRs of the individual extracted signal structures,

and then combining the individual TFRs, resulting in a representation designated as the

MPD-TFR [28]. This is in contrast to other approaches in which a TFRs are created

of the entire signal. When a TFR of an entire signal is created using a linear TFR, the

signal is multiplied with some external function to generate the two-dimensional signal

representation. However, the dependency on the external function inherently causes a

reduced resolution, spreading effect. In quadratic TFRs (QTFRs), two signal terms are

multiplied together, thereby creating an intrinsically two-dimensional quantity. Since

QTFRs are not dependent upon an external function (although some QTFRs employ

windowing type functions), QTFRs can exhibit significantly better resolution as com-

pared to linear TFRs. However, the basic quadratic nature of QTFRs creates cross-term

components that can clutter and interfere with ability to distinguish the auto-term com-
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ponents within the TFR. With the MPD-TFR approach, high resolution QTFRs can be

performed on individual, localized signal structures within the time-frequency plane.

Since cross-terms are only created within individual QTFRs and are not generated be-

tween individual QTFRs, overall cross-term interference can be reduced significantly as

compared to performing a QTFR on the entire signal.

This general procedure has been extended into adaptive approaches suitable for

decomposition and reconstruction using non-linear, as well as linear signal structures

[57]. A key advantage of this approach is that the overall signal can be decomposed and

concentrated into a limited number of adaptively-modified signal substructures. Since

signal energy is concentrated into a limited number of individual structures that have

been specifically adapted to the overall signal, the signal can be represented in the time-

frequency plane with high resolution.

2.6.1.1 MPD using Gaussian atoms

In addition to matching a signal to a dictionary of specific, or adaptively-modified

signal substructures, it is also possible to use a dictionary consisting of highly-localized,

Gaussian atoms that have been positioned within the time-frequency plane in known re-

gions of interest and at multiple scalings at each time-frequency location. A general

construction of a basic Gaussian signal was previously discussed and is shown in Equa-

tion (2.26), and the time-shifted, frequency-shifted and scaled versions are of the form:

gη (t) =Cηeκ2(t−τ)2
cos(2πνt) (2.27)

where τ is the time shift, ν is the frequency shift, and κ is a (positive) scaling parameter

controlling the amount of “spreading” exhibited by the atom. Therefore, the parameter

set η = {τ,ν ,κ} describes each Gaussian atom gη(t) within the dictionary, and the

normalizing constant Cη is used such that each Gaussian atom possesses unit energy.

In the MPD procedure used within this work, multiple sets of these time-shifted,

frequency-shifted Gaussian atoms were employed. In each set, the Gaussian atoms were
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positioned over the time-frequency plane at the same time-shift τ and frequency-shift ν

locations, but each set possessed a unique scale parameter κ .

The choice of the Gaussian atoms for the dictionary offers several advantages. In

addition to offering highly localized time-frequency characteristics, the Gaussian atoms

also possess convenient, closed form expressions for use in mathematical transforma-

tions such as the Fourier transform and Wigner distribution. Furthermore, when calcu-

lating inner products in the MPD procedure, the inherent time-frequency structure of the

dictionary atoms can significantly increase computational efficiency, since fast Fourier

transform methods can be employed [28].

To initialize the MPD procedure using the Gaussian atom dictionary described

above, an inner product ρ is obtained between the signal of interest s(t) and each nor-

malized Gaussian atom. Then, based upon the inner product exhibiting the maximum

magnitude |ρ|, the best matching Gabor atom gη is identified, along with its corre-

sponding set of parameters η = {τ,ν ,κ}. This procedure is iteratively repeated upon

each resulting residue signal, and with the time-shifted, frequency-shifted and scaled

Gaussian atoms as the elements of the dictionary, the original signal can be expressed

as follows:

s(t) =
L−1

∑
`=0

ρl gη`(t)+ rL(t) (2.28)

where rL(t) is the residue signal after L MPD iterations have been performed, where the

calculation of the inner product is performed as follows:

ρ` =

+∞∫
−∞

rl(t) g∗η ,`(t) dt, `= 0, . . . ,L−1 (2.29)

At each MPD iteration, the specific Gaussian atom is selected from dictionary D ac-

cording to the maximum magnitude of the inner product:

ĝη ,`(t) = argmax
gη∈D

∣∣∣∣∣∣
+∞∫
−∞

rl(t) g∗η ,`(t) dt

∣∣∣∣∣∣ (2.30)
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If the summation shown in (2.28) is truncated to L terms, then an approximation

of the signal can be expressed as:

s(t)≈ sL(t) =
L−1

∑
`=0

ρ` ĝη ,`(t) (2.31)

where L is typically chosen such that a sufficient amount of the signal energy has been

extracted from the original signal. Figure 2.5 shows an example of performing MPD

on one of the received, tone burst signals included in this study. The figure shows

the amount of signal energy remaining after each of the 40 MPD iterations used to

decompose the signal.

Figure 2.5: Extraction of signal energy from an example received burst signal using the
MPD procedure.

Note that each MPD iteration results in a vector of four elements, where three of

the elements are given by the set of parameters characterizing the Gaussian atom chosen

at the lth iteration η` = {τ`,ν`,κ`}, and the fourth parameter is the inner product of the
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atom with the residual signal, given by (2.29), such that:

yl =



τ`

ν`

κ`

ρ`


, `= 0, 1, . . . , L−1 (2.32)

If the collection of four-element MPD vectors {yl} are arranged with respect

to their time-shift parameter τ , this essentially creates a time-based sequence of four-

element feature vectors occurring in the time-frequency plane. Arranging the vectors

into a matrix, each successive column represents a 4-parameter, MPD feature vector

that is emitted from the time-frequency plane:

Y = [yτ1 yτ2 . . . yτL ] (2.33)

If this time-based sequence of emitted MPD feature vectors within the time-frequency

plane can be related to some other dynamic process or overall condition of interest, it

might be possible to use an artificial learning or pattern recognition method to establish

the relationships. Within our crack growth monitoring approach, we use hidden Markov

models (discussed next) to relate different MPD feature vector sequences to different

structural damage conditions.

2.7 Hidden Markov Models and Data Classification

We briefly reconsider the Markov property and employ it for developing hidden

Markov models (HMMs). Given a set of N possible states H = {h1,h2, . . . ,hN}, a se-

quence of K state transitions Q = {q1,q2, . . . , qk,qk+1, . . . , qK}, where allowed state

transitions might include self-transitions from the current state back to the same state,

and a transition probability matrix P, where matrix elements pi j represent the probabil-

ities of transitioning from hidden state hi to hidden state h j, the fundamental idea of the

Markov property and a Markov process relates to the memoryless nature of the process
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in transitioning from one state to another. The probability of the transition to the next

state is only dependent upon the current state and not the history of previous states.

In an HMM, the sequence of the state transitions Q = {q1,q2, . . . , qK} is com-

monly hidden and not directly observed, but observations are obtained from the emis-

sions of the hidden states, where the probabilities of the observed symbol emissions

depend upon the particular current state h j. Given a set of M possible symbols v ={
v(1),v(2), . . . ,v(M)

}
that can be present within some observation sequence, the prob-

abilities of the symbols are organized in a matrix B =
{

b j

(
v(m)

)}
, where 1 ≤ j ≤ N

represents the state index and v(m) represents the mth observation symbol. In addition,

a vector of the initial probabilities for the N possible states π = {π1,π2, . . . ,πN}, where

πi = Pr(qi = hi), must also be specified. Therefore, for a simple discrete HMM, given

N possible states, with M possible observation symbols that can be emitted, the HMM λ

consists of a state transition probability matrix P, a state-dependent, observation symbol

probability matrix B, and an initial state probability vector π . Therefore, in addition to

specifying the number of states N and the number of distinct observation symbols M,

the key parameters θ λ in the discrete HMM λ are:

θ λ = {P,B,π} (2.34)

The basic theory behind HMMs was first attributed to Baum and colleagues in

the mid 1960s and early 1970s, at which time they were referred to as probabilistic

functions of Markov chains [58, 59]. Speech recognition is one application in which

HMMs have been used extensively [1, 60, 61].

A toy example was presented in [1], using a colored ball and urn model. In this

example, there are N hidden urns, and each urn has a different distribution of M col-

ored balls. This is illustrated in Figure 2.6 with N = 3 urns (hidden states) and M = 5

colored balls (observation symbols). Assume one of the hidden urns is selected without

our knowledge of which urn was selected. A ball is randomly removed from the hidden
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urn, but the balll is displayed to us. The ball is then placed back into the same hidden

urn (such that the distribution in the urn remains the same). If this process is repeated

multiple times, this will generate a sequence of colored ball observations. Using the

HMM parameters in (2.34), the observation sequence depends on the probabilities of

transitioning between urns (state transition matrix P), the probabilities of the color of

the selected ball in a given urn (observation probability matrix B), and the initial urn

probabilities (initial state probability vector π). An example of a state transition di-

agram, together with the HMM corresponding parameters, is demonstrated in Figure

2.7.

Figure 2.6: Three hidden urns containing different distributions of colored balls.

Figure 2.7 shows an example state transition diagram for the urn and colored

balls example (where all possible state transitions are allowed), along with the state

transition matrix P, the state observation probability matrix B, and the initial state prob-

ability vector π .

2.7.1 Use of HMM for Classification

The HMMs can be used to solve three main problems [1], and in our use of

HMMs for crack length classification, we are primarily concerned about two of these

three problems. Given a training observation data sequence Ytrain corresponding to a

damage condition d, and given a new or partially trained HMM λ with parameters

41



Figure 2.7: Examples of a state transition diagram, a state transition probability matrix,
an observation probability matrix, and an initial state probability matrix corresponding
to the colored ball and urn model described in [1].

θ = {P,B,π}, we can use the training data to adjust the model parameters θ to maxi-

mize Pr
(
Ytrain|λ

)
. Alternatively, given we have a set of D HMMs λd, d = 1, . . . ,D, that

have been trained for D different damage conditions, and then we are presented with a

new, unknown test sequence Ytest, we can use each of the trained HMMs λd to determine
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the likelihood Pr(Ytest|λ ) of the observation sequence given λd , and from this informa-

tion, we can infer the probabilities of the different damage conditions. (In the third com-

mon problem addressed by HMMs, given an observation sequence Y = {y1,y2, . . . ,yK}

and a HMM model λ , the problem relates to determining a state transition sequence

Q = {q1,q2, . . . ,qK} that is optimal in some meaningful sense such that it best “ex-

plains” the observation sequence. This issue is not a concern within this work and is not

discussed further.)

2.7.1.1 The Forward-Backward algorithm

Probability measures in the HMM are systematically and iteratively calculated

at each time step using a lattice structure approach. For example, within our overall

damage monitoring procedure, the forward-backward algorithm is employed to obtain

the likelihood of a set of observations given a damage condition p(Ytest|λd). In this

algorithm, given K time steps and N possible states, the forward variable αk+1( j) is the

probability of the observations Y = {y1, y2, . . . ,yk+1} up to time step k+1, given the

model λ and given the system is in hidden state h j at time step k+1. This probability

is calculated in an iterative manner for each state at each observation time, creating

a lattice structure over the states and the observation times. Calculations at time step

k+ 1 are performed using the previous results obtained at time step k, along with the

transition probabilities to this state from each of the possible states at the previous time

step, as well as the observation probability b j (yk+1) of the observed symbol at time step

k+1 for hidden state h j:

αk+1( j) =

[
N

∑
i=1

αk(i)pi j

]
b j (yk+1) , 1≤ k ≤ K−1 and 1≤ j ≤ N (2.35)

Initialization of the forward variable is performed for each hidden state hi using the

initial state probability πi and the probability of the first observation given the state

bi(y1):

α1( j) = πi bi(y1) , 1≤ i≤ N
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Somewhat analogous to the forward variable αk( j), a backward variable βk(i),

can be solved iteratively in the backwards direction:

βk(i) =
N

∑
j=1

pi j bi (yk+1)βk+1( j), k = K−1, K−2, . . . ,1 and 1≤ i≤ N (2.36)

where initialization for this backwards variable for each state hi occurs at the last obser-

vation at final time step K:

βK(i) = 1, 1≤ i≤ N

Note that after spanning the entire observation sequence, a summation of the

forward variables αK( j) at time step k = K, or alternatively, a summation over the back-

ward variables β1(i) at time step k = 1, can be used to obtain the probability of the data

given an HMM. For example, given observation sequence Y and HMM λ , using the

forward variables at the final time step K, we can obtain

Pr(Y|λ ) =
N

∑
j=1

αK( j) (2.37)

2.7.2 Training and re-estimation of HMM parameters

In order to train HMM λ , given that a new training observation sequence y has

become available, the parameters θ = {P,B,π} in HMM model λ can be re-estimated.

As explained in [1], focusing on the state transition from time step k to time

k+ 1, a quantity ξk (i, j) can be calculated, where ξk (i, j) represents the probability of

being in state hi at time step k and in state h j at time step k+1, given the HMM λ and

observation sequence Y:

ξk(i, j) = Pr
(
qk = hi, qk+1 = h j|Y,λ

)
(2.38)

This quantity is calculated as follows:

ξk(i, j) =
αk(i) pi j b j(yk+1) βk+1( j)

Pr(Y|λ )

=
αk(i) pi j b j(yk+1) βk+1( j)

N
∑

i=1

N
∑
j=1

αk(i) pi j b j(yk+1) βk+1( j)

(2.39)
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In Equation (2.39), the numerator represents Pr
(
qk = hi, qk+1 = h j, Y| λ

)
, and then

dividing by Pr(Y|λ ) gives the desired probability in Equation (2.38).

Another quantity, γk(i), is defined as the probability of being in state hi at time

step k, given the observation sequence y and the model λ :

γk(i) = Pr(qk = hi|Y,λ )

where γk(i) can be obtained by performing a summation of ξk(i, j) over all possible

transition states h j that could occur at the next time step k+1:

γk(i) =
N

∑
j=1

ξk(i, j) (2.40)

If a summation of γk(i) is performed over all applicable time indices k, the result-

ing quantity
(

∑
k

γk(i)
)

quantity can be thought of as the expected (over time) number

of times that state hi is visited, or the number of transitions made from state hi (exclud-

ing the last time step K in the summation). Furthermore, if a summation of ξk(i, j) is

performed from k = 1 to the next to the last time step k = K−1, the resulting quantity

can be thought of as the expected number of transitions from state hi to state h j.

Given an existing estimate for an HMM, at each time step k, the probabilities

γk(i) and ξk(i, j) can be calculated for each state or state transition pair and then used to

update the components of the HMM. The elements of the initial state probability πi can

be updated as follows:

π̂i = = γ1(i) (2.41)

which is the expected number of times in state hi at time step k = 1. The pi j element of

the transition probability matrix P can be obtained as the ratio of the expected number

of transitions from state hi to state h j, to the expected number of transitions from state

h j:

p̂i j =

K−1
∑

k=1
ξk(i, j)

K−1
∑

k=1
γk(i)

(2.42)
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Updates to the elements in observation probability matrix B can be made as the ratio of

the expected number of times in state h j and also observing symbol v(m), to the expected

number of times in state h j:

b̂ j

(
v(m)

)
=

K
∑

k=1
s.t. yk=v(m)

γk(i)

K
∑

k=1
γk( j)

(2.43)

2.7.3 Continuous observation densities

Often, the observations y are not specifically restricted to a limited number of

discrete values. Since observations are inherently continuous in nature, we use a mixture

of Gaussian distributions to model the possible (continuous) observations [29]. With this

modification to the types of observations, we now define M to be the number of Gaussian

mixture components that we use to model each of the continuous-valued observation

quantities. Recall that in the discrete observation case, we used M to represent the

number of different types of discrete observation symbols v(m) that could be emitted.

Given M four-dimensional Gaussian distributions in the mixture distribution, we create

the N×M matrix C of mixture coefficients c jm, for j = 1, . . . ,N possible states, and

m= 1, . . . ,M weighting coefficients corresponding to the Gaussian mixture components.

Using the weighted Gaussian mixture distribution, given the system is in the jth state,

the observation probability can be modeled as:

b j(yk) =
M

∑
m=1

c jm N
[
µ jm,Σ jm

]
(2.44)

where N [yk; µ,Σ] is the Gaussian probability density function of yk with mean vector

µ and covariance matrix Σ. Note that the weighting coefficient c jm is the probability

that the mth individual Gaussian distribution was responsible for emitting the observed

vector yk, such that:
M

∑
m=1

c jm = 1, 1≤ j ≤ N

c jm ≥ 0, 1≤ j ≤ N, 1≤ m≤M

(2.45)
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and hence, the observation probabilities integrate to 1:

∫ +∞

−∞

b j(x)dx = 1, 1≤ j ≤ N

With continuous observation HMMs, when training or updating the HMM, the

weighting coefficient c jm, the mean vector µ jm, and the covariance matrix Σ jm can be

re-estimated as:

ĉ jm =

K
∑

k=1
γk ( j,m)

K
∑

k=1

M
∑
j=1

γt ( j,m)

µ̂ jm =

K
∑

k=1
γk ( j,m) ·yk

K
∑

k=1
γk ( j,m)

Σ̂ jm =

K
∑

k=1
γk ( j,m) ·

(
yk−µ jm

)(
yk−µ jm

)K

K
∑

k=1
γk ( j,m)

where vK represents the transpose of v, and with the continuous-valued, mixture model

observation, γt ( j,m) is now the probability of being in hidden state h j at time step t with

observation yk being emitted by the mth Gaussian mixture component. This quantity can

be calculated as:

γk ( j,m) =

 αk( j)βk( j)
N
∑
j=1

αk( j)βk( j)


 c jm N

(
µ jm,Σ jm

)
L
∑
`=1

c j` N
(
µ j`,Σ j`

)

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Chapter 3

CRACK GROWTH DYNAMICS

In a sequential Bayesian estimation approach towards estimating and monitoring

the crack growth state of a structure, we use a state dynamics model that can propagate

the damage state from one time step to the next; therefore, in this chapter, we describe

historical concepts related to fracture mechanics, crack propagation, and basic crack

growth modeling.

3.1 Early crack growth theories

As discussed in the previous chapter, all materials possess some degree of de-

fects, and when a material is loaded in fatigue, a minute material defect existing within

the material could provide an initiation point for a small separation to occur within the

material, possibly leading to the development of a crack. As shown in Figure 3.1, given

a material is subjected to a load and a crack propagates within the material, as the area of

the crack grows, there is a resulting reduction in the cross sectional area of the material

available to carry the load. Therefore, there will be a reduction in the amount of applied

load required to produce a given amount of deflection within the material.

Figure 3.2 shows crack growth data obtained on an example fatigue test speci-

men, where the measured crack length has been plotted with respect to the correspond-

ing number of fatigue cycles experienced by the specimen. A least squares cubic model

has been fitted to the crack length data.

Propagation of the crack and the rate of crack growth are related to the mag-

nitude of the stress as well as the geometry of the crack. In the 1920’s, Griffith [62]

studied the fatigue characteristics of glass, a brittle material, and recognized that a crack

will propagate if the total energy within the system is lowered by propagation of the

crack. In the 1940’s, Irwin [63] extended the study of crack propagation to include duc-
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Figure 3.1: Reduction in the amount of applied load producing a given deflection when
crack area increases from A to A+∆A.

Figure 3.2: Increase in crack length with increase in number of fatigue cycles.

tile materials. The concept of strain energy release rate (G) was proposed, where this

quantity represents the change in the strain energy U per change in crack area A:

G =
dU
dA
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Although the concept of strain energy was useful for studying conditions related to large,

unstable crack growth, there were complications in using this approach, particularly for

situations involving low rates of crack growth. In the 1950’s, Irwin proposed the concept

of a stress intensity factor K [64], where the stress intensity factor defines the magnitude

of the local stresses around the crack tip. The stress intensity factor is dependent upon

the loading conditions, the length of the crack, the geometry of the crack, and is of the

general form [65]:

K = f (g) σ
√

πa (3.1)

where σ represents an external, global stress that is being applied to the crack region,

a is the crack length, and f (g) is a function that depends upon the specimen and crack

geometry. Crack propagation will occur if the value of the stress intensity factor K

reaches a critical value Kc.

Figure 3.3 is an illustration of the region around a crack tip, where the local

stresses in this region take the form:

σi j =
K√
2πr

fi j(θ)+ · · · (3.2)

where r and θ are the radius and angle from the crack of the tip to the local point of

interest, and fi j(θ) is a modification factor based upon θ .

As widely discussed in fracture mechanics textbooks (e.g., [65–68]), there are

three basic loading modes leading to displacements and fracture in the cracked surface.

These three modes are shown in Figure 3.4 and are as follows:

Mode I: Tensile opening mode.

Mode II: In-plane sliding mode.

Mode III: Tearing or anti-plane shear mode.

The value of the stress intensity factor K depends upon the material, the geome-

try of the flaw, the geometry of the specimen, loading conditions, and other influences.
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Figure 3.3: Localized stress in vicinity of crack tip.

Figure 3.4: Crack fracture loading modes.

Many standard values for K are available in handbooks [69] for simple loading condi-

tions, and the use of superposition can be used to estimate the stress intensity factor in

multi-mode loading conditions. Alternatively, a value for K can be estimated using a

variety of numerical methods, especially in cases where specimen geometry, crack ge-

ometry, or loading conditions are more complicated. For example, in previous work by

Soni [70], estimates for KI were obtained for a 2024-T3 aluminum cruciform specimen

at different crack lengths using finite element methods and the displacement method

described by Sanford [68]. The resulting estimates for KI are shown in Figure 3.5. A

cubic least squares model was created from the estimates such that a predicted estimate
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for KI could be obtained given a designated crack length value.

Figure 3.5: KI estimates and least squares cubic model.

3.2 Paris’ Law

As discussed in the 1960’s by Paris and Erdogan [10], there were a number of

early attempts to model crack propagation due to fatigue loading in materials. Some

model approaches were largely theoretical, attempting to model crack growth as a func-

tion of material properties and loading characteristics. Other model approaches were

primarily data driven, where mathematical models were created primarily by fitting a

model to observed data. A key concept proposed by Paris and his associates related

to the range of stress intensity factors, and how this range contributed to crack growth

rate [9, 71]. This idea has become popularized into what is known as the Paris-Erdogan

Law, or Paris’ Law:
da
dn

=C(∆K)m (3.3)

In this equation, the change in crack length a per loading cycle n is expressed as the

difference between the stress intensity factor at the maximum and minimum fatigue

loadings (∆K), which is raised to a power m, and then multiplied by a factor C, where

values for m and C are available in material handbooks. The logarithmic version of (3.3)
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is as follows:

log
(

da
dn

)
= logC+m log∆K (3.4)

If a plot of log(da/dn) vs. log(∆K) is created for a specimen from crack initiation

through overload and specimen failure, a sigmoidal curve is typically obtained, as shown

in Figure 3.6. Note that the constant slope region of the curve can be used to obtain an

estimate for m, and the intercept can be used to obtain an estimate for C.

Figure 3.6: Typical log(da/dn) vs. log(K) curve, with intercept value ‘C’ and slope
‘m’ as used in the Paris equation.

From the origination of a crack until material failure, there typically are several

stages related to crack development. Stages of crack development generally include

nucleation, initiation, propagation, overload and material fracture. During crack nu-

cleation, a microscopic material separation occurs at some point within the material,

where this separation typically occurs along a free edge within the material, where the

free edge could be located on an exterior surface of the component, within a small in-
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ternal defect, or along an edge due to an intentionally-machined fastener hole or cutout.

During crack initiation, the size of the material separation increases relatively quickly

for a short period of time, but then the crack growth rate transitions to more of a stable,

predictable, crack propagation stage, and it is in this stage that the Paris equation dy-

namics are applicable. If the size of the crack develops to the extent that the remaining

undamaged material is unable to carry the load, the rate of crack growth accelerates,

overload occurs, which eventually results in material fracture. These various stages are

shown in Figure 3.6. The combination of nucleation and initiation is often referred to

as Stage I of the crack growth process. The more predictable, crack propagation stage,

which is shown as the linear region in Figure 3.6, is referred to as Stage II, and it is

in this region that the Paris equation is applicable. Finally, the region containing crack

overload and material fracture is commonly referred to as Stage III.

3.3 Simplifications and the stochastic nature of crack growth

In real-life scenarios, boundaries between different crack development stages

might not be well defined and could vary greatly upon numerous geometric, loading,

environmental, and other factors. If one is trying to use the Paris equation to predict

crack propagation, values for m and C might not behave as well defined constants, even

within the Stage II, propagation region shown in Figure 3.6. Simplifications to the

Paris equation have been proposed, including the following model discussed by Yang,

Manning, Rudd and Artley [72]:

da(t)
dt

= Q [a(t)]b (3.5)

where Q [a(t)] represents some general function of the crack length a(t). Alternatively,

if the number of fatigue cycles (n) is used as a measure of time, (3.5) becomes:

da(n)
dn

= Q [a(n)]b (3.6)

Recognizing there can be inherent randomness within the crack growth process in a

fatigue-loaded structure and that a pure deterministic approach towards modeling crack
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growth might not always be optimal, Yang, Manning, Rudd and Artley [72] com-

pared deterministic crack growth approaches (DCGA) with stochastic crack growth ap-

proaches (SCGA), and found that by including a random variable within the model,

SCGA was more capable of modeling crack growth. For example, using Equation (3.5),

a lognormal random variable χ(t)) was included to account for variability that can occur

in the crack growth rate:
da(t)

dt
= χ(t) Q [a(t)]b , (3.7)

Other stochastic crack growth studies have been discussed (e.g., [73–76]) us-

ing (3.7) or other generalized models. For example, a generalized function g(∗) has

been proposed, where g(∗) can be based upon a number of crack growth related fac-

tors, such as the difference in stress intensities ∆K, the fatigue stress ratio R = (maxi-

mum stress)/(minimum stress), the crack length a, and other possible influences:

da(t)
dt

= χ(t) g(∆K,R,a, . . .) (3.8)

There has also been recognition that stochastic properties related to crack growth

can change with increasing crack length (e.g., variability in the crack growth rate has

been observed to decrease with crack size), and therefore, the random characteristics of

crack growth have been studied as a function of the crack length:

da(t)
dt

= χ [(a(t)] g(∆K,R,a, . . .)

Alternatively, crack growth has also been studied using a piecewise, fatigue-

interval manner to account for changes with increasing crack length at different fatigue

crack intervals j. In this case, (3.7) has been modified to account for different fatigue

crack intervals j during the life of a component [73]:

da(t)
dt

= χ j(t) Q j [a(t)]
b
j (3.9)
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Assuming no special crack mending or repair procedures have been used to re-

duce the size of the crack, the actual crack growth rate cannot be negative, and the

lognormal random variable in the expressions above can model the positive-valued ran-

domness that can occur within the crack growth rate. However, when observing and

tracking crack growth, random noise and variability can occur in both positive and neg-

ative directions due to observation noise. In Chapter 5, in one of our implementations

of crack growth monitoring, we also included a normal random variable to allow for

both negative as well as positive random fluctuations that can occur when making crack

length observations.

Finally, as discussed in the previous chapter (see Section 2.3), Markov chain

Monte Carlo (MCMC) techniques can be useful to refine parameters of interest. In

Chapter 5, given observed data and corresponding constraints related to crack length

and stress intensity factors, and given estimated target values for the Paris constants C

and m, MCMC can be used to combine this information to obtain refined values of the

constants that approach desired target values and are also consistent with the observed

data.
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Chapter 4

INTERACTIVE MULTIPLE MODEL FOR MULTIPLE LOADING MODES

Within our overall sequential Bayesian approach, the initial prediction of the

crack length distribution from the previous time step to the next time step is determined

by the state dynamics model. As described in the previous chapter, we employ a Paris

law based model to provide this prediction of damage at the next time step. In many,

if not most dynamic structures, the loading characteristics upon the structure do not

remain constant but can vary at multiple levels. The interacting multiple model (IMM)

is an approach that can address multiple loading conditions.

4.1 Interacting Multiple Model Approach

The IMM is often used when tracking multiple objects [31, 32] for a variety of

military (e.g., radar, target tracking) and commercial (e.g., air traffic control, ground

vehicle traffic) applications. In IMM, multiple dynamic models are used to represent

different modes. In our work, we apply the IMM to address situations with more than

one fatigue loading condition. The different loading conditions are represented by dif-

ferent state dynamics models. For each fatigue loading time step, the IMM is used to

assess crack length observations and adjust the probabilities of each loading condition.

The overall crack length state estimate is based upon a weighted summation of the indi-

vidual loading condition state estimates.

The IMM consists of three main stages: interaction/mixing stage, filtering stage,

and combination stage. In the interaction/mixing stage, information from the different

modes is integrated together using assumed mode transition probabilities, as well as

the mode densities and mode probabilities established during the previous time step.

The filtering stage consists of standard stochastic filtering, except multiple filters are

employed so that each of the modes are processed separately. In the combination step,
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the mode probabilities are used to combine the information of the different modes to

create an overall state estimate.

The IMM is discussed in [33] and used for target tracking, with emphasis on

Kalman filter and extended Kalman filter for the filtering stage. We implement the

IMM particle filter approach, described by Boers and Driessen in [77], as we use particle

filtering in our estimation. Furthermore, our state dynamics model employs crack rates

based on Paris’ law, which is given by

ȧ =
da
dn

=C ∆Km
eff

where ∆Keff represents the effective stress intensity factor range, and C and m are the

Paris law constants. In our IMM implementation, the different state dynamics modes

are defined by different loading conditions, which can be represented by different values

of ∆Keff.

Assuming M different state dynamic modes within an IMM, the probabilities of

transitioning from mode ` to mode j are estimated and stored in a mode transition matrix

with transition probability elements p`, j. Furthermore, we apply M separate particle

filters, one for each mode. In our implementation, the particle filters are resampled at

the end of each time step and all particles are assigned equal weights. Therefore, for the

`th mode, `= 1, . . . ,M, the resampled particle filters represent the posterior state density

p`(x`,k−1|yk−1), where x`,k−1 = ak−1 is the state value at mode ` and time step k−1 and

yk−1 is the observation at time step k− 1. In addition, the mode probabilities µ`,k−1,

which were calculated at the end of the previous time step k−1, are also available. For

the initial time step, it is assumed the initial value of the crack length state x0 is known,

and all particles are initialized to this value with equal weighting. It is also assumed that

the initial mode probabilities µ`,0 are known.

To begin the interaction/mixing stage, the mode mixing probabilities are cal-

culated for all modes. The mode mixing probabilities, denoted as µ`| j,k−1|k−1, are the

58



probabilities of moving time step k− 1 posterior density information of mode ` into

mode j during this mixing step. Given the posterior state density p`(x`,k−1|yk−1) for the

`th mode, the mixing probabilities can be calculated as

m`| j,k−1|k−1 =
1
c j

p`, j µ`,k−1 (4.1)

where c j is a probability normalization factor based upon the mode probabilities µ`,k−1

and mode transition probabilities p`, j as

c j =
M

∑
`=1

p`, j µ`,k−1 . (4.2)

Then, for each mode j, using posterior density p j(x j,k−1|yk−1), an initial mixed prob-

ability density for mode j can be calculated. This is performed as a summation of the

posterior densities for each mode from the previous time step k− 1, weighted by the

corresponding mixing probabilities from (4.1):

m̂ j,k−1(x j,k−1|yk−1) =
M

∑
`=1

p`(x`,k−1|yk−1) m`| j,k−1|k−1 . (4.3)

After the interaction/mixing stage, the filtering stage is performed. As the initial

step in the filtering stage, the initial mixed, densities for each mode are propagated

according to their respective state dynamics model. Using Paris’ law corresponding to

mode j, the predicted crack growth rate ȧ can be obtained as

ȧk =
∆ak

∆nk
= χ C(∆Keff, j)

m (4.4)

where ∆nk is the number of fatigue cycles occurring between time step k−1 and k, ∆ak

is the corresponding increase in crack length within this time period, ∆Keff, j represents

the effective stress intensity factor range for the jth mode loading condition, C and m

are the Paris law constants, and χ is a lognormal random variable that is used to account

for modeling errors in the dynamics model. Using x(i)`,k−1|k−1 to represent the ith particle

of the mixed particle set of mode ` at time step k− 1, the particles are propagated as
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follows:

x(i)`,k|k−1 = x(i)`,k−1|k−1 + ȧk ∆nk + vk (4.5)

where x(i)`,k|k−1 represents the prior density at time step k for mode `, ȧk is from Equation

(4.4), and vk is a normal random variable that is added to account for modeling errors.

Our observation model has been previously discussed in Chapter 2. The ob-

servation is a sequence of matching pursuit decomposition (MPD) feature vectors that

is used as the input into a set of trained hidden Markov models (HMMs), where each

HMM is trained for a different crack length. For each of the trained HMMs, the forward-

backward algorithm (Section 2.7.1.1) is used to obtain a probability measure of the

feature vector. Hence, the observation step provides a probability distribution of the

different crack lengths used to train the HMMs. In our implementation, we obtain mul-

tiple individual observations at each time step and the resulting distribution is based

upon multiple observations. Given a distribution of discrete crack lengths, the particle

weights w(i)
j,k for mode j at time step k can be obtained by rounding the value of the

particle to the nearest HMM training crack length, and then using the corresponding

probability of the HMM training crack length to weigh the particle.

After weighing the particles corresponding to mode j, the state estimate of mode

j can be obtained as a weighted summation of Np particles

x̂ j,k|k =
Np

∑
i=1

w(i)
j,k x(i)j,k|k−1 . (4.6)

For the ith particle, a predicted crack length can be calculated. The value of the crack

length stored in the particle can be rounded to one of the D crack lengths used to train

the HMMs. Using the corresponding trained HMM, an MPD observation can be created

using the procedure to be discussed in Section 5.2.1. For each of the D trained HMMs,

the forward-backward algorithm is used to create a probability measure that the MPD

vector was generated by the HMM. This also provides a probability measure related to
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assigning the value of the crack length used to train the HMM as the predicted output.

After this is performed for all D HMMs and their corresponding training crack lengths,

a distribution of predicted crack length outputs is obtained for the particle. Since the

D possible crack lengths are known and D HMMs have been trained offline for these

crack lengths, the distributions of predicted crack length outputs can be created off-line

for each of the D training crack length values, and numerous simulations can be per-

formed to improve the statistical accuracy. In our work, 2000 predicted MPD feature

vectors were generated and analyzed off-line to generate each predicted crack length

distribution. After creating the predicted output distributions, the means of these distri-

butions can also be obtained and stored. For each of the D HMM training crack lengths,

we use the mean values of the corresponding predicted crack length distributions to rep-

resent the predicted crack length output. Since the predicted crack length distributions

and means of the distributions can be calculated and stored offline, this significantly

reduces the computational burden during runtime.

Given mode ` and its corresponding set of particles, and given the predicted

particle observation y(i)`,k for each particle i at time step k, the predicted mean output ȳ`,k

can be calculated for mode ` as a weighted summation of the particle predicted outputs:

ȳ`,k =
Np

∑
i=1

w(i)
`,k y(i)`,k . (4.7)

Using the predicted output of each particle y(i)`,k as well as the predicted mean output ȳ`,k,

the mode ` residual covariance can be calculated as

Ŝ`,k =
Np

∑
i=1

(
y(i)`,k− ȳ`,k

)2
(4.8)

The difference between the actual observation yk and the predicted particle observations

y(i)`,k at time step k, called particle innovations, can be obtained as

r(i)`,k = yk− y(i)`,k . (4.9)
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If we assume that the particle innovations r(i)`,k have zero-mean, Gaussian distributions,

given by r(i)`,k ∼ N (0, Ŝ`,k), then we can calculate the likelihoods of the particle in-

novations. Recognizing that the probabilities can be very small numbers, and that the

operations that involve these values might impinge upon computer precision limits, in

our implementation, we calculate log values of the particle innovation likelihoods. Fur-

thermore, since the log likelihoods are relative values, we perform other value checks

and collective manipulations, as necessary, to ensure values are maintained within com-

puter precision limits. For the `th mode, since we employ relative log likelihood values

of the particle innovations, we can calculate a relative log likelihood of the mode us-

ing a summation of the particle log likelihoods. The mode likelihood L`,k can then be

obtained using the exponential of the relative log likelihood and normalizing this value.

As the final step of the filtering stage, given the mode likelihoods L`,k, the mode

probabilities µ`,k can be obtained as

µ`,k =
1
c`

L`,k c` (4.10)

where c` was calculated in (4.2).

In the combination stage, the state estimates of the individual modes are com-

bined according to their respective mode probabilities to create an overall state estimate

at time step k, given by

x̂k =
M

∑
`=1

x̂`,k|k µ`,k , (4.11)

where x̂`,k|k was calculated in (4.6) and µ`,k was calculated in (4.10).

4.2 IMM Implementation for Multiple Loading Conditions

As explained above, we apply the IMM methodology to show how it can be used

to address situations where more than one loading condition is present. The different

loading conditions are represented by different state dynamics models, and the IMM

methodology is used to assess crack length observations such that the probabilities of
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each loading condition are adjusted, thereby improving the ability to track changes in

damage condition.

Aluminum compact tension (CT) specimens are used in our implementations of

IMM towards damage state monitoring. An example CT specimen in shown in Fig-

ure 4.1. The CT specimens consist of a machined block of 2024-T3 aluminum. Refer-

ring to Figure 4.1, in the center of the specimen off one edge, there is a wide machined

notch between the two loading attachment holes. The wider notch transitions into a

thinner, shorter, electrochemical machined (ECM) notch. As the figure shows, after the

specimen is fatigue loaded, a fatigue crack develops from the ECM notch and propa-

gates into the specimen. Specimens are loaded in fatigue tension with several different

minimum and maximum load combinations.

Figure 4.1: Compact tension specimen with actuator and receiver sensors.

In the active sensing approach used to observe the damage, an actuator piezo-

electric sensor is positioned on one side of the notch to transmit the signal, and a receiver
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sensor is positioned on the other side of the notch to receive the transmitted signal. A

135 kHz tone burst signal is used as the active sensing waveform. The tone burst wave-

form is an enveloped sinusoid, with amplitude modulation Abu(t), and can be generated

using

sbu(t) = Abu(t)cos(2π fbut) .

Figure 4.2 shows an example of a transmitted tone burst signal used in this study. Fig-

ure 4.3 shows the received version of the signal, and Figure 4.4 shows the MPD time-

frequency representation (TFR) of the received signal; the MPD-TFR is created as a

summation of individual MPD feature vector components.

Figure 4.2: Transmitted tone burst signal.

The tone burst waveform possesses several characteristics that make it a popular

choice for damage detection within structures. It possesses high localization in both the

time and frequency domains. Whether using a time domain and/or a frequency domain

representation of the received signal, damage detection methods typically depend upon

the ability to recognize differences in the received waveform corresponding to differ-
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Figure 4.3: Received tone burst signal.

Figure 4.4: MPD-TFR of received tone burst signal.
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ences in the condition of a structure. The high localization of the tone burst waveform

improves the ability to recognize it in a received signal and to detect changes in the

received waveform corresponding to changes in the condition of the structure.

As discussed in Chapter 2, in our work, we employ an MPD-HMM observa-

tion model. Unlike many other signal-based methods used in damage detection, our

observation model does not focus upon the characteristics of only one or two visually-

identifiable peaks within a time domain or frequency domain representation of the re-

ceived signal. Therefore, the high localization characteristics associated with the tone

burst waveform is less critical as compared to other damage detection approaches In

Chapter 5, we explore the use of several different types of transmission waveforms for

classification of crack lengths within an overall sequential Bayesian crack growth mon-

itoring procedure.

In our example, demonstrations of using the IMM to assess and weigh the dif-

ferent state dynamic loading modes, crack length observations are obtained at approxi-

mately 30 different time steps, with approximately 30 different crack lengths, within a

range of 6-17 mm crack length. Although the high localization of the tone burst wave-

form can be advantageous for basic binary damage detection, the limited amount of

signal information within this particular waveform might constrain its capabilities with

respect to crack length resolution and multiple crack length, classification accuracy.

Figure 4.5 shows a plot of the loading and crack growth characteristics of com-

pact tension specimen CT419a, where 32 different crack length measurements were

obtained during the fatigue loading of this specimen. Assuming we have training data

available, where the number of fatigue cycles ∆nk and the crack increase ∆ak between

time steps k and k+1 are known, estimates of the crack growth rate ȧk can be obtained,

and assuming values for the Paris constants C = 5×10−11 and m = 4.07, then stepwise

values for ∆Keff can be obtained from Paris’ law. These are plotted in Figure 4.6.
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Figure 4.5: Maximum and minimum loading conditions and resulting crack growth
characteristics for specimen CT419a.

Figure 4.6: Calculated stepwise ∆Keff of compact tension specimen CT419a.

As mentioned above, a 135 kHz tone burst waveform was used as the actuator

signal, and the sampling frequency was 2 MHz. The received signals were downsam-

pled by a factor of 2, and then the signals were high pass filtered to attenuate low fre-

quency interference and low pass filtered to attenuate extraneous high frequency noise.

After preprocessing, the MPD algorithm was performed to extract 4-element feature

vectors. After several preliminary HMM training studies using MPD feature vectors, it
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was decided that L = 23 was an optimal number of MPD feature vectors for training the

HMMs.

The MPD feature vectors were used to train the HMMs as follows. Due to

the high number of different crack lengths, a relatively high number of hidden states

(about 7) was assumed to exist within the time-frequency plane, and 8 Gaussian mixture

components were used to model the continuous-valued, 4-element, MPD feature vector

emissions. Given one of the 32 different crack lengths, for each of the approximately

110 training signals representing that crack length, the first 23 extracted MPD feature

vectors were arranged according to their time-shift parameter. The resulting time-based

MPD sequence was used in training the HMM for that crack length. This was performed

for all training signals corresponding to the crack length, and it was repeated 12 times

for the entire collection of MPD observations. For each of these 12 training epochs, the

order in which the different observations were presented to the HMM was randomized

prior to performing the epoch.

After HMMs were trained for all 32 crack lengths, a confusion matrix was cre-

ated to assess the classification accuracy of the trained HMMs. For each crack length,

using the maximum likelihood classification approach, approximately 110 testing runs

(corresponding to that crack length) were inputted into each of the 32 trained HMMs,

and a maximum likelihood crack length classification was obtained for each of the test-

ing runs. The decimal percentage classification results were then calculated and repre-

sented as a row of the confusion matrix corresponding to the crack length of interest.

This was performed for all 32 different crack lengths. Therefore, the confusion matrix

consisted of 32 rows, representing the 32 different crack lengths, and 32 columns, repre-

senting the 32 different HMMs that had been trained for each of the crack lengths. Note

that for a situation in which there was high classification accuracy, the confusion matrix

should exhibit a high concentration of crack length classifications along the diagonal.

A two-dimensional image plot of the confusion matrix is shown in Figure 4.7. As this
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plot shows, there is heavy concentration along the diagonal, indicating relatively high

classification accuracy. However, with over 30 different crack lengths within a 6 to 17

mm crack length range, the image plot also reveals there is some level of error away

from the diagonal.

Figure 4.7: HMM Confusion matrix for compact tension specimen CT419a.

In our IMM implementation for crack growth monitoring, the different loading

modes were modeled using different Paris’ Law dynamics models, where the differ-

ent models were created using different values for ∆Keff. Referring to Figures 4.5-4.6,

specific values for ∆Keff and the mode transition probabilities were estimated using the

values shown in these figures. Note that values for ∆Keff do not necessarily exist at

well-defined, discrete levels. Therefore, when selecting values for ∆Keff to represent

different modes of loading, averaged values were used. Furthermore, in the examples

discussed below, we varied the number of assumed loading conditions to observe how

this affected the damage tracking results.

Figure 4.8 shows the IMM crack tracking results when two different loading
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modes were assumed. In this example, ∆Keff = 1.3 for low loading, ∆Keff = 3.2 for high

loading, and the mode transition probability matrix is shown in Table 4.1.

Mode 1 Mode 2
Mode 1 0.7368 0.2632
Mode 2 0.3333 0.6667

Table 4.1: Mode transition probabilities for 2 modes.

Figure 4.8: IMM results assuming 2 loading modes.

Figure 4.9 shows the mode probabilities during the fatigue cycling. Comparing

this figure to Figure 4.5, the IMM procedure detects a significant increase in the prob-

ability of the high loading condition at the time or soon after the time the high loading

condition has actually occurred.

Figure 4.10 shows the IMM crack tracking results when three different loading

modes were assumed. In this example, ∆Keff = 1.3 for low loading, ∆Keff = 2.5 for

medium to high loading, ∆Keff = 3.5 for high loading, and the mode transition proba-

bility matrix is shown in Table 4.2.
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Figure 4.9: IMM mode probabilities assuming 2 loading modes.

Mode 1 Mode 2 Mode 3
Mode 1 0.500 0.400 0.100
Mode 2 0.500 0.125 0.375
Mode 3 0.100 0.300 0.600

Table 4.2: Mode Transition Probabilities, 3 modes.

Figure 4.11 shows the mode probabilities during the fatigue cycling. Comparing

this figure to Figure 4.5, the IMM procedure detects a significant increase in the prob-

ability of the high loading condition at the time or soon after the time the high loading

condition has actually occurred.

Figure 4.12 shows the IMM crack tracking results when four different loading

modes were assumed. In this example, ∆Keff = 1.3 for low loading, ∆Keff = 1.7 for low-

medium loading, ∆Keff = 2.5 for medium-high loading, ∆Keff = 3.5 for high loading,

and the mode transition probability matrix is shown in Table 4.3.

Figure 4.13 shows the mode probabilities during the fatigue cycling. Comparing
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Figure 4.10: IMM results assuming 3 loading modes.

Figure 4.11: IMM mode probabilities assuming 3 loading modes.
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Mode 1 Mode 2 Mode 3 Mode 4
Mode 1 0.4444 0.2222 0.2222 0.1111
Mode 2 0.2000 0.3000 0.4000 0.1000
Mode 3 0.2500 0.2500 0.1667 0.3333
Mode 4 0.0909 0.0909 0.2727 0.5455

Table 4.3: Mode transition probabilities for 4 modes.

Figure 4.12: IMM results assuming 4 loading modes.

this figure to Figure 4.5, the IMM procedure detects a significant increase in the prob-

ability of the high loading condition at the time or soon after the time the high loading

condition has actually occurred.

In this chapter, we explored the use of IMM for modeling structural loading sit-

uations in which more than one type of loading condition exists. As the examples show,

IMM can assess changes in the crack length growth rate and adjust the probabilities of

the different loading modes. These probabilities are then used to weigh the individual

mode state estimates to obtain the overall crack length state estimate.
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Figure 4.13: IMM mode probabilities assuming 4 loading modes.
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Chapter 5

ADAPTIVE WAVEFORM SELECTION FOR CRACK GROWTH ESTIMATION

In the sequential Bayesian approach used to monitor crack growth, in addition to

the possibililty of multiple modes for damage growth (discussed in the previous chap-

ter), we can also intentionally apply multiple modes for the damage state observations.

Even though the matching pursuit decomposition based hidden Markov model (MPD-

HMM), that we use for the observation model, has exceptional capability for recog-

nizing different damage conditions, the ability to resolve and observe different damage

conditions can vary depending upon specific observation parameters. As a result, within

our observation model, we design the transmission sensing waveform in order to opti-

mize resolution capability given a particular estimated level of damage. Allowing for

different options of transmission sensing waveforms leads to the use of multiple obser-

vation modes n the sequential Bayesian approach. With the different waveform modes,

the observation mode corresponding to the optimal resolution capability for that level of

damage can then be selected. In selecting the optimal transmission waveform, we em-

ploy a predicted mean-squared error (MSE) cost function [34]. The motivation for the

MSE criterion relates to differences that can occur in the modeling capability of HMM

models that have been trained with different waveforms, given a particular crack length

damage condition.

5.1 Crack Length Observation Models

5.1.1 Observations Models Using HMMs

Within this work, we use HMMs into our crack growth monitoring method to

determine the probability of the data given an HMM and the corresponding HMM pa-

rameters that maximize the probability. Given training data obtained for different dam-

75



age conditions, as well as different observation conditions used to obtain the data, the

HMM parameters for each damage condition have to be adjusted to maximize the like-

lihood of the training observations. This results in training the different HMMs for the

different damage and observation conditions. Our observations Yk consist of L MPD

feature vectors, with 4 feature elements per vector. The feature vectors are arranged

according to their time shift parameter in order to represent a time-based feature vector

in the time-frequency plane.

After training D different HMMs, represented by {λ1, . . . ,λD} for different con-

ditions, and considering a known observation mode, our problem is to find the damage

condition of a new test observation Ytest
k using that observation mode but obtained from

a material with unknown damage condition. This damage condition corresponds to the

HMM λ̂ obtained using maximum likelihood estimation as

λ̂ = argmax
λ

p
(
Ytest

k |λ
)

(5.1)

where p
(
Ytest

k |λ
)

can be calculated efficiently using the forward-backward algorithm.

5.1.2 HMM Implementation Issues

When implementing the HMM procedures, numerical values of the various prob-

abilities can be extremely small and can often fall below the precision range of real-

world, computational machines [1]. Therefore, scaling procedures and the use of loga-

rithmic values are typically employed in order to perform computations using numbers

more compatible with the precision range of currently-available, computing equipment.

For example, if we are using a maximum likelihood approach to decide crack lengths,

rather than use the classifier shown in (5.1), a log likelihood classifier is used as

λ̂ = argmax
λ

{
log p

(
Ytest

k |λ
)}

. (5.2)

We then choose the HMM λ̂ corresponding to the maximum log likelihood and assign

the value of the crack length associated with the MPD observation Ytest
k .
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Alternatively, we can use the log likelihood outputs from the forward-backward

algorithm to create a distribution of likelihoods. This is especially useful when we have

multiple observations. Using sequential importance sampling, when updating particle

weights as in Equations (2.21-2.24), we can first obtain the log likelihoods of the MPD

observations with respect to the different HMM training crack lengths, shift the log

likelihood values to an appropriate numerical range (where their exponentials are within

the precision range of typical computational machines), and then obtain the exponentials

and normalize to convert to probabilities. Error-catching code can also be included to

address any values that still remain less than the precision range. The likelihoods can

then be used to update particle weights as in Equations (2.21-2.24).

Note that when using HMMs for the crack-growth estimation problem, we con-

sider two different levels of state transitions and two different types of time steps which

we clarify next to avoid possible confusion. In our overall crack growth modeling ap-

proach, we have different crack length damage states that occur at different fatigue

cycle time steps k, and our overall objective includes monitoring crack length damage

state transitions at each fatigue time step k. However, at each fatigue time step k, we

make an observation of the crack length consisting of a sequence of MPD feature vec-

tors. The MPD feature vectors are time-ordered in the time-frequency plane. Using the

time-ordered MPD feature vectors, HMMs are used to correlate the feature vectors with

corresponding crack length damage conditions. Therefore, in our overall crack length

tracking, we make observations of crack length state transitions at time step k, and for

each of these crack length observations, we obtain MPD feature vectors, in actual time,

as time-frequency state transitions.

Given an observation mode using a fixed transmission waveform, and given D

trained HMMs {λd}, d = 1, . . . ,D, corresponding to D different damage conditions,

once a likelihood Pr(Yk|λd) (or a log likelihood Pr(logYk|λd)) is obtained for each

candidate HMM λd , the maximum likelihood classifier in (5.1) (or the maximum log
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likelihood classifier in (5.2)) can be used to select the HMM λ̂ . Then the corresponding

damage class used to train that HMM can be chosen. In a particle filter, crack length

tracking implementation, the distribution of likelihoods is used in the particle weight

updating procedures described in Equations (2.21), (2.22) and (2.24).

5.2 Waveform Selection using Multiple Observation Modes

In this section, we discuss how to assess the damage resolution characteristics

of different observation modes given that they originated from different trained HMMs.

We assess these characteristics for a given predicted damage level in order to predict

which optimal observation mode, corresponding to an optimal transmission waveform,

can be used to observe a crack length.

5.2.1 Use of HMM for Predicting Observations

Given a trained collection of HMMs {λd} for different damage conditions d =

1, . . . ,D, and a sequence of MPD feature vectors Ytest
k representing an unknown dam-

age condition, we could efficiently calculate Pr
(
Ytest

k |λd
)

for each applicable damage

condition and obtain a distribution of the likelihoods corresponding to different crack

lengths.

In particular, given a crack length damage condition of interest, if we find the

nearest HMM training crack length d, we can use the corresponding trained HMM λd in

a reverse emission mode, where we sample from p(Yk|λd) to generate predicted MPD

observation vectors from λd . If these predicted MPD emissions are evaluated to obtain

the corresponding predicted crack length values, the amount of error can be assessed

between the original crack length of interest and the predicted crack length correspond-

ing to the MPD observations sampled from p(Yk|λd). If we have several different

HMMs that have been trained using different modes of observation within this crack

length region, this type of error assessment can provide useful information with respect

to choosing the observation mode corresponding to minimum estimation error or max-
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imum damage resolution characteristics. Furthermore, since resolution characteristics

can change with damage conditions, the error assessment could be performed before

each new observation. This can increase the probability that the optimal observation

mode or transmission waveform is selected to make the observation.

Given a continuous-observation HMM λd that is trained using a particular dam-

age crack length d at cycle time step k, we can sample from p(Yk|λd) to generate a

simulated MPD observation Yk =
{

yk,1,yk,2, . . . ,yk,L
}

using the following procedure:

Initialization: Sample an initial state q1 from π = {π1,π2, . . . ,πN}.

for `= 1 to L:

1. Choose a four-dimensional Gaussian mixture component by sampling c jm,

m = 1, . . . ,M, from Gaussian mixture coefficient matrix C; this corresponds

to the row of mixture coefficients that correspond to the current state h j.

2. From the four-dimensional Gaussian mixture component, sample an MPD

observation vector Yk,`

Yk,` =



τk,`

νk,`

κk,`

ρk,`


3. If ` < L, choose the (`+1)th state by sampling from the row of state transi-

tion probabilities in matrix P that correspond to the current lth state.

4. Repeat steps 1-3 until all L MPD vectors are generated.

5.2.2 Predicted crack lengths

Within our sequential Bayesian methodology, given a current crack length state

estimate, the HMM trained to that crack length can be used to generate predicted obser-

vations using the procedure described in Section 5.2.1. The predicted observations can
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be used to obtain predicted crack length estimates which can be compared to the current

crack length state estimate. For example, using a particle filter to track crack growth

at cycle time step k, the ith particle, i = 1, . . . ,Np has a crack length state estimate x(i)k .

Given an observation mode for each particle value x(i)k , we can find the HMM trained

using that observation mode at the crack length closest to the value of this particle. Em-

ploying the HMM and the steps for sampling MPD vectors in Section 5.2.1, we generate

M sets of L MPD feature vectors y(i)k,l,m , l = 1, . . . ,L and m = 1, . . . ,M . For each of

the M sequences of L MPD feature vectors, the forward-backward algorithm can be

used to obtain the log likelihood of the L MPD vectors. The HMM λ̂d corresponding to

the maximum log likelihood is selected using (5.2), and the associated crack length d

used to train λ̂d can be assigned as the predicted crack length value x̂(i)k,m. Another way

to obtain the predicted crack length is to use a probability distribution of the different

HMM training crack lengths and then use the mean estimate of the distribution as the

predicted crack length value x̂(i)k,m. Once a value has been assigned to the predicted crack

length x̂(i)k,m, the error between this predicted crack length x̂(i)k,m and the corresponding

particle value x(i)k can be computed. This error can then be used to assess the resolution

characteristics of the particular observation mode used to train the HMMs, within the

local crack length region corresponding to x(i)k .

5.2.3 Waveform Design Using Error Minimization

If there are several different transmission waveforms available for obtaining

crack length observations, the approach described in Section 5.2.2 can be used to se-

lect the transmission waveforms that can be used to perform damage monitoring as

accurately as possible. For a particular damage condition, if we have several different

HMMs trained for this damage condition but using different observation modes, the

errors between the current crack length estimate and the crack lengths obtained from

predicted observations can be used to choose the observation mode corresponding to

the minimum error. This minimum error corresponds to the maximum damage res-
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olution characteristics. Furthermore, since resolution characteristics can change with

different damage conditions, the error assessment can be performed before each new

damage observation to ensure that the optimal observation mode is used. In our crack

growth tracking methodology, we employ this waveform design approach to select an

optimal observation mode when making observations of feature vectors corresponding

to the current damage condition.

A mean-squared error (MSE) metric is used to select the optimal transmission

waveform. Given a particle filter implementation at cycle time step k with corresponding

particles and weights (x(i)k ,w(i)
k ), the predicted crack lengths x̂(i)k,m, m = 1, . . . ,M , are ob-

tained for each particle x(i)k . Given J available transmission waveforms, z( j)
k , j = 1, . . . ,J,

the predicted MSE estimate for waveform z( j)
k at cycle time step k can be obtained as

MSE(z( j)
k ) =

Np

∑
i=1

w(i)
k

{
1

M

M

∑
m=1

[
x(i)k − x̂(i, j)k,m

]2
}

, (5.3)

where x̂(i, j)k,m is the mth predicted crack length corresponding to particle x(i)k and the jth

waveform. Once the predicted MSE estimates are obtained for each of the J transmis-

sion waveforms, the transmission waveform ẑk corresponding to the minimum predicted

MSE is chosen to obtain the observation at cycle time step k as

ẑk = argmin
z( j)

k

MSE(z( j)
k ) (5.4)

By selecting the transmission waveform corresponding to the minimum pre-

dicted MSE, we expect the best overall crack length resolution characteristics and the

highest accuracy when making crack length observations. Using this waveform selec-

tion procedure, only a single waveform corresponding to the minimum MSE is selected.

If more than one waveform yields the minimum MSE, we select the waveform with the

shortest duration. Later in this chapter, we discuss an approach where we can select

combinations of observation modes.
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5.2.4 Test Specimen Configuration

In this demonstration of waveform selection, a 2024-T3 aluminum cruciform

specimen was tested in fatigue to obtain crack growth data. A 0.25 inch diameter hole

was drilled in the center of the specimen, and a 1.0 mm notch was electrochemically

machined into an edge region of the hole to create a nucleation origin for a crack to

develop. The cruciform specimen was positioned within a biaxial mechanical test ma-

chine (shown in Figure 5.1), and the specimen was loaded simultaneously in both the

horizontal (x-axis) and vertical (y-axis) directions. As shown in Figure 5.2, a crack

developed and propagated from the notch origin to the edge of the test specimen gage

area. The test was discontinued prior to overload and specimen failure.

Figure 5.1: Biaxial mechanical test machine.

The fatigue testing was performed in the Integrated Mechanical Testing Labo-

ratory, that is part of the Adaptive Intelligent Materials and Systems (AIMS) Center
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Figure 5.2: Closeup of tested specimen fatigue crack.

(http://aims.engineering.asu.edu/) at Arizona State University. The target and

actual mean loads were 2.64 kips and 2.16 kips, respectively, with minimum and max-

imum loads at 0.48 and 4.8 kips, respectively. The load ratio was R = 0.1. Note that 1

kips corresponds to 1000 pounds load.

As shown in Figure 5.3, multiple piezoelectric transducers were placed in the

specimen gage area, with one transducer used as an actuator (signal transmitter) trans-

ducer (as designated in the figure) and five other transducers used as receiver sensors.

Initially, we focus our discussion upon the data that was received by Sensor 2. Later in

this chapter, we consider data received by other sensors.

5.2.5 Transmission Waveforms for Selection

Three different types of waveforms were transmitted, as shown in Figure 5.4.

These waveform included a tone burst waveform, a linear chirp waveform, and a signal

consisting of a series of pseudo random width pulses. All waveforms were generated
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Figure 5.3: Cruciform specimen with sensors.

using a 2 MHz sampling frequency.

The tone burst waveform is an amplitude enveloped sinusoid given by

sbu(t) = Abu(t)cos(2π fbut)

where fbu is the sinusoidal frequency and Abu(t) = C e−κt2
is a Gaussian window. The

constant C adjusts the overall amplitude and κ adjusts the shape of the window. Key

characteristics of this waveform are its high localization with respect to both time and

frequency, with a relatively short time duration and a limited bandwidth. In our imple-

mentation, the tone burst signal had a target frequency of 230 kHz and an overall signal

duration of approximately 22 µs.

In contrast to the highly-localized tone burst signal, a linear chirp waveform

has significantly longer time duration wider bandwidth. In our work, the linear chirp
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waveform was constructed as

sch(t) = Ach sin
(

2π f0t +
c
2

t2
)

where Ach is a constant target amplitude, f0 is the initial frequency at time t = 0, and c

is the chirp rate. In our implementation, the chirp signal was generated using a linearly-

increasing frequency, ranging approximately 0-950 kHz, over a duration of approxi-

mately 950 µs, such that the chirp rate of the signal was approximately 1 GHz/s.

In addition to the highly-localized tone burst signal and the long-duration, broad-

bandwidth linear chirp, we also included a pseudo-noise random width pulse waveform.

This waveform consisted of a sequence of random width pulses, where the periods of

individual pulses and periods between pulses varied between approximately 5 to 15 µs,

with a total multi-pulse signal duration of approximately 165 µs. This waveform was

included to observe the general damage classification characteristics when a random,

noise-like signal was used as the transmitted waveform.

5.2.6 Data Collection for Model Training

In a real-life implementation of our crack growth tracking method on a real

structure, we assume that there would be previously-obtained training data available.

This includes actual crack length measurements obtained at the different fatigue cycles

of interest, as well as signal data that was obtained at each of the measured crack lengths.

The signal data was obtained using different modes of observation by using different

transmission waveforms. Therefore, in the model training portion of our overall crack

monitoring procedure, the physical measurement data is used in developing the crack

growth state dynamic model, and the active-sensing, signal data is used in developing

the observation model.

Within this demonstration of our method, at various cycles during the fatigue

testing of the cruciform specimen, the fatigue loading was temporarily stopped, the

crack length was physically measured, and signal data was generated by transmitting
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Figure 5.4: Different types of transmitted waveforms. (a) Tone burst, (b) linear chirp,
and (c) pseudo-noise random width pulse.

and receiving the different waveforms using the piezoelectric transducers. For each

waveform, approximately 50 different signal observations were obtained at each of the

five receiver sensors at each of the designated fatigue cycles. The specific number of

fatigue cycles and corresponding crack lengths are shown in Table 5.1 and also in the

crack growth plot shown in Figure 5.5. In this plot, a least squares cubic model was

fitted to the data.
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Number of Cycles Measured Crack Length (mm)
0 0

87037 0
110009 4.20
140011 4.70
161761 5.13
174238 7.00
184009 8.92
192961 11.12
200013 13.15
208012 15.04
213794 18.09
218462 20.11
225008 22.62
229009 24.75
234216 28.09

Table 5.1: Fatigue cycle numbers where crack length data was obtained.

Figure 5.5: Measured crack length vs. number of fatigue cycles, with least squares cubic
model.

5.2.7 State Dynamics Model

In Section 3.3, simplifications and stochastic variations of Paris’ law were dis-

cussed, and in this demonstration of our crack tracking method, we employ a Paris-like
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power law based upon the discussed variations of Paris’ Law. Using the fitted, crack

length versus fatigue cycle cubic model shown in Figure 5.5, we used the derivative of

the cubic model and evaluated it at fatigue cycles at which crack measurements were

obtained. In addition, using the values of the crack length measurements, we obtained

initial estimates of the stress intensity factor KI(a) using the experimentally-determined

cubic model shown in Figure 3.5, in which we used this as a measure of the effective

stress intensity factor range ∆Keff. Using (3.4), and as shown in Figure 3.6, we could

obtain initial estimates of the Paris constants C and m. However, there can be wide

variability in these initial estimates. Hence, we employed Markov chain Monte Carlo

(MCMC) techniques to refine the values of these parameters. Results of our example

MCMC implementation are shown in Tables 5.2-5.4. As the tables show, relatively con-

stant values for m and C could be obtained, while maintaining values for KI that were

still within the range of predicted values shown in Figure 3.5.

cycles crack(mm) m(initial est) m(MCMC)
110009 4.20 -9.0888 0.4172
140011 4.70 8.0926 0.3982
161761 5.13 12.2138 0.4236
174238 7.00 8.2708 0.4542
184009 8.92 6.3777 0.4504
192961 11.12 5.3171 0.4636
200013 13.15 4.7060 0.4890
208012 15.04 3.9934 0.4788
213794 18.09 3.3387 0.4990
218462 20.11 2.7281 0.4942
225008 22.62 1.8850 0.4697
229009 24.75 1.4531 0.5023
234216 28.09 1.0237 0.4874

Table 5.2: Initial and MCMC-refined estimates of state dynamics model parameter m.

After refining the values of these parameters, and using a discrete time step k

notation, where k represents the indices of the fatigue cycles where measurements were
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cycles crack(mm) m(initial est) m(MCMC)
110009 4.20 1.0807 ×1056 2.1545 ×10−8

140011 4.70 1.3369 ×10−64 2.3782 ×10−8

161761 5.13 2.4383 ×1056 2.3545 ×10−8

174238 7.00 1.0847 ×10−65 2.4727 ×10−8

184009 8.92 2.232 ×10−52 2.4976 ×10−8

192961 11.12 6.7391 ×10−45 2.6814 ×10−8

200013 13.15 1.4119 ×10−40 2.3844 ×10−8

208012 15.04 1.5961 ×10−35 2.4590 ×10−8

213794 18.09 7.200 ×10−31 2.3414 ×10−8

218462 20.11 1.6128 ×10−26 2.5109 ×10−8

225008 22.62 1.7019 ×10−20 2.4496 ×10−8

229009 24.75 2.1239 ×10−17 2.5837 ×10−8

234216 28.09 2.6097 ×10−14 2.5917 ×10−8

Table 5.3: Initial and MCMC-refined estimates of state dynamics model parameter C.

cycle(k) cycle(k+1) crack(mm)(k) crack(mm)(k+1) KI (k) KI (k+1)
87037 110009 0.00 4.20 8165454 8722830

110009 140011 4.20 4.70 9429409 8560679
140011 161761 4.70 5.13 9631181 8794103
161761 174238 5.13 7.00 10079931 8037457
174238 184009 7.00 8.92 10747788 11940649
184009 192961 8.92 11.12 11358623 9895599
192961 200013 11.12 13.15 11899865 9536098
200013 208012 13.15 15.04 12346258 10431927
208012 213794 15.04 18.09 12877235 11020609
213794 218462 18.09 20.11 13434196 12665571
218462 225008 20.11 22.62 13997026 13738065
225008 229009 22.62 24.75 14665976 1372468
229009 234216 24.75 28.09 15681117 15749785

Table 5.4: Initial and MCMC-refined estimates of state dynamics model parameter KI .

taken (reference Table 5.1), we then estimated a crack growth rate ȧk at time step k:

ȧk ≈Ck
[
KI(k,k+1)

]mk . (5.5)

In (5.5), Ck and mk are discrete time step versions of Paris parameters C and m, in

which we assume that these parameters are not true constants but have some variability.

KI(k,k+1) is the average value of stress intensity factor KI(a) at time steps k and k+ 1,
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which we are using as a measure of the effective stress intensity factor range ∆Keff. To

obtain this average value, crack lengths were obtained from Table 5.1 corresponding

to time step indices k and k + 1. Then the crack lengths were used as input to the

experimentally-determined cubic model shown in Figure 3.5 and the average value was

used.

As discussed in Section 3.3, a lognormal random variable is often used to model

variability in crack growth rate in theoretical stochastic crack growth studies. However,

when tracking actual crack growth, there can be both negative and positive random

variability, where negative variability could possibly occur due to random noise within

crack length observations. The combination of a lognormal random variable (to model

variability within the state dynamics, crack growth rate) with a normal random variable

(to model variability within crack length observations) represents one approach towards

modeling the combined variability that could occur when tracking crack growth. Alter-

natively, a single, normal random variable might be sufficient to model the randomness

in both positive and negative directions, and that is the approach we used within the

effort discussed in this chapter.

Using a single, normal random variable to model the variability in the crack

growth, and using the discrete time step, crack growth rate expression shown in (5.5),

we formed the following state dynamics model

ak+1 = ak + ȧk∆nk + vk (5.6)

where ∆nk is the number of fatigue cycles between time steps k to k+1 and vk is a zero-

mean Gaussian random variable with variance σ2
a , included to account for randomness

during crack growth tracking. An estimate of σ2
a is obtained using the MSE of the crack

growth cubic model shown in Figure 3.2.
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5.2.8 MPD-HMM Observation Model For Different Waveforms

In accordance with procedures described in Section 2.7.2, HMMs were trained

for each combination of waveform and crack length, using sequences of MPD feature

vectors as the observable quantities emitted from hidden states in the time-frequency

plane. Within this particular study, all signals were received by a single sensor, and we

implemented different observation modes by using different transmission waveforms.

After training the HMMs, given a new MPD vector sequence corresponding to an un-

known crack length, and given the particular transmission waveform and the collection

of HMMs trained with that waveform for different crack lengths, the specific HMM

and its associated training crack length could be selected based upon the procedures

described in Section 5.1.2.

In extracting MPD feature vectors from the received signals, we performed L =

40 MPD iterations, such that our observations consisted of L = 40 length sequences

of four-element MPD feature vectors. This relatively large number of MPD iterations

was necessary due to characteristics of the pseudo random width pulse waveform, since

more MPD iterations were required to extract a sufficient amount of signal energy from

this noise-like waveform as compared to the other two waveforms. Even though the tone

burst and linear chirp waveforms required fewer MPD iterations to extract comparable

levels of signal energy, to maintain consistency in our comparison of the three different

transmission waveforms, we intentionally chose to use the same number (L = 40) of

MPD iterations for all three waveforms when performing the MPD procedure. In the

MPD algorithm, most of the signal energy is extracted during the early iterations, so

that after 40 iterations, the amount of signal energy extracted from all three waveforms

was approximately the same. After obtaining the L = 40 feature vectors using the MPD

procedure, the vectors were sorted according to their time shift (τ) parameter, such that

they were arranged according to their time-based, sequential order of emission within
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the time-frequency plane.

In creating and training the HMMs, we assumed there were N = 8 hidden states

that existed within time-frequency plane. For data generated with the tone burst and

linear chirp transmission waveforms, we were able to train the HMMs adequately with

a somewhat lower assumed number of hidden states; however, training the pseudo ran-

dom width pulse waveform required a higher assumed number (N = 8) of hidden states

in order to obtain reliable crack length classification results. As with our selection of

the number of MPD iterations, in order to maintain consistency when comparing the ob-

servation characteristics of the three different transmission waveforms, we intentionally

chose to use the same assumed number (N = 8) of hidden states for all three waveforms

when creating and training the HMMs.

We chose to use M = 2N = 16 Gaussian mixture components in our HMMs.

We assumed this number of mixture components would be sufficient for various feature

vector distributions that might occur, including mono-modal distributions, multi-modal

distributions, and situations where different damage classes possessed common mixture

components. As with the number of states N, we intentionally chose to keep the same

number of Gaussian mixture components (M = 16) for all waveforms.

The HMMs were trained using 24 training observations for each waveform and

crack length combination, where observations consisted of a time-shift ordered se-

quence of L = 40 MPD feature vectors. Training was performed using procedures

described in Section 2.7.2. Multiple training epochs were used for each set of obser-

vations. In each training epoch, the specific order in which the MPD observations were

presented to the HMM was randomized. Although we tried to be as consistent as possi-

ble when processing the different waveforms in other procedures, we had to used differ-

ent numbers of training epochs for the different waveforms when training the HMMs.

In supervised learning algorithms, there is a possibility of overtraining or overfitting the
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data, where the learning algorithm not only learns key features associated with a par-

ticular class of training data, but also can learn random noise and other nuances within

the training data unrelated to the particular data class. This leads to reduced general-

ization when classifying new data, since random characteristics that occur within new

data will generally be different from those that occurred in the training data. To improve

generalization, a sufficient number of training epochs should be used such that key fea-

tures associated with a particular data class are learned, but after the key features have

been learned, early stopping should be performed to reduce the probability of overtrain-

ing. For the tone burst waveform, 12 training epochs were sufficient to learn the key

features of the training data. Since the linear chirp waveform had longer duration and

wider bandwidth, we used slightly more epochs (24) when training HMMs with this

waveform. The pseudo random width pulse waveform presented an interesting example

with respect to generalization and overtraining. This particular waveform was intention-

ally created as a random, noise-like waveform, and consequently, the training process

with this waveform was particularly susceptible to overtraining. If we used more than

a limited number of epochs to train the HMMs with this waveform, we saw a dramatic

drop-off in the ability to classify new data. We finally chose to use only 4 epochs to

train with this waveform. This appeared to be a sufficient number to allow the HMMs

to learn overall, macro envelope features related to different damage classes. If we used

more training epochs, the HMMs apparently began to learn individual pulse width char-

acteristics within the training data. Since these characteristics varied from run to run and

would likely be different in new data, it was particularly important to limit the number

of HMM training epochs with the pseudo random width pulse waveform such that the

trained HMMs did not become overtrained to these random pulse width characteristics.

Tables 5.5-5.7 show confusion matrix, crack length classification results for the

three different waveforms, where test signals were received using Sensor 2, and then

processed using our MPD-HMM observation model to determine the corresponding
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crack length. The test signals were generated on the same specimen (see Figure 5.3) as

the training signals, as well as at the same crack lengths experienced during the fatigue

loading of the specimen. There were 24 test signals generated for each transmission

waveform and crack length combination. Test signals of a particular known transmis-

sion waveform were processed by the collection of HMMs trained with that waveform

at the different crack lengths. Using the procedures described in Section 5.1.2, crack

lengths were determined for the different test signals. As the confusion matrices show,

we obtained excellent crack length classification for all three transmission waveforms.

This is impressive, since there was a relatively large number (13) of different damage

classes, and the results show that our MPD-HMM observation model was capable of

distinguishing between signals obtained from the different crack length classes. In the

few cases where notable misclassifications occurred, these misclassifications primarily

occurred at crack levels immediately adjacent to the correct crack level. Therefore, even

in these cases, the error in the crack length classification was relatively small.

crack(mm) 4.20 4.70 5.13 7.00 8.92 11.12 13.15 15.04 18.09 20.11 22.62 24.75 28.09
4.20 0.7083 0.2917 0 0 0 0 0 0 0 0 0 0 0
4.70 0 1 0 0 0 0 0 0 0 0 0 0 0
5.13 0 0.7083 0.2917 0 0 0 0 0 0 0 0 0 0
7.00 0 0.0417 0 0.9583 0 0 0 0 0 0 0 0 0
8.92 0 0 0 0 1 0 0 0 0 0 0 0 0

11.12 0 0 0 0 0 0.9583 0 0 0 0 0 0.0417 0
13.15 0 0 0 0 0 0 0.9583 0 0.0417 0 0 0 0
15.04 0 0 0 0 0 0 0 0.9583 0.0417 0 0 0 0
18.09 0 0 0 0 0 0 0 0 0.9583 0.0417 0 0 0
20.11 0 0 0 0 0 0 0 0 0 0.9583 0.0417 0 0
22.62 0 0 0 0 0 0 0 0 0 0 0.9167 0 0.0833
24.75 0 0 0 0 0 0 0 0 0 0 0 0.8750 0.1250
28.09 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.5: Confusion matrix for tone burst waveform crack length classification.

The diagonal values of the three confusion matrices, that provide correct classi-

fication, were combined and plotted in Figure 5.6. As the figure shows, when notable

misclassification occurred for one of the waveforms at a particular crack length dam-

age level, there was accurate classification at that same crack length for at least one of

the other waveforms, if not both of the other waveforms. Therefore, there can be an
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crack(mm) 4.20 4.70 5.13 7.00 8.92 11.12 13.15 15.04 18.09 20.11 22.62 24.75 28.09
4.20 1 0 0 0 0 0 0 0 0 0 0 0 0
4.70 0 1 0 0 0 0 0 0 0 0 0 0 0
5.13 0 0 1 0 0 0 0 0 0 0 0 0 0
7.00 0 0 0 1 0 0 0 0 0 0 0 0 0
8.92 0 0 0 0 1 0 0 0 0 0 0 0 0

11.12 0 0 0 0 0 1 0 0 0 0 0 0 0
13.15 0 0 0 0 0 0.2083 0.7917 0 0 0 0 0 0
15.04 0 0 0 0 0 0 0 1 0 0 0 0 0
18.09 0 0 0 0 0 0 0 0 0.7083 0.2917 0 0 0
20.11 0 0 0 0 0 0 0 0 0 1 0 0 0
22.62 0 0 0 0 0 0 0 0 0 0.9167 0.0833 0 0
24.75 0 0 0 0 0 0 0 0 0 0.1250 0 0.8750 0
28.09 0 0 0 0 0 0 0 0 0 0 0 0.0417 0.9583

Table 5.6: Confusion matrix for pseudo-noise random width pulse waveform crack
length classification.

crack(mm) 4.20 4.70 5.13 7.00 8.92 11.12 13.15 15.04 18.09 20.11 22.62 24.75 28.09
4.20 1 0 0 0 0 0 0 0 0 0 0 0 0
4.70 0 1 0 0 0 0 0 0 0 0 0 0 0
5.13 0 0 1 0 0 0 0 0 0 0 0 0 0
7.00 0 0 0 1 0 0 0 0 0 0 0 0 0
8.92 0 0 0 0 1 0 0 0 0 0 0 0 0

11.12 0 0 0 0 0 1 0 0 0 0 0 0 0
13.15 0 0 0 0 0 0 0.8750 0 0.1250 0 0 0 0
15.04 0 0 0 0 0 0 0 1 0 0 0 0 0
18.09 0 0 0 0 0 0 0 0.1667 0.7917 0 0 0.0417 0
20.11 0 0 0 0 0 0.0417 0 0.0417 0.2500 0.6667 0 0 0
22.62 0 0 0 0 0 0 0 0 0.0833 0 0.9167 0 0
24.75 0 0 0 0 0 0 0 0 0.1667 0 0 0.8333 0
28.09 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.7: Confusion matrix for linear chirp waveform crack length classification.

advantage of having different waveforms available for making the observations.

5.2.9 Crack Growth Tracking Results with Waveform Selection

In this section, we discuss the results of our overall sequential Bayesian crack

growth tracking procedure, where we incorporated the waveform selection procedure

described in Section 5.2 to select the specific transmission waveforms to be used in

the observation model. Our overall crack growth tracking method is shown in Fig-

ure 5.7 summarizes the procedures used to transition from the posterior state estimate

p
(
xk−1|Ŷk−1

)
, to the posterior state estimate p

(
xk|Ŷk

)
. These procedures include

the state dynamics model, the minimum MSE waveform selection and the observation

model.
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Figure 5.6: Correct crack length classification values for the three different waveforms
(diagonal values of the corresponding confusion matrices).

With respect to the waveform selection procedure, Figure 5.8 shows averaged

results of several example runs in which the predicted MSE, waveform selection pro-

cedure was performed. In this procedure, the MSE value was deemed to be an inverse

indicator of crack length resolution, and was used to choose the transmission waveform

for obtaining the crack length observation. Based upon MSE values, the pseudo random

width pulse waveform, which is inherently noisy, possessed high resolution characteris-

tics at relatively low levels of crack damage, as evidence by low predicted MSE values.

It is assumed at low crack lengths, the MPD-HMM observation method was capable of

recognizing overall, envelope characteristics of the waveform. However, at longer crack

lengths, the inherent randomness within the waveform possibly affected the ability to

distinguish between different crack lengths, as evidenced by higher MSE values. The

linear chirp waveform, with its relatively long duration and wide bandwidth, exhibited
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Figure 5.7: Sequential Bayesian estimation of crack length with MMSE waveform se-
lection.

good crack length resolution (low predicted MSE) over much of the crack growth range,

although there was a less resolution within crack lengths located in the lower and mid

crack length regions. At these lower resolution regions, it is possible the longer du-

ration and higher bandwidth qualities of the linear chirp waveform overwhelmed key

time-frequency features related to crack length recognition, thereby reducing resolution

characteristics in these regions. In contrast to the linear chirp waveform, the highly lo-

calized, tone burst waveform possessed highest resolution within the center portion of

the crack growth range. The particular tone burst frequency (230 kHz) used in this study

has been found to provide good results for detecting damage in the particular type of

cruciform specimen used in this study. The predicted MSE results shown in Figure 5.8

confirm how the 230 kHz tone burst waveform is well-tuned to the center region of

possible crack lengths for this specimen. As the figure shows, the damage resolution

characteristics can be dependent upon both the damage conditions and the chosen trans-

mitted waveform, and hence, to improve robustness in a damage classification or crack
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growth monitoring procedure, selection of the optimal waveform could be beneficial.

Figure 5.8: Predicted MSE results for different crack lengths.

Figure 5.9 shows the overall crack length monitoring results using our method.

At each fatigue cycle time step, 24 test signals were obtained, the corresponding crack

lengths were obtained using the implementation approach discussed in Section 5.1.2.

In making the observations, the optimal, highest resolution (i.e., minimum MSE) wave-

form was determined as shown in Figure 5.8 and used to make the observation. As the

figure shows, our method exhibited excellent ability to track crack growth accurately.

When waveform scheduling was not used and only a single waveform was used

in the crack growth monitoring procedure, there could be occasional errors in the obser-

vations, since the single waveform might not be the optimal choice in making observa-

tions at all crack lengths, causing estimates to deviate slightly from the true crack growth

curve. However, even with this situation, the overall state-space, sequential Bayesian

approach was helpful in smoothing over occasional observation errors and maintaining
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Figure 5.9: Overall crack tracking results.

general accuracy in the crack growth monitoring procedure.

In the run shown in Figure 5.10, we added Gaussian noise to the original (noisy)

Sensor #2 observation data, where the (original) signal to (additional) noise ratio was 3

dB. As shown in the figure, the overall tracking procedure with the optimal waveform

scheduling was able to maintain general tracking of the crack growth, whereas, without

the waveform switching, the crack growth monitoring procedure was less capable of

tracking crack growth accurately. In addition to the robustness achieved by including

both a predictive state dynamics model with an accurate observation model, we en-

hanced the accuracy of the observation model, as well as the robustness of our overall

procedure, by having several waveforms available, and then evaluating and selecting the

optimal waveform prior to each observation.

Although the waveform selection procedure improved the ability to track the

overall crack length within an elevated noise environment, the resulting crack length es-
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Figure 5.10: Crack tracking with noise added to the data. The waveform selection
approach, proposed within this work, was capable of following the general crack growth
development, whereas, without waveform selection (e.g., [2]), the tracking procedures
tend to drift from the actual crack growth.

timates possessed elevated levels of noise, and this resulted in widely-varying, localized

estimates of the crack growth rate. Since the rate of crack growth is a vital component

in monitoring the health of a structure, the wide variation of the localized crack growth

rates could create uncertainty in the assessment of the structure.

One way in which the noisy crack rate estimates can be addressed is by employ-

ing the assumed, linear relationship between the log crack rate and log(∆Keff), as shown

in the linear Stage II of Figure 3.6. Neerukatti, et al. [78] have proposed the use of this

linear relationship for fitting crack data. In our approach, given k crack length estimates

in the monitoring procedure, there are k− 2 crack length estimates that are preceded

and followed by other crack length estimates. At each crack length estimate, the collec-

tion of the crack estimate with its neighboring crack estimates can be used to generate

a polynomial curve, and the tangent to the curve can be used as a measure of the local
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crack rate. If this is performed for several crack length values within the Stage II crack

propagation region, the localized, noisy crack rate estimates can be used to construct

a smoothed, linear relationship between the log crack rate and log(∆Keff). This linear

relationship can then be used to obtain smoothed estimates of the localized crack rate.

As an example, a noisy crack length estimate can be used with its two surround-

ing, noisy, crack length estimates to create a quadratic curve of the form:

aest = β0 +β1n+β
2
2 (5.7)

where aest is an estimate of the crack length based upon the quadratic curve, n is the

number of fatigue cycles, and β0, β1, and β2 are constant, linear, and quadratic coef-

ficients. Given the crack length estimate at fatigue cycle ñ, the localized crack growth

rate ȧest at this fatigue cycle can be obtained as the tangent to the curve at fatigue cycle

ñ:

ȧest = β1 +2β2ñ . (5.8)

In Figure 5.11, given k = 8 crack length estimates have been obtained, each of the

(k− 2) = 6 internal crack length estimates are shown with a portion of the associated

quadratic curve created using the estimate and its two neighboring estimates. For each of

these estimates, the tangent to the curve represents the crack growth rate at that estimate,

where this tangent crack growth rate can be evaluated per (5.8).

Within this smoothing approach, we assumed the initial crack length and its

associated crack rate were known. Note that the crack rate behavior within the crack

initiation stage does not generally possess a linear log crack rate versus log(∆Keff) re-

lationship. Furthermore, at low fatigue cycles, there might be considerable amount of

existing data to provide an adequate initial crack rate estimate. We also expect that as

the crack monitoring procedure obtains more data at higher fatigue cycles, error in the

initial crack rate estimate will have less effect upon overall estimates.
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Figure 5.11: Quadratic curves created at crack length estimates using the estimate and
its two neighboring estimates.

After obtaining localized estimates for crack rate at each crack length, the cubic

model shown in Figure 3.5 was used to obtain estimates for ∆Keff, and a least squares

approach was used to construct a linear, crack rate versus log(∆Keff) equation of the

form shown in (3.4). After defining the this linear relationship, smoothed values for the

log crack rate and crack rate can be obtained. Using the smoothed crack rate values, a

smoothed version of the crack length versus fatigue cycles curve was constructed.

Figures 5.12-5.14 show smoothed crack growth curves for different levels of

crack growth. Given there have been k crack length estimates, and excluding the first

crack estimate, crack rate estimates were obtained at the previous k− 2 crack lengths

using the quadratic curve, tangent approach of (5.7) and (5.8). A linear relationship of

the form shown in (3.4) was created using all k− 2 crack rates. This relationship was

used to obtained smoothed values of the crack rate for 2 to k− 1 crack lengths. Given

these smoothed values at each crack length, the smoothed crack growth curves shown
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in Figures 5.12-5.14 were created.
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Figure 5.12: Smoothed crack growth monitoring for k = 5 crack length estimates.

Variations of this smoothing approach are possible. For example, the proce-

dure for creating a base polynomial curve at each crack length could be modified. In

Figure 5.15, four crack length estimates were used to create the quadratic curves of

(5.7). These consisted of the crack length of interest, the preceding crack estimate, and

the following two crack estimates. (For the k− 1 crack, since there was only one fol-

lowing crack length (the kth crack), the kth crack was included twice in creating the

quadratic curve.) Since the crack growth rate tends to increase at higher fatigue cycles,

the inclusion of more future crack length data adjusted the tangent crack rate estimates

accordingly.

Although the crack rate versus log(∆Keff) relationship is generally assumed to

be linear within the Stage II region of crack propagation, this linear relationship can
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Figure 5.13: Smoothed crack growth monitoring for k = 8 crack length estimates.
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Figure 5.14: Smoothed crack growth monitoring for k = 14 crack length estimates.
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Figure 5.15: Smoothed crack growth monitoring using four crack length estimates to
obtain preliminary estimates of localized (da/dn) .

shift as the crack length increases and changes occur within the loading geometry of a

structure. Rather than use the entire collection of crack rate tangent estimates obtained

at all previous crack lengths to define the linear relationship, it might be advantageous

to use only a limited number of the most recent crack rate tangent estimates to define

this relationship. In Figure 5.16, the linear relationship was defined using a maximum

of the 5 most recent crack rate tangent estimates. Since crack rate smoothing only in-

corporated a limited number of the most recent crack length information, the smoothed

curve reflected more of the localized changes within the crack growth.

5.3 Implementation Issues and Alternative MSE Metric

Although the predicted MSE estimate shown in (5.3) provides an excellent met-

ric for selecting an optimal resolution observation mode (e.g, an optimal transmission

waveform), implementing this approach can be computationally expensive; therefore,

for our future work, we propose an alternative, approximation approach which signifi-
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Figure 5.16: Smoothed crack growth monitoring using a maximum of the 5 most recent,
preliminary crack rate estimates to define the linear relationship between crack rate and
log(∆Keff).

cantly reduces the computational complexity.

Note that within (5.3), there are Np particles and there are M predicted observa-

tions generated for each particle. For each of the M predicted observations, there are L

MPD iterations that have to be performed to generate a single observation, where each

observation consists of a L-length MPD sequence of 4-dimensional MPD vectors. After

generating the L-length vector sequence observation, the lot likelihood of this observa-

tion has to be obtained for each of D HMMs, where each HMM corresponds to one of

the D training crack lengths. The log likelihoods of the observations, given the D train-

ing crack lengths, are used to determine a value of the predicted crack length value in

(5.3). Therefore, for each possible observation mode, the generation of a L-length pre-

dicted feature vector sequence and analysis of the vector sequence has to be performed

Np×M times.
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This high level of computational complexity has significant effects when im-

plementing our crack growth tracking method. Considering we wish to choose an ob-

servation mode that possesses maximum crack length resolution, and since each of the

possible observation modes has to be analyzed, there are inherent restrictions upon the

number of different observation modes that can be used to obtain data. When we eval-

uate the resolution of different observation modes, we generate hypothetical, predicted

MPD observations for each particle in our crack length estimation particle filter, there

are practical limits on the number of particles that we can use in the particle filter, as

well as practical limits upon the number of predicted MPD observations that we can

generate for each particle. These limits could affect statistical accuracy in estimating

crack lengths and in evaluating damage resolution characteristics of the different obser-

vation modes. Furthermore, since the predicted MPD feature vector sequences have to

be processed through a HMM corresponding to each of D damage conditions, and where

each MPD feature vector sequence contains L feature vectors, this could put practical

restrictions on the number of different damage conditions D that can be evaluated and

the number of MPD iterations L that can be used to decompose a signal into feature

vectors.

Alternatively, we propose using an approximation to (5.3) that significantly re-

duces the computational burden and accomplishes the primary objective of generating

a real-time, MSE-based metric for selecting the observation mode. Rather than use the

particle value x(i, j)k in (5.3), we round x(i, j)k to the nearest of the D crack lengths used to

train the D HMMs with the jth waveform, where we designate this discretized, approx-

imation of the particle value as x̃(i, j)k,λd
. With this approximated version of the particles,

(5.3) becomes

MSE(z j
k))≈

Np

∑
i

w(i)
k

{
1

M ′

M ′

∑
m=1

[
x̃(i, j)k,λd
− x̂(i, j)k,m

]2
}

(5.9)

With this approach, the quantity in brackets that multiples the weight w(i, j)
k in (5.9)
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represents an approximate, predicted MSE value for a single, discretized crack length

damage condition d, given the jth transmission waveform was used to make the ob-

servations. This quantity can be created offline for all the HMMs, where each HMM

represents a different combination of crack length damage condition d and observation

mode j. Since these calculations are performed offline and do not have a relationship

with a fatigue cycle time step index k or a particle index (i), we can remove the refer-

ences to these indices and rewrite the approximate predicted MSE as

1
M ′

M ′

∑
m=1

[
x̃( j)

λd
− x̂(i, j)k,m

]2
. (5.10)

Since we can perform the approximated MSE calculations offline for each HMM

λd and its associated crack length, this can significantly reduce the real-time computa-

tional burden. Performing calculations offline, a very large number M ′ of predicted

MPD feature vectors can be generated using the procedure described in Section 5.2.1.

The predicted MPD vectors are analyzed as described in Section 5.1.2, resulting in the

predicted crack lengths x̂(i, j)k,m . Then, using the crack length x̃( j)
λd

corresponding to the

HMM training crack length λd , the approximated MSE in (5.10) can be calculated for

each individual HMM λd . These individual MSE values for each HMM can be stored in

a lookup table according to the crack length damage index d and transmission waveform

j.

When implementing our crack growth monitoring procedure, given we are at

fatigue cycle time step k and determining a predicted (approximated) MSE value for

waveform j, for each particle index (i), we obtain the value of the particle and find the

HMM λd corresponding to the nearest HMM training crack length value x̃( j)
λd

. We then

use the look-up table to find the corresponding, pre-calculated MSE value for λd . With

this approach, calculation of the approximate MSE metric per (5.9) becomes a relatively

simple, weighted summation of individual, pre-calculated MSE values from the look-up

table that are weighted by the corresponding particle weight.
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Although the calculation of the predicted MSE metric using (5.9) is an approxi-

mation to the MSE value obtained using (5.3), our primary interest is to obtain a relative

metric that can be obtained efficiently for selecting an optimal observation mode, rather

than to determine the most accurate value for the predicted MSE. Furthermore, there

are numerous realtime computational advantages obtained when using the approximate

MSE method, where most of the computational complexity issues discussed above for

the original MSE calculation (5.3) are reduced considerably within the realtime imple-

mentation of the approximation MSE approach. With the approximation approach, it

is significantly more practical to have larger numbers of available observation modes,

to have significantly higher number of particles to perform damage estimation, as well

as to maintain or increase the number of possible damage states and number of MPD

iterations used to decompose the received signals.

5.3.1 Approximate Pre-calculated Approach For Waveform Selection

Figure 5.17 shows the MSE results using the pre-calculated, approximation

method of (5.9), and these results can be compared with the real-time approach of (5.3),

which were shown previously in Figure 5.8. Note that the pre-calculated, approxima-

tion approach produced MSE values that were consistently lower than those obtained

using the realtime approach, although the waveform selection criteria is based upon

relative MSE values between the waveforms, rather than the actual MSE values. The

pre-calculated MSE approach rounds the particle value to the nearest HMM training

crack length, and hence, excludes the error between the actual particle value and its

nearest HMM training crack length. However, if these errors are assumed to be zero

mean distributed, the general MSE relationships between the waveforms will be similar

whether the realtime or pre-calculated approximation approach is used. This is evident

when comparing the two figures. In both figures, starting at low crack lengths and mov-

ing to higher levels of damage, the linear chirp and then the pseudo random width pulse

waveforms exhibited the lowest MSE values. In the middle of the crack length range,
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the 230 kHz tone burst waveform exhibited high resolution characteristics with respect

to possessing the lowest MSE characteristics. At higher crack lengths, the linear chirp

exhibited the lowest MSE characteristics.

In the pre-calculated, approximation MSE approach, since the error between

particle value and HMM crack length is excluded, only a finite number of possible crack

lengths (i.e., the HMM training crack lengths) are employed when using this calculation

approach. Since the crack lengths are constrained to a finite number of possibilities, the

values of the associated errors are also constrained, and there is a possibility several

predicted MSEs corresponding to different waveforms will have equal MSE values, or

as Figure 5.17 shows, there is a possibility some waveforms will exhibit a zero-valued

MSE. Note that log-spacing was used in this figure, and any zero-valued MSEs were

located at a bottom horizontal axis (labeled ZERO).

Figure 5.17: Predicted MSE using pre-calculated approach.

The real-time efficiency of the pre-calculated, approximation method of (5.9)

allows greater number of samples to be used in creating estimates. As discussed above,
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with the pre-calculated, approximate MSE approach, the MSE for an individual parti-

cle can easily be obtained as a pre-calculated, stored MSE value corresponding to the

nearest HMM training crack length. This is in contrast to the real-time MSE approach,

where the MSE is based upon multiple predicted observations, and evaluations of the

predicted observations, that have to be performed real-time for each particle. (Tech-

nically, in the real-time MSE approach, it could be possible to have more particles in

the actual particle filter but then use only a sampling of the particles to obtain an MSE

estimate. In this discussion, we are assuming that all particles in the particle filter are

used to calculate the overall MSE value for the particle set.) In the pre-calculated, ap-

proximation MSE example, Np = 5000 particles were used in the particle filter tracking.

However, in the real-time approach, it was not practical to use that many particles, and

only Np = 100 particles were used. In addition, even though the pre-calculated, approx-

imation approach generates an approximation for individual particle MSEs, since the

calculations are performed offline, significantly more samples can be used to generate

the approximate MSE values. In the real time approach shown in Figure 5.8, the pro-

cedure described in 5.2.1 had to be performed M times, in real time, for each particle,

and only M = 50 samples were generated for each particle. With the pre-calculated,

approximation approach, since calculations were performed offline, and since there was

only a defined, finite number of HMM training crack lengths, M ′ = 2,000 samples

were generated for each of the HMM training crack lengths.

5.3.2 General Observation Mode Selection

Although the observation mode selection procedure can be employed to evaluate

and select optimal transmission waveforms to improve the robustness of damage obser-

vations, other observation parameters could also be included within a more general,

observation mode selection procedure. For example, in addition to three different trans-

mission waveforms, the cruciform specimen shown in Figure 5.1 and Figure 5.3 had five

different receiver sensors. Therefore, in addition to selecting one or more transmission
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waveforms to obtain an observation, the particular receiver sensor(s) used to obtained

the information could also be included as part of the observation mode. With multiple

available modes of making the crack length observation, this could further improve the

robustness of the overall crack length monitoring method.

With three different transmission waveforms and five different receiver sensors,

fifteen possible waveform/sensor combinations were available. Furthermore, as dis-

cussed above, with a finite number of possible crack lengths, there would be a good pos-

sibility that some of the combinations would exhibit equal predicted MSE values. This

could include situations where several of the waveform/sensor combinations exhibit the

lowest, most optimal MSE value. Furthermore, since the MSE represents a measure

of crack length resolution, a threshold MSE value could be set using a defined accept-

able level of resolution. Observations could then be made using the miminum MSE

waveform/sensor combinations, but also using waveform/sensor combinations possess-

ing MSE values below the defined threshold value.

In a demonstration of this concept was performed, in which an acceptable MSE

threshold value of 10−10 was used, such that all waveform/sensor combinations ex-

hibiting the lowest predicted MSE value, as well as any waveform/sensor combinations

exhibiting a MSE value below the threshold value, were used to obtain the crack length

observations. Figures 5.18-5.30 show plots of the MSEs for all five sensors, with all

three transmission waveforms, obtained at each of the thirteen different particle filter

time step iterations. The resulting crack length tracking results are shown in Figure

5.31. As this figure shows, the overall crack tracking method exhibited excellent capa-

bility to track the actual crack length.

An important concept that can be seen by the collection of figures is that no

single sensor, single waveform, or single waveform/sensor combination produced the

optimal MSE for all levels of fatigue crack damage. Since the predicted MSE values
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Figure 5.18: Approximation MSEs at fatigue cycle 110009 (actual crack length 4.2 mm)

Figure 5.19: Approximation MSEs at fatigue cycle 140011 (actual crack length 4.7
mm).
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Figure 5.20: Approximation MSEs at fatigue cycle 161761 (actual crack length 5.13
mm).

Figure 5.21: Approximation MSEs at fatigue cycle 174238 (actual crack length 7.0
mm).
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Figure 5.22: Approximation MSEs at fatigue cycle 184009 (actual crack length 8.92
mm).

Figure 5.23: Approximation MSEs at fatigue cycle 192961 (actual crack length 11.12
mm).
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Figure 5.24: Approximation MSEs at fatigue cycle 200013 (actual crack length 13.15
mm).

Figure 5.25: Approximation MSEs at fatigue cycle 208012 (actual crack length 15.04
mm).
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Figure 5.26: Approximation MSEs at fatigue cycle 213794 (actual crack length 18.09
mm).

Figure 5.27: Approximation MSEs at fatigue cycle 218462 (actual crack length 20.11
mm).
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Figure 5.28: Approximation MSEs at fatigue cycle 225008 (actual crack length 22.62
mm).

Figure 5.29: Approximation MSEs at fatigue cycle 229009 (actual crack length 24.75
mm).
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Figure 5.30: Approximation MSEs at fatigue cycle 234216 (actual crack length 28.09
mm).

Figure 5.31: Overall crack growth tracking using selection of multiple waveform and
sensor combinations).
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are an indication of the crack length resolution capabilities of the different observation

modes, the ability to assess and then choose the optimal observation parameter combi-

nations can increase the robustness of the overall crack growth monitoring method.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

6.1 Summary of Proposed Work

We develop a sequential Bayesian, state-space approach, integrated with two

main contributions, that exhibits high accuracy in tracking damage crack growth. Given

a fatigue loaded structure with a posterior distribution of the crack length at an existing

fatigue cycle, our first contribution is a predictive, state dynamics model that estimates

a prior distribution of the crack length at the next fatigue cycle step. Based upon val-

ues within the prior distribution, our second contribution is the selection of an optimal

transmission waveform to be used in obtaining a crack length observation. After the

observation is obtained, it is used to update the prior distribution to obtain the posterior

distribution at the next designated fatigue cycle step. At each step, the crack length

estimate is obtained as the mean of the posterior distribution.

Within the predictive, state dynamics model, we can incorporate an interacting

multiple model (IMM) for situations in which multiple loading conditions are possi-

ble. The IMM offers at least two key benefits. First, IMM improves the ability to

track the crack growth damage, since state dynamics models are adjusted appropriately

to changes in loading conditions. Second, IMM specifically tracks changes in loading

conditions, and this basic loading information can be useful from operational, mainte-

nance, and other standpoints.

We also demonstrate the use of Markov chain Monte Carlo (MCMC) methods

for constraining state dynamics parameters, given additional knowledge, desired values,

or general constraints regarding the parameters. In our demonstration, this was per-

formed off-line on training data such that parameters of state dynamics models could

be adjusted prior to real time, crack growth monitoring. However, we also note that

MCMC could be used in a real time mode to create constraints in temporary situations
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involving significant observation noise and extreme outlier observation results.

As the crack length classification results of Tables 5.5-5.7 show, we were able to

extract key signal features within joint time-frequency space using the matching pursuit

decomposition (MPD) and use continuous-observation hidden Markov models (HMMs)

to learn and identify features corresponding to different damage conditions.

As the minimum mean-squared error (MSE) estimation results of Figure 5.8

show, we can assess the waveform resolution capability at different levels of crack

damage by optimally selecting the transmission waveform to impart robustness when

obtaining observations at different damage levels. We integrate these various concepts

within an overall particle filtering methodology, and as Figure 5.9 shows, the particle fil-

ter performs exceptionally well in tracking the crack damage growth. Furthermore, the

waveform selection procedure improved the basic ability to track crack growth within

enhanced noisy environments. Even though the resulting crack length estimates exhib-

ited significant noise, using the assumption of log(da/dn) vs. log(∆Keff) liinearity for

Stage II crack propagation, we demonstrate how the da/dn crack growth rates associ-

ated with the noisy estimates can be smoothed using various post-processing techniques.

Using a particle value approximation approach to reduce real time computa-

tional burden in calculating MSEs, we extend the waveform selection concept to a more

general, observation mode selection procedure. Since most of the computational bur-

den is performed off-line, we demonstrate how multiple waveforms, multiple sensors,

and possibly other observation parameters, can be included in the observation mode

selection method.

6.2 Possible Future Work Extensions

For future work, we intend to explore several more approaches towards damage

monitoring, such as expanding the crack growth monitoring procedure described within

this report, as well investigation of non-parametric Bayesian approaches.
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A key contribution within this work was the waveform selection procedure, as

discussed in Chapter 5. During our Chapter 4 state dynamics studies with IMM, al-

though our primariy focus related to multiple loading conditions and multiple state dy-

namics models, we only had a single 135 KHz tone burst waveform available in these

studies. Considering the successful result of our Chapter 5 waveform selection stud-

ies, it became apparent it would have been useful if we had more than one waveform

available in the IMM studies. Although the MPD-HMM observation model produced

acceptable results, as shown by the confusion matrix plot in Figure 4.7, in the IMM stud-

ies, the crack length data corresponded to approximately 30 different crack lengths and

varying levels of observation error were observed. Furthermore, in our Chapter 5 wave-

form selection studies, as shown by the tone burst MSE characteristics in Figures 5.8

and 5.17, a single, constant-frequency, tone-burst waveform can exhibit different crack

length resolution characteristics.

In the waveform selection studies described in Chapter 5, we focused upon dif-

ferent types of transmission waveforms, since the objective was to study crack tracking

in terms of different transmission waveform types. The tone burst represented a simple,

well-defined waveform possessing short duration and small bandwidth. The linear chirp

waveform also represented a well-defined waveform, but with somewhat longer duration

and wider bandwidth. The pseudo random width pulse represented an ill-defined, noisy,

medium duration waveform. Although this collection of different types of waveforms

produced interesting results, for future work, the overall waveform selection procedure

could be simplified.

For example, rather than using different types of waveforms, it might be eas-

ier, and possibly of greater value, to use multiple versions of the same waveform type,

where one or possibly several waveform (or other observation mode) parameters were

systematically varied at several different levels. After obtaining training data for differ-

ent crack lengths using the different waveform variations, the MSE characteristics for

123



each waveform variation and crack length could be obtained. With this information, it

might be possible to create a model for the predicted MSE as a function of the observa-

tion mode parameters. If this was achievable, then given a predicted crack length, the

model cold be used to predict which waveform (or other observation mode) parameter

values should be chosen to obtain maximum predicted resolution. With this capability,

the overall waveform selection procedure becomes somewhat of a simple, data-driven,

waveform design approach.

We also intend to explore non-parametric Bayesian approaches. In the super-

vised learning approaches discussed in this report, many of the quantities, structures,

and procedures were predetermined within the damage monitoring method. Although

the various parameters and groupings were defined by a pre-examination of the data, this

approach inherently forces all data to conform to predetermined parameters and group-

ings. Real data does not always conform within a limited number of predetermined data

structures or parameters, especially in situations where new types of data might be en-

countered, where the new data types might not readily conform to existing classes and

parameters. In non-parametric Bayesian approaches, data is allowed to define groupings

and other structures within the data.

The Dirichlet process (DP) and the beta process (BP) represent two examples

of non-parametric Bayesian approaches. With the DP, the DP mixture model provides

a stochastic description for data with an unbounded number of mixture components

or latent clusters. In this non-parametric Bayesian framework, there is no restrictive

assumption that the appropriate number of clusters are finite or known a priori. In par-

ticular, the number of clusters is learned from the data and can change as new data is

available. However, in many problems the data are not always well-clustered. Depend-

ing on the mixture distributions used, the clusters can sometimes overlap and a single

data point may belong to multiple clusters at the same time. As an alternative to the DP

based latent clustering model, the BP provides a non-parametric Bayesian framework
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where each measurement can be assigned not to only one cluster (class) but rather to a

subset of clusters (attributes or features). Unlike the DP, which induces a prior distri-

bution over partitions of the data (latent clusters), the BP imposes a prior over infinite

binary matrices whose entries indicate collections of attributes for the data (latent fea-

tures). Since the number of possible clusters representable using m features is 2m, this

also addresses the issue of data overfitting – fewer parameters are needed as compared

to the DP. The DP and BP based analyses of data can be performed efficiently using

MCMC and variational methods.
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