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ABSTRACT 

We apply a Bayesian network-based approach for determining the structure of 

consumers’ brand concept maps, and we further extend this approach in order to provide 

a precise delineation of the set of cognitive variations of that brand concept map structure 

which can simultaneously coexist within the data.  This methodology can operate with 

nonlinear as well as linear relationships between the variables, and utilizes simple Likert-

style marketing survey data as input.  In addition, the method can operate without any a 

priori hypothesized structures or relations among the brand associations in the model.   

The resulting brand concept map structures delineate directional (as opposed to 

simply correlational) relations among the brand associations, and differentiates between 

the predictive and the diagnostic directions within each link.  Further, we determine a 

Bayesian network-based link strength measure, and apply it to a comparison of the 

strengths of the connections between different semantic categories of brand association 

descriptors, as well as between different strategically important drivers of brand 

differentiation.  Finally, we apply a precise form of information propagation through the 

predictive and diagnostic links within the network in order to evaluate the effect of 

introducing new information to the brand concept network. 

This overall methodology operates via a factorization of the joint distribution of 

the brand association variables via conditional independence properties and an 

application of the causal Markov condition, and as such, it represents an alternative 

approach to correlation-based structural determination methods.  By using conditional 

independence as a core structural construct, the methods utilized here are especially well- 
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suited for determining and analyzing asymmetric or directional beliefs about brand or 

product attributes.   

This methodology builds on the pioneering Brand Concept Mapping approach of 

Roedder John et al. (2006).  Similar to that approach, the Bayesian network-based 

method derives the specific link-by-link structure among a brand’s associations, and also 

allows for a precise quantitative determination of the likely effects that manipulation of 

specific brand associations will have upon other strategically important associations 

within that brand image.  In addition, the method’s precise informational semantics and 

specific structural measures allow for a greater understanding of the structure of these 

brand associations. 
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1.   Directionality and Brand Concept Maps 

1.1   Consumer Belief Mapping and the BCM Methodology 

 Marketing researchers and practitioners have long utilized geometric and 

graphical representations as a means of understanding consumers’ product and brand-

related beliefs as well as to segment consumers into psychographic clusters which are 

related to these differing beliefs (Wells, 1985; Dillon, Madden, and Firtle, 1987).  

Furthermore, an understanding of the dimensionality and structure of consumers’ product 

and brand images is known to be a critical component of a company’s strategic marketing 

mix, and is at the core of firms’ efforts to differentiate their products and brands, as well 

as to establish sustainable brand equity (Park, Jaworski, and MacInnis, 1986; Park, 

Milberg, and Lawson, 1991; Keller, 1993; Aaker, 1996).  Marketing practitioners have 

also realized the competitive advantage to be gained by designing and promoting 

products to fit specific regions within consumers’ perceptual space for the relevant 

product category (Morgan and Purnell, 1969; Klahr, 1970; Shocker and Srinivasan, 1974; 

Huber and Holbrook, 1979; Shocker and Srinivasan, 1979; Hauser and Simmie, 1981).   

 Many different multivariate statistical methodologies have been utilized to obtain 

a graphical or geometric representation of consumers’ perceived market, brand, and 

product structures.  For example, Gwin and Gwin (2003) have compiled a comprehensive 

typology of multivariate techniques which have been applied for this purpose in the 

marketing domain, including multidimensional scaling, factor analysis, correspondence 

analysis and optimal rescaling, principal component analysis, and discriminant analysis, 

among others. 
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 Although these various multivariate methodologies produce informative spatial 

mappings of consumers’ brand and product concepts, such techniques do not necessarily 

reveal the link-by-link pattern of connectivity among brand associations which 

presumably give rise to the similarities and differences which are perceived to exist 

among brand or product attribute or among the brands and products themselves (Roedder 

John et al., 2006).  While it is true that the similarity matrix on which many of these 

scaling techniques are based does presumably derive from semantic relatedness of the 

given set of associations, Roedder John et al.’s point is valid, namely that even with a 

specific set of similarity ratings, one is still unsure as to the specific association patterns 

that gave rise to these similarities.  For instance, if two brand associations have a certain 

degree of rated similarity, one would not necessarily know whether such similarity comes 

about through a direct connection between these associations, through a series of 

intermediary associations involving other domain variables, or via a combination of these 

various forms of interconnection.   

A core principle of brand management is that a brand’s main locus of 

differentiation from its competitors resides within the network of perceived associations 

to that brand (Keller, 1993).  Furthermore, it is the structure of that network of brand 

associations (and not merely its content alone) which constitutes the brand’s image for 

consumers (Aaker, 1996).  Hence, without knowledge of the exact link-by-link structure 

of the network of brand associations, marketing practitioners are often left without 

sufficient actionable intelligence to determine which variables to manipulate in order to 

affect particular strategically relevant variables which comprise their brand’s image. 
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 An alternative to such multivariate dimensional analysis and imaging techniques 

is represented by qualitative techniques such as projective studies (Kassarjian, 1974;  

Rook, 2006), metaphor elicitation methodologies such as the ZMET (Zaltman and 

Coulter, 1995; Zaltman, 1997) along with several related qualitative techniques (Levy, 

1985; Levy, 2006).  As applied within the consumer behavior domain, such approaches 

typically utilize a combination of in-depth interviews and projective probes in order to 

identify brand associations, and then these associations are typically pieced together into 

a network of brand or product-related beliefs through in-depth post-hoc analyses of the 

recovered associations (e.g., Zaltman and Coulter, 1995).  Furthermore, a very common 

research technique involves using such projective or metaphor-based techniques to elicit 

a collection of brand or product associations, followed by the application of large-scale 

survey-based research to quantify the prevalence of each uncovered belief within the 

target population (Dillon, Madden, and Firtle, 1987).  

 While it is clear that marketing researchers and practitioners can utilize such 

qualitative techniques to uncover deeper product and brand meanings and associations, 

and then follow this up with quantitative (typically survey-based) studies which attempt 

to generalize these findings by exploring their strength and boundary conditions (Dillon, 

Madden, and Firtle, 1987), there have also been attempts to more directly embed 

qualitative techniques within a more general quantitative consumer research framework.  

One quite notable stream of research in this area is that of hierarchical value mapping (or 

means-end chains), which seeks to couple quantitative methods with a qualitative link-

by-link understanding of consumer values and goals as they relate to product attributes 
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(Reynolds and Gutman, 1988; Gutman, 1997).  However, these methods are specific to 

determining the structure of links between levels within a needs hierarchy model for 

specific products or product categories.  Since such methods are tied to this specific form 

of psychological model, it is unknown how they would generalize to the wider setting of 

brand concepts in general.   

Roedder-John et al. (2006) discuss a class of techniques which they term 

‘analytical mapping’, as exemplified by the work of Henderson et al. (1998), which 

utilizes network analysis algorithms to quantitatively derive the link-by-link 

interdependence structure of brand associations.1  However, such analytical mapping 

techniques typically utilize discrete cutoff values to decide when a link exists or does not 

exist between a brand and an association or between two associations, and hence these 

methods do not as of yet utilize the power of statistical analysis to aid in determining the 

robustness or comparative strength of the derived associations.      

A critical development within the consumer belief mapping literature has been the 

work of Roedder John et al. (2006).  These researchers have developed a unique 

methodology which not only uncovers the link-by-link structure of consumers’ brand 

concept maps, but does so in a way that combines various aspects of qualitative methods 

such as the ZMET technique with concept mapping methodologies from the social and 

physical sciences (e.g., Ruiz-Primo and Shavelson, 1996).  Furthermore, the method of 

Roedder John et al. (2006) also provides a determination of comparative strengths of the 

1 Although less well-known, the Galois lattice analysis methodology makes a posit that is similar to that 
used within network analysis, namely that the interconnections between brand or product associations can 
arise via mutual embeddedness or instantiation within the same exemplar or product (Brownstein, Sirsi, 
Ward, and Reingen, 2000). 
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various inter-association links within the derived brand concept map, as well as a means 

of aggregating individual maps into a consensus map of the focal domain.  

The methodology of Roedder John et al. (2006) first employs open-ended 

interviews which establish a corpus of elicited brand associations, and a first round of 

aggregation is incorporated at this stage by selecting only those brand associations that 

are mentioned by at least 50% of respondents.  The next step in this methodology directly 

probes consumers’ beliefs about the connections between brand associations.  Subjects at 

this stage are presented with the aggregated list of elicited brand associations, and are 

asked to assemble them into a network, using either one, two, or three links between 

associations in order to express their perceived strength of that connection.2  Finally, a 

post-hoc aggregation procedure is applied to the individual concept maps produced by the 

respondents in order to derive a consensus map of the domain, which the authors term a 

Brand Concept Map (or BCM).   

To aggregate the individual maps into a BCM, this technique utilizes a fairly 

complex five-stage procedure.  To begin with, core brand associations are identified as 

those which are either included on at least 50% of the respondents’ maps, or which were 

included on 45% to 49% of those individual maps, but which also had an interconnection 

count that was higher than the other identified core brand associations.  Next, the 

identified core brand associations which have ratios of first-order mentions to total 

mentions of at least 50% and which concurrently have more superordinate than 

2 Blank cards are also provided at this stage so that individuals may add any additional associations which 
they feel are necessary, but which are not necessarily on any of the cards in the aggregate list provided.  
Once again, a ‘frequency of mention’ cutoff was used on these individually added associations. 
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subordinate connections are selected to be linked directly to the brand (so-called ‘first-

order associations’), and then the remaining core associations are linked to these first-

order associations if that particular concept-to-concept link was present in at least five 

individual concept maps.  (This criterion is also used to establish links between the first-

order associations as well.)  Finally, non-core associations are added in, and are linked to 

the core associations using a cutoff frequency for the number of times the concept-to-

concept link is included on individual maps.  The final strength of each concept-to-

concept link is established as the average of the number of ‘link bars’ (either one, two, or 

three) that the subjects had ascribed to each particular link which was included in the 

final consensus map, or BCM. 

The final aggregate Brand Concept Map (BCM) for patients’ perceptions of the 

Mayo Clinic brand, as derived by Roedder John et al. (2006, Figure 3A), is shown in 

Figure 1 below.  As one can see, each variable is connected via (typically multiple) 

pathways to every other variable in the network.  While this high degree of 

interconnectivity is capable of portraying the intricate nature of the brand concept 

network topology, it also poses a serious problem for inference within such a structure, 

since one seemingly has no principled means of resolving the multiple (possible 

competing) effects of the different pathways between specific variables.  These concerns 

are further addressed in the following section. 
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Figure 1.   BCM for patients’ perceptions of the Mayo Clinic brand.     
 
From Roedder-John et al., 2006, p. 556. 

 
 
 
 
1.2   Extending the BCM 

Analytical and cognitive tractability.  Consumers’ perceptions of products and 

brands are known to be exceedingly multidimensional and highly intricate constructs 

(Holbrook and Hirschman, 1982; Alba and Hutchinson, 1987; Glazer and Nakamoto, 

1991), and the structures derived via the BCM methodology certainly exhibit a high 

degree of interconnectedness and complexity.  In essence, every variable within such a 

model is associated with all others, either through a direct link or through a connected 

series of links, and it is difficult to resolve the relative contributions of all the different 
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pathways of influence between the brand associations in such a model.  In turn, inference 

and evidence propagation are exceedingly difficult to analyze within such structures.   

As an example of these multiple pathways of influence among variables, consider 

that within the BCM for the Mayo Clinic brand (Figure 1), we see that “Expert in treating 

serious illnesses” is linked to “World leader in new medical treatments” through both a 

direct pathway between these two variables, as well as through the link to the core brand 

“Mayo” and then from there to “World leader in new medical treatments”.  Furthermore, 

the influence of “Expert in treating serious illnesses” can also travel ‘upwards’ in the 

network (i.e., directed towards the top of the graph) through multiple pathways and then 

feeding back down through “Mayo” and finally into “World leader in new medical 

treatments”, or it can travel through the core “Mayo” association and proceed 

‘downwards’ in the graph (e.g., through “Leader in medical research”) and eventually 

circle around (through two different pathways) to “World leader in new medical 

treatments”.    

Analytically, it is difficult to resolve the differing contributions of these multiple 

pathways of influence.  In a parallel fashion, it seems that consumers’ ability to 

cognitively function within such a complex structure would also be very limited.  For 

instance, a consumer routinely encounters tens of thousands of products in just a typical 

supermarket trip (Food Marketing Institute, 2013).  In fact, just the category of toothpaste 

alone routinely has over one hundred exemplars within a typical American supermarket 

(Broniarczyk, 2006).  If a consumer had to cognitively access the myriad product and 

brand associations encountered on such a shopping excursion via a fully connected 
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undirected network (in which each product or brand association is connected to all others, 

either directly or through a chain of associations), such a consumer would have an 

unimaginably difficult cognitive task to perform in order to make general deductions, 

inferences, and choices within such an immense network (e.g., Pearl, 1988).  Hence one 

of the central goals of the extension to techniques such as the BCM which is proposed in 

this thesis will consist of a means to make such structures more computationally and 

cognitively tractable, without in any way diminishing their applicability or universality. 

Brand-specific associations.  A second area in which we wish to extend the 

BCM methodology is in the form of data collection that is utilized and the types of links 

that are retrieved.  Specifically, at the link elicitation stage, respondents in the BCM are 

asked to arrange a set of index cards containing brand associations into an overall map or 

network that portrays what they think of the core brand.  The respondents are instructed 

to place a link between two brand characteristics if they feel that the brand itself is 

characterized by such an association.  This may actually be quite a subtle distinction for 

respondents to make.  For instance, if a respondent draws a link between two particular 

brand attributes, it may be difficult to determine whether that respondent is asserting that 

the brand is characterized by that particular association between the two attributes, or 

merely that the brand is perceived to possess each of these attributes and the attributes are 

semantically related to one another in a wider context that is not necessarily specific to 

the brand being examined. 

For example, the BCM analysis of the Mayo Clinic brand (from Roedder John, et 

al., 2006) involves the brand associations that are listed in Table 1.  To illustrate the 
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potential methodological difficulty described above, suppose that a respondent in the 

procedure is examining the particular brand association “Cares more about people than 

money”, in order to see where to fit this association into the network that he or she is 

currently constructing.  Such a respondent might end up linking this association to other 

such associations that deal with either the general concept of ‘money’, the category of 

‘people’, or the general concept of ‘caring’, since those are the main semantic categories 

that are mentioned in the statement.  Perhaps such a respondent would select “Caring and 

compassionate”, or “Can be trusted to do what’s right for patients”.   However, would 

such a connection between concepts reflect what the respondent truly feels about the 

Mayo clinic as a brand, or would they merely reflect the fact that the respondent has 

connected statements that seem semantically related in general?     

Clearly, it is quite possible that people may conflate certain aspects of their ‘true’ 

opinion of the Mayo clinic as a brand with equally salient (and possibly much more 

cognitively available) reasoning patterns about the general topic at hand.  To the extent 

that this is the case, portions of the consensus map within a BCM may merely reflect a 

culturally shared understanding of which brand associations are semantically related to 

one another in a manner that is not necessarily brand-specific.  Since customer-based 

brand equity is critically dependent upon the set of unique associations held by the brand 

(Aaker, 1991; Keller, 1993), the possible conflation of brand-specific inter-attribute 

associations with attribute associations that may simply reflect respondents’ general 

culturally-based understanding of the semantic relatedness of the probes themselves can 

raise concerns about the interpretability of the derived structures. 
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Table 1 
 
List of Brand Associations Used in the BCM Study of the Mayo Clinic 

 Expert in treating serious illness 

Latest medical equipment and technology 

Leader in medical research 

Known worldwide 

Top-notch surgery and treatment 

Best doctors in the world 

World leader in new medical treatments 

Can be trusted to do what’s right for patients 

Doctors work as a team 

Best patient care available 

Treats patients with rare and complex illnesses 

Can figure out what’s wrong when others can’t 

Publishes health information to help you stay well 

Approachable, friendly doctors 

Caring and compassionate 

Treats famous people from around the world 

It comforts me knowing Mayo exists if I ever need it 

People I know recommend Mayo 

Leader in cancer research and treatment 

Cares more about people than money 

Court of last resort 

Hard to get into unless very sick or famous 

Very big and intimidating 

Expensive 

Uses its reputation to make money 

 

Note.  From Roedder John et al. (2006), p. 554 
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 A main goal of this thesis is to extend the pioneering work of Roedder John et al. 

(2006) by developing a brand concept mapping approach which also seeks to uncover the 

full link-by-link structure of a network of brand associations, but which does not burden 

respondents with the difficult cognitive task of deciding whether a link between certain 

brand associations actually characterizes that particular brand.  Instead, as we shall show, 

the techniques utilized in this thesis will allow respondents to answer the much simpler 

and potentially much more reliable question of whether (and to what degree) a specific 

brand possesses each of a particular set of attributes.  The technique will then utilize the 

dependence and independence structures that arise from these responses to derive a link-

by-link description of the structure of the associated brand concept.3, 4  

 Direct versus indirect influence.  The techniques described in this thesis will 

also help to eliminate an additional potential confound from the link elicitation procedure 

pioneered by Roedder John et al. (2006).  Specifically, by asking respondents to decide 

whether a brand is characterized by a relation between two or more attributes, the 

structure derived via the BCM methodology may tend to conflate direct and indirect 

3 The network analysis algorithm utilized by Henderson et al. (1998), which is discussed by Roedder John 
et al. (2006) as an example of the analytical mapping tradition of brand concept elicitation, also utilizes 
consumers’ evaluations of whether a brand possesses (or is characterized by) a particular attribute in 
order to derive the associated brand concept structure.  However, as discussed earlier, this method is 
based on binary evaluations, and hence information about the degree to which a brand is characterized by 
a particular attribute is lost through strict dichotomization.  Furthermore, the network structure is derived 
without reference to statistical robustness, and hence the derived structures are likely to be somewhat 
idiosyncratic and difficult to generalize. 

4 Structural equation modeling can also be utilized to derive a network structure from consumers’ responses 
to ordinal or interval (typically Likert) data on the degree to which a brand possesses or is characterized 
by specific attributes.  However, such SEM techniques require the researcher or marketer to posit an 
initial model and then the SEM methodology can be used to potentially validate and parameterize that 
possible model.  The techniques described in this thesis will not require an initial model to be proposed.  
Furthermore, unlike most SEM based methodologies, the techniques describes in this thesis will allow 
one to model both linear and nonlinear dependencies among the domain variables in the model. 
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influences between those variables.  For example, if a respondent endorses the belief that 

variable A directly influences variable B, and that variable B directly influences variable 

C, then this respondent will also quite naturally perceive that variable A has an influence 

on variable C.  In such a case, this respondent may be tempted to directly connect 

variable A and variable C, even though the influence between them is actually indirect.  

The potential for such conflation of direct and indirect influences exists when relying on 

the direct elicitation of inter-association links, since such respondents may not have 

cognitive access to the specific link structure itself, but rather may merely sense whether 

one variable has an influence over another, whether through direct or indirect means.    

In comparison, the techniques described in this thesis are specifically designed to 

discern the difference between direct and indirect influences among a given set of domain 

variables.  In fact, such discrimination between direct and indirect influence is actually 

one of the core principles on which the techniques utilized here are based.  As such, these 

methods will provide a valuable extension to the brand concept mapping technique 

pioneered by Roedder John et al. (2006). 

 Link strength interpretability.  One additional area in which we would like to 

make a contribution is in the definition of specific link strength measures within a brand 

concept map.  The methodology employed by the BCM technique for establishing the 

strength of each network link is quite direct: respondents are asked to rate the strength of 

each elicited link on scale of one to three (as indicated by the number of ‘bars’ used in 

that link), and then the resulting strengths of each link are averaged.  However, the direct 
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nature of this quantification procedure can also make it difficult to know what effects are 

incorporated into each such link strength value.  

As an example, consider the excerpt shown in Figure 2, below (as extracted from 

a portion of the Mayo Clinic BCM network given in Figure 1).  Here we see that “Expert 

in treating serious illnesses” has a direct effect upon “World leader in new medical 

treatments”, with an indicated relative strength of two links.  However, “Expert in 

treating serious illnesses” also has a strength-three link to “Mayo”, which in turn has a 

strength-three link to “World leader in new medical treatments”.  Hence it may be 

unclear what the strength-two direct connection between these two associations indicates.  

For instance, one does not know whether this strength-two direct connection already 

incorporates the effects of the strength-three pathway that exists between these variables 

via the core Mayo brand node.  Furthermore, if it does incorporate this additional 

pathway of influence, then it is unclear why this direct pathway only has a strength of 

two when these variables are connected (and hence influence each other) with a strength 

of three via the other pathway by which they are connected.   

 

 

  

Figure 2.   Excerpt from the BCM for patients’ perceptions of the Mayo Clinic  
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Note that we are not asserting that the link strengths indicated in a BCM structure 

are incorrect.  Since the strength assigned to each link represents an average value of the 

perceived strengths of that link across all the respondents whose maps contain that link, 

these link strength values have a de facto validity.  What we are seeking is a delineation 

of what structural influences play a role in determining these link strength values.  For 

instance, as described above, one does not know if a direct link between two attributes 

already reflects the contributions of all existing indirect pathways between these same 

two attributes.  Similarly, there are known interpretability issues with directly assessed 

similarity judgments taken as a whole (e.g., Summers and MacKay, 1976), and the direct 

aggregation of individual judgments is also known to lead to possible intransitivities in 

the resulting aggregate link strength values (e.g., Tversky, 1969).  Therefore, a potentially 

valuable contribution of this thesis will be the determination of a link strength measure 

via information-theoretic means, as well as the use of probabilistic conditioning to more 

precisely separate the specific contributions of each link from those of neighboring links. 

 

1.3    Directional Relations and Marketing Constructs 

As Roedder John et al. (2006) describe, the underlying cognitive model on which 

the BCM technique rests is that of associative networks (e.g., Anderson, 1983).  On this 

basis, it is assumed that the links in the networks derived through the BCM technique will 

essentially be nondirectional entities:  the variables linked together in such a structure are 

merely said to be associated or correlated, with no implicit directionality to their 

relationship.  This is in keeping with the core literature cited in their work, namely 
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Anderson (1983a), Keller (1993), and Aaker (1996).  More specifically, the BCM (along 

with a large number of brand construct models to date) utilizes the foundational work of 

Keller (1993) as guidance in establishing the theoretical core of the model.  Keller, in 

turn, utilizes the associative network construct (Anderson and Bower, 1973; Anderson, 

1983a) as the core structural assumption underlying his model of customer-based brand 

equity.  As Keller (1993) describes these assumptions: 

… the ‘associative network memory model’ views semantic memory or 

knowledge as consisting of a set of nodes and links.  . . .  A node becomes a 

potential source of activation for the other nodes either when external information 

is being encoded or when internal information is retrieved from long-term 

memory.  Activation can spread from this node to other linked nodes in memory.  

. . .  For example, in considering a soft drink purchase, a consumer may think of 

Pepsi because of its strong association with the product category.  Consumer 

knowledge most strongly linked to Pepsi should also then come to mind, such as 

perceptions of its taste, sugar and caffeine content, or even recalled images from a 

recent advertising campaign or past product experiences.  . . .  Consistent with an 

associative network memory model, brand knowledge is conceptualized as 

consisting of a brand node in memory to which a variety of associations are 

linked. (Keller, 1993, p. 2) 

Interestingly, however, both Anderson’s associative network model (Anderson 

and Bower, 1973; Anderson 1983a, 1983b) and the spreading activation model of Collins 

and Loftus (1975) quite often address directional phenomena.  For example, much of the 
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early work on learning paired associations, which played an influential role in the 

formulation of Anderson’s model, has shown distinctly different rates of recall in the 

forward and reverse directions, as well as the possibility of reducing recall in one 

direction without affecting recall in the other direction (e.g., Keppel and Underwood, 

1962; Johnston, 1967; Wolford, 1971; Anderson, 1974).  Hence, in a marketing context, 

this would be akin to information about brand A priming the recall of brand B to a greater 

extent than information about brand B primes the recall of brand A (e.g., Nedungadi, 

1990; Ulhaque and Bahn, 1992).   

Furthermore, it is clear from the wider marketing literature that directionally 

asymmetric relationships exist at all levels of marketing phenomena.  For example, it is 

well-known that consumers’ understanding of a consumption situation often depends 

upon their perception of the directional or causal mechanism which may be generating 

the relevant observed or experienced attributes related to that consumption situation.  For 

example, as Weiner (2000) points out,  

Some products lend themselves to stable attributions.  For example, if I do not 

enjoy the taste of a breakfast cereal  . . .   then I will not purchase it again.  After 

all, I expect that the next box of cereal will taste the same.  (Weiner, 2000, p. 383) 

However, this stable attribution relates to the perceived cause of the pleasantness or 

unpleasantness of the experience.  For instance, as Weiner (ibid.) continues,  

Perhaps there is a chance that a hole in my tooth made the sweetness of the cereal 

unpleasant.  This is now an unstable cause  . . .  so that, if I attribute my disliking 

to this temporary state, then I am uncertain about my future liking or disliking of 
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the cereal and may try it again (i.e., I discount the properties of the cereal as the 

cause of my dissatisfaction).    (Weiner, 2000, p. 383) 

In other words, the sense that a consumer makes of an experience is tied to that 

consumer’s perceived cause of that experience, and this relationship is certainly an 

asymmetric one. 

 As Folkes (1988) discusses, asymmetric phenomena play a central role within the 

process of product choice.  For example, as Folkes (ibid.) describes, “many, if not most, 

products and services are purchased because consumers infer a causal relationship: they 

believe that analgesics reduce pain, deodorants improve one’s social life, athletic shoes 

enhance performance, and so on.”  In other words, products and services are efficacious, 

in that their purchase or consideration involves the belief that certain of their properties 

will cause one or more states or outcomes to occur (or will alter the probability 

distribution over these states or outcomes accordingly).   

 One can, in fact, find directional relations at all levels of marketing phenomena. 

For example, as Folkes (1988) makes clear, consumers’ product recommendation 

behavior as well as their complaint behavior are, to a large extent, based on how the 

consumers assign credit for good performance or assign blame for poor performance, and 

such assignments of credit or blame follow from the consumers’ perceptions of what 

caused or predicted that good or poor performance.  Furthermore, the ascription or 

attribution of causal rationale to information sources (such as spokespeople, commercials, 

etc.) is known to influence the perceived credibility of these sources (Wiener and 

Mowen, 1986, as described in Folkes, 1988). 
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 In fact, even at the level of subcultures of consumption, directional or causal 

concerns often predominate.  For example, as discovered by Sirsi, Ward, and Reingen 

(1996), the form of information which was shared among sociocognitively related 

subgroups was specifically causal information about products and product categories.  

Furthermore, the prominent role represented by causal or directional concerns within 

such subcultures makes sense, since many different subgroups can notice the co-

occurrence (i.e., the undirected association) of various marketplace characteristics.  

However, it is the explanation of those co-occurrences that serves to distinguish the 

beliefs of one consumption subculture from another, and such explanations can often take 

the form of causal “if-then” rules (e.g., Hoch and Deighton, 1989). 

 It should come as no surprise that directional phenomena reside at the heart of so 

many different levels of marketing phenomena.  In fact, As far back as Bartlett’s classic 

work on human understanding and memory (Bartlett, 1932) it has been known that 

people’s ability to comprehend a story or a script is facilitated when the elements of the 

script cohere with their natural understanding of the causal connection between those 

elements, and is inhibited when the presented flow of information does not cohere with 

the perceived directional relation between the relevant events.  More recent studies have 

confirmed and extended this theme.  For instance, Pennington and Hastie (1993) have 

shown that subjects in a mock jury experiment were far more likely to conclude that the 

defendant was guilty of a crime when the evidence was presented in the form of a causal 

story as opposed to when the exact same evidence was presented out of causal sequence.   

As Sloman (2005, p. 89) states when discussing these results, “Strong evidence per se 
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does not automatically lead people to conclude guilt; the evidence must sustain an 

explanation.  The best support for an explanation comes from a plausible causal model.”  

In even more generality, as Sloman (ibid.) points out, legal evidence consisting of 

“merely statistical” facts (as opposed to causal facts) are often rejected by both judges 

and juries as being insufficient to prove guilt.  Apparently, evidence is much more likely 

to be considered relevant if it is a part of a causal story or causal relation, whereas 

evidence that is not part of a causally relevant story is often ignored.   

 Furthermore, many of the heuristics and biases studied by Tversky and Kahneman 

(e.g., Tversky and Kahneman, 1974) can also be seen as resulting from the utilization of 

causal constructs in reasoning (Sloman, 2005).  For example, consider Tversky’s study of 

the “hot hand” decision heuristic (Gilovich, Vallone, and Tversky, 1985).  This is the 

belief that individuals participating in a sport such as basketball are more likely to be 

successful (e.g., make their next shot) if they have already been successful on their 

previous few attempts.  The authors’ exhaustive search of relevant sports records showed 

that such a “hot hand” effect does not actually exist.  However, the majority of players, 

fans, and even coaches persist in the belief that a player being “in the zone” (having a 

“hot hand”, etc.) is indeed causal of that player making his or her next shot successfully.  

Apparently, the notion of a central causal mechanism which can unite the seemingly large 

number of variables which play a role in an athlete’s performance forms a powerful 

enough “gestalt” to allow people to perceive that a causal relation exists despite objective 

evidence to the contrary.  In fact, as Lakoff and Johnson (1980, p. 72) summarize, the 

causality construct plays a critical central role in people’s ability to navigate their world, 
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viz., “Our successful functioning in the world involves the application of the concept of 

causation to ever new domains of activity  –  through intention, planning, drawing 

inferences, etc.”  In fact, as these authors also point out, the experiential gestalt of 

causality is one of the “ultimate building blocks of meaning” (Lakoff and Johnson, ibid., 

p. 69). 

 

1.4   Mechanisms Underlying Asymmetric Relations 

Given the central role played by directional relationships in people’s everyday 

experience, it stands to reason that any model of natural reasoning mechanisms would 

have to be able to explain such directional phenomena.  Within the associative network 

model of human reasoning, the key structural element which is hypothesized to generate 

directional asymmetry is known as the fan effect, which corresponds to the assumption 

that multiple associational links lead out of each node much like the shape of a fan 

(Anderson, 1974, 1983a).  Because nodal activation spreads along these links, the 

activation of a particular node will be diminished more quickly if a greater number of 

associations lead out of that node (i.e., the rate of extinction of a node’s activation is 

proportional to the size of that node’s fan).  Stated another way, given a fixed amount of 

nodal activation, the degree or amount of that activation which traverses any one link 

leading out of the activated node will be inversely related to the number of other links in 

the network which share that same source node.  Therefore, if nodes A and B within an 

associative network are connected, and node A has a larger ‘fan’ structure than node B 

(i.e., more associative links lead out of node A than node B), then activation of node A 
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will have less of an effect on node B than an equally strong activation at node B has upon 

node A (where the ‘effect’ on a node is understood in the associative network sense, i.e., 

as the probability that the destination node will become activated given that the source 

node has been activated).   

The fan effect has been experimentally verified in multiple studies (e.g., 

Anderson, 1974; Lewis and Anderson, 1976; Reder and Ross, 1983; Reder and Wible, 

1984; Anderson and Reder, 1987; Schreiber and Nelson, 1998).  In fact, much of 

Anderson’s seminal treatise on associative networks as the foundation of cognition 

(Anderson, 1983a) consists of verifying and quantifying this fan effect within multiple 

different cognitive tasks and domains.5   

Thus there are two distinct but related levels of analysis at which associative 

network theory operates.  At the most basic functional level, there is simply a collection 

of undifferentiated, potentially bidirectional structural links connecting various nodes, 

much as a set of neuronal connections are assumed to link various neural clusters in the 

brain (Anderson, 1983a, p. 86-87).  However, once the overall topology of the multiple 

links in an associative network is taken into account, the fan effect may then become 

5 Many examples of the fan effect examined by Anderson (1983a) consisted of concept pairs which span a 
subordinate-superordinate category dimension (i.e., one member of each pair was often clearly 
superordinate to the other).  Hence, as classically described by Anderson (1983a), the fan effect may be 
said to be an explanation of the possible neural structures which may encode the perception or 
understanding of subordinate-superordinate relationships, and as shown by Anderson (ibid.), the 
associative network representation of such relationships clearly exhibit asymmetric priming and 
facilitation effects.  Further, Anderson demonstrated that such directional differences in priming and 
recall follow from differences in the number of possible associative links emanating from the concepts at 
each level of such superordinate-subordinate hierarchies (i.e., from the size of the ‘fan effect’ differential 
between the associatively linked concepts). 
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operative and hence the overall association between variables that results from the 

network will frequently exhibit a clear directionality.6   

Interestingly, more recent investigations into the boundary conditions of the fan 

effect have shown that when the additional information presented to subjects in an 

association task is schematically or causally connected, the ‘fan effect’ is frequently 

eliminated (e.g., Radvansky, 1999; Gomez-Ariza and Bajo, 2003).  In essence, this 

research shows that the existence of a causal connection between the additional presented 

facts (or a thematic coherence among those facts that would allow a causal 

representation) provides the conditions under which respondents are able to mentally 

‘group’ or ‘coalesce’ the multitude of simple bidirectional links emanating from a source 

node into a single directional (causal) link, thereby removing the ‘fanning out effect’ of 

the multiple links emanating from that source node.  Hence, in order to ‘replace’ a set of 

undifferentiated links (whose complex topology can result in a directional dependence 

between the linked variables) with a simpler connection structure, that replacement 

structure typically must itself be causal in nature.    

The notion of the associative ‘fan effect’ has also been demonstrated within 

marketing phenomena.  For instance, Lei, Dawar, and Lemmink (2008) created fictitious 

brands so that the number of associations linked to each brand could be experimentally 

controlled, and found that the directional strength of association between these brands 

6 Additionally, some models of associative network structures place either a priori or variable ‘strengths’ or 
‘criterialities’ on the various links within the network (e.g., Collins and Quillian, 1972), and it may be 
possible to create an asymmetry through specifying different criterialities in each direction.  This 
argument essentially parallels the ‘fan size’ argument described above.  (In fact, such differing 
criterialities may be derivable from differing fan effect sizes for each variable in the connection.) 
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followed the precise pattern predicted by the associative ‘fan effect’, namely that the 

priming of a brand with a greater number of associations had less of an effect on the 

recall of a related brand with a smaller number of associations than did the converse 

condition of priming a brand with a smaller number of associations.  Further, by 

manipulating the number of shared versus distinctive attributes among the brands in this 

portfolio, Lei et al. (ibid.) were able to rule out Tversky’s well-known contrast model 

(Tversky, 1977; Tversky and Gati, 1978) as a possible explanation of these directional 

effects.  Furthermore, these investigators were able to show that the degree to which 

negative information (i.e., a ‘brand crisis’) at one brand within a portfolio was able to 

affect evaluations of other brands in that portfolio precisely followed from the relative 

directional strengths of the links between these brands.    

One can also posit the existence of an associative fan effect within many of the 

directional phenomena known in marketing.  For example, consider the illustrative 

example provided by Holden and Lutz (1992) of an asymmetric dependence between the 

Budweiser brand and the Superbowl usage situation.  As they describe, when primed with 

the usage situation (i.e., when thinking about something to drink when watching the 

Superbowl), the Budweiser brand may come to mind, but thinking about the brand is 

much less likely to activate that usage situation.  Hence there is a clear asymmetric 

dependence between the brand (Budweiser) and the usage situation (something to drink 

during the Superbowl).  In terms of the underlying fan effect within this situation, it is 

clear that the Budweiser brand has one of the richest and most varied brand images of any 

beer brand in the United States, and it is quite likely that a typical American male 
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respondent would be able to name vastly more associations to the probe ‘Budweiser’ than 

to the probe ‘something to drink during the Superbowl’.  Thus ‘Budweiser’ is likely to 

have a larger (and more complex) fan structure, and hence by the fan theory of 

associative networks, activation of the node or concept ‘something to drink during the 

Superbowl’ would have a stronger effect on the level of activation of ‘Budweiser’ than 

the activation of ‘Budweiser’ would have on ‘something to drink during the Superbowl’. 

As the above example illustrates, the relation between many of the concepts 

within consumers’ brand concepts may in fact have a directional nature.  Furthermore, 

such directionality has been utilized in the marketing management and consumer 

behavior literatures.  For example, Farquhar and Herr (1993) stress that brand building 

activities, which focus on strengthening the directional relationship from the focal brand 

to its many brand associations are different from brand leveraging activities, which focus 

on strengthening the directional relationship stemming from a brand’s associations and 

terminating at the brand itself.7  As further evidence of this directional asymmetry, 

Farquhar and Herr (ibid.) also distinguish between a category dominant brand (which has 

a very high tendency to be named or recalled once the superordinate brand category is 

primed), versus an instance dominant brand (for which priming of the brand has a high 

likelihood of resulting in the brand category being named or recalled).  For instance, 

Farquhar and Herr (1993) describe how the brand ‘Nike’ is both category dominant (if 

consumers are asked to name a sneaker brand, there is a high probability they will name 

7 As Farquhar and Herr (1993) describe, the managerial concepts of brand building and brand leveraging 
are essentially derived from the concepts of instance dominance and category dominance respectively 
(e.g., Barsalou 1983, 1985).   
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‘Nike’) and at the same time is also instance dominant (if consumers are primed with the 

‘Nike’ brand, there is a high probability that this will activate the sneaker category).  

However, as these authors show, these two forms of directional relation do not 

necessarily go hand-in-hand.  For instance, these authors show that ‘Scope’ is more 

category dominant than ‘Listerine’, but ‘Listerine’ is more instance dominant than 

‘Scope’.  Hence, as demonstrated by Farquhar and Herr (1993), brand-category 

relationships in marketing are typically asymmetric phenomena. 

Clearly, based on the evidence discussed, the links within consumers’ brand 

concepts, as well as between consumers’ perceptions of multiple brands within a 

portfolio, can be asymmetric.  Furthermore, based on evidence from the psychology and 

marketing literatures, the degree of asymmetry of these link strengths does seem to 

follow from the predictions of the ‘fan effect’ as initially proposed within the associative 

networks literature.  Hence, consumers’ brand maps may in fact be better modeled by 

asymmetric or directed networks as opposed to presuming that all associative links must 

be nondirectional by nature.8  Interestingly, the pioneers of the BCM methodology are 

distinctly aware of these considerations, and these authors specifically mention the idea 

of link directionality as a potential worthwhile extension of the BCM methodology as it 

currently exists.  Specifically, Roedder John et al. (2006) state: 

… it would be useful to incorporate procedures into the BCM to assess the nature 

of relationships between associations, that is, whether it is causal, correlational, or 

8 There is actually nothing in Keller (1993) which specifically states that the links in an associative network 
model of a brand concept must be nondirectional.  Rather, for the purposes of developing his consumer-
based model of brand equity, it is simply quite likely that Keller (ibid.) saw no overt need to posit any 
form of directionality to the links in the derived network.     
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something else. Although we can speculate about the relationships shown in the 

consensus brand maps, we have not yet developed a technique for doing so on an 

objective basis.  For example, it seems clear that perceptions of Mayo Clinic as 

‘treats famous people around the world’ cause people to believe that Mayo Clinic 

is ‘known worldwide.’ However, being a ‘leader in cancer research’ could be an 

instance of being a ‘leader in medical research,’ or one of these associations could 

be driving (causing) the other. We believe that procedures similar to those used in 

understanding causal reasoning chains (see Sirsi, Ward, and Reingen 1996) could 

be incorporated into the mapping stage of the BCM to provide information about 

brand association relationships.  (Roedder John, et al., 2006, p. 563) 

 

1.5   Causality, Diagnosticity, and Intervention 

In order to further pursue the suggestion of Roedder John et al. (2006) that it may 

be quite plausible for the links in a brand concept map to be causal or directional in 

nature, we must examine what such a link entails for a network of variables or brand 

associations, and how it may differ from a purely associative link between those 

variables.  At first glance, it may seem that if there is a causal or directional link from 

variable X to variable Y (denoted as X  → Y) within a brand concept network, then 

knowing something about the state of variable X would imply something about the state 

of variable Y, but not vice-versa.  However, this initial supposition is not actually true.   

To clarify this point a bit further, let us assume that we have such a directional 

relationship between two binary variables X and Y.  In such a case, the distributions 
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related to this bivariate relationship would be of the form given in Figure 3, below.  As 

indicated by this figure, if we observe that variable 𝑋𝑋 happens to have value 𝑥𝑥1, the 

distribution of variable Y would essentially be ‘collapsed’ to the first row of the 

conditional distribution 𝑝𝑝𝑌𝑌|𝑋𝑋 as given in the right-hand data table within Figure 3.  In 

other words, this knowledge about the value of variable X would alter the distribution of 

variable Y from whatever its initial values were, so that variable Y would now have the 

values indicated in the 𝑥𝑥1 row of the 𝑝𝑝𝑌𝑌|𝑋𝑋 data table. 

  

 
 

𝑝𝑝𝑋𝑋 𝑥𝑥1 𝑥𝑥2 
 λ 1−λ 

 

𝑝𝑝.𝑌𝑌|𝑋𝑋 𝑦𝑦1 𝑦𝑦2 
𝑥𝑥1 α 1−α 
𝑥𝑥2 β 1−β 

 

 Figure 3.   Directed relation 𝑋𝑋 → 𝑌𝑌 involving two binary variables 

 

Now consider what would occur within the directional structure of Figure 3 if we 

learn that variable Y happens to have the value 𝑦𝑦1.  Contrary to our initial assumption 

that the ‘flow of causality’ from X to Y would preclude knowledge of variable Y from 

having an effect on variable X, we would actually see a definite effect on variable X, and 

this effect can be quantified by Bayes’ theorem.  Specifically, the value of 𝑝𝑝𝑋𝑋(𝑥𝑥1) will be 

updated from  λ  to  𝑃𝑃𝑋𝑋|𝑌𝑌�𝑦𝑦1�𝑥𝑥1� ∙ 𝑃𝑃𝑋𝑋(𝑥𝑥1) 
 𝑃𝑃𝑌𝑌(𝑦𝑦1)

 , which in this instance can be computed as  

 𝛼𝛼 𝜆𝜆
 𝛼𝛼 𝜆𝜆  +  𝛽𝛽 (1−𝜆𝜆) 

  .  Hence, unless either 𝜆𝜆 = 0 or 𝜆𝜆 = 1 (which are ‘degenerate’ cases for the 

X Y 
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distribution of the variable X) or 𝛼𝛼 = 𝛽𝛽 (which would mean that variable Y is 

“accidentally” perfectly independent of variable X to begin with, in which case the model 

𝑋𝑋 → 𝑌𝑌 that we are utilizing would no longer be valid), we will have that an observed 

value of variable Y will provide diagnostic information about the value of variable X, and 

we will therefore see bidirectional influence between these two variables.    

If, as we have shown, Bayes’ theorem allows for diagnostic influence from the 

‘effect’ or ‘consequent’ variable to the predictive or causal variable within that pair, one 

may wonder what the difference is between this directional (or asymmetric) relationship 

and a correlational (or symmetric) relation.  As it turns out, the difference comes about 

when we act to set the value of one of the variables rather than merely observing its 

value.   

More specifically, within a symmetric (correlational) relationship, the means by 

which the value of either X or Y is established (i.e., whether the variable is set to a 

specific value or is observed to have that value) has no influence upon the determination 

of the effect that this variable has upon the other variable within the correlated pair.  

However, when the relationship between X and Y is directional, such as is the case in the 

scenario exhibited in Figure 3, each direction of the relationship responds differently to 

an intervention to set the value of one of these variables (Lauritzen, 1999).  For instance, 

as long as variable Y is not, by chance, independent of variable X (i.e., assuming that the 

rare coincidence of  𝛼𝛼 = 𝛽𝛽 does not occur)9, then acting to fix the value of variable X 

9 This assumption, that the two variables are not independent ‘by coincidence only’ (i.e., that the causal 
diagram 𝑋𝑋 → 𝑌𝑌 is valid) is called the causal faithfulness assumption, and will be discussed at greater 
length later in the thesis. 
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will still have the same effect as observing the value of X, namely, such knowledge will 

serve to ‘collapse’ the distribution of variable Y to one particular row of its conditional 

distribution.10   

In contrast, acting to set the value of variable Y will have no effect on the 

distribution of variable X in a directional system such as the one in Figure 3 because the 

diagnostic influence that runs from variable Y to variable X is only operative when the 

value of variable Y actually indicates (or ‘diagnoses’) something about the state of 

variable X.  When the value of Y is established through an intervention rather than 

through the normal causal mechanism running from variable X to variable Y, then 

knowing the value of Y tells us nothing about the possible states of variable X.   

As an example of this phenomenon11, consider the fact that observing a low 

reading on a barometer is certainly diagnostic of the fact that rain is likely.  Thus even 

though a low reading on the barometer does not cause the atmospheric conditions to 

favor rain, we can still utilize the low reading as an indicator of those atmospheric 

conditions.  This is a diagnostic relation (and not a causal one) because the conclusion 

that the low reading indicates rain-like conditions runs in the opposite direction to the 

underlying directional or causal mechanism, namely: rain-like conditions → low 

barometer reading).  However, despite the fact that this diagnostic reasoning pattern runs 

in the opposite direction to the underlying causal mechanism, we still strongly believe in 

its validity because we believe in the validity of the causal mechanism itself (i.e., rain-

10 In essence, the variable 𝑌𝑌 does not “care” who or what caused variable 𝑋𝑋 to have the value that it does.  
Variable 𝑌𝑌 simply “senses” the value that its cause (variable 𝑋𝑋) currently has, and responds accordingly. 

11 This is an extension of an example described in Pearl (2000, p. 111). 
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like conditions → low barometer reading), and we are quite used to ‘reversing’ trusted 

causal mechanisms (via a an intuitive version of Bayes’ theorem).   

On the other hand, if we were to open up the barometer and set the reading to be 

low, we would certainly not believe that this reading was indicative of a high probability 

of rain.  This negative conclusion of course stems from the fact that because we 

intervened to set the value of the effect variable (i.e., the barometer reading), we clearly 

no longer regard the value of the effect variable as being indicative of the distribution of 

the causal variable, and hence we are likely to dismiss any possible effect in the 

diagnostic direction.  Interestingly, if we could somehow ‘seed’ the clouds in order to 

establish particular barometric conditions, we would quite readily believe that this 

intervention would indeed lower the barometer reading, even though we intervened to 

‘set’ those atmospheric conditions.  

Thus, as this example shows, we typically trust directional mechanisms in the 

causal direction no matter whether the level of the causal variable has been observed or 

has been manipulated to be at a certain level or value through an intervention.  On the 

other hand, we only trust causal mechanisms in the diagnostic direction if we observe the 

value of the effect variable, but not if we set that value through some intervention.  The 

fact that these reasoning patterns appear so intuitive (i.e., of such a “second nature” to us) 

reveals how prevalent and central these directional reasoning patterns really are within 

our conception of the world. 

  In summary, we have shown that a causal link between two variables will be 

apparent in an interventional scenario, but not necessarily in an observational one.  The 
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value of the causal variable will always influence the distribution of the effect variable, 

whether we intervene to set the causal variable’s value, or whether we passively observe 

its value.  However, the value of the effect variable will influence the distribution of its 

cause only when we observe the value of the effect (and diagnostically reason from the 

value of the effect to the distribution of the cause), but not when we intervene to set its 

value.  Therefore the asymmetry that Roedder John et al. (2006) discuss as potentially 

providing a deeper explanation of link structure within a brand concept map will typically 

arise under conditions in which we set the values of certain variables, rather than when 

we merely observe their values, and will be manifested in consumers’ sensitivity to 

differences between the predictive and diagnostic directions of the resulting links.   

Note that since we are analyzing consumer belief structures, the idea of fixing or 

setting the values of certain variables with in a consumption domain can also correspond 

to consumers’ beliefs about what would happen if they were to set these values.  In other 

words, the ‘fixing’ of values in this case can just as easily derive from counterfactual 

thoughts about what is likely to happen if one were to take a particular action as it is to 

derive from actual actions undertaken by consumers or firms in the marketplace.  In 

either the enacted or counterfactual scenario, we can expect that many of the links 

between variables in the belief network may be directional in nature.  Furthermore, as 

discussed above, the asymmetric response of such a directed network to interventions 

allows one to regard a directional network as an oracle for determining the likely effects 

of either real or counterfactually imagined choices among the brand characteristics that 

exist within the consumer’s brand concept. 
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1.6   Directed Structures, Part I: Common Cause and Common Effect Structures 

 As we have seen in the previous section, directional networks are sensitive to the 

difference between observing a fact versus intervening to establish that fact, whereas 

nondirectional networks do not necessarily possess such sensitivity.12  In this section we 

will see that the additional expressivity available when one allows the links within a 

brand concept network to be directed also allows one to distinguish several different 

variations of the relationship between triples of network variables, whereas in an 

undirected network all of these variations would collapse into a single nondirectional 

structure.  Furthermore, as it turns out, the difference between these directed triples of 

variables is precisely what provides directed networks with their rich implicational 

structure and semantic meaning.    

 To be more specific, consider a chain structure consisting of three variables, say, 

A, B, and C.  In an undirected network, such a chain can have only one basic 

configuration13, namely A – B – C.  However, within a directed network, this chain-like 

structure can actually have four different variations, namely the causal chain structure            

A → B → C ,  the diagnostic chain structure A ← B ← C ,  the common cause structure  

A ← B → C , and the common-effect structure  A → B ← C.  As it turns out, the 

12 This can also give rise to different reasoning patterns in the predictive versus the diagnostic direction 
(e.g., Tversky and Kahneman, 1980; Pearl, 1988), which is another distinction that is expressible (and 
modelable) within directed networks, but which is difficult to represent within nondirectional networks. 

13 In this discussion, we are ignoring possible differences in the ‘naming’ of the three variables involved. 
For example, we are considering the undirected chain A – B – C to represent the same basic network 
structure as B – A – C , etc., since these have the same network topology and differ only in the names 
given to the three variables occupying the three positions within that structure. 
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semantic differences between these four directional variants is actually quite profound 

(e.g., Lauritzen, 1999;  Pearl, 2000). 

 As an example of the depth of the implicational differences between each of these 

directed three-variable substructures, consider a typical situation in which a consumer 

utilizes a product review in order to ascertain whether or not he or she is likely to be 

satisfied with the purchase of a particular product under consideration.  Of course, we 

could represent this situation with an undirected network as shown in Figure 4a, but the 

directed representation given in Figure 4b would actually be more accurate since it 

reveals that the product quality directly influences both the review and the consumer’s 

satisfaction with the product, but that neither the review nor the consumer’s satisfaction 

directly influence the product quality.14 

 A consumer who holds the directed cognitive model shown in Figure 4b will be 

able to use the status of the product review to diagnostically infer the likely quality of the 

product in question, and can then infer whether he or she will be satisfied with that 

product.  In other words, within this directed structure, information flows from the status 

of the product review to the determination of the consumer’s likely degree of satisfaction 

with the product. 

14 In both Figure 4a and Figure 4b, we are ignoring the possibility that the customer will derive product 
satisfaction from the review itself.  Rather, we are assuming that the consumer only cares about the 
underlying quality of the product, and is simply using the review as an informational tool to learn about 
that underlying product quality.  (In this simple example, we are also ignoring any potential ‘second-
order’ effects by which a positive or negative review or could ‘feed back’ to affect product quality 
through managerial response to that review, or by which managerial knowledge of overall customer 
satisfaction alters current product quality.) 
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However, suppose that this consumer sets the value of the ‘Product Quality’ 

variable by only incorporating items of a known quality level into his or her consideration 

set.  In such a situation, the product review would become irrelevant to the purchase 

decision, since the consumer can ascertain the quality of the product through this other 

mechanism.15  Hence, once the value of the central variable in this common cause 

structure is fixed (in this case through an intervention, either ‘real’ or counterfactually 

Figure 4.    Alternative models for a product review scenario 

Product Quality 

Product Review 

Customer Satisfaction 

(b) 

Product Quality 

Product Review 

Customer Satisfaction 

(a) 
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simulated) by the consumer, the flow of information from the ‘Product Review’ variable 

to the ‘Customer Satisfaction’ variable will be blocked.  In probabilistic terms, 

knowledge of the ‘Product Quality’ variable “blocks” the passage of information through 

this structure, rendering the ‘Product Review’ and ‘Customer Satisfaction’ conditionally 

independent of each other: Customer Satisfaction  ⫫  Product Review  | Product Quality.  

Similarly, note that one can also block the passage of information through this structure 

via a direct observation of the product’s quality, say, through direct inspection of the 

product by the consumer, or through a product trial, etc.  In other words, the information 

flow through this structure can be blocked either by an intervention to set the level of the 

‘Product Quality’ variable, or via an observation of the product’s quality, and in either 

case, we would have that the two terminal variables in the structure (namely ‘Customer 

Satisfaction’ and ‘Product Review’) become independent when knowledge of the central 

variable (‘Product Quality’) becomes available.    

Now consider a slight variation on this three-variable scenario.  For instance, 

suppose that a consumer is shopping for a new stereo or television, etc., and that he or she 

holds the directional belief structure shown in Figure 5.  Note that if this were an 

undirected structure, it would have the same overall topology as each of the structures 

shown in Figure 4, namely a central variable linked to each of two terminal variables, 

with no direct connection between those terminal variables.  However, what is quite 

surprising is that despite its topological similarity to the structures in Figure 4, the 

15 In this basic model, we are assuming that the product review would not add any additional degree of 
confidence in the product above and beyond the level of confidence that the consumer has already 
established via the incorporation of products with a specific known level of quality into their 
consideration set. (Such a more complex scenario would require an expansion of this basic model.) 
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directional variation shown in Figure 5 will actually have informational properties that 

are completely different than what we saw in the previous example. 

 To derive the informational semantics of this form of directed structure, consider 

what a customer might think if he or she encountered a potential choice of stereo which 

had a great many features.  If this consumer did not know the price level of the stereo, he 

or she would have no way of knowing whether the high number of features was 

indicative of a high quality or a low quality product.16  However, if the consumer does 

16 Some consumers may perceive that certain brands are better than others at increasing feature counts 
without sacrificing quality.  However, to keep this model as simple as possible, we are assuming that the 
consumers in the model do not have an opinion one way or the other on this particular issue.  
Furthermore, for expository purposes, we are disregarding other signals of internal quality (such as 
channel exclusivity, retailer reputation, etc.). 

Figure 5.   Common effect structure 

Price 

 

Internal Quality 
(components, assembly, etc.) 

 

Number of Features 
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know the price level of the product, then the number of features offered by that product 

certainly provides information about the product’s quality level.  Specifically, if the price 

is quite low, then the product’s high number of features would almost certainly indicate 

to the consumer that this particular stereo was likely to have a low level of internal 

quality.  Thus without knowledge of the value of the central variable in this directional 

structure, one of the terminal variables provides no information about the other, and 

hence these two variables are said to be unconditionally independent, i.e.,                        

Internal Quality  ⫫  Number of Features  |  ∅ .  Furthermore, once the price level 

becomes known (either through observing that price level, or through setting that price 

level via limiting one’s choice of products to incorporate into a consideration set), the 

number of features and the perceived quality of the stereo become linked, and hence we 

have that these variables are conditionally dependent on each other given the price level, 

i.e.,  Internal Quality ∦ Number of Features  |  Price . 

 To summarize these findings, let us symbolically denote the variables in each 

structure examined by A, B, and C.  Thus, in the product review example of Figure 4b 

(which we can symbolically denote by A ← B → C), we saw that this structure possessed 

the property that the two terminal variables (i.e., the product quality and the consumer’s 

likely degree of satisfaction with the product) initially provided information about one 

another, but became independent of one another once the central variable in the structure 

(namely the product’s quality level, or symbolically variable “B” in this structure) was 

known or was fixed through either real or counterfactual intervention.  On the other hand, 

the stereo purchase example of Figure 5 (which we can symbolically denote by                                  
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A → B ← C) had the opposite set of independence and dependence properties, namely 

the two terminal variables (number of features and internal quality) initially do not 

provide information about one another, but do become related once the central variable 

(i.e., the price, or variable “B” in the schematic representation) is known or fixed through 

either real or counterfactual intervention.17   

We can state the above findings more succinctly by saying that the common cause 

structure  A ← B → C possesses marginal dependence of A and C, but conditional 

independence of A and C once variable B becomes known (or is fixed through 

intervention).  On the other hand, the common effect structure  A → B ← C possesses 

marginal independence of variables A and C, but conditional dependence of these 

variables once B is known (or set through an intervention).  Stated even more simply, 

within a common cause structure (A ← B → C), the central variable blocks any 

communication or information flow between the two terminal variables, while in the 

common effect structure (A → B ← C) knowledge of the value of the central variable is 

required in order to permit information flow between the two terminal variables.18  Of 

course, note that had these two phenomena been modeled as undirected structures, both 

models would have been identical (namely A – B – C), and all of the rich expressive 

power that was gained through these different directional representations would have 

been lost.   

17 Once again, by “real or counterfactual intervention”, we mean that the consumer either limits his or her 
consideration set to products containing a specific level or value of the variable in question, or 
counterfactually considers what would happen if he or she considered only products with a specific value 
of that variable.  

18  Proofs of these differences in the informational dynamics of the common cause and common effect 
structures are provided in the Appendix. 
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Lastly, it should be pointed out that within a common effect (or ‘collider’) 

structure (A → B ← C), we have seen that confirmation of one of the possible causes of 

the common effect has no influence on the other possible cause until the level of the 

common effect is known, at which time the confirmation of one possible cause reduces 

the belief in the other possible cause of that common effect.  For example, as described 

earlier, both the number of features of a stereo and its internal quality have a direct 

influence on the price of that stereo.  However, once the price of the stereo is observed 

(or is fixed through intervention), any increase in the perceived number of features of that 

stereo will tend to decrease consumers’ perceptions of the possible internal quality of that 

stereo.  This reasoning pattern is often called explaining away (or ‘intercausal 

reasoning’), and may be used to provide quantitative predictions of the degree to which 

changes in the probability of one or more causes of a common effect reduces the 

perceived likelihood of the other causes of that effect (Wellman and Henrion, 1993; 

Pearl, 2000).  Further, note that this hallmark property of the common effect structure is 

also known by the names causal attribution and causal discounting within the social 

psychology literature (e.g., Kelley, 1973), since it models the process by which the 

attribution of causal strength to one possible cause of a common effect has the result of 

diminishing the causal strength associated with other possible causes of that same effect. 

 

 

40 
 



1.7   Directed Structures, Part II: Causal and Diagnostic Reasoning Chains 

There are, of course, two additional directional structures (besides A ← B → C 

and A → B ← C) which can exist within a chain of three variables: namely the causal 

reasoning chain  A → B → C and the diagnostic reasoning chain A ← B ← C.  

Interestingly, as proven in the Appendix, these two directional structures actually share 

the same informational dynamics as the common cause structure (A ← B → C), namely 

the two terminal variables are dependent upon one another, but become independent once 

the value of the central variable (B) is either observed or is set through intervention.  

However, even without going through the specifics of the proof, we can observe this 

behavior by analyzing some very common marketing phenomena.   

For example, consider the causal reasoning chain shown in Figure 6, which 

models a possible consumer belief system for pain relievers.  For a consumer holding this 

belief structure, the brand of a pain reliever and the belief that this particular pain reliever 

will alleviate their headache are probabilistically dependent upon each other, but once it 

is known whether or not the pain reliever contains a particular active ingredient that the 

consumer believes is effective at headache reduction, the brand name of that medication 

becomes irrelevant to that consumer’s belief in whether or not the medication will relieve 

their headache.19  Hence in such a structure, we have that the two terminal variables in 

the chain are rendered independent of one another once the value of the central variable 

19 In this model, we are assuming that the consumer does not believe in any additional pathways from the 
brand to headache relief that do not pass through the ‘active ingredients’ node.  For example, we are 
assuming that such a consumer would not believe that some brands’ non-active ingredients (such as their 
‘fillers’ or pill coatings, etc.) or even their location of manufacture would influence the medication’s 
headache-reducing capacity.  (If the consumer were to hold such additional beliefs, we would need to 
add additional pathways to the model accordingly.) 
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in the chain becomes known (either through observation of the ingredients in a potential 

pain reliever choice, or through intervening to set the level of the central variable via 

limiting one’s consideration set to just those products which contain a certain level of a 

particular active ingredient).  In other words, within this causal reasoning chain structure, 

we have that  ( headache relief  ⫫  brand )  |  (active ingredients).  Of course, as this 

example illustrates, we have that in any causal reasoning chain  A → B → C, the two 

terminal variables A and C will be dependent in probability (A ∦ C), but are rendered 

independent once the value of B is observed or established through intervention, i.e.,             

the conditional independence relation  ( A ⫫ C ) | B  holds for this structure. 

 Now consider a scenario in which a consumer observes the ‘outcome’ of a causal 

chain structure, and wishes to utilize this information to reason about the state of the 

initial variable within that structure.  Such a case would occur, for instance, if the 

consumer in the previous example observed that a particular medication was able to 

relieve his or her headache, and was using this information to reason about the 

Brand active ingredients headache relief 

   

Figure 6.   Causal reasoning chain model for pain relievers 
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probability that the medication is likely to come from a particular brand.20  This example 

is illustrated in Figure 7 (in which the direction of inference is shown via dashed arrows).  

Since this reasoning problem runs in the opposite direction to the predictive or causal 

direction that exists in the structure, this is termed a diagnostic reasoning chain.   

To discuss the diagnostic reasoning pattern in this example, we have to assume 

that the consumer in question has two characteristics.  Firstly, we must assume that this 

consumer holds the corresponding  forward (or ‘predictive’) reasoning pattern (i.e., that 

the predictive relations from ‘brand’ to ‘active ingredients’ and from ‘active ingredients’ 

to ‘headache relief’ are valid).  Secondly, in order for this consumer to need to engage in 

diagnostic reasoning, we would have to assume that he or she is not certain of the 

medication’s brand, since otherwise he or she would have no need to reason 

diagnostically in the first place.  Since we are assuming that the consumer in this example 

is not certain of the medication’s brand, then he or she will simply have a belief 

20 For instance, we can suppose that this consumer took a pill from a collection of mixed medications that 
he or she had with them, or borrowed a pain reliever from a co-worker, etc. 

Brand active ingredients headache relief 

Figure 7.   Diagnostic reasoning chain model for pain relievers 
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distribution over the possible brands that this medication could be from.  In other words, 

this consumer would essentially have a prior probability that the medication comes from 

each particular possible brand.   

Diagnostic reasoning would then occur in this situation once the consumer learns 

of the headache-reducing capacity of this particular medication (for instance, by either 

taking the medication or by receiving reports from other sources about its headache-

reducing power, etc.).  Once this information about the medication’s headache-reducing 

power becomes known, the consumer is likely to revise his or her beliefs about the 

probability that the medication comes from each of the different possible brands.21              

This belief revision represents the diagnostic reasoning process.  In essence, information 

in this diagnostic reasoning chain ‘flows’ from the variable ‘headache relief’ to the 

variable ‘brand’, thereby modifying the consumer’s prior probability distribution over 

the various possible brands that the medication could have come from.   

As is proven in the Appendix, the flow of (diagnostic) information from the 

‘outcome’ (or ‘effect’) variable headache relief  towards the ‘predictive’ (or ‘causal’) 

variable (Brand) can proceed freely as long as the intermediate variable (active 

ingredients) is not observed or established at any particular value.  This conclusion is 

logical for a consumer who holds a belief pattern such as this, since once such a 

consumer knows whether or not the pain reliever contains a specific active ingredient, 

21 For example, if the medication is found to be quite effective at reducing the consumer’s headache 
symptoms, then this consumer would likely increase the probability that he or she places on the 
medication having come from an ibuprofen-containing brand (and concomitantly reduce the probability 
that he or she places on the medication coming from a non-ibuprofen-containing brand). 
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that consumer can make a conclusion about the likely brand of the medication without 

needing to know about its headache-reducing capacity.22   

 In essence, a diagnostic reasoning chain appears quite similar to a causal 

reasoning chain, in that both have chain configurations, both have the same conditional 

independence property (namely, A ⫫ C | B ), and in both structures the flow of 

information proceeds from one variable to a second variable, and then from that second 

variable to a third variable (i.e., both directed links point in the same direction).  

Therefore, the reason for distinguishing these two structures from one another lies not 

within their overall topology or conditional independence properties (which is the same 

in both cases), but rather because of the differences in the means by which information is 

updated in each structure.   

Within a causal chain such as the example in Figure 6, information is propagated 

in the same direction as the predictive or causal mechanism, and hence updates to either 

the terminal variable or the intermediate variable in this structure can be normatively 

computed simply by applying the distribution of that variable in the chain conditional on 

the observed (or fixed) value of the prior variable in the chain.  For instance, suppose that 

22 One might hypothesize that if the medication failed to alleviate the consumer’s headache, that this would 
provide additional information about the possible brand.  However, according to the belief system 
represented in this model, such an observation would essentially already be incorporated into the 
consumer’s conditional probability of headache relief given various levels of active ingredients (i.e., it 
would already have been incorporated into the consumer’s beliefs about the effectiveness of various 
active ingredients).  Therefore, such an observation (that the medication did or did not reduce the 
consumer’s headache) could alter the consumer’s beliefs about the possible active ingredient 
combinations that the medication may have.  However, once we assume that we know the particular 
active ingredient configuration of the medication, the additional headache reduction observation is 
rendered irrelevant to the deduction about the possible brand, since all it tells us is something about the 
possible active ingredient levels, which is something we would already know for certain (since we 
observed those active ingredient levels or set them through the construction of our consideration set). 
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a consumer perceives there to be four levels of headache relief (say: excellent, average, 

minimal, and none), and five values of the ‘active ingredients’ variable (say: low 

ibuprofen, high ibuprofen, low acetaminophen, high acetaminophen, and ‘other’).  

Furthermore, suppose that the consumer’s initial distribution of the headache relief 

variable is (α, β, γ, 1 – α – β – γ).  Now suppose that this consumer either observes or 

fixes the value of the ‘active ingredients’ variable to be ‘low ibuprofen’ (L.I. for short).  

This consumer’s updated distribution (conditional on active ingredients = L.I.) would 

become: ( P(relief=exc.| LI), P(relief=avg. | LI), P(relief=min,| LI), P(relief=none | LI) ), 

and these values would occupy the row in the conditional distribution table for the 

headache relief variable which is indicated by the value active ingredients = L.I. 

On the other hand, if a consumer observed the value of the headache relief 

variable and wanted to reason ‘back’ (i.e., diagnostically) to the likely value of the active 

ingredients variable, this diagnostic reasoning process would normatively proceed via 

Bayes’ theorem (rather than as a simple predictive conditional probability, as in the 

previous example).  For example, if the consumer’s level of headache relief was average 

(denoted by rel = avg), then his or her distribution of the active ingredients variable 

would (normatively) become updated from its prior distribution to a new distribution with 

parameter values such as: 

𝑃𝑃(𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ | 𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑖𝑖)  =   
𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑖𝑖 | 𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ)  ∗  𝑃𝑃(𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ)

 ∑ 𝑃𝑃(𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑖𝑖 | 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖 𝑗𝑗 𝑗𝑗 ) 
   (1) 
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where “𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ” denotes a high level of ibuprofen, and 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗 denotes the 𝑗𝑗𝑡𝑡ℎ 

level of the active ingredients variable (and where 𝑖𝑖𝑖𝑖 = ℎ𝑖𝑖𝑖𝑖ℎ corresponds to one possible 

value of 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖𝑗𝑗).  Of course, equation (1) only shows the updated value for the 

probability placed on ibuprofen = high by this consumer.  There would also be equivalent 

calculations for updating his or her perceived probabilities for the other possible values of 

the active ingredients variable once the consumer has experienced a particular level of 

headache relief. 

 In summary, we have seen that despite the differing process by which information 

is propagated in causal reasoning chains versus diagnostic reasoning chains, the overall 

conditional independence properties of these two structures are nonetheless the same.  

Specifically, given a causal reasoning chain A → B → C and a diagnostic reasoning chain 

A ← B ← C (for which A → B → C is the underlying ‘causal’ direction), we will have 

that in both cases, variables A and C will be rendered independent once the value of 

variable B is known or is fixed through an intervention, i.e., (A ⫫ C) | B  in both cases. 

 

1.8   Markov Equivalence  

As demonstrated in the previous section (and as proven in the Appendix), both the 

causal reasoning chain structure A → B → C and a diagnostic reasoning chain structure  

A ← B ← C share the same conditional independence property as the common cause 

structure A ← B → C, namely, the two terminal variables (A and C) in such structures 

are rendered independent once the value of the central variable B becomes known 

through either observation or intervention.  In other words, we have that (A ⫫ C) | B in 
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each of these three structures.  It is also true that without observation or intervention on 

variable B, the terminal variables A and C will be dependent in probability within each of 

these three structures.  Structures such as these which share the same conditional and 

marginal independence properties are termed Markov equivalent structures (c.f., Pearl, 

1988; Lauritzen, 1999; Koller and Friedman, 2009).  Furthermore, since all the structures 

within this Markov equivalence class share the same conditional independence property 

(A ⫫ C) | B, we can label the equivalence class via this conditional independence 

property that is shared by all its members, i.e., we can use the label {A ⫫ C | B} to refer 

collectively to this entire equivalence class of directed structures. 

From a marketing standpoint, the importance of identifying a structure’s Markov 

equivalence class is that each structure within the same Markov equivalence class will be 

indistinguishable based on observations alone.  In other words, no set of observations 

will be capable of singling out any particular member of a Markov equivalence class over 

any other member of that same Markov class (Lauritzen, 1999; Pearl, 2000). 

As an example of this remarkable fact, consider the three members of the Markov 

equivalence class {A ⫫ C | B} which was discussed earlier.  It can be demonstrated that 

any member of this Markov class can be transformed into any other member of this class 

through applications of probabilistic identities such as Bayes’ theorem.  For instance, 

suppose that we begin with the causal chain A → B → C and we wish to demonstrate that 

it can be transformed into the common cause structure A ← B → C.  Essentially, this can 

be accomplished via reversal of the A → B link in the structure A → B → C through 

Bayes’ theorem, which can be calculated as shown in Equations 2a through 2c, below. 
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𝑃𝑃(𝐴𝐴, 𝐵𝐵, 𝐶𝐶) =   𝑃𝑃(𝐶𝐶|𝐵𝐵) ∗ 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) (2a) 

 
=   𝑃𝑃(𝐶𝐶|𝐵𝐵) ∗

 𝑃𝑃(𝐴𝐴|𝐵𝐵)  ∗  𝑃𝑃(𝐵𝐵) 
 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) (2b) 

 =   𝑃𝑃(𝐶𝐶|𝐵𝐵) ∗ 𝑃𝑃(𝐴𝐴|𝐵𝐵) ∗ 𝑃𝑃(𝐵𝐵) (2c) 

Note that the resulting factored distribution that occurs in Equation 2c corresponds to the 

common cause structure A ← B → C, and hence we have shown that the common cause 

structure can be derived from the causal chain structure.  In fact, as shown in Figure 8, we 

can utilize such Bayes’ theorem based transformations to convert any specific member of 

this Markov equivalence class into any other member of this same Markov class. 

 

Figure 8.   Equivalence of the members of the {A ⫫ C | B} Markov equivalence class  
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We can also examine these equivalences from a consumer’s standpoint.  For 

instance, consumers are likely to infer facts or properties about the relationships among 

the variables related to a product or brand based on the comparative rates at which these 

variables tend to occur or to co-occur within a set of observations (Hoch and Ha, 1986).  

Now consider the three members of the {A ⊥ C | B} Markov equivalence class, namely 

the common-cause structure (A ← B → C),  the causal chain (A → B → C) and the 

diagnostic chain (A ← B ← C).  In each case, the exogenous variable (namely variable B 

for the common effect structure, variable A for the causal chain, and variable C for the 

diagnostic chain) will tend to occur at its own specific exogenously determined rate, 

which the consumer will typically be interested in monitoring as a primary goal of his or 

her information acquisition process regarding this particular product or brand.  However, 

due to the directional relations among the variables in each of these structures, the rates 

of occurrence of the exogenous variable in each case will tend to get transmitted via the 

directed links within that structure to the variables which are probabilistically linked to 

those exogenous variables.  This rate of transmission of probabilistic information will 

then result in specific co-occurrence rates for each of the linked pairs of variables. 

For example, consider the common-cause structure (A ← B → C).  Assuming 

that the rates of spontaneous occurrence for each of the three variables are minimally 

correlated, then the rates of co-occurrence of variable pairs {B,C} and {A,B} will be 

controlled by the causal mechanisms B → C and B → A respectively.  Therefore, as long 

as these causal strengths are roughly comparable, the two variable pairs {B,C} and {A,B} 

will each occur at about the same rate as one another.  Similarly, in the causal reasoning 
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chain (A → B → C), variable A’s occurrence will lead to that of variable B, which in turn 

will lead to the occurrence of variable C, and hence each of the variable pairs {B,C} and 

{A,B} will once again occur at roughly equal rates.  Finally, in the diagnostic reasoning 

chain (A ← B ← C), the two variable pairs {B,C} and {A,B} will again occur with 

roughly equal rates, since the occurrence of variable C leads to that of B and A.23  Lastly, 

in all three structures, due to the roughly equal co-occurrence rates of variable pairs 

{B,C} and {A,B}, we will also see a significant correlation among all three variables in 

each structure.  Hence, just as each of these Markov equivalent structures can be 

transformed into one another through probabilistic equivalences, so too are these 

structures equally capable of supporting any particular set of observations.  A consumer 

observing these variables’ rates of co-occurrence would not be able to tell which of the 

Markov equivalent structures was actually the underlying mechanism which generated 

that set of product or brand-related observations. 

On the other hand, one can demonstrate that none of the three causal structures in 

the {A ⊥ C | B} Markov equivalence class can be transformed into a common-effect 

structure (such as the example involving the price of a stereo in Figure 5).  For instance, 

attempting to convert the causal chain structure A → B → C  into the common-effect 

structure  A → B ← C  by reversing the  B → C  link would result in the following series 

of algebraic transformations: 

 

 

23 This argument is a slight modification of that given in Steyvers, et al. (2003). 
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𝑃𝑃(𝐴𝐴, 𝐵𝐵, 𝐶𝐶) =   𝑃𝑃(𝐶𝐶|𝐵𝐵) ∗ 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) (3a) 

 
=   

 𝑃𝑃(𝐵𝐵|𝐶𝐶)  ∗  𝑃𝑃(𝐶𝐶) 
 𝑃𝑃(𝐵𝐵) ∗ 𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) (3b) 

The resulting expression in Equation 3b does not further simplify, and is obviously not 

equivalent to the structure of the common-effect model A → B ← C, which has a joint 

probability distribution with a factored form that is given by the expression   

𝑃𝑃(𝐴𝐴, 𝐵𝐵, 𝐶𝐶)  =  𝑃𝑃(𝐵𝐵|𝐴𝐴) ∗ 𝑃𝑃(𝐴𝐴) ∗ 𝑃𝑃(𝐵𝐵|𝐶𝐶) ∗ 𝑃𝑃(𝐶𝐶).  Therefore, the simple “reversal” of the  

B → C  link in the causal chain  A → B → C  does not result in the common-effect 

structure  A → B ← C .  Rather, these two are fundamentally different causal structures 

belonging to different Markov equivalence classes; one cannot be transformed into the 

other through probabilistic equivalences.24   

 Evidently, there is more to link directionality than just drawing arrows between 

variables.  There is an entire probabilistic structure “buried” within the structure of these 

links, and this probabilistic structure regulates when link reversal is possible and when it 

is not.  As shown, some link directions can be reversed without altering the conditional 

independence properties of the overall network (such as in the successful conversion of 

the causal chain  A → B → C  into the common-cause structure  A ← B → C), while 

24 Furthermore, from a consumer’s standpoint, if all three variables (A, B, and C) occur at independent 
rates, then in the case of a common-effect structure A → B ← C, the variable pairs {A,B} and {C,B} 
will also occur at differing rates (as dictated by the independent rates of occurrence of the exogenous 
variables A and C respectively).  Such differences in the rates of co-occurrence of the variable pairs 
{A,B} and {C,B} can therefore alert the consumer that there are likely to be two independent causal or 
directional mechanisms that can lead to variable B.  This differs significantly from the conclusions that 
can be drawn from any of the three members of the {A ⫫ C | B} Markov equivalence class discussed 
earlier, in which the variable pairs {A,B} and {C,B} will typically occur at equal rates within any of the 
three members of that equivalence class of directional structures. 
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other links cannot be reversed in this manner (such as in the failed attempt to convert the 

causal chain  A → B → C  into the common-effect structure  A → B ← C).  Link 

directionality is only “fungible” up to a certain point, but not beyond it.  Hence the 

introduction of directionality into an otherwise undirected brand concept map requires 

more than just an introduction of directional arrows where there formerly were none.  

Rather, there is an entirely different structural semantics in a directed network, namely a 

semantics dictated by the conditional independence properties of the data and the Markov 

equivalence properties of the resulting directed structures.   

 

2.   Bayesian Networks and Brand Concepts 

2.1   Observation, Intervention, and Markov Equivalence 

It is clear from our earlier discussion that consumers routinely view all manner of 

marketing phenomena as having directional properties.  However, as we have seen in the 

previous section, one cannot simply ‘introduce directions’ into an otherwise undirected 

brand concept network.  Rather, such directions interact with one another in a manner 

that is controlled by the conditional independence properties inherent in the data and the 

Markov equivalence classes to which the various directional structures and substructures 

within that network belong.  Hence it is critical to examine how consumers may interact 

with and utilize the directional structure of a brand concept network in order to enhance 

their understanding of the possible relations among a brand’s associations. 

For example, as we have seen, the various directional structures that can exist 

within a directional network can be grouped into Markov equivalence classes, each of 
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which contains structures that cannot be distinguished from one another based on sets of 

observations of the variables involved.  However, consumers depend on understanding 

causal structures in order to be able to determine which variables to manipulate or select 

in order to create conditions which favor specific desired outcomes (Hoch and Deighton, 

1989).  Furthermore, consumers also depend on understanding causal relations among 

brand-related variables in order to attribute credit or blame for either good or poor 

product or brand performance (Folkes, 1988; Weiner, 2000).  Hence, the fact that 

directional structures within a brand concept network cannot be distinguished beyond the 

level of a group of Markov equivalent structures might be regarded as problematic by a 

consumer who wishes to determine which variables or variable levels to select when 

assembling a consideration set for a particular purchase, or when making an attributional 

determination concerning a particular product or brand. 

If the various directional structures within a Markov equivalence class all 

represented the same set of causal or predictive relationships, then the observational 

indistinguishability of the structures within such an equivalence class would not pose a 

problem.  However, Markov equivalent structures typically do not indicate the same set 

of causal or directed relationships.  For example, both the causal chain A → B → C and 

the common effect A → B ← C are members of the same Markov equivalence class 

(namely the class {A ⊥ C | B}), yet each of these structures will clearly indicate a 

different set of causal relationships between the three brand associations A, B, and C.   

Interestingly however, even though the structures within the same Markov class 

are indistinguishable through observations alone, consumers can actually “peer into” 
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Markov equivalence classes and begin to differentiate among the various constituent 

causal structures by combining observations of these variables with interventions on one 

or more of those variables.  For example, consider the causal chain A → B → C and the 

common-cause structure  A ← B → C.  As argued previously, if we passively observe the 

patterns of co-occurrence of the variables within these structures, the source of variation 

will reside in the exogenous variable in each case, and since each of these exogenous 

variables is either a direct or indirect cause of the other two variables in its respective 

causal structure, then under observational conditions we would simply expect to see all 

three variables in each structure either become jointly activated or remain jointly 

inactivated.  However, if a consumer intervenes to set the level of one or more variables 

rather than letting an exogenous cause generate the chosen activation levels, then that 

consumer should be able to discern one causal structure from another, even in cases 

where the respective causal structures belong to the same Markov equivalence class, and 

hence are observationally indistinguishable from one another.   

 As an example, consider a consumer evaluating a set of products, each of which 

has some probability of possessing three binary attributes A, B, and C.  As we have 

already argued, no amount of observation of different product exemplars will be 

sufficient to guarantee that this consumer can distinguish among the three potential 

generative causal models  (causal chain, diagnostic chain, and common cause) belonging 

to the { A ⊥ C | B } Markov equivalence class.  However, suppose that our consumer 

intervenes upon the causal structure by, for example, considering only those products 

which are known to possess attribute B.  In such a case, rather than allowing exogenous 
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conditions to determine whether or not attribute B is present, the consumer himself has 

set the ‘level’ (or ‘value’) of attribute B to ‘on’.    

 Now consider the effect that this intervention by our consumer has upon the three 

different observationally indistinguishable causal structures belonging to the {A ⊥ C | B} 

Markov equivalence class.  Since the level of attribute B is now established by the choice 

of the consumer, all other causal influences on the value of this attribute are effectively 

eliminated from consideration.  For example, if the true underlying structure were 

actually a causal chain  ( A → B → C ),  then the causal influence  A → B  of attribute A 

upon the value of attribute B is eliminated by this consumer’s intervention to ‘fix’ the 

level of attribute B to ‘on’ (e.g., through refinement of his consideration set to just those 

products known to possess attribute B).  Similar considerations also apply as well when 

considering the effect of such an intervention upon the other members of this equivalence 

class of otherwise observationally indistinguishable causal (or ‘generative’) structures 

that potentially underlie the observed set of interdependencies among product attributes 

A, B, and C.   

 One can, in fact, determine that our consumer’s intervention upon this set of 

observationally indistinguishable generative structures serves to split this single Markov 

equivalence class into three separate equivalence classes, each of which is now 

observationally distinguishable from the others (c.f., Steyvers et al., 2003).  The main 

principle underlying such a transformation is that by fixing the level of an attribute (such 

as attribute B in this case) to a specific level, the consumer is effectively eliminating the 

effects of all other variables that are graphical parents of the intervened-on variable, but 
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is maintaining the causal effect of the intervened-on variable upon all of its graphical 

children (e.g., Pearl, 2000).  For example, in the case of the consumer who fixes the value 

of variable B by considering only those products known to possess attribute B, the single 

Markov equivalence class { A ⊥ C | B } of underlying generative causal structures is split 

into three different causal structures, as shown in Figure 9, below.25 

   
 

 

 

 

 

 

 

 

 

25 An alternate version of this diagram can be found in Steyvers, et al. (2003). 
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Figure 9.   Splitting the equivalence class {A ⊥ C | B} through intervention on B 
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As Figure 9 illustrates, a consumer who intervenes to ‘fix’ the value of variable B 

(for instance by limiting his consideration set to just those products containing attribute 

B) will observe one of three different resulting patterns of dependence.  In the leftmost 

case shown in Figure 9, we are assuming that the member of the Markov equivalence 

class { A ⊥ C | B } which was responsible for the observed correlation among attributes 

A, B, and C is the causal chain structure  A → B → C.  Since the consumer has selected 

only those product exemplars which possess attribute B, the presence or absence of 

variable A no longer plays a causal role in influencing whether or not these exemplars 

will possess attribute B (since they already do possess the attribute).  Therefore, such a 

consumer will observe that attributes B and C tend to occur together, but that attribute A 

occurs with its original exogenously determined frequency which is unrelated to the 

occurrence of attributes B and C.  This would be akin to a consumer who evaluates a 

particular category of products and notices a correlation between the perceived price level 

(high/low), the perceived quality (high/low), and the perceived channel exclusivity 

(high/low) for these products.  Should such a consumer find that upon considering only 

those products perceived to be of high quality, that price is no longer related to channel 

exclusivity, he or she would likely conclude that it was quality all along that had driven 

channel choice, rather than the price itself driving channel choice directly. 

 In a similar manner, should the underlying generative structure in Figure 9 be the 

right-hand causal structure  C → B → A  (the so-called diagnostic reasoning chain), 

intervention by the consumer to fix the level of attribute B would result in attribute B   

co-occurring with attribute A, but attribute C becoming unrelated to the frequency of 
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occurrence of either of these two other variables.  On the other hand, should the 

underlying causal model actually be the common-cause structure shown in the middle of 

Figure 9, intervention to select only products possessing attribute B would not make any 

change to the observed relationships among these three variables.  The occurrence of 

variable B will still drive the occurrence of both attribute A and attribute C, and since 

attribute B is the exogenous variable in this causal system, all three attributes will tend to 

occur together.   

In terms of the previously discussed consumer who is evaluating a particular class 

of products and who believes there to be a correlation between the price level, the quality, 

and the channel exclusivity for these products, his or her intervention upon this product 

category through considering only those products containing attribute B (high quality) 

would, in the case of the common-cause structure shown in the middle of Figure 9, still 

result in all three attributes (price, quality, exclusivity) occurring together.  Since 

restricting the value of the ‘quality’ attribute to ‘on’ has not disturbed the rates of co-

occurrence of the different variable pairs in this system, such a consumer would likely 

conclude that the intervened-upon variable ‘product quality’ was a common cause of the 

other observed variables rather than being an effect of either one of them.  After all, if a 

variable (such as variable B in the causal structures in Figure 9) were an effect of one or 

more other variables (such as variables A or C for instance), then fixing the level of 

variable B should indeed serve to break the dependence of variable B upon the values of 

those supposed causes.   

59 
 



 Interestingly, consumers do not necessarily have to actually perform interventions 

such as this, which serve to ‘fix’ the values of particular variables or attributes at certain 

levels, in order to reason about their likely effects.  Rather, such reasoning on the part of 

consumers can be counterfactual in nature (McGill, 2000).  For instance, a consumer in 

the previous example would not necessarily need to purchase items for which the value of 

attribute ‘B’ (high quality) is set to ‘on’ in order to reason about the likely effect of such a 

restriction.  Rather, he or she can merely consider what would happen if such a restriction 

were to be made (Krishnamurthy and Sivaraman, 2002).  In fact, consumer theorizing and 

fantasizing about the potential effects of various consumption choices is an important 

determinant of consumer preference and satisfaction (Holbrook and Hirschman, 1982), 

and more generally, counterfactual thinking is known to be a core component of normal 

cognitive and social functioning (Summerville and Roese, 2008). 

 Counterfactual reasoning can be considered as a form of “guided thought 

experiment” in which events that are potential causes of other events are mentally 

negated (Kahnemann & Tversky, 1982; Klayman & Ha, 1987)) or mentally enacted or 

‘set’ to specific values (Dunning & Parpal, 1989;  Markman et al., 2007) and the effect of 

this intervention on other causally related variables is assessed.  We can utilize such 

counterfactual manipulations to mentally “test” which possible causal structures from 

among a group of observationally equivalent models is the most plausible based on the 

data or our general knowledge and beliefs about the causal domain (Woodward, 2003).  

The notion of testing which directional structure from within a class of 

observationally equivalent structures is likely responsible for generating a set of 
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observations quite closely parallels the differences between observational findings and 

experimental findings within the process of normal scientific investigation (Woodward, 

2007).   Specifically, within an observational study, one can only ascertain that certain 

values of one event or variable tend to occur within the same datum as certain values of 

another event or variable, i.e., a correlational finding.  In order to make the claim that 

manipulation of an independent variable will affect a specific dependent variable, one 

must intervene on that structure (Babbie, 1998).   

More specifically, in a controlled scientific intervention, one changes the 

independent variable from value x to value y, but all other relationships are kept intact.  

On the other hand, in a correlational study, one does not know what other changes are 

occurring in the system, and therefore one does not have license to make the 

counterfactual assertion that had the independent variable not changed from value x  to 

value y, the dependent variable would not have changed from a to b.  In other words, 

whereas a correlational finding allows us to say what we observed happening in an 

undisturbed system, a causal finding allows us to make counterfactual claims about what 

would and would not happen among several different possible scenarios that differ from 

one another in specific and known ways (Hunt 1991: 112).  As Roese & Olson (1996) 

summarize the matter, “asserting that the addition or deletion of antecedent X ‘undoes’ 

outcome Y leads to the causal attribution that X caused Y.”       

Within the consumer behavior literature, Hoch and Ha (1986) point out that 

consumers treat informational claims in the marketplace as tentative hypotheses about 

specific products, brands, and services, and then make purchase and usage choices which 
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act as specific tests of these hypotheses.  Hoch and Deighton (1989) add that consumers 

actively construct hypotheses as sets of  “ ‘if p then q’ condition-action rules” created 

through the processes of abduction and generalization, and then inductively strengthened 

through subsequent product experience.  Eisenstein and Hutchinson (2006) describe such 

experiential market-based learning as “action-based” learning, which is the result of 

“repeatedly making decisions about concrete actions and then observing the outcomes.”   

Furthermore, as argued by Lagnado et al. (2007), the fact that interventions are freely-

chosen human actions allows individuals to create a quasi-experimental conditions since 

such freely-chosen human actions are essentially an intuitive means for individuals to 

remove or reduce confounds.  Even more generally, as Lagnado and Sloman (2004) state,  

We are continually conducting informal experiments of our own to learn about the 

world around us.  We remove items from our diet to see what is making us 

unhealthy or overweight, we tinker with new software programs to see what does 

what, we experiment with different ingredients in search of a tasty meal.   

(Lagnado and Sloman, 2004, p. 856) 

Hence individual decision makers also manipulate their environment in an attempt to 

determine which choices lead to which outcomes, and thus which member of a set of 

observationally indistinguishable causal structures is the most likely generative 

mechanism that is operative within a product or brand domain.  We are all informal 

scientists in this respect. 

 Furthermore, since the determination of causal structure is so paramount for 

consumers’ understanding and decision-making processes (Folkes, 1988; Weiner, 2000), 
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it stands to reason that any structures which can regulate or determine when consumers 

will require the use of interventional reasoning in order to ascertain needed facts about a 

market will be of paramount importance.  Clearly, the notion of when various market 

configurations are observationally (or correlationally) indistinguishable from one another 

is such a critical construct, since this will determine when consumers are most likely to 

intervene and make choices in a market.  As we have seen, observationally or 

correlationally indistinguishable structures are known as Markov equivalent structures, 

and hence the Markov equivalence construct provides an essential framework for 

understanding both the rationale and intended content of consumers’ marketplace 

interventions. 

 

2.2    Bayesian Networks and the Screening-Off Condition 

 Our main goal in this thesis is to determine an appropriate directional semantics 

for understanding consumers’ brand constructs.  Hence it will be quite useful to place 

some fairly commonsense limits on the types of directed structures which we will utilize 

to model such marketing-related phenomena.  Specifically, in this thesis we will limit our 

modeling focus to the most widely-used category of directed structures, namely the 

category of Bayesian networks. 

As defined by Pearl (1988), a Bayesian network is a directional model in which 

each node represents a variable from the domain being modeled, and the links between 
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nodes represent directional influences between the variables connected by that link.26  In 

addition, a Bayesian network must possess the following three regularity properties: 

(1) The graphical structure must not contain any directed ‘cycles’ (i.e., it contains no 

‘infinite loops’). This condition is meant to insure that there is a clear flow of 

information among the variables within the domain, and information never gets 

‘trapped’ inside an infinite regress or continual ‘loop’.  Directed graphical 

structures with no such infinitely repeating loops are called Directed Acyclic 

Graphs (or DAG’s for short).  Hence this condition can be summarized by saying 

that a Bayesian network must have a DAG structure. 

(2) Within a Bayesian network graphical structure, the immediate graphical ‘parents’ 

of a variable must be capable of rendering that variable independent of all other 

variables besides its effects (or graphical “children”).  This condition is generally 

known as the causal Markov condition (Pearl, 1988), or the screening-off 

condition (Sloman, 2005).  Hence, under this condition, once the state of a 

variable’s parents is known, the only remaining way to affect the state of that 

variable is through diagnostic reasoning ‘backwards’ from its effects, or graphical 

‘children’.  Therefore, under this condition, we are able to avoid having to reason 

through lengthy chains of indirect causal influences in order to determine the 

value of a particular variable (Sloman, 2005).   

26 Some authors also require that the network parameters of the form P(Xi | pa(Xi))  also be fully specified.  
In other words, there is both a qualitative component of a Bayesian network which consists of that 
network’s overall topology and directional structure, and a quantitative component which consists of the 
resulting conditional distributions at each node of that network (e.g., Pearl, 1988). 
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(3) All probabilistic independencies that exist among the variables in the causal graph 

must be the result of the structure of the connections among the variables in the 

graph, and not due to any unusual (or “unstable”) coincidences of the various 

marginal and conditional probabilities involved.  Formally, this condition is 

known as causal faithfulness, and it is meant to rule out “accidental” 

independencies, such as would be the case, for instance, if two different causal 

pathways with precisely opposite weights connected two variables A and B within 

a causal model, so that the effects of the two different causal pathways exactly 

cancel each other out.  Such an apparent independence between A and B would 

merely be the result of a coincidental (and unstable) set of parameter values, and 

hence would not be the result of an application of the causal Markov condition to 

the structure of the corresponding causal graph.  Such coincidental and unstable 

arrangements are precisely what the faithfulness condition guards against.  In this 

sense, the faithfulness condition simply reflects people’s natural desire to base 

their perceptions of a domain upon stable generative mechanisms rather than upon 

rare numerical coincidences (Sloman, 2005). 

From a consumer modeling standpoint, the most important of these three 

properties is the causal Markov condition, since this property delineates precisely why a 

Bayesian network forms a much more cognitively efficient model of human reasoning 

within probabilistic domains as compared to an undirected graphical model of that same 

domain.  For instance, consider a set of variables X = {V1, V2, . . . , Vn}, where n may be 

a fairly large number if this domain is reasonably large.  In general the joint probability 
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distribution P(X) of this set of variables would need to be expressed using the chain rule 

of probability as:   

P(X)  =  P(Vn | V1, V2, . . . , Vn-1) P(Vn-1 | V1, V2, . . . , Vn-2)  · · ·  P(V2 | V1) P(V1) (4) 
 

Even in the ‘best case scenario’ in which each variable in this domain is binary, such a 

computation would still require an immense number of probabilities to be estimated from 

the data, and it is difficult to imagine a typical consumer being able to cognitively 

manage such a computation at all, much less within the time frame allotted to typical 

shopping decisions involving domain variables such as these.  On the other hand, if these 

variables exist within a Bayesian network representation of the domain, then due to the 

causal Markov condition, the overall probability distribution P(X) can simply be 

expressed as  P(X) =  ∏ P( Vi | pa(Vi) )𝑛𝑛
𝑖𝑖=1 , where pa(Vi) denotes the graphical ‘parents’ 

(i.e., the immediate graphical ancestors) of variable Vi within the Bayesian network 

representation (Pearl, 1988; Lauritzen, 1999; Koller and Friedman, 2009).   

For example, consider the Bayesian network example given in Figure 10. 27    

Even in the ‘best’ case, in which all fourteen variables are binary, computation of the   

full joint probability distribution in this domain would require over 16,000 probabilities 

to be estimated (and the problem gets exponentially worse if one or more of the variables 

involved contains more than just two possible values).  In fact, by the chain rule of 

27 Note that even though there is a ‘loop’ structure in this network configuration, the directions within the 
loop do not allow one to ‘cycle around’ forever.  Hence this loop structure is not a directed cycle, and 
therefore this structure is a directed acyclic graph (or DAG). 
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probability, the full expression for the probability distribution P(X) for this entire joint 

density would take the form: 

P(M|A,B,C,D,E,F,G,H,I,J,K,L) P(L|A,B,C,D,E,F,G,H,I,J,K) · · · P(B|A) P(A)        (5) 

However, by employing the causal Markov condition within this Bayesian 

network representation, we can reduce this enormous multivariate density containing 

over 16,000 parameters to a simple product of very small local distributions, each of 

which typically involves just a few variables and a correspondingly small number of 

parameters.  For example, since variable M has only one graphical parent, we do not need 

to condition its distribution on all 13 remaining variables (as is done in the first factor in 

Equation 5).  Rather, we can simply condition variable M on its single graphical parent, 

variable K.  Similar reductions are possible throughout this Bayesian network.  In fact, by 

using the causal Markov property, one can reduce the massive probability density 

expression in Equation 5 to the much simpler expression given in Equation 6 (in which 

we have omitted the symbol “P” in front of each argument for compactness sake). 

(A) (B|A) (C|B) (D|C) (E|C) (F|B,D) (G|F) (H|G) (I|H) (J) (K|G,J) (L|J) (M|K) (N|I)      (6) 

 

 

Figure 10.   Bayesian network example with 14 variables 
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Note that the reduction of the full density expression of Equation 5 to the much 

simpler representation of Equation 6 is possible because the Bayesian network 

representation replaces each global factor in the full expression by a much more compact 

local factor.  This is achieved because the Markov condition in a Bayesian network 

enables the parent nodes of a variable to render that child node independent of the effects 

of any of its nondescendant nodes (including additional ‘ancestor’ nodes which lead to 

that child node’s parents), and hence the only knowledge that is necessary to specify the 

distribution of a node within a Bayesian network is the conditional distribution of that 

node given the various states of its direct parent nodes, along with the state of those 

parent nodes.  Complex, global factors become reduced to simple, local factors defined 

over far fewer nodes.  For example, whereas a direct determination of the full joint 

distribution over the 14 variables shown in Figure 10 would require specification of over 

16,000 parameters (even in the ‘best case’ scenario of completely binary variables), the 

causal Markov condition applied to the corresponding Bayesian network allows us to 

reduce this number to merely 30 parameters required to fully specify the joint 

distribution.   

 Now consider the reasoning task required of a consumer scanning the myriad 

products available in a typical supermarket trip, for instance.  As commented before, such 

a consumer routinely encounters tens of thousands of products in a typical shopping 

exercise such as this (Broniarczyk, 2006), and hence an undirected and/or minimally 

structured cognitive framework that represents the various brands, products, and related 

characteristics involved in a shopping scenario such as this would almost certainly be 
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beyond the ability of any consumer to fully comprehend.  Hence a natural question to ask 

is whether such a consumer could potentially employ a similar complexity-reduction 

strategy to that utilized within a Bayesian network in order to effectively reduce this 

incomprehensibly large set of product and attribute combinations to a manageable and 

much more cognitively tractable structure.    

Clearly, a consumer is unlikely to derive and parameterize a Bayesian network.  

However, consider the fact that the operative principle which enables a Bayesian network 

to drastically simplify the representation of a domain is that of conditional independence.  

For instance, when a Bayesian network representation reduces a complex global set of 

factors to a much simpler set of local factors computed over a far smaller set of nodes, 

such a reduction is afforded by the ability of the graphical parents of a node to render 

their child node conditionally independent of all other nodes which are not descendants 

of that child node in question. 

Interestingly, human reasoners do routinely utilize an intuitive cognitive analog of 

the conditional independence relation: namely the principle of conditional irrelevance.  

This principle allows a reasoner to decide that knowledge of the state of one or more 

variables is sufficient to allow other variables to be effectively ignored (or severely 

discounted in importance).  For instance, consider the following example described by 

Pearl (1988): 

A person who is reluctant to estimate the probability of being burglarized the next 

day or of having a nuclear war within five years can nevertheless state with ease 

whether the two events are dependent, namely, whether knowing the truth of one 
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proposition will alter the belief in the other.  Likewise, people tend to judge the 

three-place relationship of conditional dependency (i.e., X influences Y, given Z) 

with clarity, conviction, and consistency.  For example, knowing the time of the 

last pickup from a bus stop is undeniably relevant for assessing how long we must 

wait for the next bus.  However, once we learn the whereabouts of the next bus, 

the previous knowledge no longer provides useful information.                        

(Pearl, 1988, p. 79) 

In this example, the time of the last pickup and the time of the next pickup are 

certainly correlated variables: knowing that the last pickup was recent reduces the 

probability that the next bus will arrive soon.  However, once we learn the location of the 

next bus, the variable “time of last pickup” no longer influences the variable “time of 

next pickup”.  Stated another way, these two variables have become conditionally 

independent given this additional piece of knowledge.  Statistically, this conditional 

irrelevance relationship is:  𝑖𝑖𝑟𝑟𝑥𝑥𝑎𝑎 𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 ⫫  𝑝𝑝𝑟𝑟𝑟𝑟𝑎𝑎𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝 𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝  |  𝑟𝑟𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑝𝑝𝑖𝑖 𝑝𝑝𝑜𝑜 𝑖𝑖𝑟𝑟𝑥𝑥𝑎𝑎 𝑖𝑖𝑝𝑝𝑝𝑝.   

Similarly, in a marketing context, a consumer might believe that the price of a 

product and the level of quality of that product are correlated, but become independent 

once we know that the product comes from a specific brand.  For instance, such a 

consumer might think that generally, the more expensive an automobile is, the higher 

quality it is likely to have.  However, this consumer might also believe that once he or 

she knows the car is a BMW, then price no longer determines quality for this car because 

he or she feels that all BMW automobiles are of high quality, and within the BMW brand, 

higher price just buys more features but not additional quality.  Hence, the brand concept 
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map for such a consumer should contain the conditional independence property:   

𝑝𝑝𝑟𝑟𝑖𝑖𝑎𝑎𝑟𝑟 ⫫  𝑞𝑞𝑝𝑝𝑎𝑎𝑟𝑟𝑖𝑖𝑎𝑎𝑦𝑦  |  𝐵𝐵𝐵𝐵𝐵𝐵. 

At an even more basic level, consider the simple act of ignoring certain product or 

brand attributes altogether.  For example, some types of consumers tend to ignore 

packaging differences among products.  However, rather than being a unary relation of 

the form “packaging is irrelevant”, this phenomenon may actually be a trinary relation of 

the form “given the product’s ingredients, the packaging becomes irrelevant to the 

expected performance of the product.” 28  In more generality, if some product or brand 

feature is considered irrelevant by a consumer, it must be irrelevant to something, i.e., 

irrelevant to some particular desired state that the consumer is seeking with regards to 

that product.  However, even a feature that is considered irrelevant by the consumer is 

still associated with that product or brand in some manner (since otherwise it would not 

be considered a brand or product feature, irrelevant or otherwise).  Hence such a feature 

could, in theory, have some relevance to that desired state or end goal.  It is merely that 

some other product or brand feature provides enough of a clue to that desired state or end 

goal to render any additional clues irrelevant in the mind of the consumer.29, 30   

28 After all, if the ingredients were completely unknown, then aspects of the packaging might become a 
secondary source of clues about the product’s intended positioning or functioning. 

29 In fact, this conditional irrelevance construct (i.e., aspect x is irrelevant to goal y in the presence of 
another aspect z) may be so innate or so deeply embedded within the means by which we cognitively 
deal with large consumption domains that we typically take it for granted that a feature that is considered 
irrelevant is relegated to such irrelevance by the presence of other features which are more indicative 
(either predictively or diagnostically) of the desired goal being sought with such a product or brand. 

30 It could be that some product or brand features are truly irrelevant ab initio.  However, we maintain that a 
significant number of product or brand features may be irrelevant to a desired state or end goal because 
the presence of some other product or brand feature renders them irrelevant.  Hence, the delineation of 
how the conditional irrelevance construct interacts with other aspects of consumers’ brand concepts may 
offer a valuable contribution to the understanding of the motivations and decision-making apparatus that 
drive consumption decisions. 
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In conclusion, what we have argued for here is the notion that the same ‘screening 

off’ process that allows a Bayesian network model of a consumption domain to reduce a 

set of complex global factors to a much simpler set of small, local factors, thereby 

rendering the joint density of those marketplace variables much more readily computable 

is precisely the same construct that allows consumers to ‘screen off’ many product or 

brand characteristics, thereby rendering a massively complex consumption domain 

cognitively tractable.  Thus, we are arguing that the relation which a statistician terms 

conditional independence is also conceived of by consumers in a more innate fashion as 

simply ‘conditional irrelevance’, i.e., the notion that knowing some brand or product 

characteristics renders many other such characteristics irrelevant to the main goals being 

sought through that product’s consideration or purchase. 

 

2.3   Variable Separation Within Directed Structures 

 As we have seen in the preceding sections, the information semantics within a 

directed network are quite different than they are within an undirected network.  For 

instance, the directions of the links in a Bayesian network representation of a domain 

entail specific conditional and marginal independence properties among those domain 

variables.  Since the property of conditional independence is a three-place relation             

(i.e., X is independent of Y given Z), these conditional and marginal independence 

properties are graphically encoded within several basic three-variable directed structures 

that exist within a Bayesian network, namely the causal chain (𝐴𝐴 → 𝐵𝐵 → 𝐶𝐶), the 

diagnostic chain (𝐴𝐴 ← 𝐵𝐵 ← 𝐶𝐶), the common-cause structure (𝐴𝐴 ← 𝐵𝐵 → 𝐶𝐶), and the 
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common-effect (or ‘collider’) structure (𝐴𝐴 → 𝐵𝐵 ← 𝐶𝐶).  However, once we assemble these 

more basic structures into a larger-scale Bayesian network model, the various conditional 

and marginal independence properties represented by these basic structures can interact 

in more complex ways, making it difficult to judge specifically when one variable or set 

of variables can probabilistically “shield” one group of product or brand associations 

from the effects of the other such associations.  In order to determine the resulting 

independence properties of the resulting structure, there must be a single criterion which 

can determine when two variables (or sets of variables) anywhere in the network are 

probabilistically separated from one another.31  Such a criterion is known as the directed 

separation principle (or “d-separation” for short), e.g., Pearl (1988; 1990).   

To understand the d-separation principle, recall that for a chain connection (either 

a causal chain or a diagnostic chain), information propagation becomes blocked if we 

observe (or set) the value of the central variable in the chain.  Also recall that for a 

common cause structure (𝐴𝐴 ← 𝐵𝐵 → 𝐶𝐶), information propagation is also ‘blocked’ by 

knowledge of the value of the central variable in the connection.  However, within a 

convergent connection (i.e., a common effect structure, or ‘unshielded collider’, such as  

𝐴𝐴 → 𝐵𝐵 ← 𝐶𝐶 ), information propagation is facilitated by knowledge of the value or 

distribution of the central variable, but is blocked when the value or distribution of the 

central variable is not known.  Based on these principles, we can elucidate a global 

criterion which can determine when two variables or sets of variables anywhere in the 

31 Note that if two variables (or sets of variables) are probabilistically separated from one another, then they 
are conditionally independent given the values of the variables which separate them.  Thus, this 
separation criterion can also be referred to by the conditional independence properties that it 
encompasses. 
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network are probabilistically separated (and hence are conditionally independent).  This 

directed separation (or ‘d-separation’) principle can be stated as follows (Korb and 

Nicholson, 2004): 

d-separation principle 32 : 

Given variables X and Y, along with a set of variables Z disjoint from both X and 

Y, the variables X and Y are d-separated given Z if and only if all paths Φ between 

X and Y are “cut” by one or more of the following graph-theoretic conditions: 

1.     Φ contains a chain  A → B → C  or  A ← B ← C  such that  B∈Z. 

2.     Φ contains a common-cause connection  A ← B → C  such that B∈Z. 

3.     Φ contains an unshielded collider (or ‘immorality’)  A → B ← C  such that 

neither B nor any of B’s descendants is in Z. 

Note that these three conditions are essentially just formalizations of the separation 

properties which we have previously discussed for the four different types of directed 

triples that can exist within a Bayesian network.  For example, Conditions (1) and (2) 

merely state that if a path between variables X and Y contains a subgraph that is isomorphic 

to either a causal chain, a diagnostic chain, or a common cause structure in which the 

central variable belongs to the putative separating set Z, then that separating set Z is 

capable of blocking information transmission along this path.  Similarly, Condition (3) 

states that if a path between variables X and Y contains a subgraph that is isomorphic to an 

32 There are several equivalent statements of the d-separation criterion, as well as an alternative means of 
detecting conditional probabilistic independence, termed the directed global Markov condition.  A more 
complete discussion of these various additional methods for determining when information propagation 
between two groups of variables is blocked can be found in the Appendix. 
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unshielded common effect structure, then the lack of an observation of the value of the 

central variable in this structure or any of its descendants can block information 

transmission along this path.   

What is truly interesting about the d-separation principle is that by formalizing 

these earlier observations about the separation properties engendered by each of the 

different three-variable directed substructures, this principle allows one to formalize the 

relation between the topological properties of the graph and the properties of those 

probability distributions which describe the conditional and marginal probabilities at each 

node of that graph.  Specifically, it can be shown (e.g., Verma and Pearl, 1988; Pearl, 

Geiger, and Verma, 1989; Geiger and Pearl, 1990; Pearl, 2000) that if a probability 

distribution over the variables in a particular Bayesian network generates conditional and 

marginal probability values at each node which satisfy the causal Markov condition with 

respect to that network, then the relation between conditional independence and the              

d-separation property within that network is both sound and complete: every d-separation 

in the network will represent a true conditional independency within that probability 

distribution, and every conditional independency in that distribution will be identified by 

the d-separation principle as applied to that network. 

Another interesting fact related to directed separation within Bayesian network 

models is that due to the probabilistic differences between directed and undirected 

structures, d-separation and ‘regular’ (i.e., ‘undirected’) graphical separation do not always 

coincide.  For instance, looking at the sample Bayesian network of Figure 10, it turns out 

that despite “appearing” like a separator of sorts, variable 𝐾𝐾 does not actually d-separate 
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variable 𝐺𝐺 from variable 𝐽𝐽, since variable 𝐾𝐾 occurs in an unshielded collider (or common 

effect) configuration, and hence knowledge of variable 𝐾𝐾 will actually facilitate 

information propagation between variable 𝐺𝐺 and variable 𝐽𝐽.  On the other hand, variable 𝐾𝐾 

does d-separate variable 𝐺𝐺 and variable 𝐵𝐵, since the single path from 𝐺𝐺 to 𝐵𝐵 (namely the 

pathway 𝐺𝐺 → 𝐾𝐾 → 𝐵𝐵) is a causal chain, and as such, would be blocked by knowledge of 

the value of variable 𝐾𝐾.  Additionally, one can say that variables 𝐺𝐺 and 𝐽𝐽 are 

unconditionally d-separated (i.e., d-separated given ∅) since without knowledge of the 

value of the collider at variable 𝐾𝐾, there would be no way for 𝐺𝐺 and 𝐽𝐽 to probabilistically 

communicate.   

Within a marketing domain, such considerations can be quite relevant because they 

provide practical guidelines for dealing with the introduction of directionality into 

otherwise undirected models.  For instance, consider a situation in which a firm’s product 

or brand has a set of established associations, and there is an additional influence on 

several of those variables (e.g., from a competing firm’s actions, etc.) which the firm 

wishes to curtail.  If this collection of brand associations is considered as an undirected 

network (such as would be the case via utilizing a modeling procedure such as the BCM) 

one might end up with a model such as that shown in the left panel of Figure 11.  Within 

this model, let us assume that brand association B is a strategically central association that 

the firm wishes to protect, but which is not easily manipulable.  Based on this undirected 

model, the firm’s strategy seems simple: by fixing the values of attributes A and C, one 

would presumably block the ability for information from association E to enter this 

reasoning chain and influence variable B.   
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However, if the underlying model is a directed one (in which reasoning in one 

direction is predictive and reasoning in the opposite direction is diagnostic in nature), then 

the situation would actually be more appropriately modeled by the diagram shown in the 

right panel of Figure 11.  In this case, fixing the values of attributes A and C would not 

serve to d-separate the strategically critical association B from the new association E.  In 

fact, if the firm responded to this threat by fixing the values of attributes A and C, they 

would actually be creating a situation where attribute E and attribute B can become 

probabilistically related through the collider structure at attribute C.  In a competitive 

situation such as this, the firm’s best strategy would be to fix the value of just brand 

association A, and to try to make the value of brand association C (as well as any of its 

descendants, such as association D, etc.) as vague as possible in the mind of the consumer. 

  

Figure 11.    Directed and undirected models of a brand association scenario 
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2.4    Markov Equivalence and Causal Variation 

 Now that we have introduced the definition of a Bayesian network as a specific 

form of directed network that possesses certain regularity properties, and we have 

examined the associated constructs of directed separation between variables and the 

screening-off (or conditional irrelevance) property, we can apply these concepts to the 

elucidation of some truly novel and quite surprising marketing-related ramifications of 

the Markov (i.e., observational) equivalence of brand concept structures.    

To begin with, there is a surprising set of criteria for determining precisely when 

two or more directed structures are Markov equivalent (i.e., when the structures encode 

the same set of conditional dependencies and independencies).  To describe these criteria, 

we make the following two definitions: first, we define the skeleton of a Bayesian 

network to be the undirected structure that represents the link topology, with all notions 

of directionality removed.  (In other words, the skeleton of a directed network structure is 

the undirected analog of that directed structure.)  Secondly, we must single out one 

particular form of directed link configuration: a common-effect structure in which the 

two “parent” variables (or “causes”) of the common effect are not themselves directly 

connected to one another.  Such a configuration is often called an immorality within the 

Bayes net literature (since within such a structure, the two “parents” of the common 

effect, or “child”, are “unmarried”).33    

33 Such a structure is sometimes also given the more prosaic name “uncovered collider or “v-structure”. 
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With these two definitions, we can now state the following criteria for Markov 

equivalence. 

Verma-Pearl Criteria for Markov Equivalence: 

Two directed acyclic graphs (DAG’s) will be Markov equivalent if and only if 

they have the same skeleton, and the same set of immoralities.                                     

(Verma and Pearl, 1990, p. 224) 

To illustrate the usefulness of the Verma-Pearl criteria for Markov equivalence, 

let us apply them to a realistic example of a consumer belief structure.  For this purpose, 

consider the expository belief structure for Trader Joe’s cereal shown in Figure 12, 

below.  In this case, there is one core product (Trader Joe’s cereal) and four brand 

associations.   

 
 
 
 Figure 12.   Sample Bayesian network for Trader Joe’s cereal 
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Applying the Verma-Pearl criteria for Markov equivalence to this sample network 

reveals that there are in fact a set of three additional Bayesian networks that are Markov 

equivalent to the original network of Figure 12.  The full set of Markov equivalent 

structures is shown in Figure 13, below.34  

 

  

(a) (b) 

  

(c) (d) 

Figure 13.   Markov equivalent Bayesian network-based brand concept maps  

34 For reasons of compactness, we are using the abbreviations for each variable within these networks.  
Please refer to Figure 18 for a complete listing of the full name for each of these variables. 
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 Interestingly, according to the Verma-Pearl criteria, the networks in panels (b), 

(c), and (d) of Figure 13 are the only networks that are Markov equivalent to the original 

network (which is also shown in panel (a) of Figure 13 for ease of reference).  In other 

words, one cannot simply ‘choose’ to reverse the direction of a link within the original 

network or any of these variants.  One can check that doing so would either create an 

immorality (i.e., an uncovered collider structure) that did not exist before, or remove an 

immorality that already existed in the original network.  Either of these outcomes would 

alter the conditional dependence and independence properties of the network, causing the 

resulting structure to contain a different set of conditional dependencies and 

independencies from what is supported by the data that generated the original Bayesian 

network representation of that domain.   

 For example, note that the original network (panel (a) of Figure 13) contains 

precisely one immorality, namely the uncovered collider at variable ‘H’ (“Healthy”).  

One can check that each of the other three Markov equivalent structures also contain 

precisely the same immorality.  Further, one can also verify that changing any other link 

besides the ones that have already been altered to create the structures in panels (b), (c), 

and (d) of Figure 19 would indeed either destroy the uncovered collider at ‘H’, or create 

additional uncovered colliders that were not present in the original structure.  As 

discussed above, such a result would cause the new structure to possess different 

conditional dependence and independence properties from what would be supported by 

the data. 
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 As discussed earlier, since all four structures shown in Figure 13 are Markov 

equivalent, no set of purely observational (i.e., correlational) data will be sufficient to 

discern any one of these structures from any of the others.  If one of these structures is 

capable of generating a given set of empirical (correlational) data, then the other three 

structures in this Markov class are equally capable of generating the same set of empirical 

data. 

Interestingly, despite these various structures being observationally equivalent, 

each can be thought of as representing a different possible causal thought-world for the 

consumers holding that structure.  For instance, the consumers holding structure 13(a) as 

their belief network for this product can be said to be “Trader Joe’s centric”.  In other 

words, for these consumers, the fact that a cereal is a Trader Joe’s product plays the 

central role, and the consumer derives all the other properties from this fact.  On the other 

hand, consumers with the belief structure shown in Figure 13(b) are “organic-centric”.  

For these consumers, the fact that the cereal is an organic product plays the core role, and 

other facets of the product (such as the fact that it is a Trader Joe’s brand) play a 

secondary role to the organic nature of the product.  Similarly, those consumers holding 

the belief network of Figure 13(c) are “environmental-centric”, while those in Figure 

13(d) are “whole grain centric”.   

In terms of potential marketing strategy, note that despite the fact that each of 

these four structures has the same associative network (i.e., the same undirected link 

topology, or “skeleton”), each represents a fundamentally different way of viewing the 

causal nature of the variables within this market.  Due to these differences in how these 
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consumers view what causes what within this market, the individuals within each such 

causal micro-structure are apt to respond completely differently to most marketplace 

manipulations and promotional efforts as compared to consumers holding any of the 

other causal micro-structures within this set of observationally equivalent causal 

structures.   

Furthermore, note that if the original network (panel (a) of Figure 13) is the 

structure which is derived from a reliable set of data, then the Verma-Pearl criteria show 

that the three additional causal thought-world variants shown in panels (b), (c), and (d) of 

Figure 13 are the only such variants that could exist and still be supported by the 

collected data.  In other words, the principle of Markov equivalence, coupled with the 

very powerful Verma-Pearl criteria, reveals precisely which cognitive variations can exist 

based on a given set of data, and further, these criteria rule out any other such variants of 

these cognitive structures. 

It is important to note that were we to consider a purely associative structure (i.e., 

in which variables become associated, or graphically linked, if there is some appreciable 

correlation between them, but no directionality is assumed for any of the associations), 

then all four of these directional variants would collapse into the same exact associative 

structure, namely the common undirected “skeleton” underlying this general link 

connection pattern, or topology.  In other words, a non-directional technique (such as the 

BCM technique as it currently exists) would simply coalesce all of these different 

directional variants into one undirected structure.  Therefore, by treating the network as 

an undirected structure, the potential structural (and hence cognitive) differentiation that 
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is revealed by directional models of this brand concept would be lost, and would be 

replaced by a potentially less informative structure which would not reveal that several 

different causal configurations can co-exist within the data (and just as importantly, that 

any other such causal configurations would not be supported by the same collected data). 

If one further analyzes the collection of Markov equivalent cognitive variants that 

can co-exist within a directional model of a brand concept network, it becomes apparent 

that the direction of certain links is ‘fixed’ (or ‘protected’) because reversing such a link 

would either create a new uncovered collider structure that is not supported by the data, 

or would destroy an existing uncovered collider that is supported by the data.  For 

instance, in all of the cognitive causal variants of the Trader Joe’s network in Figure 13, 

both of the links leading to the brand association “Healthy” are directionally protected 

since reversing either of them would destroy the uncovered collider at “H” (and in some 

cases, might even create an additional uncovered collider that is not supported by the 

data).  On the other hand, many of the other links in the structures shown in Figure 13 are 

reversible, in the sense that their reversal merely creates an alternative causal structure 

that is observationally equivalent to the original structure (i.e., both the original structure 

and the version that includes the directional reversals would possess the same sets of 

conditional dependencies and independencies, and hence would be Markov equivalent).   

Since the cognitive ramifications of a reversible versus a non-reversible link are 

so profound, it becomes important to be able to ‘summarize’ those structural links which 

are known to be fixed within all variants belonging to a particular Markov equivalence 

class, and distinguish them from those structural links are known to be variable within 
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that same Markov class.  Such a summarization process can be accomplished by creating 

what is known as an essential graph for that Markov equivalence class (e.g., Pearl, 2000). 

Within the essential graph of a Markov equivalence class, every link which is 

directionally stable is shown with that stable directional orientation, and every link which 

can still be directionally varied while still maintaining the same overall independence 

properties within that structure (i.e., while still being capable of generating the same set 

of observed correlations) is shown as an undirected link.  In this manner, the essential 

graph for a given Markov equivalence class becomes the standard representative for that 

class, in that it indicates all of the essential features shared by each causal structure within 

that class, as well as illustrating the features which are still underdetermined, or variable, 

within that class. 

 Given a causal graph  𝐺𝐺, it is typical to use the notation [ 𝐺𝐺 ] to indicate the 

collection of all causal structures which are Markov equivalent to 𝐺𝐺 and to use the 

symbol 𝐺𝐺∗ refer to the essential graph for [ 𝐺𝐺 ] (Koller and Friedman, 2009).  For 

illustration, the essential graph  𝐺𝐺∗ for the Markov equivalence class of cognitive causal 

variants [ 𝐺𝐺 ] for the Trader Joe’s network is shown in Figure 14.  (For ease of reference, 

we have included both the original directed network G and the essential graph G* in this 

diagram.)  Thus we see that a directional technique such as Bayesian network analysis 

coupled with the Verma-Pearl Markov equivalence criteria is also capable of generating 

non-directed links (such as those shown in the structure 𝐺𝐺∗ of Figure 14), but does so 

very carefully, i.e., by first showing that both directions of a particular link can co-exist 

in the structure without altering the conditional independence properties in the data. 
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original causal graph  𝐺𝐺 essential graph  𝐺𝐺∗ 

Figure 14.   Original causal structure 𝐺𝐺 from Figure 13 (left panel), and the essential 

graph 𝐺𝐺∗ for the Markov equivalence class [ 𝐺𝐺 ] generated by 𝐺𝐺 (right panel). 

 

Based on this essential graph for the equivalence class generated by the original 

causal structure 𝐺𝐺, we can see that the observational data which gave rise to 𝐺𝐺 is 

sufficient to “lock in” two of the directional links in the causal structure which represents 

that data set.  On the other hand, we can see that the remaining three links can be oriented 

in either direction and still generate a directional structure which can explain the 

observed data.  Based on this representation, for instance, a brand manager for the TJ’s 

brand would have to be careful to note that the only causal directions that are “locked in” 

by the type of observational data that is available for customers to use in formulating 

their cognitive structures for these brand associations are the links from Organic to 

Healthy and from Whole Wheat to Healthy.  All of the remaining causal directions within 

the network exist in both directions (within different permissible causal variations of the 

basic structure), and hence these are the links which the manager will likely find are more 

easily manipulable (both by the TJ’s brand as well as by its competitors). 
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3.   Computational Aspects of Bayesian Network Models 

3.1    Bayesian Network Structural Estimation Procedures 

 Given that the main use of a Bayesian network model of a brand concept network 

is to understand consumers’ reasoning patterns regarding the constituent variables, and 

that such reasoning patterns may often have an inherent directionality, it stands to reason 

that the mechanism utilized to uncover the connectivity structure among these constituent 

variables should be as sensitive to the directional structure as possible.  Although 

multiple forms of structural elicitation exist in the Bayesian networks literature, these 

methods can roughly be categorized into either constraint-based methods, score-based 

methods, or a combination of these two (Koller and Friedman, 2009).   

Constraint-based structural elicitation methods seek to list all conditional 

independencies of the form  A ⫫ B | C  that exist among disjoint sets A, B, and C of 

variables within the domain, and then to assemble these independencies into the most 

likely joint network structure that would exhibit these independencies.  Although such 

approaches are conceptually quite straightforward (and are also quite close in spirit to the 

intended semantic meaning of the derived network), it is obviously quite difficult in 

practice to determine all of the conditional independencies in a large data set with enough 

accuracy to ensure that one has not mistakenly included any spurious independencies, or 

perhaps neglected to add in certain specific actual independencies that do exist in the 

domain, but may not have been represented strongly enough in the particular data 

collected.   
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 As an alternative to such constraint-based structural elicitation methods, certain 

structural scores may be used as a target for optimization, with the idea being that the 

structure which optimizes such a score given a particular data set will be the most likely 

network structure for the domain from which that particular data set was collected.  Such 

score-based techniques have the advantage of allowing one to essentially “trade-off” 

imprecision across multiple possible links at the same time, thereby potentially avoiding 

the “all-or-nothing” nature of the link determination steps that exist within constraint-

based methods.  In these techniques, the score that one is optimizing is essentially a 

“stand-in” for the structure that would exist among the variables based on specific 

conditional independence relationships among those modeled variables.    

 We will initially examine constraint-based estimation procedures, which are more 

straightforward and simpler to understand than are score-based techniques.  Following 

this, we will outline the development of structural scores which seek to capture much of 

the structure of these constraint-based techniques within an abstract function.  In addition, 

as described earlier in this thesis, since Bayesian networks can only be distinguished up 

to Markov equivalence, these structural estimation procedures are themselves only 

capable of deriving Bayesian network structure up to a set of Markov equivalent directed 

structures.  The fact that such structural estimation procedures stop at the point at which a 

Markov equivalence class of structures is determined makes sense from a consumer 

behavior standpoint, since any member of such a Markov equivalence class represents a 

cognitive causal variant that is equally capable of representing the observed data, and 

hence all such cognitive causal variants can co-exist within the respondent population. 
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3.2    Constraint-Based Structural Estimation 

 The core concept at the heart of constraint-based Bayesian network structural 

estimation is that the link structure of a Bayesian network can essentially be thought of as 

a graphical encoding of the set of conditional independence and dependence relations 

among the modeled variables which are supported by the given data (Geiger, Verma, and 

Pearl, 1990;  Lauritzen, Dawid, Larsen, and Leimer, 1990).  Constraint-based algorithms 

essentially proceed by first identifying the set of such conditional independence and 

dependence relationships that exist within the given data (i.e., the set of ‘constraints’ that 

exist in that data), and then these constraint-based methods attempt to construct a network 

that best encodes these dependencies and independencies, taking interactions between the 

derived directions of these relationships into account.  Furthermore, since directed (i.e., 

Bayesian) networks can only be distinguished up to Markov equivalence, these structural 

estimation procedures are themselves only capable of deriving Bayesian network 

structure up to a set of Markov equivalent directed structures.   

 Initially, constraint-based algorithms proceed by enumerating all conditional 

independence relations of the form  𝑋𝑋 ⫫ 𝑌𝑌 | 𝑆𝑆𝑋𝑋𝑌𝑌 , where 𝑆𝑆𝑋𝑋𝑌𝑌 denotes some subset of 

variables in the domain (not including X or Y) which serves to render variables X and Y 

conditionally independent.  Following Kjaerulff and Madsen (2008), the test statistic 

typically employed for these procedures is the G2 statistic given by 

𝐺𝐺2  =   2 � 𝑁𝑁𝑥𝑥𝑦𝑦𝑥𝑥 𝑟𝑟𝑝𝑝𝑖𝑖 �
𝑁𝑁𝑥𝑥𝑦𝑦𝑥𝑥

𝐸𝐸𝑥𝑥𝑦𝑦𝑥𝑥
�

𝑥𝑥,𝑦𝑦,𝑥𝑥

                                         (5) 
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where x and y represent configurations of variables X and Y respectively, and z represents 

a possible configuration of the ‘separator’ 𝑆𝑆𝑋𝑋𝑌𝑌.  Also in this formula, 𝑁𝑁𝑥𝑥𝑦𝑦𝑥𝑥 represents the 

count of the number of occurrences of the event (X=x , Y=y , Z=z) in the data, with 𝑁𝑁𝑥𝑥𝑦𝑦, 

𝑁𝑁𝑥𝑥𝑥𝑥, and 𝑁𝑁𝑥𝑥 defined similarly.  Finally, we define the expected count  𝐸𝐸𝑥𝑥𝑦𝑦𝑥𝑥 via the 

formula �𝑁𝑁𝑥𝑥𝑦𝑦 𝑁𝑁𝑦𝑦𝑥𝑥� / (𝑁𝑁𝑥𝑥).  Under the null hypothesis of conditional independence of X 

and Y given 𝑆𝑆𝑋𝑋𝑌𝑌, the overall G2 statistic will have an asymptotic 𝜒𝜒2 distribution with  

(𝑖𝑖𝑋𝑋 − 1)(𝑖𝑖𝑌𝑌 − 1) ∏ 𝑖𝑖𝑍𝑍𝑍𝑍∈𝑆𝑆𝑋𝑋𝑌𝑌   degrees of freedom, where 𝑖𝑖𝑋𝑋 , 𝑖𝑖𝑌𝑌 , and 𝑖𝑖𝑍𝑍 represent the 

cardinality of the sample space (i.e., the number of possible configurations) for each of X, 

Y, and Z respectively.  In typical applications, the degree of the separating sets 𝑆𝑆𝑋𝑋𝑌𝑌 which 

are utilized in these conditional independence tests must often be limited (usually to three 

variables or fewer) in order to control the combinatorial expansion of this phase of the 

procedure, as well as to adjust for the available sample size (since each level of ‘nesting’ 

of the conditional independence tests requires successively larger sets of data in order to 

be reliable). 

 By repeated application of this initial conditional independence testing procedure, 

one can determine whether a separating set 𝑆𝑆𝑋𝑋𝑌𝑌 exists for each pair of variables X and Y 

in the domain.  If no such separator can be found for a particular pair of variables, then 

these two variables are joined by an undirected link (indicating that they are 

unconditionally dependent based on the collected data).  Once all such unconditional 

dependence relations have been found, the resulting undirected graphical structure is 

called the skeleton of the network.  (In some sense, the skeleton of the network is the 
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structure that the BCM technique derives, assuming that subjects can accurately gauge 

which variables are directly dependent when eliciting the links in the network.) 

 Once the network skeleton has been derived, the search for directionality begins 

via the identification of all collider (i.e., common effect) structures in the network.  This 

stage involves examining each triple of variables {X,Y,Z} for which X and Y are 

adjacent in the skeleton structure, Y and Z are adjacent in the skeleton structure, but X 

and Z are not adjacent.  For each such triple of variables satisfying this condition, one 

investigates whether the central variable in the triple (i.e., the variable involved in the two 

adjacencies, namely the variable Y using the enumeration described above) is a member 

of any set 𝑆𝑆𝑋𝑋𝑍𝑍 which separates the two terminal variables X and Z in that triple.  The idea 

here is that the central variable in a collider structure serves to probabilistically connect 

the two terminal variables in that structure (viz., Appendix B).  Hence, if the central 

variable Y in the triple {X,Y,Z} is never present in a separator 𝑆𝑆𝑋𝑋𝑍𝑍 serving to separate the 

terminal variables X and Z, it must be the case that the directional structure among these 

three variables is of the form  X → Y ← Z.  Stated another way, if the directional 

structure among these variables was any of  X → Y → Z ,  X ← Y → Z , or  X ← Y ← Z, 

then Y would certainly separate X and Z, and hence we would have found variable Y to 

be a member of at least some separating set 𝑆𝑆𝑋𝑋𝑍𝑍 serving to probabilistically separate X 

and Z. 

 Once the collider structures within the skeleton have been identified, each 

additional link within the skeleton that has not yet been directed during the collider 

identification procedure is examined to determine if its direction can be chosen so as to 
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not introduce any additional colliders or eliminate any colliders that have been previously 

established.35  In practice, it may not be possible to orient every structural link in this 

manner.  In some sense, any links which remain unoriented can be thought of as a type of 

graph-theoretic “confidence region”.  Furthermore, one can also utilize the Verma-Pearl 

criteria to investigate whether various structural links are reversible without resulting in 

removing the derived structure from its Markov equivalence class.  Each such additional 

directed variant within this equivalence class represents a potential causal ‘thought-

world’ or cognitive variation that is consistent with the given data, and which belongs to 

the equivalence class [ G ].  Finally, one can determine the essential graph representation 

G* which represents the entire equivalence class [ G ] to which the initial solution 

belongs. 

As further described in Spirtes et al. (2000), there are several modifications to this 

basic constraint-based algorithm, each of which employs certain graph-theoretic 

properties to simplify or streamline various stages of the procedure.  However, all such 

constraint-based methods follow this same basic heuristic.36  Overall, the constraint-

based methods are very direct, and relatively simple as compared with score-based 

methods, which are discussed in a succeeding section.   

35 Interestingly, Meek (1995) has identified a set of four necessary and sufficient orientation rules which 
serve to maximally direct the remaining links at this stage of the procedure 

36 For instance, the Peter-Clark (or ‘PC’) algorithm described in Spirtes et al. (2000) utilizes the fact that if 
two variables X and Y can be d-separated, then they must be d-separable by either the direct parents of X 
or the direct parents of Y, which allows one to reduce the search for separating sets to the immediate 
neighbors of X and Y.  In addition, this algorithm improves efficiency by starting with a complete graph 
on n vertices and removing direct inter-variable links once a separator is found (as opposed to beginning 
with the empty graph on n vertices and adding direct inter-variable links in cases where no separator can 
be found). 
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3.3    Application: Bayesian Network Analysis of the Taco Prima Brand Map 

 Bayesian network model.  In order to illustrate the advantages offered by a 

Bayesian network analysis of consumers’ perceived associations for a well-known brand, 

data from five hundred individuals regarding their perceptions of the Taco Prima fast 

food chain were analyzed.  Initial interviews revealed that the most common perceived 

brand associations shared across the respondents were the following six characteristics37 

(each of which is listed with its eventual abbreviation shown at the right): 

1. Evokes Good Memories   (“Memories”) 

2. Is a Leader     (“Leader”) 

3. Unique and Different Menu Items  (“Unique”) 

4. Is Innovative     (“Innovative”) 

5. Inexpensive Menu Items   (“Inexpensive”) 

6. Comes Out With New Things   (“NewThings”) 

Since several of these descriptors represent fairly abstract brand characteristics, it 

might be difficult for respondents to accurately gauge whether their concepts of the Taco 

Prima brand are characterized by a relation between such descriptors.  For example, the 

brand associations ‘Evokes Good Memories’ and ‘Is a Leader’ each do relate to the core 

brand (Taco Prima), but it may be quite difficult for consumers to be able to judge if their 

perception of Taco Prima is characterized by an association between these two brand 

characteristics.  On the other hand, recall that Bayesian network structural estimation 

37 Each of these six questionnaire items was collected on a 5-point Likert scale anchored by 1 = ‘Strongly 
Disagree’ and 5 = ‘Strongly Agree’, with the value of 3 representing ‘Neither Agree nor Disagree’.  The 
data were obtained from a commercial source with the understanding of privacy regarding the details of 
the respondent population and the interview procedure.     
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procedures can operate with simple Likert-style data in which individuals are only asked 

to express how strongly they associate each attribute with the core brand.38  In this sense, 

it is hoped that the Bayesian network-based methodology for determining the detailed 

interconnection structure among the brand associations within a brand concept map can 

offer a valuable extension to the pioneering techniques represented by the BCM 

methodology.    

To illustrate the use of a constraint-based structural estimation procedure, we 

applied the Peter-Clark (or ‘PC’) algorithm described in Spirtes et al. (2000) to this data, 

as implemented in the Hugin Lite software package (available at the Hugin Expert 

website: www.hugin.com).  Based on an alpha value of 0.05 for the conditional 

independence test portion of the PC procedure, the resulting Bayesian network structure 

for this data is shown in Figure 15, below. 

 

Figure 15.    Bayesian network model of the Taco Prima brand concept map 

38 The conditional independence properties in the collected data are then used to determine the 
interconnection structure among the attributes which is most compatible with the dependence and 
independence properties in that data. 

Memories 

Leader 

Unique 

Innovative Inexpensive NewThings 
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Strategic Analysis.  In examining this resulting Bayesian network model, an 

initial point to notice is that each pairwise connection between variables has a high 

degree of ‘face validity’.  In essence, each individual connection in the structure makes 

intuitive sense.  It is quite interesting that such logical links between variables emerge 

from a procedure that does not directly probe for those links.  Rather, the Bayesian 

network estimation procedure utilizes respondents’ ratings of how strongly they associate 

each of the characteristics with the core brand, and then the resulting conditional 

independence properties in this set of ratings are used to derive the connections between 

the variables.   

Moving on to analyze some of the internal properties of this derived brand 

concept map, one is initially struck by the fact that the brand association ‘Leader’ is 

purely a result (or an effect) of other variables, and is not itself predictive of any other 

variables within this data.  This is an interesting finding because it not only shows which 

specific brand associations lead to consumers perceive Taco Prima as a leader, but it also 

shows that being perceived of as a leader does not in and of itself ‘help’ (i.e., ‘lead to’) 

any other of these brand associations.  In some sense, it is a ‘terminal’ brand association, 

in that it leads to no other associations besides itself.  This finding, if confirmed, should 

suggest to Taco Prima that a goal of being perceived of as a leader may not benefit the 

company as strongly as might have been suspected. 

 In contrast, the Bayesian network model reveals that being perceived of as 

‘Unique’ has the most widespread effect on the other Taco Prima brand associations.   

Not surprisingly, ‘Unique’ leads to being perceived of as a leader and being thought of as 
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innovative.  However, it is quite surprising that ‘Unique’ leads directly to ‘Memories’.   

In this sense, the perception of Taco Prima as being unique seems to reinforce people’s 

willingness to associate good thoughts or memories with the Taco Prima brand, thereby 

increasing brand affect as well as elaborative processing of the brand.  Hence, according 

to this Bayesian network derived brand concept map, Taco Prima’s most effective point 

of leverage may in fact be its perception or image of being unique.  Furthermore, the only 

variable which directly influences perceptions of uniqueness is the perception that Taco 

Prima comes out with new things.  Therefore, this fast food chain’s most effective 

promotional strategy may be to continually come out with new products in order to foster 

the perception of uniqueness, which in turn will encourage strong positive memories of 

the brand.   

Interestingly, a study of Taco Prima’s strategic marketing decisions and 

promotional strategy reveals that this company’s management has seemingly come to this 

same conclusion through trial and error experimentation with the brand.  Specifically, the 

company’s product development and marketing strategy seems to center around the 

constant ‘churning’ of new inexpensive products, and employs an advertising message 

that focuses on the novelty, uniqueness, and low prices of these new products.  For many 

large brands such as this, the notion of continually introducing new products has the 

potential to actually diminish consumers’ ability to choose among the firm’s offerings, 

and hence also has the capacity for reducing overall brand evaluations (Broniarczyk        

et al., 1998; Boatwright & Nunes, 2004).  However, as this Bayesian network analysis 

shows, for Taco Prima the opposite may in fact be true: continually introducing new 
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products seems to increase the perception of uniqueness, which would in turn clearly 

foster the positive thoughts (i.e., ‘memories’) which would lead to increased brand equity 

and increased repeat patronage.   

Hence, the directional brand concept map derived through a Bayesian network 

analysis of consumers’ opinions of specific aspects of the Taco Prima brand reveals that 

the best marketing strategy for this firm is actually quite counterintuitive based on current 

strategic marketing theories.  However, the optimal strategy for this firm which is 

revealed by the Bayesian network derived brand concept map nonetheless coheres 

precisely with the successful strategy currently pursued by Taco Prima’s management.  

Note, in addition, that had we utilized current marketing strategy theories to derive a set 

of presumed relations among these brand associations and then utilized a confirmatory 

directional procedure such as structural equation modeling in order to test that proposed 

model, we may never have found such a counterintuitive yet eminently realistic brand 

concept model such as this. 

Cognitive variation.  When analyzing the Taco Prima brand image as derived 

from a Bayesian network model, one must remember that some links may be reversible 

without altering the independence and dependence properties of the given data, while 

other links are not reversible in this manner.  (Recall that the set of alternative directed 

structures which are derived from reversing various subsets of those reversible links is 

called the Markov equivalence class of the original structure.)  Based on these notions, 

we can provide a deeper level of analysis of the brand concept map - one that is only 

available in directed structures such as this. 
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In order to facilitate the presentation of this additional layer of analysis, we will 

use the first letter of each of the Taco Prima brand associations.  Since both ‘Inexpensive’ 

and ‘Innovative’ both start with the letter ‘I’, we will (with due apologies to the Taco 

Prima Corporation) utilize the mnemonic ‘C’ (standing for ‘Cheap’) in place of 

‘Inexpensive’, and we will continue to use ‘I’ to denote ‘Innovative’. 

To explore the possible cognitive variants which are observationally equivalent to 

the original structure, we begin by looking for uncovered collider structures (i.e., 

‘immoralities’) since these are the indicators of the locations of significant conditional 

independencies in the original data.  For ease of reference, the graphical structure of the 

Taco Prima brand concept map from Figure 15 is reproduced in Figure 16, below, with 

just the one-letter variable abbreviations used.  Examining the network structure in Figure 

16 reveals several colliders, but most of them are ‘covered’ colliders (i.e., the two 

terminal variables in the collider structure are themselves directly connected).  For 

example, the collider M--L--I is ‘covered’ by the link from M to I, and the collider N--I--

U is ‘covered’ by the link from N to U, etc.  In fact, there is only one uncovered collider 

in this brand map, namely M--I--N (which is indicated in Figure 16).  

 

Figure 16.  Taco Prima brand concept map, with immorality M--I--N highlighted 

M 

L 

U 

I N C 
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Since the collider M--I--N in this network is an immorality, we cannot reverse 

either the link M → I or the link I ← N since this would ‘destroy’ the immorality, 

resulting in a structure with different conditional dependence and independence 

properties from the original.  Hence these two links are ‘protected’ in this structure: they 

can neither be removed nor reversed.  Based on this observation, one can see that the link 

I → L also cannot be reversed because this would create an uncovered collider structure 

at node I (namely L → I ← N ).  Furthermore, since the direction of the I → L link 

cannot be reversed, this means that we cannot reverse the M → L link either, since this 

would create a cycle among the variables M, L, and I.  Hence these two additional links    

(I → L and M → L) are also directionally protected.  Thus we have a ‘core’ of four 

directionally protected links within this overall structure, as shown in Figure 17 below.39 

 

Figure 17.   Taco Prima brand concept map with directionally protected links 

indicated. 

39 In this Bayesian network model, we are disallowing any directed cycles.  If one chooses to allow such 
‘infinitely repeating cycles’, then the link from M to L would be reversible (and would cause an endless 
cycle among M, L, and I).  However, if all three variables mutually implied one another in an endless 
cycle or loop, then this would indicate that the combination of all three variables might be a unified 
aggregate construct rather than three separate constructs.  Since consumer behavior considerations 
suggest that M, L, and I are indeed separate constructs, we will maintain the standard Bayesian network 
practice of disallowing any configurations which result in a directed cycle. 
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L 

U 
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We are now left with only five non-directionally protected links to examine.      

Of these, the link from C to N is obviously reversible, since it is a terminal link in the 

structure and its reversal will neither create nor destroy any immoralities, nor will it 

create any cycles (which are not permitted in a Bayesian network).  Hence we now have 

two rather similar directional variants: the original brand concept map, and the version 

obtained from reversing the arrow between variables C and N. 

 Now let us examine the remaining four links case by case.  For ease of 

enumeration, we will work from left to right, beginning with the link between variables  

U and M.  As indicated in Figure 18, reversal of this link would result in an uncovered 

collider (M -- U -- N) at variable U.  Therefore, to accommodate the reversal of U--M, we 

must also reverse U--N.  Of course, this would create a collider structure U -- N -- C, so 

we also would need to reverse the N--C link.  All of these considerations are detailed in 

Figure 18.  

 Once the U--M link is reversed (along with the necessary reversals of links U--N 

and N--C needed to accommodate the initial U--M link reversal), we need to examine the 

remaining non-protected links for possible additional structural variants that could result 

from these initial reversals.  As indicated in Figure 18, a subsequent reversal of either    

U--L or U--I is not possible due to the creation of various cycles (see Figure 18 for 

details).  Therefore, the reversal of U--M (along with the required subsequent reversals of 

U--N and N--C) forms one additional structural variant that is Markov equivalent to the 

original brand concept map. 
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Figure 18.   Analysis of the reversal of the M--U link 
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Reversing M--U causes U--N and N--C to be 

reversed, since otherwise we would get 

immoralities at either U or N. 

However, reversing both U--L and U--I together causes the new cycle I--U--N 

to appear, so this arrangement is ruled out.   

Conclusion: Once M--U has been reversed (and U--N and N--C are reversed to              

allow this to occur), no additional changes can be made.   

Reversing U--L without also reversing U--I 

would lead to a cycle among U, L, and I.  

Hence both links must be reversed together. 
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 Moving on to the U--L link, we see that its reversal creates a new immorality at 

L--U--N and a new cycle at L--U--I.  As shown in Figure 19, each of these can be 

corrected, but these corrections then create a new cycle, and hence are disallowed.  Thus, 

we cannot reverse the link from U to L. 

 

Figure 19.   Analysis of the reversal of the U--L link 
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Reversing L--U creates two problems:     

a new immorality at L--U--N,                               

and a new cycle L--U--I.   

Together, these two corrections create a 

new cycle at I--U--N.  Therefore the 

original L--U reversal is ruled out.  

To correct L→U←N, we have to reverse 

U--N (and hence N--C).  To correct the 

cycle at L--U--I, we have to reverse U--I. 
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 Now examining the U--I link, Figure 20 shows that its reversal will create a new 

collider (at I--U--N), but not a new immorality (since that new collider is ‘covered’ by the 

N--I link).  However, the U--I reversal does create a new cycle, namely the “outside 

cycle” M--I--U, and removal of that resulting cycle would yield the same structure that 

we found previously when reversing the M--U link.   

 

Figure 20.    Analysis of the reversal of the U--I link 
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Reversing the U--I link creates a new collider 

I--U--N, but this is a covered collider, so it is 

not a new immorality.   

However, reversal of U--I does create a new cycle at M--I--U.  The only 

way to remove that cycle would be to reverse M--U, but this would create 

an uncovered collider M--U--N.  (We could remove the M--U--N 

immorality by reversing U--N and N--C, but this would just give us a 

structure we have already accounted for.)   Hence U--I cannot be reversed. 
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 Finally, as shown in Figure 21, reversal of U--N also entails the reversal of N--C, 

and then no additional structures are possible once these changes are made. 

 

Figure 21.    Analysis of the reversal of the U--N link 
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Reversing N--U creates a new collider at N. 

Once U--N (and N--C) are reversed, we still cannot reverse either U--L or 

U--I because either of these reversals would create a new cycle.  We can 

reverse U--M (once U--N is reversed), but this gives a previous structure. 

Conclusion:  Reversing U--N and N--C together is permissible. 
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We can easily correct this new 

collider by reversing C--N. 
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In summary, a directional analysis of the original Bayesian network structure of 

Figure 15 reveals that there are three additional cognitive variants of this original 

structure which are possible given the collected brand concept data.  Each of these three 

additional cognitive variants is Markov equivalent to the original one, and hence all four 

of these cognitive causal variants can simultaneously co-exist within the data.  For 

reference, these four cognitive variants are shown in Figure 22.  (In this Figure, we have 

continued to show the original directionally protected links in red, while indicating the 

links which are reversed as dashed blue arrows.)  Essentially, these structures all differ 

from one another along a peripheral pathway which, in the original Bayesian network 

based brand concept map is oriented as:  Cheap (i.e., ‘Inexpensive’) → New Things → 

Unique → Memories.  Within each directional variant (as shown in Figure 22), we see 

that various subsets of the links on this particular pathway are reversible.     

Note that all four of the directional variants in Figure 22 are consistent with the 

collected data.  Hence, according to this data, it is possible for consumers to think that in 

terms of the Taco Prima brand, ‘Cheap’ (i.e., ‘Inexpensive’) implies the existence or 

creation of new products, which in turn implies uniqueness, and finally generates good 

memories about the brand.  For these consumers, cheap prices are the initial driving force 

behind this chain of inferences.  On the other hand, the data also shows that a chain of 

reasoning which is ‘new product-centered’ is also possible, viz., M ← U ← N → C.  

Similarly, a chain of reasoning that is ‘uniqueness-centered’ ( M ← U → N → C ) is 

possible, as is a chain of reasoning that is ‘memories - centered’ ( M → U → N → C ).   
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Quite interestingly, all of the other inter-association connections besides the ones 

on the M ← U ← N ← C pathway are fixed by the data.  Hence, as revealed by the 

Bayesian network analysis of this brand concept map, there are only four cognitive 

variations which will neither violate any of the conditional independencies in the original 

data nor generate any additional conditional independencies which are not represented in 

the data.  As an example of these conserved pathways, consider that all structural variants 

(see Figure 22) must contain the chain of reasoning: New Things → Innovative → Leader.  

No other connection topologies or connection directions among these three variables 

would be consistent with the conditional dependence and independence relationships that 

exist in the data.  Similarly, in all structural variants, the brand association ‘Leader’ is 

purely a result of other associations (namely ‘Memories’, ‘Unique’, and ‘Innovative’), 

and does not in and of itself lead to other brand associations.  (One can similarly find 

multiple other directed relationships that are conserved in all four of the Bayesian 

network cognitive variants consistent with the original data.) 

It is perhaps most intriguing that the portion of this overall brand concept map 

which is directionally reversible without ‘upsetting’ the conditional independence 

properties of the data is precisely the chain of reasoning:  Cheap (i.e., ‘Inexpensive’)  →  

New Things  →  Unique  →  Memories  which was identified earlier as the most likely 

driver of product line differentiation and brand equity for this firm.  In other words, the 

Bayesian network based brand concept map for this firm has revealed that all of the 

cognitive differentiation among consumers that is consistent with the data must exist 

along this particular pathway.    
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Note that in some sense, this finding can be regarded as a confirmation of the fact 

that this pathway is the strategically critical one for the firm.  If consumers’ cognitive 

structures (i.e., their brand concept maps) did not differ to such a high degree along this 

pathway, then there might have been enough regularity in the joint distribution of these 

four variables to allow one or more of them to ‘screen off’ the others, which we would 

spot as a non-removable uncovered collider located somewhere along this pathway.  

Instead, the Taco Prima data supports the existence of four distinct cognitive variations, 

each of which specifies a slightly different set of predictive and diagnostic relations 

among the variables on this one particular pathway.   

Thus, consumers are apparently highly sensitive to a variety of cognitive 

influences related to the relationships among the variables Inexpensive, New Things, 

Unique, and Memories.  Furthermore, if consumers are so sensitive to these particular 

relationships for the Taco Prima brand, then they are also likely to be quite sensitive to 

them when considering any of Taco Prima’s direct competitors as well.  Hence, it is no 

surprise that the pathway containing these particular relationships is the strategically 

critical one for Taco Prima - this is likely to be the “battleground” pathway for firms 

attempting to compete for a segment of this marketplace niche.      

Directed separation analysis.  Now consider the ‘screening-off’ properties that 

exist among the variables in the Taco Prima brand concept network.  By utilizing the 

formal definition of the d-separation condition (viz., Section 2.3), we can determine the 

complete set of separation properties that exist within this brand concept structure.  Given 

that this is a relatively small network, the separation properties that it encompasses are 
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relatively limited in number.  As it turns out, there are actually six cases within this brand 

concept network in which probabilistic communication between variables in the network 

is blocked by the presence of another variable.  Of these six directed separation 

properties, four are relatively obvious from the graphical structure of the network, and 

two are a bit less obvious.  In order to facilitate a detailed discussion of these separation 

properties, the original Bayesian network-derived brand concept map for Taco Prima is 

repeated as Figure 23, below. 

 

Figure 23.    Taco Prima brand concept map (from Figure 15) 
 

 

To begin with, it should be relatively obvious from the structure of the graph that 

the brand association New Things will act to probabilistically “screen off” each of 

Memories, Unique, Leader, and Innovative from the effects of the brand association 

Inexpensive.  These relations can be easily demonstrated because the pathway from 

Inexpensive to any of these four brand associations forms a causal reasoning chain 

structure involving New Things as one of the intermediate variables (and there is no 

Memories 

Leader 

Unique 

Innovative Inexpensive NewThings 
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alternate pathway in the network for information to pass from Inexpensive to any of these 

other associations except by passing through New Things).   

However, just because a screening-off or directed separation property is obvious 

from the structure of the network does not mean that it is trivial with regards to the 

strategic ramifications of the associated brand concept.  For instance, these four 

screening-off relations involving the ability of New Things to render the brand 

characteristic Inexpensive irrelevant to the remainder of the network are really quite 

interesting.  Essentially, these four d-separation conditions reveal that the means by 

which the association Inexpensive acts or affects the rest of the Taco Prima brand concept 

must occur via the action of Inexpensive on consumers’ perceptions of New Things.  In 

other words, the fact that this brand is perceived of as “inexpensive” must be applied to 

something before it can lead to any perceptions of innovativeness, leadership, uniqueness, 

or positive affect (i.e., ‘memories’).  Hence, as revealed by the directed separation 

properties of the Taco Prima brand concept map, the association Inexpensive “alone” 

cannot affect the other brand associations - it can only affect the remainder of the brand 

concept when it is applied to New Products.  This finding provides an additional 

explanation of why such a high rate of “product churning” seems to be such a critical 

component of Taco Prima’s general product development and marketing strategy. 

Furthermore, as this brand concept network indicates, the relationship between 

Inexpensive and New Things is configured in such a way that once a consumer knows or 

perceives the value of New Things for the Taco Prima brand, that knowledge actually 

renders Inexpensive irrelevant to the remainder of the network.  Hence, by and large, 
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consumers seem to already perceive the concept of “New Things” as applied to the Taco 

Prima brand as encompassing the notion of “Inexpensive”.  Once a consumer knows or 

perceives the level of the New Things variable for the Taco Prima brand, the notion of 

“inexpensiveness” provides no additional information that the consumer does not already 

have. 

In addition to these four relatively graphically apparent directed separation 

properties, the Taco Prima network also possesses two additional d-separation relations 

that are less obvious to see based merely on the network configuration., namely 

(Memories ⫫ Inexpensive) | Unique  and  (Memories ⫫ New Things) | Unique .  One way 

to derive these facts is to directly employ the causal Markov condition, namely that a 

variable’s parents can render that variable independent of all of its nondescendants in the 

network.  In this case, Memories has only one graphical parent, namely Unique.  

Furthermore, Memories has two nondescendants in the network, namely New Things and 

Inexpensive.  Hence by the causal Markov condition, Unique (the graphical parent of 

Memories) would have to be capable of rendering Memories independent of those 

nondescendants.   

On one level, these two additional separation relationships imply that once 

consumers know (or assume) the level of uniqueness represented by Taco Prima, the fact 

that this brand also may offer inexpensive new things no longer affects consumers’ 

affective response to the brand (i.e., ‘Memories’).  In other words, New Things and 

Inexpensive (or, by our earlier discussion, the conglomerate of “inexpensive new things”) 
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can only affect the memories (or affective thoughts) that consumers associate with the 

brand by acting through those consumers’ perceptions of the uniqueness of the brand.   

However, if we examine the structure of the network a little more closely, we can 

see that the reason why “inexpensive new things” cannot reach Memories through a 

pathway other than the one passing through Unique is because there is a common-effect 

structure at the brand association Innovative.  By the properties of common-effect 

structures (or “colliders”), probabilistic information cannot pass through the node at 

Innovative as long as the level of innovativeness is relatively unknown or vague.  On the 

other hand, if the level of innovativeness was clear to consumers, then information would 

certainly be able to flow from “inexpensive new things” to Memories through the node at 

Innovative, and therefore the brand association Unique would no longer be able to          

d-separate Innovative or New Things from their effect on Memories.   

Hence, as it stands, the Taco Prima brand concept network structure raises the 

very reasonable point that if consumers are unsure of the level of innovativeness 

represented by the Taco Prima brand, then the fact that this brand may be known for 

constantly introducing inexpensive new things will affect consumers’ “memories”           

(i.e., affect) for the brand through the role that these inexpensive new things play in 

establishing perceptions of uniqueness.  On the other hand, if consumers do perceive a 

specific level of innovativeness from the Taco Prima brand, then this opens up a second 

pathway by which consumer feelings or memories for the brand can be affected by the 

perception of inexpensive new things.  Therefore, in general, it is in Taco Prima’s best 

interest to not just foster the perception of constantly coming out with new things, but 
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rather, to also foster the notion that such new things are actually innovative.  Thus, it 

should come as no surprise that this brand’s promotional message not only typically 

contains arguments that the firm’s new products are unique, but also typically contains 

arguments that their constant stream of new products are indeed quite innovative (i.e., the 

“wow factor” is consistently stressed in their ads in relation to the new products that are 

introduced).  For example, a typical Taco Prima ad might tout the company’s new 

“Doritos taco shell” as not just being unique to Taco Prima, but also as being really 

clever, e.g., “only Taco Prima could come up with a taco shell made from Doritos”, 

which is a tag line with both uniqueness and cleverness (or innovativeness) connotations. 

 

3.4   Likelihood Scores for Bayesian Networks 

The Taco Prima brand concept network analyzed in Section 3.3 was estimated via 

a constraint-based algorithm.  As described earlier, this class of structural estimation 

procedure directly analyzes each conditional independence relation within the data and 

constructs a directed network based on distinguishing among the various types of 

directional three-variable substructures that are found to exist within the recovered 

structure.  The advantage of this method is that it directly analyzes each conditional 

independence relation in the data and bases its structural estimation on these revered 

conditional independencies.  However, this particular advantage of constraint-based 

structural estimation procedures can also be regarded as a potential disadvantage with 

certain data sets, since if there is any lack of certainty about the conditional 

independencies in the data at the initial stage of structure estimation, then the procedure 
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could possibly result in a non-optimal structure.  Of course, this propensity can be 

controlled to a great degree through analysis of the structures that result from the use of 

different alpha-values in the conditional independence testing portion of the estimation 

procedure, but the fact remains that each decision of whether or not two variables in the 

domain are able to be ‘separated’ (i.e., rendered conditionally independent of one 

another) given a third variable (or set of variables) is essentially an ‘all-or-nothing’ 

declaration - either the relationship is declared to represent a conditional independence or 

it is not. 

One possible means of correcting for this ‘all-or-nothing’ determination of 

whether or not a particular pair of variables is independent conditional on a third variable 

(or subset of variables) is to utilize some form of comparative scoring function which 

essentially allows one to ‘trade-off’ some imprecision between each conditional 

independence determination.  In developing such a measure, we can utilize another aspect 

of a Bayesian network representation of a set of brand associations, namely the ability of 

each set of graphical ‘parents’ in the network to explain (or predict) the distribution of 

values found in their associated graphical ‘child’ variable.  By seeking the structure 

which maximizes such a score, one can presumably derive the graphical structure which 

best exhibits the conditional independence and conditional dependence properties of the 

data (e.g., Koller and Friedman, 2009).  Of course, once again, due to the nature of 

Bayesian networks, this determination can only be made up to Markov equivalence. 

If we let 𝐺𝐺 represent such a graphical structure (i.e., a Bayesian network) under 

consideration, and we let  𝐷𝐷 represent the specific data set collected from the intended 
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domain of application for the network, a potential choice of ‘scoring’ function to be 

optimized is the probability 𝑃𝑃(𝐷𝐷 | 𝐺𝐺) of the data set given the potential model under 

consideration.  Since the probability 𝑃𝑃(𝐷𝐷 | 𝐺𝐺) represents the likelihood score 𝐿𝐿(𝐺𝐺 ∶ 𝐷𝐷), 

the task of finding an optimal graphical structure 𝐺𝐺 in this manner will also require an 

optimal choice of parameters 𝜃𝜃𝐺𝐺 .  Therefore the estimation problem can be expressed 

more completely as one of maximizing  𝐿𝐿(〈𝐺𝐺, 𝜃𝜃𝐺𝐺〉 ∶ 𝐷𝐷).  Following Koller and Friedman 

(2009), we can iterate this optimization in two stages: 

max 
𝐺𝐺,𝜃𝜃𝐺𝐺

𝐿𝐿(〈𝐺𝐺, 𝜃𝜃𝐺𝐺〉 ∶ 𝐷𝐷)   =   max
𝐺𝐺

� max
𝜃𝜃𝐺𝐺

 𝐿𝐿(〈𝐺𝐺, 𝜃𝜃𝐺𝐺〉 ∶ 𝐷𝐷) � (6) 

However, since we are assuming that we will choose parameters 𝜃𝜃𝐺𝐺  which maximize the 

likelihood of the data given the graph, we can utilize the maximum likelihood parameters 

𝜃𝜃�𝐺𝐺 , in which case the optimization problem reduces to : 

    max 
𝐺𝐺,𝜃𝜃𝐺𝐺

𝐿𝐿(〈𝐺𝐺, 𝜃𝜃𝐺𝐺〉 ∶ 𝐷𝐷)  =  max
𝐺𝐺

 � 𝐿𝐿�〈𝐺𝐺, 𝜃𝜃�𝐺𝐺〉 ∶ 𝐷𝐷� � (7) 

Using  𝑟𝑟(𝜃𝜃�𝐺𝐺 ∶ 𝐷𝐷) to denote the logarithm of this objective likelihood function, we derive 

the likelihood score for the network structure 𝐺𝐺, viz.,  

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺 ∶ 𝐷𝐷)   ∶=   𝑟𝑟(𝜃𝜃�𝐺𝐺 ∶ 𝐷𝐷) (8) 

where once again we are assuming that the MLE parameters 𝜃𝜃�𝐺𝐺  for the graph 𝐺𝐺 are being 

employed. 
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 To get a better idea of the form of the likelihood score in a realistic scenario, 

consider a situation in which we would like to compare the scores of two models:         

𝐺𝐺0 ∶   𝑋𝑋 , 𝑌𝑌  versus  𝐺𝐺1 ∶   𝑋𝑋 →  𝑌𝑌 .  (In other words, we are examining a typical scenario 

in which we are considering whether or not to add a specific directed link to a basic 

network structure.)  To make matters simple, we will assume that each of 𝑋𝑋 and 𝑌𝑌 are 

Bernoulli(𝜃𝜃) random variables.  Therefore, once again following Koller and Friedman 

(2009), the likelihood scores of these two competing models can be computed as: 

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺0 ∶ 𝐷𝐷)   =   𝑟𝑟𝑝𝑝𝑖𝑖  � 𝜃𝜃�𝑚𝑚(𝑥𝑥)
𝑚𝑚

𝜃𝜃�𝑚𝑚(𝑦𝑦) 

=  ��𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑥𝑥) +  𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑦𝑦)�
𝑚𝑚

 (9) 

 

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺1 ∶ 𝐷𝐷)   =   𝑟𝑟𝑝𝑝𝑖𝑖  � 𝜃𝜃�𝑚𝑚(𝑥𝑥)
𝑚𝑚

𝜃𝜃�𝑚𝑚(𝑦𝑦)|𝑚𝑚(𝑥𝑥) 

=  ��𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑥𝑥) +  𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑦𝑦)|𝑚𝑚(𝑥𝑥)�
𝑚𝑚

 (10) 

 

where in each case, 𝑚𝑚(𝑥𝑥) and 𝑚𝑚(𝑦𝑦) represent the 𝑚𝑚𝑡𝑡ℎ occurrence (or “realization”) of 

the variables X and Y respectively within the data stream represented by 𝐷𝐷. 

 We can now compare the two likelihood scores as follows : 
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𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺1 ∶ 𝐷𝐷)   –  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺0 ∶ 𝐷𝐷)   

=   ��𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑦𝑦)|𝑚𝑚(𝑥𝑥) –  𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑚𝑚(𝑦𝑦)�
𝑚𝑚

=   � 𝐵𝐵(𝑥𝑥, 𝑦𝑦) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑦𝑦|𝑥𝑥
𝑥𝑥,𝑦𝑦

 −  � 𝐵𝐵(𝑦𝑦) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖 𝜃𝜃�𝑦𝑦
𝑦𝑦

 (11) 

where 𝐵𝐵(𝑥𝑥, 𝑦𝑦) and 𝐵𝐵(𝑦𝑦) represent the number of occurrences of the MLE parameters 

 𝜃𝜃�𝑦𝑦|𝑥𝑥  and  𝜃𝜃�𝑦𝑦 respectively in the data set 𝐷𝐷 which consists of 𝐵𝐵 overall observations.   

Again following Koller and Friedman (2009), we can let 𝑃𝑃�(𝑥𝑥, 𝑦𝑦) and 𝑃𝑃�(𝑦𝑦) represent the 

respective empirical frequencies within the 𝐵𝐵-observation data set 𝐷𝐷, and hence we can 

rewrite the difference in the likelihood scores of these two models as: 

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺1 ∶ 𝐷𝐷)  –  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺0 ∶ 𝐷𝐷)   

=   � 𝐵𝐵 𝑃𝑃�(𝑥𝑥, 𝑦𝑦) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖 𝑃𝑃�(𝑦𝑦|𝑥𝑥)
𝑥𝑥,𝑦𝑦

 –  � 𝐵𝐵 𝑃𝑃�(𝑦𝑦) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖 𝑃𝑃�(𝑦𝑦)
𝑦𝑦

 

                           =   𝐵𝐵 ∙ � 𝑃𝑃�(𝑥𝑥, 𝑦𝑦) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖
𝑃𝑃�(𝑦𝑦|𝑥𝑥)

𝑃𝑃�(𝑦𝑦)
𝑥𝑥,𝑦𝑦

  

                           =   𝐵𝐵 ∙ 𝐼𝐼𝑃𝑃�  (𝑋𝑋; 𝑌𝑌) (12) 

where 𝐼𝐼𝑃𝑃�  (𝑋𝑋; 𝑌𝑌) represents the mutual information between X and Y with reference to the 

empirical distribution 𝑃𝑃� (MacKay, 2003). 
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 The point to be made in this simple case of the choice between model 𝐺𝐺0 ∶ 𝑋𝑋, 𝑌𝑌  

and 𝐺𝐺1: 𝑋𝑋 → 𝑌𝑌  is that the relative increase in the likelihood score that is obtained by 

adding a link between two previously unconnected variables is directly proportional to 

the mutual information that exists between those two variables within the empirical 

distribution.  Furthermore, since the mutual information between two variables is a 

measure of the strength of the dependency between those variables, we see that as the 

dependency between two variables within a domain increases, the likelihood score 

measure will increasingly prefer structures that contain an explicit link between those two 

variables.    

 We can extend these results to more general Bayesian network configurations as 

follows: 

 
𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐿𝐿 (𝐺𝐺 ∶ 𝐷𝐷)   =   𝐵𝐵 ∙ � 𝐼𝐼𝑃𝑃�  (𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

𝐺𝐺
𝑛𝑛

𝑖𝑖=1

)   −   𝐵𝐵 ∙ � 𝐻𝐻𝑃𝑃�(𝑋𝑋𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

   (13) 

where 𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
𝐺𝐺  denotes the set of graphical “parents” (direct ancestors) of variable 𝑋𝑋𝑖𝑖 in the 

structure 𝐺𝐺, where 𝐼𝐼𝑃𝑃�(𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
𝐺𝐺 ) represents the mutual information between the 𝑖𝑖𝑡𝑡ℎ 

variable in the model and its graphical parents (computed in the empirical distribution 𝑃𝑃�), 

and where 𝐻𝐻𝑃𝑃�(𝑋𝑋𝑖𝑖) is the entropy of the 𝑖𝑖𝑡𝑡ℎ variable, i.e., 𝐻𝐻𝑃𝑃�(𝑋𝑋𝑖𝑖) = ∑ 𝑃𝑃�𝑥𝑥𝑖𝑖 (𝑥𝑥𝑖𝑖) ∙ 𝑟𝑟𝑝𝑝𝑖𝑖 1
 𝑃𝑃�(𝑥𝑥𝑖𝑖) 

 .   

(Of course, the overall enumeration from 𝑖𝑖 = 1  to  𝑖𝑖  in equation (13) refers to an 

enumeration across each of the 𝑖𝑖 variables 𝑋𝑋𝑖𝑖 in the induced model represented by the 

graphical structure 𝐺𝐺.)       
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Generalizing our earlier conclusions from the simple binomial case, we can see 

from the result in equation (13) that the graphical structure that maximizes the likelihood 

score (when using the MLE parameters for 𝐺𝐺) will be the structure for which the parents  

𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
𝐺𝐺  of the nodes  𝑋𝑋𝑖𝑖  in the model “explain” the most about their immediate graphical 

children (in the sense of maximizing the mutual information between those graphical 

parents and their immediate graphical descendants).  In other words, the graphical 

structure which maximizes the likelihood score with reference to a particular empirical 

distribution will be the one which possesses a parent-to-child graphical topology which is 

able to embed the greatest proportion of the overall shared dependence between the 

variables into the parent-to-child links within that model.   

However, this propensity for the likelihood score to prefer models which 

increasingly place more and more of the overall dependency among the variables into the 

parent-to-child link structure can often result in serious ‘overfitting’ of the derived 

models.  As an example, consider the simple case of the comparison between  𝐺𝐺0 ∶ 𝑋𝑋, 𝑌𝑌  

and   𝐺𝐺1 ∶ 𝑋𝑋 → 𝑌𝑌 .  Since the difference in the likelihood scores between these two 

models is  𝐵𝐵 ∙ 𝐼𝐼𝑃𝑃�  (𝑋𝑋; 𝑌𝑌) and mutual information is always nonnegative (and is strictly 

positive in all cases in which X and Y are not exactly independent within the empirical 

data), we see that the likelihood score will always prefer the model 𝐺𝐺1: 𝑋𝑋 → 𝑌𝑌 to the 

model 𝐺𝐺0: 𝑋𝑋, 𝑌𝑌  no matter what the data set 40.    

40 This, of course, assumes that we are ruling out the set of cases in which X and Y happen to be exactly 
independent in some empirical data set.  However, the set of cases in which this occurs is clearly 
measure zero within the overall space of possible data sets. 
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3.5   Bayesian Structural Scores 

 In order to maintain the desirable features of the likelihood score, but remedy its 

propensity to severely overfit the data, we can attempt to “spread” the choice of model 

parameters 𝜃𝜃 away from a single “concentrated” choice 𝜃𝜃� and broaden this parameter 

choice to include more potential values for 𝜃𝜃, each “weighted” by some prior likelihood 

of its occurrence.  In other words, we can attempt to remedy the shortcomings of the 

likelihood score by ‘broadening’ it to incorporate a Bayesian model of the parameter 

estimation.41 

To facilitate the development of this broader type of structural measure, consider 

the overall goal of the overall structural estimation process:  namely to maximize the 

probability 𝑃𝑃(𝐺𝐺 | 𝐷𝐷), where 𝐺𝐺 represents a graphical structure (i.e., a Bayesian network) 

under consideration, and 𝐷𝐷 represents a specific data set collected from the intended 

domain of application for the network.  Now applying Bayes’ Theorem, we can rewrite 

this probability as: 

 
𝑃𝑃(𝐺𝐺 | 𝐷𝐷)   =   

 𝑃𝑃(𝐷𝐷 | 𝐺𝐺) ∙ 𝑃𝑃(𝐺𝐺) 
𝑃𝑃(𝐷𝐷)  

 
(14) 

Since the denominator of this expression is essentially a normalizing factor that will be 

the same for any structure 𝐺𝐺 under consideration, we can restrict our attention to the 

properties of the numerator.  For simplicity, we can linearize the multiplicative form of 

41 This discussion of Bayesian structural scores follows from Koller and Friedman, 2009. 
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the numerator by taking logs, resulting in an expression that is often called the Bayesian 

score of the considered network 𝐺𝐺 in terms of the given data set 𝐷𝐷, viz.,  

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)   ∶=    𝑟𝑟𝑝𝑝𝑖𝑖  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  +  𝑟𝑟𝑝𝑝𝑖𝑖  𝑃𝑃(𝐺𝐺) (15) 

 The second term in this expression, namely  𝑟𝑟𝑝𝑝𝑖𝑖 𝑃𝑃(𝐺𝐺), can be considered as a 

“structural prior” in the sense that we can assign some prior probability to different initial 

graphical structures.  However, the differences in the probabilities of any reasonable prior 

structures are typically minimal (Koller and Friedman, 2009), and this term is usually 

regarded as being negligible compared to the first term in this score function42.  The first 

term in Equation 15 is the log of the marginal likelihood of the data (given the structure), 

which can be computed using standard techniques as follows: 

𝑃𝑃(𝐷𝐷 | 𝐺𝐺)   =    � 𝑃𝑃(𝐷𝐷 | 〈 𝐺𝐺 ,  𝜃𝜃𝐺𝐺〉 ) 𝑃𝑃(𝜃𝜃𝐺𝐺 | 𝐺𝐺 ) 𝑖𝑖𝜃𝜃𝐺𝐺
𝜃𝜃𝐺𝐺

 (16) 

where 𝑃𝑃(𝐷𝐷 | 〈 𝐺𝐺 ,  𝜃𝜃𝐺𝐺〉 ) is the likelihood of the data 𝐷𝐷 given the network 〈 𝐺𝐺 ,  𝜃𝜃𝐺𝐺〉, and 

𝑃𝑃(𝜃𝜃𝐺𝐺 | 𝐺𝐺 ) represents our assumptions about the prior distribution of the parameters of the 

network structure.   

Since the marginal log-likelihood of the data, namely 𝑟𝑟𝑝𝑝𝑖𝑖  𝑃𝑃(𝐷𝐷 | 𝐺𝐺), is the critical 

quantity in the Bayesian score of a data set, it will be very beneficial to examine its 

structure in greater detail.  To do so, we will make the reasonable assumption that the 

data are generated by a multinomial mechanism, and hence that we can utilize a 

42 For this reason, a uniform structural prior is often used in practice. 
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conjugate Dirichlet prior for the data.43  To develop a parameterized expression for the 

marginal log-likelihood of the data, assume that we have a very simple multinomial 

mechanism:  specifically a binomial mechanism with a Beta(𝛼𝛼1, 𝛼𝛼0) prior distribution 

over a single variable 𝑋𝑋.  Letting 𝑥𝑥1 and 𝑥𝑥0 denote the two possible outcomes of 𝑋𝑋, and 

assuming that our data set 𝐷𝐷 consists of 𝐵𝐵 observations, we can write the maximum 

likelihood function for the data as follows : 

𝑃𝑃(𝐷𝐷 | 𝜃𝜃 �  )    =    �
 𝐵𝐵(𝑥𝑥1) 

𝐵𝐵
�

𝑀𝑀�𝑥𝑥1�

∙   �
 𝐵𝐵(𝑥𝑥0) 

𝐵𝐵
�

𝑀𝑀�𝑥𝑥0�

 
(17) 

where 𝐵𝐵(𝑥𝑥1) and 𝐵𝐵(𝑥𝑥0) represent the number of occurrences of the outcomes 𝑥𝑥1 and 𝑥𝑥0 

respectively within the 𝐵𝐵 observations that constitute the data set 𝐷𝐷. 

 Since the data were generated by a multinomial mechanism, we can compute the 

likelihood 𝑃𝑃(𝐷𝐷 | 𝐺𝐺) of the data given the graph by using a direct computation (rather than 

via the integral given in equation 16).  Specifically, using the chain rule, we can compute 

the probability of the 𝐵𝐵 observations in the data set 𝐷𝐷 as follows: 

 𝑃𝑃(𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀)   =   𝑃𝑃(𝑥𝑥1 ) ∙ 𝑃𝑃(𝑥𝑥2 | 𝑥𝑥1 ) ⋯  𝑃𝑃(𝑥𝑥𝑀𝑀 | 𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀−1) (18) 

However, since we are using a Beta(𝛼𝛼1, 𝛼𝛼0)  prior for 𝑋𝑋, we can write the successive 

conditional probabilities in the following general form: 

43 The assumption of multinomial sampling is in keeping with basic Bayesian network practice, and also 
matches well with typical marketing survey data. 
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𝑃𝑃�𝑥𝑥𝑗𝑗+1 =  𝑥𝑥1 | 𝑥𝑥1 , … , 𝑥𝑥𝑗𝑗  �    =   

 𝑗𝑗(𝑥𝑥1) +  𝛼𝛼1 
𝑗𝑗 +  𝛼𝛼

 

𝑃𝑃�𝑥𝑥𝑗𝑗+1 =  𝑥𝑥0 | 𝑥𝑥1 , … , 𝑥𝑥𝑗𝑗  �    =   
 𝑗𝑗(𝑥𝑥0) +  𝛼𝛼0 

𝑗𝑗 +  𝛼𝛼
  

(19a) 

 

 
(19b) 

where  𝑗𝑗(𝑥𝑥1)  and  𝑗𝑗(𝑥𝑥0)  are the number of occurrences of outcomes  𝑥𝑥1 and 𝑥𝑥0  

respectively within the first 𝑗𝑗 data observations, and where  𝛼𝛼 =  𝛼𝛼1 + 𝛼𝛼0 .   Therefore, 

each of the 𝑗𝑗 factors in the probability expression we derive for any particular data string 

�𝑥𝑥1 , … , 𝑥𝑥𝑗𝑗� will either be of the form  𝛼𝛼1+ ℎ
𝛼𝛼+𝑑𝑑

   or   𝛼𝛼0+ 𝑘𝑘
𝛼𝛼+𝑑𝑑

  where 𝑖𝑖 represents the 

observation number being evaluated (i.e., 1 ≤ 𝑖𝑖 ≤ 𝑗𝑗 ), and where ℎ and 𝑝𝑝 represent the 

number of 𝑥𝑥1 or 𝑥𝑥0 outcomes respectively that were seen in the first 𝑖𝑖 − 1 data 

observations within that string. 

 Since the order of occurrence of the 𝐵𝐵 data observations that constitute the data 

set 𝐷𝐷 is irrelevant to the overall probability of the particular data string that was observed 

(i.e., since we are assuming exchangeability of the particular data observations within the 

string, and hence the overall numbers of each particular outcome are the sufficient 

statistics for that string, rather than the particular sequence of outcome occurrences 

itself), we can “group” all of the 𝑥𝑥1 and 𝑥𝑥0 outcomes separately and rewrite the overall 

probability of the data as : 

𝑃𝑃(𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀) = 

[𝛼𝛼1 ∙ (𝛼𝛼1 +  1) ⋯ (𝛼𝛼1 +  𝐵𝐵(𝑥𝑥1)  − 1)] ∙ [𝛼𝛼0 ∙ (𝛼𝛼0 +  1) ⋯ (0 +  𝐵𝐵(𝑥𝑥0)  − 1)]
𝛼𝛼 ∙ (𝛼𝛼 + 1) ⋯  (𝛼𝛼 + 𝐵𝐵 − 1)  

 

(20) 
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Since 𝛼𝛼1 and 𝛼𝛼0 are hyperparameters for the distribution, they are not necessarily 

restricted to integer values, and hence we can use the gamma function to rewrite the 

expression in (20) in a more compact form, viz.,  

𝑃𝑃(𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀)   =   
 Γ(𝛼𝛼) 

 Γ(𝛼𝛼 + 𝐵𝐵) 
 ∙  

  Γ�𝛼𝛼1 + 𝐵𝐵(𝑥𝑥1)� 
 Γ(𝛼𝛼1) 

 ∙  
  Γ�𝛼𝛼0 + 𝐵𝐵(𝑥𝑥0)� 

 Γ(𝛼𝛼0) 
 (21) 

where we have utilized the relationship  𝛼𝛼 ∙ (𝛼𝛼 + 1) ⋯ (𝛼𝛼 + 𝐵𝐵 − 1)  =   Γ(𝛼𝛼+𝑀𝑀)
Γ(𝛼𝛼)    in order 

to reduce some of the iterated products in the original expression in Equation 20. 

 Now we can extend this derivation to the case of a multinomial (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ) 

distribution over a single variable 𝑋𝑋 with a conjugate Dirichlet(𝛼𝛼1 , 𝛼𝛼2 , … , 𝛼𝛼𝑛𝑛) prior for 

the data.  A parallel derivation to that shown above gives the following analogous 

expression for the probability of the observed data : 

 
𝑃𝑃(𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀)    =    

 Γ(𝛼𝛼) 
 Γ(𝛼𝛼 + 𝐵𝐵) 

 ∙  �  
 Γ �𝛼𝛼𝑖𝑖 + 𝐵𝐵�𝑥𝑥𝑖𝑖�� 

 Γ(𝛼𝛼𝑖𝑖) 

𝑛𝑛

𝑖𝑖=1

  (22) 

 In order to generalize this derivation even further so that it can encompass a full 

Bayesian network, we must ensure that the same type of modularity (or “locality of 

influence”) that exists in a simple multinomial example over one variable can be 

replicated in a more complex network structure.  We can ensure that such modularity will 

be maintained in a more general Bayesian network by imposing some regularity 

conditions, which will take the form of a global independence condition and a local 

independence condition on the network parameters (Koller and Friedman, 2009). 
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 To begin to derive these regularity conditions, we can first consider how to extend 

the previous case of a single variable 𝑋𝑋 into the more general case of two variables 

connected by a directed link  𝑋𝑋 → 𝑌𝑌.   In such a case, we will need to jointly model the 

parameters and the data, such as shown in Figure 24 below (in which the data instances 

for X and Y are denoted by  𝑋𝑋1 , 𝑋𝑋2 , … , 𝑋𝑋𝑀𝑀  and  𝑌𝑌1 , 𝑌𝑌2 , … , 𝑌𝑌𝑀𝑀 respectively). 

 

Figure 24.   Joint model of I.I.D. data and parameters for a single link  𝑋𝑋 → 𝑌𝑌 

From this figure, we can see that knowledge of the parameters 𝜃𝜃𝑋𝑋 and 𝜃𝜃𝑌𝑌|𝑋𝑋 will serve to 

d-separate each pair of linked observations 𝑋𝑋𝑖𝑖 , 𝑌𝑌𝑖𝑖  from each other such pair of linked 

observations 𝑋𝑋𝑗𝑗 , 𝑌𝑌𝑗𝑗 ( 𝑗𝑗 ≠ 𝑖𝑖 ).  Furthermore, given such a structure, each path between 

parameters 𝜃𝜃𝑋𝑋 and 𝜃𝜃𝑌𝑌|𝑋𝑋 is of the form  𝜃𝜃𝑋𝑋 → 𝑋𝑋𝑖𝑖 → 𝑌𝑌𝑖𝑖 ← 𝜃𝜃𝑌𝑌|𝑋𝑋 , and so the parameters 𝜃𝜃𝑋𝑋 

and 𝜃𝜃𝑌𝑌|𝑋𝑋 will be d-separated from one another given observation of all the 𝑋𝑋𝑖𝑖′𝑝𝑝  (or, 

𝑋𝑋1 

𝑌𝑌1 

𝑋𝑋2 

𝑌𝑌2 

𝑋𝑋𝑀𝑀 

𝑌𝑌𝑀𝑀 

𝜃𝜃𝑋𝑋 

𝜃𝜃𝑌𝑌|𝑋𝑋 
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technically, given the lack of observation of all the 𝑌𝑌𝑖𝑖′𝑝𝑝 , which we assume will not occur 

in a collected data set).    

Importantly, under such a data structure, if the parameters 𝜃𝜃𝑋𝑋 and 𝜃𝜃𝑌𝑌|𝑋𝑋 were 

independent a priori, they will remain independent once updated by the network.  In other 

words, a network structure of this form will not induce any network-derived 

dependencies between a priori independent parameters.  Furthermore, under such a 

structure, it is possible to compute the posterior distributions over 𝜃𝜃𝑋𝑋 and 𝜃𝜃𝑌𝑌|𝑋𝑋 

independently of each other.  This independence property of the parameters is what we 

want to “mirror” within more complex Bayesian networks.  More specifically, for a 

general Bayesian network with parameters 𝜃𝜃 =  �𝜃𝜃𝑋𝑋1|𝑃𝑃𝑎𝑎𝑋𝑋1
, … , 𝜃𝜃𝑋𝑋𝑛𝑛|𝑃𝑃𝑎𝑎𝑋𝑋𝑛𝑛

�  we will say that 

the prior 𝑃𝑃(𝜃𝜃) possesses global parameter independence if it can be decomposed into a 

product  ∏ 𝑃𝑃 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
�𝑖𝑖 .   Most standard priors will satisfy such a criterion, but if, for 

instance, it is assumed that certain nodes in the network “share” certain properties, such 

as the same propensity to assign certain values to observations, then such a global 

parameter independence criterion would fail to hold. 

In the setting of a general Bayesian network, the benefit of having a prior that 

satisfies global parameter independence can be further seen by analyzing the expression 

for the posterior distribution of the parameter:   

 
𝑃𝑃( 𝜃𝜃 | 𝐷𝐷 )    =    

𝑃𝑃( 𝐷𝐷 | 𝜃𝜃 ) ∙ 𝑃𝑃(𝜃𝜃)
𝑃𝑃(𝐷𝐷)

  (23) 
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In this expression, the 𝑃𝑃(𝐷𝐷 | 𝜃𝜃) term is the (global) likelihood function for the network, 

and general results from Bayesian network theory (e.g., Koller and Friedman, 2009) show 

that it can be decomposed into a product of local likelihoods: 

 𝑃𝑃( 𝐷𝐷 | 𝜃𝜃 )    =    �  𝐿𝐿𝑖𝑖 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
∶ 𝐷𝐷�

𝑖𝑖

 

=    �   �  𝑃𝑃 � (𝑥𝑥𝑖𝑖)𝑚𝑚 � �𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖�𝑚𝑚
 ∶  𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

� 
𝑚𝑚𝑖𝑖

 (24) 

Since the marginal likelihood term 𝑃𝑃(𝐷𝐷) in the denominator of the posterior 

distribution 𝑃𝑃(𝜃𝜃 | 𝐷𝐷) is a normalizing factor (and additionally does not depend on G), the 

only remaining term to consider from the posterior distribution expression (23) is the 

expression for the prior distribution of the parameters.  This is where the assumption of 

global parameter independence becomes useful, since under this assumption, we can 

express  𝑃𝑃(𝜃𝜃)  as  ∏ 𝑃𝑃 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
�𝑖𝑖   and hence the overall posterior for 𝜃𝜃 becomes: 

 
𝑃𝑃( 𝜃𝜃 | 𝐷𝐷 )    =    

𝑃𝑃( 𝐷𝐷 | 𝜃𝜃 ) ∙ 𝑃𝑃(𝜃𝜃)
𝑃𝑃(𝐷𝐷)   

=    
 ∏  𝐿𝐿𝑖𝑖 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

∶ 𝐷𝐷�𝑖𝑖   ∏ 𝑃𝑃 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
�𝑖𝑖

𝑃𝑃(𝐷𝐷)  

=    
1

𝑃𝑃(𝐷𝐷)
  �  �𝐿𝐿𝑖𝑖 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

∶ 𝐷𝐷�  ∙ 𝑃𝑃 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
��

𝑖𝑖

 

 

 

(25) 
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As Equation 25 shows, each component 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
 of 𝜃𝜃 only contributes to one factor 

within the overall product expression for the posterior, and hence under this assumption 

of global parameter independence of the prior 𝑃𝑃(𝜃𝜃), we can decompose the global 

posterior distribution into a product of local posterior distributions, viz.,  𝑃𝑃( 𝜃𝜃 | 𝐷𝐷 )  =

 ∏  𝑃𝑃 � 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
 � 𝐷𝐷 �𝑖𝑖  . 

  As shown above, the global parameter independence condition allows us to 

reduce the global Bayesian estimation problem to a series of far simpler local Bayesian 

estimation problems.  However, within these local estimation problems, we will typically 

wish to assume a particular form of local parameter independence.  To derive this 

condition, once again consider the basic case of a single directed link  𝑋𝑋 → 𝑌𝑌 between 

two network variables.  In order to analyze the specific local properties of this structure, 

we will assume a simple binary distribution on each of these two variables, and a tabular 

CPD for representing their joint distribution.  In essence, this assumption amounts to 

adding a local model to the global structure shown in Figure 22. 

 In this model for the structure  𝑋𝑋 → 𝑌𝑌 , the binary variable 𝑋𝑋 is relatively easy to 

analyze: if we assume that we have a Dirichlet prior for its parameter 𝜃𝜃𝑋𝑋 , then the 

posterior distribution of 𝜃𝜃𝑋𝑋 given the data  𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀 , namely  𝑃𝑃(𝜃𝜃𝑋𝑋 | 𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀), will 

once again be Dirichlet.  However, the remaining parameters are the conditional ones, 

namely the vector  𝜃𝜃𝑌𝑌|𝑋𝑋 =  𝜃𝜃𝑦𝑦0|𝑥𝑥0 , … , 𝜃𝜃𝑦𝑦1|𝑥𝑥1 .  If we assume that the influence of each of 

𝑥𝑥0 and 𝑥𝑥1 are independent a priori, then we can use a separate Dirichlet prior for each of 

𝜃𝜃𝑌𝑌|𝑥𝑥0 and 𝜃𝜃𝑌𝑌|𝑥𝑥1, yielding the overall prior  𝑃𝑃�𝜃𝜃𝑌𝑌|𝑋𝑋�  =  𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥0� ∙ 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥1� .   Given 

these assumptions, the modified version of Figure 22, in which we have added the local 
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parameterizations to the model, would appear as shown in Figure 25, below (where we 

are once again using  𝑋𝑋1 , 𝑋𝑋2 , … , 𝑋𝑋𝑀𝑀  and  𝑌𝑌1 , 𝑌𝑌2 , … , 𝑌𝑌𝑀𝑀 to denote the various data 

instances). 

 

Figure 25.   Joint model of I.I.D. binary data and parameters for a link  𝑋𝑋 → 𝑌𝑌 
 

 Interestingly, it would appear that observation of the data on 𝑌𝑌 would serve to 

correlate the two conditional parameters  𝜃𝜃𝑌𝑌|𝑥𝑥0 and  𝜃𝜃𝑌𝑌|𝑥𝑥1 (since observation of the 

central node 𝑌𝑌𝑖𝑖 in a collider such as  𝜃𝜃𝑌𝑌|𝑥𝑥0 → 𝑌𝑌𝑖𝑖 ←  𝜃𝜃𝑌𝑌|𝑥𝑥1 will allow the two terminal 

variables to probabilistically influence each other).  However, the “choice” of which 

conditional parameter 𝜃𝜃𝑌𝑌|𝑥𝑥0 or  𝜃𝜃𝑌𝑌|𝑥𝑥1 actively governs the probability of a specific data 

instance on 𝑌𝑌 is actually a function of which particular outcome ( 𝑥𝑥0 or 𝑥𝑥1 ) was observed 

for 𝑋𝑋 during that particular realization of the network data.   

𝑋𝑋1 

𝑌𝑌1 

𝑋𝑋2 

𝑌𝑌2 

𝑋𝑋𝑀𝑀 

𝑌𝑌𝑀𝑀 

𝜃𝜃𝑋𝑋 

𝜃𝜃𝑌𝑌|𝑥𝑥0 𝜃𝜃𝑌𝑌|𝑥𝑥1 
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Specifically, if the 𝑖𝑖𝑡𝑡ℎ observation 𝑋𝑋𝑖𝑖 of variable 𝑋𝑋 happens to show value 𝑥𝑥0 , 

then the conditional distribution of observation  𝑌𝑌𝑖𝑖 for variable 𝑌𝑌 will be governed by 

parameter 𝜃𝜃𝑌𝑌|𝑥𝑥0, and the link from 𝜃𝜃𝑌𝑌|𝑥𝑥1 to 𝑌𝑌𝑖𝑖 in the collider  𝜃𝜃𝑌𝑌|𝑥𝑥0 → 𝑌𝑌𝑖𝑖 ←  𝜃𝜃𝑌𝑌|𝑥𝑥1  will no 

longer be active.  In symmetric fashion, of course, the link from 𝜃𝜃𝑌𝑌|𝑥𝑥1 to 𝑌𝑌𝑖𝑖  in the collider 

structure  𝜃𝜃𝑌𝑌|𝑥𝑥0 → 𝑌𝑌𝑖𝑖 ← 𝜃𝜃𝑌𝑌|𝑥𝑥1  will become inactive whenever the 𝑖𝑖𝑡𝑡ℎ observation 𝑋𝑋𝑖𝑖 of 

variable 𝑋𝑋 happens to show value 𝑥𝑥1.  Therefore, for each realization of the data for these 

variables, we have a form of context-specific independence of 𝜃𝜃𝑌𝑌|𝑥𝑥0 and  𝜃𝜃𝑌𝑌|𝑥𝑥1 given the 

particular value of the variable 𝑋𝑋 that was observed, namely the relation  𝑃𝑃� 𝜃𝜃𝑌𝑌|𝑋𝑋 � 𝐷𝐷 �  =

 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥0  � 𝐷𝐷 � ∙ 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥1  � 𝐷𝐷 � .   Based on this analysis, we can show that if the priors  

𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥0� and 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥1� are Dirichlet with hyperparameters  �𝛼𝛼𝑦𝑦0|𝑥𝑥0  , 𝛼𝛼𝑦𝑦1|𝑥𝑥0�  and  

�𝛼𝛼𝑦𝑦0|𝑥𝑥1  , 𝛼𝛼𝑦𝑦1|𝑥𝑥1�  respectively, then the posterior distributions 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥0  � 𝐷𝐷 �  and  

𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥1  � 𝐷𝐷 �  will be also be Dirichlet with updated hyperparameters   � 𝛼𝛼𝑦𝑦0|𝑥𝑥0 +

 𝐵𝐵[𝑥𝑥0, 𝑦𝑦0]  ,  𝛼𝛼𝑦𝑦1|𝑥𝑥0 +  𝐵𝐵[𝑥𝑥0, 𝑦𝑦1] �  and  � 𝛼𝛼𝑦𝑦0|𝑥𝑥1 +  𝐵𝐵[𝑥𝑥1, 𝑦𝑦0]  ,  𝛼𝛼𝑦𝑦1|𝑥𝑥1 +  𝐵𝐵[𝑥𝑥1, 𝑦𝑦1] �  

respectively (Koller and Friedman, 2009). 

 We now wish to apply this form of network decomposition to a more general 

Bayesian network structure.  As was the case above, we wish to be able to guarantee that 

if we have Dirichlet priors for the parameters of our network, that we will be able to once 

again recover Dirichlet posterior parameter distributions from that network.  First, we 

need to extend our previous analysis of a network variable 𝑌𝑌 and its graphical parent 𝑋𝑋, 

and instead consider the more general situation of a variable 𝑋𝑋 and its set of graphical 

parents 𝑈𝑈.  As we did above, we will wish to assume that the prior distribution  𝑃𝑃(𝜃𝜃𝑋𝑋|𝑈𝑈) 
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over the conditional parameter 𝜃𝜃𝑋𝑋|𝑈𝑈 can be written as a product of local priors involving 

the graphical parents of 𝑋𝑋.   Therefore, we will extend our two-variable local 

independence assumption   𝑃𝑃�𝜃𝜃𝑌𝑌|𝑋𝑋� = 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥0� ∙ 𝑃𝑃�𝜃𝜃𝑌𝑌|𝑥𝑥1�  by instead writing this 

assumption as  𝑃𝑃�𝜃𝜃𝑋𝑋|𝑈𝑈�  =  ∏ 𝑃𝑃�𝜃𝜃𝑋𝑋|𝑢𝑢�𝑢𝑢  .    

Once again, as was done in the simpler case of a single directed link  𝑋𝑋 → 𝑌𝑌, it 

will typically be beneficial to “couple” the two assumptions of global and local parameter 

independence.  As described above, global parameter independence asserts that the global 

prior 𝑃𝑃(𝜃𝜃) can be decomposed into a product  ∏ 𝑃𝑃 �𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
�𝑖𝑖   of local priors for the 

parameters corresponding to each variable 𝑋𝑋𝑖𝑖 conditional on its set of graphical parents in 

the network.  Following this, the assumption of local parameter independence will allow 

us to write each local prior  𝑃𝑃�𝜃𝜃𝑋𝑋|𝑈𝑈�  as a product  ∏ 𝑃𝑃�𝜃𝜃𝑋𝑋|𝑢𝑢�𝑢𝑢   of priors for 𝑋𝑋 

conditional on each individual parent  𝑝𝑝 ∈ 𝑈𝑈.   

In analogy to the procedure used in the previous example, once we assume both 

the global and the local parameter independence conditions for the prior 𝑃𝑃(𝜃𝜃), we can 

extend the previous analysis to show that the posterior distribution for the parameters will 

also have a local decomposition, given by Equation 26 (e.g., Koller and Friedman, 2009). 

 𝑃𝑃( 𝜃𝜃 | 𝐷𝐷 )    =     �  �  𝑃𝑃 � 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
 � 𝐷𝐷 �

𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖𝑖𝑖

 (26) 

Based on this local decomposition, we can also show that if each 𝑃𝑃�𝜃𝜃𝑋𝑋|𝑢𝑢� is Dirichlet 

with hyperparameters �𝛼𝛼𝑥𝑥1|𝑢𝑢 , … , 𝛼𝛼𝑥𝑥𝑛𝑛|𝑢𝑢� ,  then the posterior distribution 𝑃𝑃�𝜃𝜃𝑋𝑋|𝑢𝑢 � 𝐷𝐷 � 

will be Dirichlet with hyperparameters �𝛼𝛼𝑥𝑥1|𝑢𝑢 + 𝐵𝐵[𝑝𝑝, 𝑥𝑥1] , … , 𝛼𝛼𝑥𝑥𝑛𝑛|𝑢𝑢 + 𝐵𝐵[𝑝𝑝, 𝑥𝑥𝑛𝑛] �.   
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 Now we can apply these results to the estimation of the Bayesian score for a given 

network.  Recall that this score is derived from the numerator of the expression for the 

posterior probability of a graph given the observed data, namely  𝑃𝑃(𝐺𝐺 | 𝐷𝐷) =  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)∙𝑃𝑃(𝐺𝐺) 
𝑃𝑃(𝐷𝐷)      

Specifically,  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  is defined as the log of this numerator, i.e.,  

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  ∶=  log  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  + log  𝑃𝑃(𝐺𝐺) .   Since the structural prior 𝑃𝑃(𝐺𝐺) 

typically makes a negligible contribution to the score, we instead focused upon the term 

containing the marginal likelihood of the data given the graph structure, namely 

𝑃𝑃(𝐷𝐷 | 𝐺𝐺), which can be computed as  𝑃𝑃(𝐷𝐷 | 𝐺𝐺) =  ∫ 𝑃𝑃(𝐷𝐷 | 〈 𝐺𝐺 ,  𝜃𝜃𝐺𝐺〉 ) 𝑃𝑃(𝜃𝜃𝐺𝐺 | 𝐺𝐺 ) 𝑖𝑖𝜃𝜃𝐺𝐺𝜃𝜃𝐺𝐺
 .    

Our goal is to further characterize this integral by applying the global and the 

local parameter independence assumptions for the prior.  Under the global parameter 

independence assumption only, this integral can be expressed as: 

𝑃𝑃( 𝐷𝐷 | 𝐺𝐺 ) = 

  � � �  𝑃𝑃 � (𝑥𝑥𝑖𝑖)𝑚𝑚 � �𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖�𝑚𝑚
,  𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

, 𝐺𝐺 �
𝑚𝑚 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

𝑖𝑖

 𝑃𝑃 � 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
� 𝐺𝐺� 𝑖𝑖𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖

  

 

 

(27) 

In addition, if we also maintain the local parameter independence assumption, we can 

further break this expression down “parent-by-parent” within the parental set 𝑈𝑈, giving us 

the expanded integrand sown in Equation 28: 
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𝑃𝑃( 𝐷𝐷 | 𝐺𝐺 )  = 

� �  �  � 𝑃𝑃� (𝑋𝑋𝑖𝑖)𝑚𝑚 � 𝑝𝑝𝑖𝑖  ,  𝜃𝜃𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖 , 𝐺𝐺 �
𝑚𝑚 ∶ (𝑢𝑢𝑖𝑖)𝑚𝑚=𝑢𝑢𝑖𝑖 𝜃𝜃𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖𝑢𝑢𝑖𝑖 ∈ 𝑉𝑉𝑎𝑎𝑉𝑉�𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖�𝑖𝑖

𝑃𝑃� 𝜃𝜃𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖� 𝐺𝐺�𝑖𝑖𝜃𝜃𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖 (28) 

Now recall that in the case of a multinomial (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛  ) distribution over a 

single variable 𝑋𝑋 with a conjugate Dirichlet(𝛼𝛼1 , 𝛼𝛼2 , … , 𝛼𝛼𝑛𝑛) prior for the data, we were 

able to show that the probability of the data reduced to the expression   𝑃𝑃(𝑥𝑥1 , … , 𝑥𝑥𝑀𝑀)  =

  Γ(𝛼𝛼) 
 Γ(𝛼𝛼+𝑀𝑀) 

 ∙  ∏  
 Γ�𝛼𝛼𝑖𝑖+𝑀𝑀�𝑥𝑥𝑖𝑖�� 

 Γ(𝛼𝛼𝑖𝑖) 
𝑛𝑛
𝑖𝑖=1  .  In the more general case of a Bayesian network with 

graphical structure 𝐺𝐺, we will similarly be able to use the closed-form expression for the 

marginal likelihood of the Dirichlet prior in order to derive an analogous expression for 

the probability of the data given the graphical structure of the network (Koller and 

Friedman, 2009):  

     𝑃𝑃( 𝐷𝐷 | 𝐺𝐺 )   =   

     �  �
 Γ�𝛼𝛼𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖� 

 Γ�𝛼𝛼𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖 +  𝐵𝐵[𝑝𝑝𝑖𝑖] � 
𝑢𝑢𝑖𝑖 ∈ 𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖𝑖𝑖

  ∙ �  
 Γ �𝛼𝛼𝑥𝑥𝑖𝑖

𝑗𝑗|𝑢𝑢𝑖𝑖
+ 𝐵𝐵�𝑥𝑥𝑖𝑖

𝑗𝑗 , 𝑝𝑝𝑖𝑖�� 

 Γ �𝛼𝛼𝑥𝑥𝑖𝑖
𝑗𝑗|𝑢𝑢𝑖𝑖

� 

𝑛𝑛

𝑥𝑥𝑖𝑖
𝑗𝑗 ∈ 𝑉𝑉𝑎𝑎𝑉𝑉(𝑋𝑋𝑖𝑖)

    
(29) 

where  � 𝛼𝛼𝑥𝑥𝑖𝑖
𝑗𝑗|𝑢𝑢𝑖𝑖

∶   𝑗𝑗 = 1 , … , |𝑋𝑋𝑖𝑖| �  are the hyperparameters for  𝑃𝑃 � 𝜃𝜃𝑋𝑋𝑖𝑖|𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖
� 𝐺𝐺� ,  and 

where 𝛼𝛼𝑋𝑋𝑖𝑖|𝑢𝑢𝑖𝑖 =  ∑  𝛼𝛼𝑥𝑥𝑖𝑖
𝑗𝑗|𝑢𝑢𝑖𝑖

𝑗𝑗  are the summed “pseudo-counts” associated with the respective 

Dirichlet hyperparameters.   
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Overall, the Bayesian score for a Bayesian network with Dirichlet priors will be 

of the form:  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  ∶=  log  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  +  log  𝑃𝑃(𝐺𝐺) , where the  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  term 

will have the closed-form expression given in Equation 29, and where the structural prior 

𝑃𝑃(𝐺𝐺) will typically be either uniform or close to uniform (and will typically play a 

negligible role compared to the 𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  term).     

Asymptotically as the size 𝐵𝐵 of the data set goes to infinity, the Bayesian score 

does approach the relatively simpler Bayesian Information Criterion (BIC) measure given 

by  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  ∶=  𝑟𝑟� 𝜃𝜃�𝐺𝐺 ∶ 𝐷𝐷 �  −   𝑉𝑉𝑙𝑙𝑙𝑙 𝑀𝑀
2

∙ 𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺]  , where the 𝜃𝜃�𝐺𝐺 are the MLE 

parameters for the network, and 𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺] measures the number of independent parameters 

in the network (MacKay, 2003; Koller and Friedman, 2009).  Furthermore, it can be 

shown that both the BIC and Bayesian measures are consistent up to Markov equivalence 

(i.e., both measures will converge to some member of the Markov equivalence class of 

the “true” generating structure 𝐺𝐺∗ as the size 𝐵𝐵 of the data set goes to infinity).  

Therefore, in cases where one merely wishes to utilize the derived graphical 

structure to compute marginals over various queries, it might seemingly suffice to derive 

the graphical structure by optimizing any particular consistent scoring function.  

However, when one needs to allow for directionality within the derived structure to play 

a role, this entails the use of the structure to potentially compute the results of 

interventions to the graph, as well as to distinguish between which direction represents 

predictive reasoning in the mind of the consumers, versus which direction represents 

diagnostic reasoning for those consumers.  Since such queries are particularly sensitive to 

the specific “microstructure” of the network, one needs to be sure that the structural 
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measure that most directly reflects that microstructure is utilized in the structural 

estimation procedure.  Hence, for Bayesian network modeling tasks in which such 

microstructural and directional considerations are likely to prove critical, it may be safest 

to utilize either the Bayesian measure, or the closely related Bayesian Information 

Criterion (BIC) measure. 

What is especially interesting about the Bayesian structural score itself is that it is 

able to be a consistent estimator of the generating distribution without requiring any 

explicit ‘penalizing’ function for structural complexity.  Compare this with other 

consistent structural estimators derived from information-based (i.e., entropy or minimum 

description length) concerns, such as the Bayesian Information Criterion (BIC) score, for 

example.  Recall that the Bayesian Information Criterion measure is given by the 

function:   𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  ∶=  𝑟𝑟� 𝜃𝜃�𝐺𝐺 ∶ 𝐷𝐷 �  −   𝑉𝑉𝑙𝑙𝑙𝑙 𝑀𝑀
2

∙ 𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺]  ,  where  𝜃𝜃�𝐺𝐺  are the 

MLE parameters for the network, 𝐵𝐵 represents the cardinality of the data on which the 

estimate is made, and 𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺] measures the number of independent parameters in the 

derived network.  This score can be re-written to more explicitly represent its 

information-theoretic foundations as follows (Koller and Friedman, 2009): 

𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵𝐵𝐵𝐵𝐵 (𝐺𝐺: 𝐷𝐷) ∶=   𝐵𝐵 � 𝑰𝑰𝑃𝑃�� 𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖 �  −  𝐵𝐵
𝑛𝑛

𝑖𝑖=1

� 𝐻𝐻𝑃𝑃�(𝑋𝑋𝑖𝑖)  −  
𝑟𝑟𝑝𝑝𝑖𝑖 𝐵𝐵

2
𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺]

𝑛𝑛

𝑖𝑖=1

         

 
(30) 

The entropy term in this expression (i.e., the second term on the right-hand side) 

is not sensitive to the specific graphical structure of the underlying network, and hence 
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this term will not influence the choice of network structure.  This leaves a trade-off 

between the positive contribution of the mutual information term  𝐵𝐵 ∑ 𝑰𝑰𝑃𝑃�� 𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖 �𝑛𝑛
𝑖𝑖=1   

and the negative contribution of the model complexity term  𝑉𝑉𝑙𝑙𝑙𝑙 𝑀𝑀
2

𝐷𝐷𝑖𝑖𝑚𝑚[𝐺𝐺] .  Therefore, a 

measure such as  𝐵𝐵 ∑ 𝑰𝑰𝑃𝑃�� 𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖 �𝑛𝑛
𝑖𝑖=1   which is based purely on the shared information 

between the various nodes of the network and their graphical ‘parents’ will need to be 

augmented by a complexity-penalizing term in order to avoid overfitting.  On the other 

hand, the Bayesian measure (namely, the measure given by  𝑝𝑝𝑎𝑎𝑝𝑝𝑟𝑟𝑟𝑟 𝐵𝐵 (𝐺𝐺 ∶ 𝐷𝐷)  ∶=

 log  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  +  log  𝑃𝑃(𝐺𝐺) ,  where the  𝑃𝑃(𝐷𝐷 | 𝐺𝐺)  term is given by the closed-form 

expression given in Equation 29, and where the structural prior 𝑃𝑃(𝐺𝐺) will typically be 

either uniform or close to uniform) is able to be a consistent structural estimator without 

the need for introducing such a complexity-penalizing term because the Bayesian 

measure simply incorporates the precise independence relationships that would be 

expected from multinomial data within a directed graphical structure which obeys the 

specific local and global parameter independence properties that are quite natural to 

expect in such circumstances.  In other words, although other measures such as the B.I.C. 

criterion can also aggregate individual data into a joint structure, it does not accomplish 

this task in as natural of a manner as the Bayesian structural measure.     

Furthermore, since the mutual information term within the B.I.C. measure is a 

linear function of the data size 𝐵𝐵 while the model complexity “penalty” term is a 

logarithmic function of 𝐵𝐵, the complexity penalty term will have its maximum relative 

contribution (relative to the contribution of the mutual information, or “model-fit” term) 

when the size of the data set is small (Koller and Friedman, 2009).  Hence, with 
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moderately-sized data sets, the structural differences between the independence-derived 

Bayesian score and the information-theoretic B.I.C. score may prove to be important, and 

one may wish to utilize the Bayesian score in such cases. This is especially true in cases 

where one wishes to maximally discern differences between the predictive and diagnostic 

directions within the brand concept map of the targeted population.44 

Additionally, one should note that the B.I.C. measure converges to the Bayesian 

measure in the large-sample limit.  Since in the large-sample limit, the mutual 

information term  𝐵𝐵 ∑ 𝑰𝑰𝑃𝑃�� 𝑋𝑋𝑖𝑖 ;  𝑃𝑃𝑎𝑎𝑋𝑋𝑖𝑖 �𝑛𝑛
𝑖𝑖=1  of the B.I.C. measure vastly predominates, this 

implies that the Bayesian measure must also be maximizing the ability of the parents of 

each node to explain the values of their child nodes (Koller and Friedman, 2009).  Within 

the B.I.C. measure, the relative contributions of the complexity penalty and the mutual 

information term vary as the sample size grows.  However, the structure of the Bayesian 

measure remains constant over increasing sample sizes.  Hence the Bayesian measure’s 

propensity to maximize the parent-to-child predictiveness must be occurring at all 

different sample sizes.  Therefore for multinomial data (which is the predominant form of 

data encountered in typical survey-based marketing research), the Bayesian measure 

represents an essentially optimal means of aggregating the subjects’ individual data in 

such a way as to consistently derive structures in which the parents of each node can 

maximally explain the values of their child nodes at each particular sample size. 

44 In general, if one only wishes to use a Bayesian network to compute the results of conditional or 
marginal queries, then the directions of the given links are not as important as the overall link topology 
(Koller and Friedman, 2009).  However, for distinguishing predictive versus diagnostic reasoning, or for 
examining the potential results of interventions versus observations, the link directionality will also be a 
critical factor in the model. 
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3.6   Application: Score-Based Structure Estimation of Brand Concept Maps for 

Retailers Old Navy and Abercrombie & Fitch 

 Analysis method.  In order to illustrate the use of score-based Bayesian network 

structural estimation procedures, these methodologies were applied to the derivation of 

brand concept maps for two well-known retailers: Old Navy and Abercrombie & Fitch.  

Initially, a set of open-ended questions concerning these retailers was administered to a 

cross-section of undergraduates at a large Southwestern university.  The responses to 

these open-ended questions were then analyzed by several team members and those 

recovered concepts which were repeated across multiple subjects were retained for 

further study.  A pilot questionnaire was created based on these retained associations and 

was once again administered to the same set of undergraduates.  The twenty-five brand 

associations which received the highest number of responses on this pilot questionnaire 

were then utilized in a larger-scale follow-up survey in which 800 undergraduates were 

asked to separately rate how strongly they associated each of these attributes with the 

retailer Abercrombie & Fitch and with the retailer Old Navy.  The order in which these 

two retailers appeared in the questionnaires was reversed on half of the administered 

surveys.  Responses were given on a simple five point Likert scale (anchored by 1 = not 

at all and 5 = strongly associated).  Due to a small number of non-responses, the final 

number of recovered surveys differed slightly from 800.    

 Since the number of possible directed acyclic graph structures on n variables is 

super-exponential in n (Friedman and Koller, 2003), it is not necessarily possible to 

reliably estimate a full directed structure on all twenty five variables based on the number 
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of data observations that were collected for this study.45  Hence a representative subset of 

thirteen variables was selected from this larger set of brand associations.   

 In order to derive the structure of the corresponding brand concept maps based on 

these particular variables, a Bayesian search procedure was utilized, as implemented in 

the GeNie program suite, version 2.0 (available from genie.sis.pitt.edu).  This algorithm 

begins with a random directed acyclic graph structure connecting all variables in the 

domain, and uses a greedy hill climbing procedure with random restarts to traverse the 

space of possible directed acyclic graphs based on those variables (Heckerman, 1995; 

Chickering, Geiger, and Heckerman, 1995; Chickering, 1996).  At each stage of the 

search procedure, the algorithm examines every directed acyclic graph structure which is 

a neighbor of the current DAG (within the space of possible DAG structures), and 

iteratively moves to that neighboring structure which has the highest Bayesian structural 

score.46  Within this search procedure, a ‘neighboring structure’ is one which is 

obtainable from the current structure by applying any one of three allowed structural 

perturbations: the addition of a directed edge, the deletion of a directed edge 47, or the 

reversal of the direction of an edge that is already included in the structure (Chickering, 

1995, 1996; Koller and Friedman, 2009).48   The Bayesian search procedure utilized here 

45 Since we further partitioned the data for each retailer by respondent gender, this resulted in 
approximately 400 data observations for each of the four data subsets (two retailers by two genders).  
Also note that the size of the space of directed acyclic graphs on 25 variables means that heuristic search 
methods will likely be required to search this space no matter what the size of the data set might be. 

46 Depending on the number of variables involved, a reasonable limit is sometimes placed on the number of 
allowable parents that each node may have. 

47 Edge deletions can potentially raise the overall structural score of the network if the removed edge 
provides redundant information about the states of the child node that it points to. 

48 Technically, one could accomplish an edge reversal by first deleting that edge and then adding back an 
edge with the reverse orientation at that same location, which would seem to make edge reversal a 

139 
 

                                                      



also incorporates a particular prior distribution into the Bayesian score measure, namely 

the BDeu prior, which has several desirable properties, the most notable of which is that 

it assigns equal scores to all Markov-equivalent Bayesian network structures (Buntine, 

1991; Heckerman et al., 1995).   

 Utilizing these techniques, the search for a Bayesian network based brand concept 

map was performed separately on four different subsets of the collected data: 

Abercrombie & Fitch - female respondents (henceforth termed “A&F-females”), 

Abercrombie & Fitch - male respondents (termed “A&F-males”), Old Navy - female 

respondents, and Old Navy - male respondents.  Recall that the Bayesian search 

procedure operates via a greedy hill-climbing algorithm with random restarts within the 

large space of all directed acyclic graphs formed from the variables in the study.  Since 

this implies that the algorithm approaches a maximum from multiple random directions, 

we took even further advantage of this randomization aspect by executing the algorithm 

multiple times within each of the four data sets until each data set yielded multiple runs in 

which the same maximum-scoring structure was returned.  Such a result implies that the 

same maximal structure had been found beginning from multiple, highly different 

directions.  Hence these multiple runs of the program which resulted in the same structure 

provided further evidence that the recovered structures were highly unlikely to simply 

superfluous rule.  However, removal of an edge often results in a lower Bayesian structural score 
(especially if the parent node of that edge has any appreciable explanatory power over the child node of 
that edge, above and beyond the influence that other possible collections of parent nodes have on that 
child node).  Hence a strictly monotonic greedy hill-climbing procedure would not locate such a 
neighboring structure unless edge reversal is included as an explicitly permissible transformational rule.   
(See Chickering, 1995, 1996, and Koller and Friedman, 2009, for more details.) 
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represent local maxima, but rather, that they truly represented the global maxima for the 

Bayesian score as applied to that data set.49    

Results and discussion.  The brand concept maps for Abercrombie & Fitch and 

Old Navy which are derived by this procedure are presented in Figures 26 and 27 

respectively.  A comparative analysis of these four brand concept maps follows below. 

Gender differences in the perception of trendiness.  One critical difference that 

is readily apparent between males and females across both retailers is that females seem 

to regard “Trendy” as the central feature of their brand concepts, while males place 

“Trendy” in a much more peripheral position in both cases.  Probing these differences 

even further, one finds that males seem to have a relatively superficial concept of 

“Trendy”, since in each case they conceive of “Trendy” as being predictive of only some 

fairly overt brand characteristics.  For instance, in the case of A&F, males view “Trendy” 

as predictive of brand characteristics such as “Bright Colors”, “Crowded”, and “Stylish” 

(which, for males’ perceptions of A&F, is a maximally peripheral association).  

Similarly, males perceive of trendiness for Old Navy as merely being predictive of 

“Preppy”, which in this case may be regarded as essentially synonymous with “Trendy”, 

i.e., males seem to regard trendiness for Old Navy as simply indicating the form of 

trendiness that they perceive to exist at that retailer, namely “Preppy”.   

49 Due to the heuristic nature of this approach (along with the exceedingly large size of the space of all 
possible DAG structures formed from these variables), the procedure may get “trapped” within a local 
“plateau” of structures which have the same Bayesian structural score (such as a set of members of the 
same Markov equivalence class, for instance).  Of course, this possibility is strongly ameliorated by the 
algorithm’s use of random restarts within each run.  Nevertheless, some runs of the program within each 
data set would return idiosyncratic structures which had lower overall scores than the eventual structure 
which was accepted as the optimal one for that data set.  For each of the four data sets, the structure that 
was declared to be the optimal one was returned the most often by the multiple runs of the program, and 
had the highest score out of all of the returned structures for that data set.   
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While males in both cases seem to regard “Trendy” as nothing more than a 

convenient ‘label’ for several other overt brand characteristics, females in both cases 

seem to have a much more nuanced interpretation of trendiness.  For instance, within 

their brand concept maps for Old Navy, females see trendiness as being predictive of 

both stylishness and variety, as well as having an ‘excitement’ component.  Further, 

within the brand concept map for Abercrombie & Fitch, females see trendiness as being 

diagnostic of “Exciting”, and predictive of “Stylish” (and hence also of “Sexy”, which is 

a child node of “Stylish”).  However, within this same brand image, females also see 

“Trendy” as having a more superficial component, leading to “Tight Fit”, “Bright 

Colors”, as well as the entire cluster of ‘teenage’ concerns (such as “Teens”, “Preppy”, 

and “Girly”).  Hence females see trendiness for Abercrombie & Fitch as having both a 

‘serious’ component (“Exciting”, “Stylish”, “Sexy”) which is likely related to the deeper 

meaning of this concept for females, as well as a more trivial component (“Tight Fit”, 

“Bright Colors”, “Teens”, “Preppy”, and “Girly”) which likely describes what females 

perceive to be a component of the type of trendiness offered by this particular retailer.   

Of course, such gender-based differences in the perceptions of trendiness should 

come as no surprise since clothing trends are known to form a system of non-verbal 

communication (Holman, 1980; McCracken and Roth, 1989), and further, as shown by 

Myers-Levy and Maheswaran (1991) and Myers-Levy and Sternthal (1991), there are 

systematic differences in males’ and females’ modes of information processing as well as 

their utilization of message cues.  Hence, the finding that females seem to utilize the 

characteristics of both Abercrombie & Fitch and Old Navy to form more complex social 
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codes involving responsiveness to fashion trends than do males is certainly to be 

expected based on former research.  However, the directional brand concept maps 

derived via a Bayesian network analysis of this brand data also reveal some surprising 

differences even within females’ views of the trendiness construct, as is detailed in the 

next subsection.   

Excitingness and the trendiness/stylishness construct.  As another indicator of 

the comparative complexity of females’ perceptions of trendiness, the variables “Trendy” 

and “Stylish” have the same bivariate relationship within females’ views of both retailers’ 

brand images (namely “Trendy” directly implies “Stylish” in both cases), but the location 

of these two variables in reference to the remainder of the brand image differs in each 

case.  For instance, within the A&F brand image for females, “Stylish” leads to “Sexy” 

and “Crowded”, whereas “Trendy” leads to both “Bright Colors” and “Tight Fit”, and 

hence indirectly to “Teens”, “Preppy”, and “Girly”.  Thus within the A&F image for 

females, it seems that the form of stylishness offered by the brand is a ‘sexy’ form of 

style, but the types of trends satisfied by the brand are trends toward tight-fitting clothes 

that are predictive of teens, preppiness, and girliness.  On the other hand, within females’ 

brand image for Old Navy, the form of style that females perceive the brand to offer is 

one of girliness, teens, preppiness, and bright colors, while the aspects of trendiness that 

females perceive the brand to offer comprise associations such as “Exciting” and 

“Variety”.  Hence, females seem to perceive Old Navy as catering to a ‘teen’ type of 

style, and a form of trendiness that seems more reminiscent of the type of shopping 
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experience offered by the store (“Variety” and “Exciting”) rather than a specific type of 

clothing style per se.   

Now consider the fact that for the A&F-females brand image, “Exciting” leads to 

“Variety” and “Trendy”.  This indicates that females may perceive of A&F as being 

exciting because it offers variety and a specific form of trendiness which consists of a 

‘teen popularity’ component as well as a sexy style component.  In comparison, females 

seem to perceive of Old Navy as being trendy because it is an exciting and variety-laden 

place to shop.  In other words, it seems as though females’ view of Old Navy centers 

more around the shopping experience as being a reason for its trendiness (while its style 

is centered on teen concerns), while on the other hand females’ view A&F as being 

exciting because of the trends it satisfies (which has a teen component as well as a sexy 

style component).  Thus the directional relation between ‘excitingness’ and the general 

concepts of trendiness and style are effectively reversed for these two retailers, and this is 

an insight that is made apparent by the directional nature of the Bayesian network-

derived brand concept maps.   

Gender-based perceptions of “Working Out” and “Sexy”.  Although there are a 

myriad of differences between females’ and males’ brand concept maps for these two 

retailers, the differences between males’ and females’ perceptions of the roles of the 

“Working Out” variable and the “Sexy” variable are particularly instructive.  For 

example, whereas males consistently perceive of “Working Out” as an outcome of 

“Exciting” across both retailers’ brand constructs, females place “Working Out” in 

different positions in each case.  Within the brand concept map for Abercrombie & Fitch, 
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females place “Working Out” as a consequence of “Preppy”, while within the Old Navy 

brand concept map, females place “Working Out” as a direct consequence of “Tight Fit”.   

These findings make sense in light of the directional differences in females’ 

perceived relationships between the excitingness construct and the trendiness/stylishness 

construct.  As was described in the previous subsection, females seem to view the 

trendiness of Old Navy as having a major component that is simply based on the 

shopping experience at that retailer, i.e., the trendiness of the brand is, to a large extent, 

manifested as ‘excitingness’ and ‘variety’, both of which would describe the shopping 

experience rather than the clothes per se.  Hence it makes sense that for this retailer, 

females see “Working Out” in utilitarian terms, i.e., as simply an outcome of “Tight Fit” 

(which is a logical relationship between these constructs) rather than as possessing any 

sort of stylistic relevance or expressiveness for the brand, since the brand is seemingly 

more characterized by the shopping experience than by the clothing styles.   

On the other hand, as we also saw in the previous subsection, females tend to 

view the Abercrombie & Fitch brand as being exciting because it is trendy and has a sexy 

style, i.e., the A&F brand seems to predominantly be viewed via the stylistic statement it 

makes rather than by the shopping experience per se.  Hence, in this case, the position in 

which females place “Working Out” within the brand concept map also makes a great 

deal of sense, because it is positioned as an outcome (or diagnostic indicator) of a stylistic 

component of the brand (namely “Preppy”). 

The two genders also differ greatly in their placement of the brand association 

“Sexy”.  Specifically, whereas females tend to place this construct in relatively peripheral 
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positions, males on the other hand (perhaps not surprisingly) place “Sexy” very close to 

the center of their brand concept maps in each case examined.  In fact, within their brand 

concept maps of Abercrombie & Fitch, males actually place “Sexy” as a central ‘source 

node’ (i.e., an ‘exogenous’ node which ‘drives’ all of its neighboring nodes, which in this 

case were ‘Exciting’ and ‘Tight Fit’).  Furthermore, within their brand concepts of Old 

Navy, males place “Sexy” as a central node which serves to connect “Exciting” and 

“Stylish”.   

Lastly, note that there are interesting gender-based differences in the perceptions 

of the role of the variable “Tight Fit” within these retailers’ brand concept maps, and 

these differences tend to parallel the findings made for the brand association “Sexy”.  For 

instance, for female respondents, “Tight Fit” was either an immediate antecedent or an 

immediate consequent of “Trendy”, indicating that females viewed “Tight Fit” as a form 

of either predictive or diagnostic indicator of the overall trendiness of the brand.  

However males on the other hand consistently placed “Tight Fit” as an outcome of 

“Sexy”, which indicates that they are viewing this variable in much more direct physical 

terms than do the female respondents.  Of course, these findings once again reinforce the 

notion that males and females are utilizing these two brands as different forms of 

consumption or style codes (e.g., McCracken and Roth, 1989), with females holding 

much more complex definitions of this code than do males. 
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4.   Inference in Bayesian Network Structures 

4.1   A Bayesian Network-based Measure of Brand Association Strength  

 Due to the directed nature of the links in a Bayesian network, the definition of 

connection strength measurements can be more complex than for comparable undirected 

networks (Jitnah, 1999).  In their extensive study of such measures, Nicholson and Jitnah 

(1998) determined that the mutual information measure of dependence (Shannon and 

Weaver, 1949) has superior properties than do other forms of dependence measure when 

used as the foundation for a link strength calculus within Bayesian network structures.   

 In order to describe the development of such mutual information-based link 

strength measures for Bayesian networks, recall that the uncertainty of a random variable 

X can be quantified by its entropy H(X), defined as follows (Shannon and Weaver, 1949): 

𝐻𝐻(𝑋𝑋)   =   � 𝑃𝑃(𝑥𝑥𝑖𝑖) 𝑟𝑟𝑝𝑝𝑖𝑖2
1

 𝑃𝑃(𝑥𝑥𝑖𝑖)
   =   − � 𝑃𝑃(𝑥𝑥𝑖𝑖)

𝑥𝑥𝑖𝑖

𝑟𝑟𝑝𝑝𝑖𝑖2𝑃𝑃(𝑥𝑥𝑖𝑖) 
𝑥𝑥𝑖𝑖

 

 

 
(31) 

Utilizing the entropy measure of uncertainty, one can then define the mutual information 

between two random variables X and Y as the difference between the uncertainty of either 

of the two variables versus that variable’s uncertainty given that the value of the other 

variable of the pair is known, as follows (MacKay, 2003; Ebert-Uphoff, 2007): 

𝐵𝐵𝐼𝐼(𝑋𝑋, 𝑌𝑌)   =   𝐻𝐻(𝑌𝑌) − 𝐻𝐻(𝑌𝑌|𝑋𝑋)   =  � 𝑃𝑃(𝑥𝑥, 𝑦𝑦) 𝑟𝑟𝑝𝑝𝑖𝑖2
𝑃𝑃(𝑥𝑥, 𝑦𝑦)

 𝑃𝑃(𝑥𝑥)𝑃𝑃(𝑦𝑦)
  

𝑥𝑥,𝑦𝑦

 

 

 
(32) 
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where the entropy 𝐻𝐻(𝑌𝑌|𝑋𝑋) of the conditional distribution of Y given X is defined as the 

weighted average of the uncertainty of Y given each possible value of the conditioning 

variable X, viz., 𝐻𝐻(𝑌𝑌|𝑋𝑋) =  ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖) 𝐻𝐻(𝑌𝑌|𝑥𝑥𝑖𝑖)𝑥𝑥𝑖𝑖 .  Furthermore, note that since the joint 

probability 𝑃𝑃(𝑥𝑥, 𝑦𝑦) in Equation (32) can be written as the product of the associated 

conditional and marginal probabilities, i.e., 𝑃𝑃(𝑥𝑥, 𝑦𝑦) = 𝑃𝑃(𝑥𝑥) ∙ 𝑃𝑃(𝑦𝑦|𝑥𝑥) = 𝑃𝑃(𝑦𝑦) ∙ 𝑃𝑃(𝑥𝑥|𝑦𝑦), 

we can also express the mutual information between X and Y in the form: 

𝐵𝐵𝐼𝐼(𝑋𝑋, 𝑌𝑌)   =   � 𝑃𝑃(𝑦𝑦)
𝑦𝑦

� 𝑃𝑃(𝑥𝑥|𝑦𝑦) 𝑟𝑟𝑝𝑝𝑖𝑖2
𝑃𝑃(𝑥𝑥|𝑦𝑦)
 𝑃𝑃(𝑥𝑥)   

𝑥𝑥

 

 

 
(33) 

 Since Bayesian network structures involve graphical representations of 

conditional independence relations, we must extend the mutual information measure to 

such conditional distributions.  For example, the mutual information between variables X 

and Y conditional on knowledge of a third variable Z can be defined analogously to the 

unconditional case (MacKay, 2003; Ebert-Uphoff, 2007), namely as 𝐵𝐵𝐼𝐼(𝑋𝑋, 𝑌𝑌 | 𝑍𝑍)  =

 𝐻𝐻(𝑌𝑌|𝑍𝑍) − 𝐻𝐻(𝑌𝑌|𝑋𝑋, 𝑍𝑍), where the conditional entropy is given by  𝐻𝐻(𝑌𝑌|𝑋𝑋, 𝑍𝑍)  =

 ∑ 𝑃𝑃(𝑥𝑥, 𝑧𝑧) 𝐻𝐻(𝑌𝑌|𝑥𝑥, 𝑧𝑧)𝑥𝑥,𝑥𝑥 , i.e., by the weighted average of the conditional entropy of Y 

given knowledge of the states of X and Z (where the weighted averaging is performed 

over all possible configurations of the states of X and Z).  Expansion of this expression 

yields a conditional mutual information expression which is analogous to the 

unconditional version given in Equation (32), as follows (MacKay, 2003; Ebert-Uphoff, 

2007):  
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𝐵𝐵𝐼𝐼(𝑋𝑋, 𝑌𝑌 | 𝑍𝑍)  =   � 𝑃𝑃(𝑥𝑥, 𝑧𝑧) � 𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑧𝑧)
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(34) 

In order to focus this measure on the quantification of the strength of one 

particular link connecting variable X  to variable Y , we follow Ebert-Uphoff (2007) and 

define the conditioning set Z  in Equation 34 as being the set of all other graphical parents 

of Y  (i.e., those graphical parents of Y  which are disjoint from X) within the given 

Bayesian network structure.  In this manner, the act of conditioning on all other parents Z  

of Y  which are disjoint from the other parent X  renders the link X  → Y  the only active 

predictive link into variable Y , and hence the recovered strength measure will uniquely 

correspond to just this one link.  Hence when the conditioning set Z in Equation 34 

corresponds to the set of parents of Y which are disjoint from X, we refer to this measure 

as the link strength 𝑆𝑆(𝑋𝑋 → 𝑌𝑌).  

Based on the meaning of the mutual information measure, the strength 𝑆𝑆(𝑋𝑋 → 𝑌𝑌) 

of a given link X  → Y  as defined by Equation 34 represents the weighted average 

reduction in the uncertainty about the value of Y which can be attributed to knowledge of 

the state of the parent node X, given each possible combination Z of the other parent 

nodes of Y (Ebert-Uphoff, 2007).  This value can also be thought of as a measure of the 

amount of information contained in that link, and also as a relative measure of the degree 

to which the distribution of the antecedent variable X will affect the distribution of the 

consequent variable Y  (Nicholson and Jitnah, 1998; Jitnah, 1999).   
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4.2   Application: Link Strength Analysis of the Taco Prima Brand Concept Map 

As an illustration of its usefulness in quantifying the relationships within brand 

concept maps, the link strength measure 𝑆𝑆(𝑋𝑋 → 𝑌𝑌) defined by Equation 34 was applied 

to the Taco Prima brand concept map derived in Section 3.3.  In each case, the link 

strength values 𝑆𝑆(𝑋𝑋 → 𝑌𝑌) were computed via a large spreadsheet analysis in which the 

values of each parent of the target variable Y  were conditioned on prior to computing the 

strength of the connection from X  to Y  in order to ensure that the link strength measure 

was specific to just the one directed link 𝑋𝑋 → 𝑌𝑌.  The resulting link strength values for 

the Taco Prima brand concept map are shown in Figure 28 (in which we utilized the one-

letter abbreviations for each brand association in order to facilitate displaying the link 

strength values directly within the same diagram as the association names).50 

 

 

Figure 28.  Link strength analysis for the Taco Prima brand concept map 

50 Recall that association “C” stands for “Inexpensive” (i.e., “Cheap”), while “I” stands for “Innovative”. 
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Clearly, the one link strength value that stands out in this brand concept map is 

that of the link from “New Things” to “Unique”.  In fact, S (NewThings → Unique) is 

over twice as large as any other link strength quantity within this brand concept map.  

From a strategic viewpoint, this finding is intriguing because this particular extremely 

strong link is located precisely in the center of the critical pathway Inexpensive → 

NewThings → Unique → Memories, which is the pathway that was hypothesized earlier to 

be the core driver of brand equity for this firm.  Furthermore, this critical pathway is the 

one which was identified (through Markov equivalence class analysis) to possess all of 

the allowable cognitive variations which are still consistent with the dependence and 

independence relations in the collected data.   

This finding raises the interesting conjecture of whether the permissible cognitive 

variations51 which can exist for a given brand concept structure essentially must 

encompass any extremely strong links in that structure.  Such a conjecture may hold true 

since such extremely strong links possess more information regarding the variables 

involved than do weaker links within that structure, and if consumers are going to hold 

differing directional (i.e., predictive and diagnostic) beliefs about a brand’s associations, 

it is quite plausible that these differences would center around variables which hold a 

great deal of information for those consumers’ understanding of the brand associations 

involved.   

51 By a permissible cognitive variation, we mean a structural variant which neither contradicts any 
established conditional independence relations nor establishes any new ones that were not identified in 
the data. 
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Stated more simply, if consumers are going to differ over something, they are 

likely to differ over something that has a lot of meaning for them.  In fact, a converse 

conjecture would be that quite possibly, a particular link (such as the link between New 

Things and Unique in the Taco Prima brand concept map) is quite important (i.e., has a 

high link strength value, and hence holds a great deal of information) because it serves to 

differentiate between different consumers’ cognitions about the brand.  Furthermore, this 

converse conjecture may be especially true when the inter-group or inter-consumer 

differences are directional in nature (as they are here), since directional beliefs are likely 

to possess an “if-then” character, and such “if-then” beliefs can serve as informal 

hypotheses of what causes or leads to what within a brand concept or a more general 

consumption domain (Hoch and Deighton, 1989; Sirsi, Ward, and Reingen, 1996). 

 

4.3   Application: Link Strength Analysis of the Old Navy and Abercrombie & Fitch  

Brand Concept Maps 

Link strength analysis was also applied to the brand concept maps for the retailers 

Abercrombie & Fitch and Old Navy.  Once again, the conditional mutual information-

based link strength measure defined in Equation 34 was utilized.  The resulting link 

strength values for both the males’ and females’ brand concept maps for each of these 

retailers are shown in Figures 29 and 30.  Since these are more extensive brand concept 

maps, the resulting link strength patterns show a large degree of variability across the 

four retailer brand concepts studied, but some interesting patterns do emerge.   

154 
 



 
155 

 



 

156 
 



Since we have four brand concept maps to compare, we can address questions 

such as whether the more ‘central’ links between brand associations tend to be stronger 

than the more peripheral links.  In this case, the answer quite obviously is “no”, since 

there are many peripheral links which have very high link strength scores, while there are 

a multitude of links near the center of each network which are comparatively very weak.  

Hence, at least based on this data, it does not seem that more centrally located links will 

necessarily be any stronger than more peripheral links within the same network. 

A second major issue which we can address by having four comparable brand 

concept maps is the determination of whether consumers’ brand concept maps tend to 

exhibit high link strengths between brand associations that can be regarded as partially 

synonymous with one another.  Since we are not directly asking consumers to determine 

which brand associations have the same or similar meanings, the best way we can 

operationalize the concept of “synonymous” would be to utilize the notion that if one 

concept has a very similar or identical meaning as another, then each of those concepts 

can be used interchangeably across virtually all situations.  In the case of a brand concept 

map, we can conceptualize “using” a brand association as “applying” that brand 

association in a particular way, i.e., as having that brand association either predictively or 

diagnostically imply another particular brand association across multiple contexts.  

Examining the four brand concept maps shown in Figures 29 and 30, there are three 

specific instances where consumers in all four maps consistently link the same two 

variables together in either a predictive or diagnostic relationship, and hence these 

variable pairs are likely to have similar operational meaning for the consumers involved.   
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One such instance of brand associations which directly entail one another across 

all four brand concept maps is the relationship Variety → Warehouse.  Note that this 

relationship makes intuitive sense because consumers may tend to perceive of a large 

product assortment as being reminiscent of a ‘discount’ or ‘warehouse’ type of retailing 

environment.  However, despite the fact that the brand association Variety is predictive of 

the brand association Warehouse in all four situations, the strength of the corresponding 

link Variety → Warehouse is actually quite low in all four brand concept maps, ranging in 

size from 0.089 to 0.137.  Hence consumers in all four situations may see Variety as 

being predictive of a warehouse environment (and conversely perceive of a warehouse 

environment as being diagnostic of high variety), but despite the apparent ubiquity of this 

directional relationship, the data shows that this directional association is fairly modest in 

size.   

Similarly, all four maps possess a direct link between the associations Girly and 

Teens,52 and once again the fact that these two brand associations are so consistently 

linked makes intuitive sense.  Interestingly, the directional relationship between these two 

brand associations has a somewhat “intermediate” strength across all four brand concept 

maps, with the link strength between Girly and Teens ranging from a low of 0.112 to a 

high of 0.321. 

52 The direction of the link between Girly and Teens is consistent within each retailer’s brand concept maps, 
but is reversed between the two retailers.  However, this just means that consumers in each case have 
opposing views of which of these two associations is predictive of the other versus which is diagnostic of 
the other.  The point remains that in all four brand concept maps, these two brand associations have a 
direct implicational relationship between them. 
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Finally, note that the direct link between variables Stylish and Trendy is conserved 

across all four brand concept maps.  Once again, the link directions are not consistent in 

all four maps, but all four maps do possess a direct connection between these two 

concepts.  Interestingly, the strength of the inter-concept link between Stylish and Trendy 

is actually quite high in all cases, ranging between 0.349 and 0.401 across the four brand 

concept maps.     

Similarly, there are cases where each gender is relatively consistent across brands, 

but where the two genders differ from one another within the same brand.  For instance, 

consider that males consistently place a direct link between Sexy and Exciting and 

between Sexy and Tight Fit. 53  Interestingly, in both cases the link from Sexy to Exciting 

is quite a bit stronger than the link from Sexy to Tight Fit.  Now consider the fact that 

both Sexy and Exciting are abstract or ‘interpretive’ descriptors, whereas Tight Fit is a 

‘concrete’ or ‘directly observable’ characteristic.  Hence, in this case, the link that males 

perceive between two directly connected interpretive descriptors is stronger than the link 

that they perceive between an interpretive descriptor and a directly observable 

characteristic.   

This, of course, raises the question of whether the difference in link strengths 

between descriptor types which was noticed for certain characteristics of males’ brand 

concept maps is a more general phenomenon.  As a partial answer to this question, 

consider that for females’ brand concept maps, the brand associations Tight Fit and 

53 The predictive versus diagnostic direction for the link that males perceive between Sexy and Exciting is 
reversed between each retailer, but males do perceive a direct link between these two associations across 
both retailers. 
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Exciting are linked by Trendy (rather than by Sexy as was the case in males’ brand 

concept maps).  What is fascinating here is that once again we see that the link between 

the more abstract or interpretive descriptors (namely Trendy and Exciting) is quite a bit 

stronger than the link between an abstract descriptor (Trendy) and a directly observable 

characteristic (Tight Fit), and furthermore, this pattern is consistent across both retailers’ 

brand concept maps. 

With this observation in hand, we can come back and re-examine the earlier 

finding that there was an appreciable link strength difference between the three cases in 

which we had specific links that were conserved across all four brand concept maps (i.e., 

the three cases which were hypothesized to represent approximate synonymy 

relationships within the context of these brand concept maps).  In the first of these three 

cases, we saw that there was a relatively weak link strength between Variety and 

Warehouse across all four brand concept maps.  Interestingly, both of these descriptors 

are fairly ‘concrete’ in nature, i.e., even though there may be differences across 

individuals in terms of how they view the relative levels of variety and ‘warehouse feel’ 

that exist at specific retailers, both of these descriptors do refer to characteristics that are 

externally observable.  Hence we have that the de facto synonymy relationship between 

two externally observable descriptors has a relatively low link strength, which is an 

observation that does fit in with the previously stated hypothesis concerning the differing 

link strengths that exist across descriptor types. 

Now consider the synonymy relation that was found to be intermediate in 

strength, namely the relationship between Girly and Teens.  In this case, it is somewhat 
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harder to declaratively classify these two descriptors, but clearly one can observe whether 

a retailer is frequented by teens (or caters to teen fashions), while the descriptor ‘Girly’ is 

more of an interpretive characteristic rather than something that one can ‘point to’ in a 

physical sense.54  Hence, in this particular example, we have that a relation between an 

abstract or interpretive descriptor of the brand and a more externally observable 

characteristic of that brand has an intermediate level of strength, which is again consistent 

with the earlier stated hypothesis. 

Finally, consider the potential synonymy relation between Stylish and Trendy that 

was discussed earlier.  In this case, both descriptors are clearly interpretive in nature, and 

it is also the case that the link between these interpretive descriptors is very strong across 

all four brand concept maps.  Therefore, this observation once again follows from the 

earlier stated hypothesis concerning the pattern of link strength differences that occur 

across differing descriptor or association types.   

One can also hypothesize about the potential reasons for this observed pattern of 

link strength differences that seems to exist between interpretive descriptors, between 

concrete (observable) descriptors, or between these two classes of descriptor.  Clearly, 

the most immediate potential explanation for these differences resides in the ‘fan effect’ 

which is hypothesized to underlie directional relations within the associative networks 

literature.  It seems reasonable to assume that because abstract or interpretive descriptors 

can potentially be applied to many concrete or observable situations, that such 

54 Of course, for a retailer that specifically caters to females, once could ‘point to’ the ‘Girly’ nature of that 
retailer’s brand image.  However, both Abercrombie & Fitch and Old Navy are retailers which cater to 
both genders, and hence the degree of ‘girliness’ of these retailers would likely be more of an 
interpretive judgment rather than an observable description. 
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interpretive descriptors will have a greater number of substructural associative links 

fanning out from them, and hence there is a greater chance that the fan structures from 

two such interpretive descriptors will meet, and also it is more likely that if they do meet, 

that they will meet in multiple places.  On the other hand, a concrete or directly 

observable descriptor may be too ‘tied’ to a specific context to have an appreciable 

number of links fanning out from it, and hence it is far less likely that the fans emanating 

from two such concrete descriptors will meet each other in very many places.  Finally, in 

the case of an interpretive descriptor and an observable descriptor, the fact that the fan 

structure associated with the interpretive descriptor will be relatively large and that of the 

observable descriptor will be comparatively limited would seem to imply that one will 

observe a level of link strength that is intermediate between that of two concrete or 

observable descriptors and that of two abstract or interpretive descriptors.55 

 

4.4   Informational Propagation in Bayesian Networks 

 As described in Section 2.2 of this thesis, the Bayesian network representation of 

a brand concept map exploits the conditional independence relations that exist in the data 

in order to break down the complex global factors that constitute the joint distribution of 

the brand association variables into simple local factors that each typically involve just a 

few variables.  In this manner, the Bayesian network representation of a brand concept 

map provides a very compact representation of the overall joint distribution of the full set 

55 One should note that despite the discussion of associative mechanisms, the links being referred to here 
are decidedly directional in nature.  As described in Section 1.4, the associative fan effect is a widely 
hypothesized mechanism by which an underlying associative stratum can result in a set of directional 
relations among attributes. 
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of variables involved in that brand concept (Pearl, 1988).  In fact, each node of a 

Bayesian network can actually be regarded as a local distribution of the values of the 

variable associated with that node, conditional on each possible state of its ‘graphical 

parent’ nodes (i.e., conditional on the values of its immediate predecessors in the 

directional structure of that network representation).56 

 Since the Bayesian network is simply a graphical representation of the overall 

multivariate joint distribution of the variables that constitute the brand concept map, the 

answers to specific propositional queries can be computed by using the mathematical 

properties of this distributional representation.  For instance, one may wish to know how 

observing or fixing the value of one or more variables in the network will affect the 

distribution of values within the remaining network variables.  For example, considering 

the Abercrombie & Fitch or Old Navy brand concept maps shown in Figures 27 and 28,    

a manager might be interested in ascertaining the likely effect that increasing the level of 

‘bright colors’ within his or her store might have on the distributions of the remaining 

network variables.  Such propositional queries can be answered in a concise and tractable 

way by exploiting the factored representation of the joint distribution that is represented 

by the corresponding Bayesian network model of the data.   

 In essence, there are two categories of network structure to consider here: 

structures in which there is just a single pathway between any two network variables, and 

structures in which there are multiple pathways between variables.  These structures are 

56 These distribution parameters can typically be estimated by a maximum likelihood calculation, again 
making use of the global and local decomposition properties afforded by the Bayesian network 
representation of the data (Pearl, 1988; Koller and Friedman, 2009).  This is especially straightforward in 
the case of multinomial data such as the type often encountered in typical Likert-style marketing surveys. 
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generally known as singly-connected networks and multiply-connected networks 

respectively (Pearl, 1988).  In the case of singly-connected networks, the pioneering 

effort to derive a tractable and precise informational propagation algorithm which can 

consider both the predictive influences of those directional links coming into each node 

as well as the diagnostic influences from directional links that are ‘coming out of’ that 

node was given by Kim and Pearl (1983).  Since that time, several methods have been 

developed which reduce multiply-connected networks to the singly-connected case 

through various processes (Koller and Friedman, 2009).   

The most commonly used such procedure for reducing a multiply-connected 

network to a singly-connected structure is that of clique-tree propagation, which was 

developed through the efforts of multiple researchers during the 1980’s and 1990’s (see, 

for instance, Huang and Darwiche, 1996, for a good introduction to this general class of 

procedures).  In essence, this technique groups together those variables which share a 

common ‘child’ node (a process called moralization, since it amounts to joining or 

‘marrying’ the parents of a common child node), and then triangulates each resulting 

cluster in order to form a clique structure (i.e., a subgraph in which each variable is 

directly connected to each other variable within that subgraph).  In most networks, there 

are multiple possible ways to accomplish this structural transformation, and the method 

singles out those transformations which result in a tree structure connecting the cliques 

(i.e., there is branching, but no cycle or loop structures within the structure), and then 

further singles out those tree structures which obey a form of informational monotonicity 

generally known as the running intersection property, which requires that any pathway 
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between two cliques must contain all variables that belong to the intersection of those two 

cliques.57  Such a structure consisting of a tree connecting cliques and which satisfies the 

running intersection property is called a clique tree.58 

Once this transformation of the original network into a clique tree structure is 

accomplished, each pair of neighboring cliques will have one or more variables in 

common, and the set of variables that are shared between two neighboring cliques is 

termed the sepset for that pair of cliques.  Furthermore, since the clique tree construction 

obeys the running intersection property, one can show that each sepset forms a minimal 

separator within the original Bayesian network, i.e., a minimal set of variables which, 

when conditioned on (through intervention or observation), will render those nodes on 

either side of that separator conditionally independent of each other.  The propagation of 

predictive and diagnostic influence among any two cliques can then be systematically 

accomplished by multiplying each probabilistic factor in the cliques on one side of the 

sepset which probabilistically separates those two cliques and then marginalizing out the 

variables from that side of the sepset which are not themselves present in that sepset 

(Huang and Darwiche, 1996; Koller and Friedman, 2009).  Hence, the system of sepsets 

in the clique tree structure derived from the original network form a maximally efficient 

collection of variables to condition on in order to perform informational propagation. 

57 Among other things, this property essentially ensures that no information is lost when transmitting 
information between those cliques, and that information propagation through the derived structure will 
mimic that which would have been obtained via an exhaustive marginalization process in the full joint 
distribution (Huang and Darwiche, 1996; Koller and Friedman, 2009). 

58 We also assume that the scope each probabilistic factor in the underlying distribution is contained within 
a single clique (which is a property often known as the family preservation property).  Again, see Huang 
and Darwiche (1996) and Koller and Friedman (2009) for more details. 

165 
 

                                                      



4.5   Application: Information Propagation in the Taco Prima Network 

 We have applied the clique and sepset-based information propagation mechanism 

to the Bayesian network model of the Taco Prima brand concept map59 which was 

derived via constraint-based methods in Section 3.3.  The associated clique tree 

computations were performed with the GeNie software package (Druzdzel, 1999).  The 

initial “baseline” (or “prior”) distribution of the variables in the Taco Prima brand 

concept map is shown in Figure 31. 60  

To demonstrate the usefulness of the information propagation mechanism within 

this network, assume that management is considering a new promotional effort to 

strongly reinforce and further improve Taco Prima’s inexpensive brand image, but they 

are unsure as to how effective this promotional strategy may be in fostering the ultimate 

goal of improving consumer affect (i.e., ‘Memories’) toward the brand.  Since all of the 

variables in the Taco Prima network are interconnected and also have positive link 

strengths (Section 4.2) as well as strong, positive, and highly significant bivariate Pearson 

correlations, it might be natural for management to think that the higher they can drive 

consumers’ perceptions that the brand is very inexpensive, the greater the corresponding 

ultimate effect on “Memories” (i.e., brand affect) is likely to be.  However, what this 

supposition does not take into account is that there are multiple interacting pathways by 

which predictive and diagnostic influence can propagate within the network. 

59 Since each of the four brand concept maps for the retailers Old Navy and Abercrombie & Fitch are 
singly-connected tree structures, they have very simple information propagation properties, and hence 
are not as instructive as are the informational propagation properties of the Taco Prima network.  Hence 
we chose to illustrate the information propagation method by using just the Taco Prima network. 

60 The abbreviations “v1” through “v5” in each distribution represent the five possible response values from 
the original questionnaire. 
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For instance, to attempt to answer management’s query about the likely effects of 

an effort to dramatically increase consumers’ perceptions that Taco Prima is inexpensive, 

we can enter specific evidence (such as Inexpensive = 5) into the network and then allow 

the information propagation algorithm trace its predictive and diagnostic influences 

throughout the network.  In this way, one obtains an updated (or ‘posterior’) distribution 

which incorporates this evidence into the probabilities of the variables involved.  The 

posterior distribution based on incorporation of the evidence value Inexpensive = 5 is 

shown in Figure 32. 

   

 

Figure 31.  Prior distribution of variables in the Taco Prima brand concept map 

167 
 



 

 

Figure 32.  Posterior distribution of variables in the Taco Prima brand concept map after 

incorporation of evidence Inexpensive = 5. 

 Clearly, many of these individual posterior distributions do differ in expected 

ways from the prior distributions shown in Figure 31.  For instance, as expected, 

evidence that Inexpensive = 5 leads to a decrease in the probability that either New Things 

or Unique will have values of 3 or 4, and an increase in the probability that New Things 

and Unique will each have a value of 5.  Similarly, for Innovative and Leader, the 

168 
 



posterior distributions for these variables have a reduced probability of the response scale 

value of 3 and an increased probability of having a value of 5, but in the case of these two 

variables, the probability of having a value of 4 is essentially unchanged from the prior 

distribution.  (Hence Innovative and Leader show a qualitatively different pattern of 

changes between the prior and posterior distributions than do New Things and Unique.) 

 Now to address management’s initial question, consider the posterior distribution 

of the variable Memories.  Despite the strong positive correlations among all variables in 

this network, as well as the positive link strength values for every inter-association link, 

the posterior distribution of the variable Memories differs little (if at all) from its 

distribution prior to the incorporation of evidence about consumers’ perceptions that the 

brand is inexpensive.  In essence, contrary to some very reasonable-seeming assumptions, 

the interaction of predictive and diagnostic information flow within this network makes 

the proposed increase in consumers’ perceptions of the brand as very inexpensive (i.e., 

Inexpensive = 5) essentially ineffective at appreciably altering the distribution of the 

variable Memories.  Hence according to this brand concept network, it would likely not 

be effective for management to try to improve brand affect (i.e., ‘Memories’) via driving 

the image of the brand towards the extreme “inexpensive” end of the price perception 

spectrum. 

 Similar observations about the informational updating properties of this brand 

concept can be made by incorporating various facets of evidence about each of the other 

variables in the network.  In each case, the procedure is essentially the same as that 

described above. 
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5.   Conclusions and Extensions 

5.1   General Summary and Conclusions 

 We initially set out to develop a means of analyzing the structure of consumers’ 

brand concepts which would extend the pioneering approach of Roedder John et al. 

(2006).  In keeping with the Brand Concept Mapping approach of Roedder John et al., we 

sought to uncover the specific link structure that serves to connect the brand associations 

so that it is clear which brand-related attributes are directly connected, and which are 

indirectly connected through one or more intermediaries.  Further, we sought to follow up 

on the suggestion by Roedder John et al. (2006) that there is likely to be a directional 

component to the links that consumers perceive to exist between various brand-related 

attributes, and that the Brand Concept Mapping approach could be notably extended if 

not just the connection pattern, but also the specific form of the links themselves (i.e., 

their internal make-up or constituency) was explored. 

 Through an examination of the marketing literature, it became clear that the 

marketing domain is replete with examples in which such belief structures are indeed 

directional in nature, ranging from causal attribution at all levels (e.g., Folkes, 1988; 

Weiner, 2000), directional priming effects (Nedungadi, 1990; Holden and Lutz, 1992; 

Farquhar and Herr, 1993), and even simple “if-then” reasoning within consumers’ 

conceptualizations of their environment (e.g., Hoch and Deighton, 1989; Sirsi, Ward, and 

Reingen, 1996).  Even consumers’ typical purposes in considering a purchase in the first 

place are known to be causal or directional in nature (Folkes, op. cit.).   
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Furthermore, by examining the core associative networks literature on which the 

brand concept map construct was originally based, one finds that researchers quite often 

utilize associative structures to explain or model directionally asymmetric phenomena.   

In fact, such directional associative phenomena have even been used to model various 

phenomena within the marketing domain itself (e.g., Ulhaque and Bahn, 1992; Lei, Dawar, 

and Lemmink, 2008).  Thus we sought to extend the Brand Concept Mapping procedure 

through the explicit consideration of directional links among perceived brand 

associations.   

A further analysis of the internal structure of directional links between attributes 

revealed that rather than simply being links which specify an antecedent and a 

consequent, directional associations also possess an internal structure that is sensitive to 

the difference between observational versus interventional conditions, and which clearly 

distinguishes between the predictive and diagnostic directions within directional 

relationships.  Furthermore, it is known that individuals’ reasoning patterns typically 

differ between the predictive and the diagnostic directions of the same directional or 

causal relationship (Tversky and Kahneman, 1980).  Therefore, the fact that the 

techniques utilized here can discern not just the connectivity between brand attributes, 

but also the directionality of that relationship can be extremely useful for understanding 

the directional reasoning patterns typically held by consumers. 

As shown earlier, at the level of two-variable structures (and assuming purely 

observational conditions), a directional relationship can appear and behave just like a 

non-directional or purely correlational relationship (since diagnostic reasoning will allow 
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the consequent of the directional relationship to show some influence over the antecedent 

of that relationship).  However, it is at the level of three-variable substructures where we 

begin to see an unavoidable differentiation between directional and non-directional 

relationships.  In fact, it is through a closer examination of the differences among the 

three-variable substructures known as the causal chain (A → B → C), the diagnostic 

chain (A ← B ← C), the common cause structure (A ← B → C), and the common effect 

structure (A → B ← C) that we begin to see the importance of not just dependence versus 

independence, but additionally the conditional independence construct as a means of 

distinguishing among otherwise observationally or correlationally indistinguishable 

configurations.   

As shown earlier, the limits of what the conditional independence construct can 

distinguish are known as Markov equivalence classes.  Within a Markov equivalence 

class, each structure will have the same conditional independence and dependence 

properties, but structures in different Markov equivalence classes will have differing 

properties of conditional independence.   

We then applied the principles of Markov equivalence and conditional 

independence to brand association data by utilizing both constraint-based and score-based 

structural discovery algorithms which take advantage of these conditional independence 

based differences among the various types of directed links and substructures which can 

connect the brand associations.  The recovered structures based on these discovery 

methods typically possess specific regularity properties, and are often collectively known 

as Bayesian networks.  A further analysis of the Markov equivalence classes (i.e., the 
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observationally indistinguishable sets of directed structures) within the Bayesian network 

representation of a brand concept map led us to realize that this methodology can 

prescribe the specific set of directional cognitive variations that can co-exist within a 

specific brand concept structure and still be consistent with the conditional independence 

properties inherent in the data.   

Lastly, we applied the specific structure of the directional links within a Bayesian 

network representation of consumers’ brand association data in order to provide two 

additional computational tools.  First of all, we provided a link strength measure which 

can be utilized to further probe the relationships among the variables in the domain, and 

we found that additionally, this measure seems to be sensitive to the abstract versus 

concrete nature of the brand attributes themselves.  Secondly, we utilized the directional 

structure of the inter-attribute links to allow for the application of information 

propagation tools, which can be used to precisely compute the posterior distribution of 

the variables in the network based on any given set of observational queries or evidence 

presented to the network. 

In conclusion, we feel that this effort has yielded a valid approach which 

successfully answers the call by Roedder John et al. (2006) for an extension to their 

pioneering Brand Concept Mapping approach, and which can explicitly consider 

directional relations among brand associations.  Further, by pursuing the various 

ramifications of this approach within the marketing domain, we feel that valuable 

additional tools have been provided which can be used to explore aspects of consumption 

phenomena which had previously been relatively inaccessible to marketing researchers. 
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5.2   Hypotheses and Future Extensions 

 The techniques explored in this thesis reveal a set of concepts and a related set of 

tools which can potentially be utilized by marketing researchers to explore new and 

important phenomena within multiple marketing domains.  However, these tools are not 

without their limitations.  For example, all of the structural discovery methodologies 

utilized in this thesis still strongly depend on the validity and completeness of the initial 

round of brand association elicitation in order to have a valid corpus of brand 

characteristics to work with.  Hence, just as is the case with other multivariate 

methodologies within the marketing domain, we still must depend on the invaluable 

contribution of exploratory and qualitative marketing research techniques.   

In addition, in order for the various structural discovery methods utilized here to 

be guaranteed to converge to the single most optimal structure or set of structures (as 

opposed to merely a satisfactory or comparatively optimal such structure), one also needs 

to assume that all relevant causal variables or background factors have been included in 

the model.  Just as is the case with other multivariate techniques, such an assumption is 

difficult or impossible to guarantee in practice, and hence one needs to regard the results 

of such studies with the same degree of caution as one does with the results of most other 

multivariate methodologies.  In other words, the Bayesian network technique is not a 

panacea for an improperly specified model. 

 In addition, we note that the brand concept map structures that are derived from 

the Bayesian network structural discovery protocols do not explicitly show the links 

between the brand attributes and the core brand itself.  Rather, it is implicitly assumed 
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that all attributes that are related to the brand essentially belong to a general structure 

with the brand as its center.  However, this is an area in which further research may be 

quite valuable, since it may be possible to include specific links to the brand itself by 

modifying these techniques appropriately. 

 Finally, it must be pointed out that by using these particular structural discovery 

protocols, we are not asking directly about whether a link exists between brand 

association A and brand association B.  Rather, we are simply asking consumers to 

endorse the degree to which they feel that the brand in question is characterized by each 

presented attribute, and then we utilize the conditional independence properties of the 

recovered data to impute the existence of an underlying link structure among those 

attributes.  This clearly differs strongly from the approach pioneered by Roedder John et 

al. (1996).  As mentioned several times throughout the thesis, we feel that this difference 

can perhaps be regarded as a strength of the technique, since it derives the brand concept 

structure from an easily retrievable form of data that does not place undue burdens on the 

respondents.  However, it is an indirect method, while the technique of Roedder John et 

al (ibid.) utilizes a direct elicitation methodology.  In this sense, the techniques developed 

here essentially go down a somewhat different analytical pathway than does the BCM 

approach.  Perhaps there is ground for a common structural discovery protocol in which 

the direct elicitation methodology pioneered by Roedder John et al. can be utilized along 

with the Bayesian network-based technique pursued here in order to determine a brand 

concept structure through a ‘triangulation’ between these differing approaches. 
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 In addition to these potential limitations of the techniques pursued in this thesis 

there are also several unanswered questions that could represent fertile ground for future 

exploration.  For example, we found (through a Markov equivalence class representation 

of the set of cognitive variants that can coexist within a given set of brand concept data) 

that there are typically cognitive subgroups of consumers, each of which may view 

specific links as having a direction that is opposite to that seen by other cognitive 

subgroups within that data set.  This raises the question of how prevalent each such 

subgroup is, as well as the intriguing possibility of using Bayesian network-based 

measures to quantify the cognitive ‘distance’ between such subgroups.  This might also 

allow researchers to uncover specific relations among such subgroups which relate to or 

expand upon other findings that are known within the sociocognitive influences literature.   

An additional hypothesis is related to the work presented here concerns 

information propagation within a brand concept network.  As we saw earlier, the sepsets 

(i.e., the minimal separating sets) within a clique tree representation of a Bayesian 

network provide a minimal “alphabet” of locations upon which one needs to condition in 

order to ascertain the degree and direction of information flow through the network as a 

whole.  Therefore, this property of network structures leads to the natural hypothesis that 

individuals may preferentially choose to condition on such minimal separators (or 

‘sepsets’) when selecting which variables to observe or manipulate (either actively or 

counterfactually) in order to understand the effect that one variable of interest has upon 

another within their targeted consumption domain, and hence these may be the variables 

that consumers naturally tend to focus on when constructing their consideration sets or 
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determining what to purchase.  Of course a related hypothesis would be that marketers 

may find it more effective to focus their advertising and communication strategies upon 

these variables, since these particular sets of variables serve as “linchpins” which regulate 

and restrict the flow of information through the network as a whole 

Lastly, a potentially fascinating area for future exploration is the relation between 

directionally protected links and reversible links with regards to consumers’ perceptions 

of the overall brand concept as well as the more general consumption domain in which 

that brand concept resides.  For instance, it stands to reason that since all permissible 

cognitive subgroups within a data set share the same set of directionally conserved or 

protected links, that such protected links are apt to be more difficult to influence through 

managerial action.  This raises the question of whether one can develop an index of 

relational pliability or manipulability which can quantify the relative level of influence 

that management may have on that particular relationship.   

Furthermore, we saw that the central reversible link within the Taco Prima brand 

concept map was also the link which had the strongest link strength measure.  It is 

unclear if this is coincidental, or whether there are either cognitive or strategic reasons 

why this should occur.  In fact, as we discussed earlier, it is possible that rather than 

merely indicating where important variables are located, an inter-variable association 

may actually have a high link strength because it is a location which drives cognitive 

differentiation among various causal subgroups of consumers.  If this is so, then such an 

analysis would represent an invaluable tool for managers seeking to determine the 
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optimal brand associations and inter-association relations upon which to intervene in 

order to pursue various brand-related strategic objectives.    
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A chain connection (e.g.,) consists of three random variables X, Y, and Z  for 

which X directly influences Y and for which Y directly influences Z, but for which there is 

no direct influence between X and Z.  Given this graphical arrangement, the joint 

probability of the three random variables X, Y, and Z is given by: 

𝑝𝑝.𝑋𝑋,,𝑌𝑌,,𝑍𝑍 =   𝑝𝑝.𝑍𝑍.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌.|.𝑋𝑋.∙. 𝑝𝑝.𝑋𝑋                                      (35) 

We will discuss this form of connection with regards to multinomial data only.  Further 

details can be found in Koski and Noble (2009) and Koller and Friedman (2009).  

As stated in the thesis, we assert that conditioning on the central variable Y  of the 

chain connection  X → Y → Z  blocks communication between the terminal variables X  

and Z  within that connection.  To prove this assertion, note that by the basic probability 

calculus, any triple (X, Y, Z) of random variables will have a joint probability distribution 

that factors according to the form 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 =   𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌   (i.e., the joint probability 

factors as the product of the conditional and marginal distributions).  Thus we can isolate 

the joint probability of the terminal vertices X  and Z  in this connection, as conditioned on 

the central variable Y, as follows: 

𝑃𝑃𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =    𝑃𝑃𝑋𝑋,𝑌𝑌,𝑍𝑍 
𝑃𝑃𝑌𝑌

                                                    (36) 

The above expression is valid for any triple of random variables for which 𝑝𝑝𝑌𝑌 ≠

0.  However, we can also factor the joint probability of X , Y , and Z  in the numerator of 

this expression according to the specific topology of the chain connection, yielding the 

following expression specific to this particular connection topology: 
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𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =   
 𝑝𝑝.𝑍𝑍.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌.|.𝑋𝑋 .∙. 𝑝𝑝.𝑋𝑋 

𝑝𝑝𝑌𝑌
 (37) 

Assuming 𝑝𝑝𝑋𝑋 ≠ 0, we can now utilize Bayes’ theorem to re-express the central 

quantity 𝑝𝑝.𝑌𝑌|𝑋𝑋  in the numerator of the above expression, thereby yielding the transformed 

expression shown below: 

𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =   
 𝑝𝑝.𝑍𝑍.|.𝑌𝑌.∙. �

 𝑝𝑝𝑋𝑋|𝑌𝑌 ∙ 𝑝𝑝𝑌𝑌 
𝑝𝑝𝑋𝑋 

� .∙. 𝑝𝑝.𝑋𝑋 

𝑝𝑝𝑌𝑌
 (38) 

Cancelling common factors of 𝑝𝑝𝑌𝑌  and common factors of 𝑝𝑝𝑋𝑋  yields the reduced 

expression: 

𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =   𝑝𝑝.𝑍𝑍.|.𝑌𝑌..∙.  𝑝𝑝.𝑋𝑋.|.𝑌𝑌 (39) 

and hence the terminal variables X  and Z  are independent in this topology when 

conditioned on the central variable Y  of the topology.   

Alternatively, one can also demonstrate this independence of X  and Z  conditional 

on Y  by examining the distribution of Z  conditional on X  and Y as follows: 

𝑝𝑝.𝑍𝑍.|.𝑋𝑋,𝑌𝑌  =  
 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 

 𝑝𝑝𝑋𝑋,𝑌𝑌 
 =   

 𝑝𝑝.𝑍𝑍|𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌|𝑋𝑋 .∙. 𝑝𝑝.𝑋𝑋 

𝑝𝑝.𝑌𝑌|𝑋𝑋 .∙. 𝑝𝑝.𝑋𝑋 
 =  𝑝𝑝.𝑍𝑍|𝑌𝑌 (40) 

 

Of course, here we once again used the specific factorization of the joint distribution of 

X , Y , and Z  along the chain topology when decomposing the numerator of this 
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expression.  Therefore, we obtain another justification of the fact that communication 

between the terminal variables X  and Z  of the chain topology is blocked (i.e., variables X  

and Z  are rendered independent) when conditioned on the central variable Y  of the 

topology. 

Forward propagation of information along the chain connection : 

In addition to the above analysis showing the induced conditional independence 

of the terminal variables  X  and Z  in the chain topology, we can also utilize this 

factorization of the joint distribution in order to examine how messages are passed along 

a chain connection.  Specifically, by marginalizing the factored distribution over Y  and 

utilizing the factorization specific to this connection topology, we obtain: 

𝑝𝑝𝑋𝑋,𝑍𝑍(𝑋𝑋, 𝑍𝑍)   =   � 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)
𝑦𝑦

𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋) 𝑝𝑝𝑋𝑋(𝑋𝑋)   

=   𝑝𝑝𝑋𝑋(𝑋𝑋) ∙ � 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)
𝑦𝑦

𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋) 
(41) 

Essentially, the summation  ∑ � 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋)�𝑦𝑦 . in the last factor is playing the role 

of 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑍𝑍|𝑋𝑋) in the expression 𝑝𝑝𝑋𝑋,𝑍𝑍(𝑋𝑋, 𝑍𝑍) = 𝑝𝑝𝑋𝑋(𝑋𝑋) ∙ 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑍𝑍|𝑋𝑋).    Since  𝑝𝑝𝑍𝑍|𝑋𝑋(𝑍𝑍|𝑋𝑋) =

 ∑ 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)𝑦𝑦 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋)  ≠  𝑝𝑝𝑍𝑍(𝑍𝑍) , we have that  𝑝𝑝𝑋𝑋,𝑍𝑍(𝑋𝑋, 𝑍𝑍) ≠  𝑝𝑝𝑋𝑋(𝑋𝑋) ∙ 𝑝𝑝𝑍𝑍(𝑍𝑍) in this 

topology, and X  and Z  are therefore dependent in this connection structure.  Furthermore, 

the expression  𝑝𝑝𝑍𝑍|𝑋𝑋(𝑍𝑍|𝑋𝑋) = ∑ 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)𝑦𝑦 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋)  shows the explicit form of the 

dependence of Z upon X within the chain connection. 
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We can also derive the result of conditioning the joint distribution of X, Y, and Z 

on the value of Y  by marginalizing the specific form of the factorization of the joint 

distribution of X, Y, and Z  along the chain connection as follows: 

𝑝𝑝𝑋𝑋,𝑍𝑍|𝑌𝑌(𝑋𝑋, 𝑍𝑍|𝑦𝑦)  =   
 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋) 𝑝𝑝𝑋𝑋(𝑋𝑋) 

 ∑ ∑  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧|𝑦𝑦) 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑋𝑋(𝑥𝑥) 𝑥𝑥𝑥𝑥
 

                             =    
 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋) 𝑝𝑝𝑋𝑋(𝑋𝑋) 

 ∑ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑋𝑋(𝑥𝑥) ∑  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧|𝑦𝑦) 𝑥𝑥𝑥𝑥
  

                             =    
 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑋𝑋) 𝑝𝑝𝑋𝑋(𝑋𝑋) 

 ∑ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦|𝑥𝑥) 𝑝𝑝𝑋𝑋(𝑥𝑥)  ∙  1 𝑥𝑥
 ∙  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 

                             =    
 𝑝𝑝𝑌𝑌,𝑋𝑋(𝑦𝑦, 𝑋𝑋) 

𝑝𝑝𝑌𝑌(𝑦𝑦)  ∙  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 

                             =     𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦) ∙. 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 

(42) 

 
This computation shows that instantiation of the central variable Y  within the chain 

connection renders variables X  and Z  conditionally independent.   

However, it is much more instructive to more closely trace the detailed 

mechanism by which X  influences Z  (and conversely, by which Z  influences X) within a 

chain connection, and to observe the manner in which these paths of influence are 

blocked once the central variable Y  within this chain connection becomes instantiated.  
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Such an analysis also facilitates the study of message-passing schemes within the 

Bayesian network. 

As long as variable Y  remains uninstantiated, variables X  and Z  are able to 

“communicate” with each other.  For example, suppose that the variables X, Y, and Z are 

each binary, with probabilities parameterized as shown in Figure 33.  

   

 
 

𝑝𝑝𝑋𝑋 𝑥𝑥1 𝑥𝑥2 
 λ 1−λ 

 

𝑝𝑝.𝑌𝑌|𝑋𝑋 𝑦𝑦1 𝑦𝑦2 
𝑥𝑥1 α 1−α 
𝑥𝑥2 β 1−β 

 

𝑝𝑝.𝑍𝑍|𝑌𝑌 𝑧𝑧1 𝑧𝑧2 
𝑦𝑦1 δ 1−δ 
𝑦𝑦2 γ 1−γ 

 

Figure 33.   Distribution of binary variables in the chain connection X → Y → Z 

Given no additional information, the probability that variable Z will take a specific value 

(say, 𝑍𝑍 = 𝑧𝑧1 ) in this topology can be computed as follows : 

𝑝𝑝𝑍𝑍(𝑧𝑧1)  =  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) ∙ 𝑝𝑝𝑌𝑌(𝑦𝑦1) +  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2) ∙ 𝑝𝑝𝑌𝑌(𝑦𝑦2) 

=  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1)� 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥1) +  𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥2) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥2)�

+ 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2)� 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥1) +  𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥2) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥2)� 

(43) 

After some algebraic simplification, this expression gives: 

X Y Z 
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𝑝𝑝𝑍𝑍(𝑧𝑧1)  =  𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾 (44) 

Similarly, we can express 𝑝𝑝𝑍𝑍(𝑧𝑧2) in terms of the probabilities given in this chain connection 

topology, and after simplification we of course find that: 

𝑝𝑝𝑍𝑍(𝑧𝑧2) = 1 − 𝑝𝑝𝑍𝑍(𝑧𝑧1)  =  1 −  𝛾𝛾 −  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) −  𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾) (45) 

Since these expressions depend on 𝜆𝜆, we see that the distribution of the terminal variable in 

the chain topology is sensitive to the probability distribution of the initial variable in the 

chain. 

However, we can say even more.  Suppose that we discover that the variable X has 

become instantiated as, say,  𝑋𝑋 = 𝑥𝑥1.  Then this ‘signal’ will become propagated through the 

chain topology in the sense that we can now condition the distribution of Z on this instantiated 

value of X .  Specifically, using the given probabilities, we can compute this conditional 

probability as: 

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)  =   𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦1, 𝑥𝑥1) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) +  𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦2, 𝑥𝑥1) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥1) 

                        =  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) +  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥1) 

(46) 

and after some algebraic simplification, this expression reduces to the simpler form  

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)  =  𝛼𝛼(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾 .  Similarly, 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧2|𝑥𝑥1)  can be expressed as  1 −  𝛾𝛾 −

𝛼𝛼(𝛿𝛿 − 𝛾𝛾) .  Obviously, the information that  𝑋𝑋 = 𝑥𝑥1 has drastically affected the 
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distribution of the variable Z  in a process that we can term forward propagation through 

the chain connection.   

Interestingly, the only way that the posterior distribution of variable Z (as 

conditioned on the information that 𝑋𝑋 = 𝑥𝑥1) can be equal to the prior distribution of Z 

would be for the quantity  𝛼𝛼(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾  to equal the quantity  𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +

 𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾 .   Equating these two expressions and reducing yields : 

𝛼𝛼(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾   =    𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾 

⇔ 0   =   𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾)  −  𝛼𝛼(𝛿𝛿 − 𝛾𝛾)  

⇔ 0  =   𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾) − (𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾) 

⇔ 0  =  (𝜆𝜆 − 1)(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  

(47) 

Hence the only way for the posterior distribution of Z conditioned on 𝑋𝑋 = 𝑥𝑥1 to 

equal the prior distribution would be for:  ( i)  𝛼𝛼 to equal 𝛽𝛽 (in which case 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) =

 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥2), meaning that variables X and Y would be independent),  (ii) for 𝛿𝛿 to equal 

𝛾𝛾 (in which case 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) =  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2), meaning that variables Y and Z would be 

independent),  or (iii) for 𝜆𝜆 to equal 1 (in which case 𝑝𝑝𝑋𝑋(𝑥𝑥1) = 1.).  Of course if either X 

and Y, or Y and Z are independent, then the respective link in the chain topology diagram 

would be absent, meaning that the diagram (and hence the factorization along the chain 

topology) would be invalid (i.e., an “unfaithful graphical representation”).  On the other 
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hand, if 𝑝𝑝𝑋𝑋(𝑥𝑥1) = 1..then the “information” that X has been instantiated as 𝑥𝑥1 would be 

no new information at all, and we would be conditioning on information that is already 

present in the diagram.  Therefore, as long as the central variable Y in the chain topology 

is uninstantiated, all changes to the distribution of the initial variable X must be 

propagated forward through Y and affect the distribution of the terminal variable Z. 

Now if the central variable Y in the chain topology is instantiated to a specific 

value, then this process of forward propagation through the chain connection will be 

ineffective.  One can see this since in the presence of an instantiation such as  𝑌𝑌 = 𝑦𝑦1 , 

the structure of the chain topology will naturally reduce both 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) and 𝑝𝑝𝑍𝑍(𝑧𝑧1) to 

the quantity 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1).  Alternatively, one could incorporate the information that 𝑌𝑌 =

𝑦𝑦1  by letting 𝛼𝛼 = 𝛽𝛽 = 1 in the previously derived factorization along the chain structure, 

thereby reducing the expression  𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) = 𝛼𝛼(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾  as well as the expression               

𝑝𝑝𝑍𝑍(𝑧𝑧1)  =  𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾 , to merely 𝛾𝛾 (which corresponds to 

𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) in the above diagram). 

Reverse propagation of information along the chain connection : 

The above discussion shows that the instantiation of the variable Y  in the chain 

connection  X → Y → Z  blocks the ability of a signal at X  from altering the distribution 

of Z .  Now consider the reverse process:  a signal arriving at variable Z  in this chain 

topology is propagated through the chain all the way back to X, this time in a process that 

we term reverse (or ‘backward’) propagation.  To see how this influence is manifested, 
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assume that variable Z becomes instantiated as, say,  𝑍𝑍 = 𝑧𝑧1.  We can then use Bayes’ 

theorem to propagate this change to the variable Y, giving: 

𝑝𝑝𝑌𝑌|𝑍𝑍(𝑦𝑦1|𝑧𝑧1)  =   
 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) ∙ 𝑝𝑝𝑌𝑌(𝑦𝑦1) 

𝑝𝑝𝑍𝑍(𝑧𝑧1)  (48) 

 

Following this, we can propagate the change one level further to the variable X  by once 

again employing Bayes’ theorem: 

𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1)  =   
 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥1) 

𝑝𝑝𝑍𝑍(𝑧𝑧1)  (49) 

 

Note that in order to obtain the values of  𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) and 𝑝𝑝𝑍𝑍(𝑧𝑧1) within this 

reverse propagation expression, we have to use the forward propagation step described 

above.  Employing these techniques in tandem (and once again using the parameters 

given in the above diagram) yields the expression:  

𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1)   =    
 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋(𝑥𝑥1) 

𝑝𝑝𝑍𝑍(𝑧𝑧1)    

=    
[ 𝛼𝛼(𝛿𝛿 − 𝛾𝛾)  +  𝛾𝛾 ] ∙ 𝜆𝜆

𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾
 

 

(50) 

Therefore the information that  𝑍𝑍 = 𝑧𝑧1 has altered the probability 𝑝𝑝𝑋𝑋(𝑥𝑥1) from its prior value 

of 𝜆𝜆 to the posterior value given here.   
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In fact, the only way for the information that  𝑍𝑍 = 𝑧𝑧1 to not alter the distribution of X 

is for  𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1) to equal 𝑝𝑝𝑋𝑋(𝑥𝑥1) , and this will only occur under the condition that: 

𝜆𝜆 =   
[ 𝛼𝛼(𝛿𝛿 − 𝛾𝛾)  +  𝛾𝛾 ] ∙ 𝜆𝜆

𝜆𝜆(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  +  𝛽𝛽(𝛿𝛿 − 𝛾𝛾) +  𝛾𝛾
 (51) 

 

Simplification of this equation results in the expression: 

𝜆𝜆2(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)  + (𝛽𝛽𝜆𝜆 − 𝛼𝛼𝜆𝜆)(𝛿𝛿 − 𝛾𝛾)  =   0 (52) 

and hence that: 

(𝜆𝜆2 − 𝜆𝜆)(𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)   =   0 (53) 

Therefore the only way that the instantiation of Z would not alter the distribution 

of X via reverse propagation in this topology is for either X and Y to be independent (i.e., 

𝛼𝛼 = 𝛽𝛽), for Y and Z to be independent (i.e., 𝛿𝛿 = 𝛾𝛾 ), or for the value of X to already be a 

certainty (i.e., 𝜆𝜆2 = 𝜆𝜆, hence either 𝑝𝑝𝑋𝑋(𝑥𝑥1) = 1 or 𝑝𝑝𝑋𝑋(𝑥𝑥1) = 0., so either  𝑋𝑋 =  𝑥𝑥1  or  

𝑋𝑋 =  𝑥𝑥2  respectively ).  

Once again, if we assume that the central variable Y in the chain topology is 

instantiated to a specific value, then this process of reverse propagation through the chain 

connection will be blocked.  This is fairly obvious based on the topology since X can 

depend on Z only through Y.  Alternatively, we can demonstrate this blocking effect by 

incorporating the assumption that 𝑌𝑌 = 𝑦𝑦1 via setting the value of parameters α and β both 

to 1.  Through this assumption (and once again using the parameters given above), we 
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have that  𝑝𝑝𝑋𝑋|𝑍𝑍𝑌𝑌(𝑥𝑥1|𝑧𝑧1, 𝑦𝑦1)  =  [ 𝛼𝛼(𝛿𝛿−𝛾𝛾) + 𝛾𝛾 ]∙𝜆𝜆
𝜆𝜆(𝛼𝛼−𝛽𝛽)(𝛿𝛿−𝛾𝛾) + 𝛽𝛽(𝛿𝛿−𝛾𝛾)+ 𝛾𝛾

 =  [ 1(𝛿𝛿−𝛾𝛾) + 𝛾𝛾 ]∙𝜆𝜆
𝜆𝜆(1−1)(𝛿𝛿−𝛾𝛾) + 1(𝛿𝛿−𝛾𝛾)+ 𝛾𝛾

 =

  𝛿𝛿∙𝜆𝜆 
𝛿𝛿

 =  𝜆𝜆   (i.e., under the assumption that = 𝑦𝑦1, the conditional probability 𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1) 

reduces to 𝑝𝑝𝑋𝑋(𝑥𝑥1) ).  Similarly, under the assumption that = 𝑦𝑦2 , parameters α and β both 

reduce to 0, so we have that  𝑝𝑝𝑋𝑋|𝑍𝑍𝑌𝑌(𝑥𝑥1|𝑧𝑧1, 𝑦𝑦2)  =  [ 𝛼𝛼(𝛿𝛿−𝛾𝛾) + 𝛾𝛾 ]∙𝜆𝜆
𝜆𝜆(𝛼𝛼−𝛽𝛽)(𝛿𝛿−𝛾𝛾) + 𝛽𝛽(𝛿𝛿−𝛾𝛾)+ 𝛾𝛾

 =

 [ 0(𝛿𝛿−𝛾𝛾) + 𝛾𝛾 ]∙𝜆𝜆
𝜆𝜆(0−0)(𝛿𝛿−𝛾𝛾) + 0(𝛿𝛿−𝛾𝛾)+ 𝛾𝛾

 =   𝛾𝛾∙𝜆𝜆 
𝛾𝛾

 =  𝜆𝜆  (hence under the assumption that 𝑌𝑌 = 𝑦𝑦2 , the 

conditional probability 𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1) once again reduces to 𝑝𝑝𝑋𝑋(𝑥𝑥1) ). 

The above analyses show that instantiation of the central variable Y  in the chain 

topology  X → Y → Z  does indeed block communication between the two terminal 

vertices X and Z, but not in a symmetric manner.  In the ‘reverse’ direction, the 

instantiation of Y  as either 𝑦𝑦1 or 𝑦𝑦2 reduces the conditional probability 𝑝𝑝𝑋𝑋|𝑍𝑍(𝑥𝑥1|𝑧𝑧1) to 

𝑝𝑝𝑋𝑋(𝑥𝑥1), an effect which can only be described as classical ‘blocking’:  given Y’s 

instantiation, the value of Z  has absolutely no effect on X’s distribution.  However, in the 

‘forward’ direction, the effect of instantiating the central variable Y does not so much 

block the effect of X upon Y, but rather ‘overrides’ that influence:  the instantiation of Y 

as 𝑦𝑦1 reduces both  𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) and 𝑝𝑝𝑍𝑍(𝑧𝑧1)  to 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1), and the instantiation of Y as 

𝑦𝑦2 reduces both 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) and 𝑝𝑝𝑍𝑍(𝑧𝑧1) to 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2).   

In summary, for a ‘chain’ type connection  X → Y → Z ,   the two terminal 

variables X and Z communicate as long as the intervening ‘connector’ variable Y  is 

uninstantiated, and are rendered conditionally independent of each other (the 

communication between them is ‘broken’) once the intervening variable Y  becomes 

instantiated.   
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APPENDIX B 

D-SEPARATION WITHIN A COMMON CAUSE CONNECTION 
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A fork, or ‘common cause’ connection  X ← Y → Z  consists of three random 

variables X, Y, and Z for which Y directly influences both X and Z , but for which there is 

no direct influence between X and Z .  Given this graphical structure, the joint probability 

of the three random variables X , Y , and Z  is given by the expression:  𝑝𝑝.𝑋𝑋,,𝑌𝑌,,𝑍𝑍 =   𝑝𝑝.𝑍𝑍.|.𝑌𝑌.∙

. 𝑝𝑝.𝑋𝑋.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌   Once again, we will discuss this form of connection with regards to 

multinomial data only.  Further details can be found in Koski and Noble (2009) and 

Koller and Friedman (2009). 

First we will show that conditioning on the central variable Y  blocks 

communication between the terminal variables X  and Z .  As was the case within the 

chain connection discussed previously, we can write that  𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 =   𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌  for any 

joint distribution of three variables X, Y, and Z ,  and if  𝑝𝑝𝑌𝑌 ≠ 0  we can once again 

rearrange this factorization into the form:  

𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =   
 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 

𝑝𝑝𝑌𝑌
 (54) 

This expression is valid for any triple of random variables for which 𝑝𝑝𝑌𝑌 ≠ 0.  However, 

we can also factor the joint probability of X , Y , and Z  in the numerator of this expression 

according to the specific topology of the fork connection, yielding the following 

expression specific to the ‘fork’ connection topology: 

𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌  =   
 𝑝𝑝.𝑍𝑍.|.𝑌𝑌.∙. 𝑝𝑝.𝑋𝑋.|.𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌 

𝑝𝑝𝑌𝑌
 (55) 
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Cancellation of the redundant 𝑝𝑝𝑌𝑌 factor yields the reduced factorization  𝑝𝑝𝑋𝑋,𝑍𝑍.|.𝑌𝑌 =

 𝑝𝑝.𝑍𝑍.|.𝑌𝑌 .∙. 𝑝𝑝.𝑋𝑋.|.𝑌𝑌   and therefore the terminal variables X  and Z  in the fork topology are 

conditionally independent given the value of the central variable Y  of this topology. 

Alternatively, one can also demonstrate this independence of X  and Z  conditional 

on Y  by examining the distribution of Z  conditional on X  and Y as follows: 

𝑝𝑝.𝑍𝑍.|.𝑋𝑋,𝑌𝑌  =  
 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 

 𝑝𝑝𝑋𝑋,𝑌𝑌 
 =   

 𝑝𝑝.𝑍𝑍|𝑌𝑌.∙. 𝑝𝑝.𝑋𝑋|𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌 

𝑝𝑝.𝑋𝑋|𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌 
 =  𝑝𝑝.𝑍𝑍|𝑌𝑌 (56) 

 

Of course, here we once again used the specific factorization of the joint distribution of 

X , Y , and Z  along the ‘common cause’ (or ‘fork’) connection when decomposing the 

numerator of this expression.  Therefore, we obtain another justification of the fact that 

communication between the terminal variables X  and Z  of this connection topology is 

blocked (i.e., variables X  and Z  are rendered independent) when conditioned on the 

central variable Y  of the topology.   

Furthermore, the symmetry of the roles of variables X and Z  in the fork 

connection can be explicitly demonstrated by conditioning X on Y  and Z  (as opposed to 

conditioning Z on X  and Y  as was done above).  Applying the factorization of the joint 

distribution along the fork connection then yields: 

𝑝𝑝.𝑋𝑋.|.𝑌𝑌,𝑍𝑍  =  
 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 

 𝑝𝑝𝑌𝑌,𝑍𝑍 
 =   

 𝑝𝑝.𝑍𝑍|𝑌𝑌.∙. 𝑝𝑝.𝑋𝑋|𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌 

𝑝𝑝.𝑍𝑍|𝑌𝑌.∙. 𝑝𝑝.𝑌𝑌 
 =  𝑝𝑝.𝑋𝑋|𝑌𝑌 (57) 
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Message passing along the common cause connection : 

In addition to the above analysis showing the induced conditional independence 

of the terminal variables  X  and Z  in the fork topology, we can also utilize this 

factorization of the joint distribution in order to examine how messages are passed along 

such a connection.  Specifically, prior to the instantiation of any variables, the joint 

probability of X  and Z  is obtained by marginalizing the factored distribution X , Y , and Z  

over the various values of the central variable Y  in the fork connection: 

𝑝𝑝𝑋𝑋,𝑍𝑍(𝑋𝑋, 𝑍𝑍)  =  � 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)
𝑦𝑦

𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦) 𝑝𝑝𝑌𝑌(𝑦𝑦) (58) 

Since 𝑦𝑦 is the variable of summation, we cannot remove the third factor in the 

summand, and hence X  and Z  are not independent in this connection topology.  However, 

conditioning the joint distribution of  X  and Z  on an instantiated value of Y  will result in 

X  and Z  being (conditionally) independent in this topology, as shown below: 

𝑝𝑝𝑋𝑋,𝑍𝑍|𝑌𝑌(𝑋𝑋, 𝑍𝑍|𝑦𝑦)    =    
 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦) 𝑝𝑝𝑌𝑌(𝑦𝑦) 

  ∑ ∑  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧|𝑦𝑦) 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦) 𝑝𝑝𝑌𝑌(𝑦𝑦) 𝑥𝑥𝑥𝑥
 

                               =    
𝑝𝑝𝑌𝑌(𝑦𝑦) 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦)  

  𝑝𝑝𝑌𝑌(𝑦𝑦) ∙ ∑ ∑  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧|𝑦𝑦) 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦)  𝑥𝑥𝑥𝑥
  

                               =    
 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦) 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦)  

  ∑ 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥|𝑦𝑦) ∑ 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧|𝑦𝑦) 𝑥𝑥𝑥𝑥
 

                                                           =      𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦)  ∙  𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦)                                      (59) 
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However, once again it will be much more instructive to actually trace the 

detailed mechanism by which X  influences Z  within such a connection, and to observe 

the manner in which these paths of influence are blocked once the central variable Y  

within this topology becomes instantiated. 

As long as variable Y  remains uninstantiated, variables X and Z are able to 

“communicate” with each other.  For example, once again suppose that the variables X, Y, 

and Z are each binary, with probabilities parameterized as follows: 

 

 

𝑝𝑝𝑌𝑌 𝑦𝑦1 𝑦𝑦2 
 λ 1−λ 

 

 

 

𝑝𝑝𝑋𝑋|𝑌𝑌 𝑥𝑥1 𝑥𝑥2 
𝑦𝑦1 α 1−α 
𝑦𝑦2 β 1−β 

 

 

𝑝𝑝𝑍𝑍|𝑌𝑌 𝑧𝑧1 𝑧𝑧2 
𝑦𝑦1 δ 1−δ 
𝑦𝑦2 γ 1−γ 

Figure 34.  Distribution of binary variables in a common cause connection 

To see the effect that instantiation of variable X  has on variable Z , let us assume 

that X  has the value 𝑥𝑥1  and then compute the conditional probability 𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1) within 

this topology.  This yields the following expression: 

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)  =   𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦1, 𝑥𝑥1) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) +  𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦2, 𝑥𝑥1) ∙ 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥1) 

(60) 

X 

Y 

Z 
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However, in this topology variable Y  once again intervenes between variables X  and Z , 

meaning that 𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦1, 𝑥𝑥1) can be reduced to just 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1), and 𝑝𝑝𝑍𝑍|𝑌𝑌𝑋𝑋(𝑧𝑧1| 𝑦𝑦2, 𝑥𝑥1) 

reduces to just 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2).  Making these substitutions, and using Bayes’ theorem to re-

express 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦1|𝑥𝑥1) and 𝑝𝑝𝑌𝑌|𝑋𝑋(𝑦𝑦2|𝑥𝑥1) yields: 

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)   =   𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) 
𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦1) 𝑝𝑝𝑌𝑌(𝑦𝑦1)

𝑝𝑝𝑋𝑋(𝑥𝑥1)   +   𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2) 
𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦2) 𝑝𝑝𝑌𝑌(𝑦𝑦2)

𝑝𝑝𝑋𝑋(𝑥𝑥1)  

(61) 

Furthermore, since variable X  receives information from variable Y , the two 

occurrences of 𝑝𝑝𝑋𝑋(𝑥𝑥1) in this expression can be expanded using the law of total 

probability to reflect this dependence, giving: 

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)   =   𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) 
𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦1) 𝑝𝑝𝑌𝑌(𝑦𝑦1)

𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦1) 𝑝𝑝𝑌𝑌(𝑦𝑦1) + 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦2) 𝑝𝑝𝑌𝑌(𝑦𝑦2)   

+   𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2) 
𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦2) 𝑝𝑝𝑌𝑌(𝑦𝑦2)

𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦1) 𝑝𝑝𝑌𝑌(𝑦𝑦1) + 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑥𝑥1|𝑦𝑦2) 𝑝𝑝𝑌𝑌(𝑦𝑦2) 

(62) 

Using the parameters assumed in the above diagram, this expression reduces to: 

𝑝𝑝𝑍𝑍|𝑋𝑋(𝑧𝑧1|𝑥𝑥1)   =   
 𝛿𝛿𝛼𝛼𝜆𝜆 + 𝛾𝛾𝛽𝛽(1 − 𝜆𝜆) 

𝛼𝛼𝜆𝜆 + 𝛽𝛽(1 − 𝜆𝜆)  (63) 
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Since the marginal probability that 𝑍𝑍 = 𝑧𝑧1  is simply given by 𝑝𝑝𝑍𝑍(𝑧𝑧1)  =  𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦1) ∙

𝑝𝑝𝑌𝑌(𝑦𝑦1) + 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑧𝑧1|𝑦𝑦2) ∙ 𝑝𝑝𝑌𝑌(𝑦𝑦2), which given the above parameterization is expressed as 

+𝛾𝛾(1 − 𝜆𝜆) , the only way that the instantiated value of X  could fail to affect the 

distribution of Z  in this topology would be if  

 𝛿𝛿𝛼𝛼𝜆𝜆 + 𝛾𝛾𝛽𝛽(1 − 𝜆𝜆) 
𝛼𝛼𝜆𝜆 + 𝛽𝛽(1 − 𝜆𝜆)   =   𝛿𝛿𝜆𝜆 + 𝛾𝛾(1 − 𝜆𝜆) (64) 

Clearing the denominator, expanding the resulting expression, and re-factoring gives us:     

0 =   (𝛼𝛼 − 𝛽𝛽)(𝛿𝛿 − 𝛾𝛾)(𝜆𝜆2 − 𝜆𝜆) (65) 

Therefore, the only way for one terminal variable in the ‘fork’ topology to fail to 

influence the other terminal variable would be either for the central variable Y  to be 

instantiated to one of its specific values (which would make 𝜆𝜆2 − 𝜆𝜆 = 0 in the above 

expression), or for variables X and Y or variables Z and Y to be independent (which 

would make 𝛼𝛼 = 𝛽𝛽 or 𝛿𝛿 = 𝛾𝛾 respectively).  Hence once again the instantiation of the 

central variable blocks the influence of each terminal variable upon the other.   
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APPENDIX C 

D-SEPARATION WITHIN A COMMON EFFECT STRUCTURE 
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A ‘collider’ (or common effect) connection  X → Y ← Z  consists of three 

random variables X, Y, and Z for which both X and Z each directly influence variable Y, 

but for which there is no direct influence between variables X and Z.  (Due to the lack of 

a direct connection between variables X and Z, this structure is also commonly called an 

unshielded collider in the literature.)  Given this graphical structure, the joint probability 

of the three random variables X , Y , and Z  is given by: 

𝑝𝑝.𝑋𝑋,,𝑌𝑌,,𝑍𝑍 =   𝑝𝑝.𝑌𝑌.|.𝑋𝑋,𝑍𝑍..∙. 𝑝𝑝.𝑋𝑋 .∙. 𝑝𝑝.𝑍𝑍 (66) 

We will discuss this form of connection with regards to multinomial data only.  Further 

details can be found in Koski and Noble (2009) and Koller and Friedman (2009) 

Since 𝑝𝑝.𝑌𝑌|.𝑋𝑋,𝑍𝑍 =  𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 𝑝𝑝𝑋𝑋,𝑍𝑍 ⁄  for any three variables X , Y , Z  having 𝑝𝑝𝑋𝑋,𝑍𝑍 ≠ 0, we 

can rewrite the above topology-specific factorization as: 

𝑝𝑝.𝑋𝑋,,𝑌𝑌,,𝑍𝑍 =   𝑝𝑝.𝑋𝑋.∙. 𝑝𝑝.𝑍𝑍 ∙ �
 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 

𝑝𝑝𝑋𝑋,𝑍𝑍
� (67) 

Hence we have that  𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 ∙ 𝑝𝑝𝑋𝑋,𝑍𝑍  =  𝑝𝑝.𝑋𝑋.∙. 𝑝𝑝.𝑍𝑍 ∙ 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 , so as long as  𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍 ≠ 0 we can 

reduce this expression to 𝑝𝑝𝑋𝑋,𝑍𝑍 = 𝑝𝑝.𝑋𝑋 .∙. 𝑝𝑝.𝑍𝑍 .  Therefore, as long as both 𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍  and 𝑝𝑝𝑋𝑋,𝑍𝑍  are 

nonzero, we have that the two terminal variables in a collider connection are 

unconditionally independent of each other.  In other words, contrary to the situation we 

had earlier with the chain and fork connections, communication between the terminal 

variables X and Z in the collider connection is blocked when the intervening variable Y  is 

uninstantiated. 
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We will now show that (once again contrary to what was the case with the chain 

and fork connections),  the instantiation of the central variable Y  in this topology actually 

creates a link between the two terminal variables X and Z , and thereby facilitates 

communication between these two variables.  Prior to the instantiation of Y , we can 

marginalize the joint distribution of X, Y, and Z over the values of Y , obtaining: 

𝑝𝑝𝑋𝑋,𝑍𝑍(𝑋𝑋, 𝑍𝑍)  =  � 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑋𝑋, 𝑍𝑍)
𝑦𝑦

𝑝𝑝𝑋𝑋(𝑋𝑋) 𝑝𝑝𝑍𝑍(𝑍𝑍) 

                     =  𝑝𝑝𝑋𝑋(𝑋𝑋) 𝑝𝑝𝑍𝑍(𝑍𝑍) ∙ � 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑋𝑋, 𝑍𝑍)
𝑦𝑦

 

                     =   𝑝𝑝𝑋𝑋(𝑋𝑋) ∙ 𝑝𝑝𝑍𝑍(𝑍𝑍) 

(68) 

On the other hand, instantiation of the variable Y  in this topology will result in the 

conditional distribution: 

𝑝𝑝𝑋𝑋,𝑍𝑍|𝑌𝑌(𝑋𝑋, 𝑍𝑍|𝑦𝑦)  =   
 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑋𝑋, 𝑍𝑍) 𝑝𝑝𝑋𝑋(𝑋𝑋) 𝑝𝑝𝑍𝑍(𝑍𝑍) 

  ∑ ∑  𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑧𝑧) 𝑝𝑝𝑋𝑋(𝑥𝑥) 𝑝𝑝𝑍𝑍(𝑧𝑧) 𝑥𝑥𝑥𝑥
 (69) 

This expression is not a simple product of 𝑝𝑝𝑋𝑋|𝑌𝑌(𝑋𝑋|𝑦𝑦) and 𝑝𝑝𝑍𝑍|𝑌𝑌(𝑍𝑍|𝑦𝑦), meaning that once 

the variable Y  is instantiated, variables X and Z  are no longer independent.  Therefore, 

instantiation of the central variable in the collider topology allows the two terminal 

variables in this connection communicate with each other.    
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Alternatively, one can solve for  𝑝𝑝𝑍𝑍|𝑋𝑋,𝑌𝑌(𝑍𝑍|𝑥𝑥, 𝑦𝑦) rather than 𝑝𝑝𝑋𝑋,𝑍𝑍|𝑌𝑌(𝑋𝑋, 𝑍𝑍|𝑦𝑦) in order 

to obtain a somewhat simpler expression showing the conditional dependence of 

variables X and Z  when Y  is instantiated.  In this case, we are essentially assuming that 

we have already instantiated Y  and that now we also want to propagate the additional 

instantiation of X  through the collider connection.  Thus we compute: 

 𝑝𝑝𝑍𝑍|𝑋𝑋,𝑌𝑌(𝑍𝑍|𝑥𝑥, 𝑦𝑦)   =    
𝑝𝑝𝑋𝑋,𝑌𝑌,𝑍𝑍(𝑥𝑥, 𝑦𝑦, 𝑍𝑍)

𝑝𝑝𝑋𝑋,𝑌𝑌(𝑥𝑥, 𝑦𝑦)    =   
 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑍𝑍) 𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑍𝑍(𝑍𝑍) 

  ∑  𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑧𝑧) 𝑝𝑝𝑋𝑋(𝑥𝑥)𝑝𝑝𝑍𝑍(𝑧𝑧) 𝑥𝑥
  

                                                                   =   
 𝑝𝑝𝑋𝑋(𝑥𝑥)  ∙  𝑝𝑝𝑍𝑍(𝑍𝑍) 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑍𝑍)  

  𝑝𝑝𝑋𝑋(𝑥𝑥) ∙  ∑  𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑧𝑧) 𝑝𝑝𝑍𝑍(𝑧𝑧) 𝑥𝑥
 

                                                                   =   
 𝑝𝑝𝑍𝑍(𝑍𝑍) 𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑍𝑍)  

 ∑  𝑝𝑝𝑌𝑌|𝑋𝑋,𝑍𝑍(𝑦𝑦|𝑥𝑥, 𝑧𝑧) 𝑝𝑝𝑍𝑍(𝑧𝑧) 𝑥𝑥
 

(70) 

Since this expression is not equal to 𝑝𝑝𝑍𝑍(𝑧𝑧), we have that in the context of an instantiated 

central variable Y , the additional instantiation of  X  will affect the distribution of the 

other terminal variable Z  in the collider connection.  Instantiating Y  has enabled 

communication between X and Z  within the collider topology. 
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APPENDIX D 

ALTERNATIVE CHARACTERIZATIONS OF D-SEPARATION 
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The Bayesian network representation of the set of joint relationships among a 

group of modeled variables facilitates the efficient manipulation of relevance and 

irrelevance relationships (i.e., relations of both marginal and conditional independence 

and dependence) among the modeled constructs.  As Pearl (1988) states,  

The advantage of network representation is that it allows people to express 

directly the fundamental qualitative relationship of ‘direct dependency’.  The 

network then displays a consistent set of additional direct and indirect 

dependencies and preserves it as a stable part of the model, independent of the 

numerical estimates.  (Pearl, 1988, p. 51) 

The mechanism by which this is accomplished, i.e., the means by which the 

Bayesian network representation facilitates the efficient manipulation of independence 

and dependence relationships among variables, is termed the directed separation principle 

(or just ‘d-separation’ for short).  Pearl’s original characterization of the d-separation 

principle is given below : 

If X, Y, and Z are three disjoint subsets of nodes in a DAG D, then Z is said to d-

separate X from Y, denoted 〈 𝑿𝑿 | 𝒁𝒁 | 𝒀𝒀 〉𝐷𝐷 , if there is no path between a node in X 

and a node in Y along which the following two conditions hold:  (1) every node 

with converging arrows is in Z or has a descendant in Z, and (2) every other node 

is outside Z.       (Pearl, 1988, p. 117)   

Another, more common formulation of the d-separation criterion is typically given 

in terms of the existence of structures known as paths and blockers.  Following, e.g., 
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Kjaerulff and Madsen (2008), we can state this alternative formulation of the d-separation 

criterion as follows: 

A path Φ between Φ = 〈 𝑝𝑝 , … , 𝑎𝑎 〉 in a DAG 𝔾𝔾 = (V ,E) is said to be blocked by 

a subset 𝑆𝑆 ⊆ V if Φ contains a vertex 𝑤𝑤 such that either of the following 

conditions hold: 

1.     𝑤𝑤 ∈ 𝑆𝑆, and the edges of the path Φ  do not  meet head-to-head at 𝑤𝑤. 

2.     Neither 𝑤𝑤 nor any of its descendants are in 𝑆𝑆, and the edges of the path Φ do 

meet head-to-head at 𝑤𝑤. 

Rather than basing the d-separation criterion on a set of negated conditions (as in 

the definition from Pearl, 1988, given above), or on partially negated conditions (as in 

the definition by Kjaerulff and Madsen also given above), it is helpful to reframe d-

separation as a positively framed (i.e., non-negated) set of conditions, as is done for 

instance in Korb and Nicholson (2004).  Framed in this way, the d-separation criterion 

becomes: 

Given variables X and Y, along with a set of variables Z disjoint from both X and 

Y, the variables X and Y are d-separated given Z if and only if all paths Φ between 

X and Y are “cut” by one of the following graph-theoretic conditions: 

1.     Φ contains a chain A → B → C such that  B ∈ Z. 

2.     Φ contains a divergent connection A ← B → C such that B ∈ Z. 

3.     Φ contains an unshielded collider A → B ← C  such that neither B nor any of 

B’s descendants is in Z. 
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Finally, it is very useful to point out that a highly practical substitute for the d-

separation criterion does exist in the literature, namely the directed global Markov 

criterion of Lauritzen, Dawid, Larsen, and Leimer (1990), which is stated below: 

For a directed acyclic graph G = (V ,E) and disjoint subsets 𝑨𝑨, 𝑩𝑩, and 𝑺𝑺 of V, any 

pair of vertices a∈A  and b∈B  will be d-separated by 𝑆𝑆 whenever all paths from 

a to b are blocked by the vertices of 𝑺𝑺 within the moralized graph consisting of 

the ancestors of  𝑨𝑨 ∪ 𝑩𝑩 ∪ 𝑺𝑺,  i.e., the graph �𝑮𝑮𝐴𝐴𝑛𝑛(𝐴𝐴∪𝐵𝐵∪𝑆𝑆)�
𝑀𝑀

 . 

According to Kjaerulff & Madsen (2008), the directed global Markov condition is 

quite often much easier to apply than the traditional d-separation criterion.  (In fact, many 

authors refer alternately to Lauritzen d-separation when referring to the directed global 

Markov condition, and Pearl-Geiger d-separation when referring to the original version.)    

To illustrate the usefulness of the directed global Markov condition (i.e., of 

Lauritzen d-separation), Kjaerulff & Madsen (2008) provide the following illustrative 

example of a DAG along with three sets of variables A, B, and S, and ask whether it is 

true that (A ⊥ B |S )G  within this graphical structure (from Kjaerulff & Madsen, 2008): 

   S    B  
         
A         

         
         
         
         
         

Figure 35.  Structure representing a d-separation query 
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To utilize the directed global Markov condition, we reduce this graphical structure 

to just the ancestral set of 𝑨𝑨 ∪ 𝑩𝑩 ∪ 𝑺𝑺  by removing any nodes that are not ancestors of at 

least some member of ∪ 𝑩𝑩 ∪ 𝑺𝑺 .  This results in the reduced graphical structure  

𝑮𝑮An(𝑨𝑨∪𝑩𝑩∪𝑺𝑺)  shown below (again, from Kjaerulff & Madsen, 2008): 

 

 

 

 

Figure 36.  Ancestral set for a d-separation query 

Next we moralize this structure by connecting (or ‘marrying’) the parents of any common 

children, and then replacing all directed links by undirected ones.  This results in the 

structure �𝑮𝑮𝐴𝐴𝑛𝑛(𝐴𝐴∪𝐵𝐵∪𝑆𝑆)�
𝑀𝑀

 , from Kjaerulff & Madsen (2008): 

 

 

 

 

Figure 37.  Moralized structure for a d-separation query 

       B  
         
A         

         
    S     
         
         

       B  
         
A         

         
    S     
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Now it is easy to determine whether or not set S  d-separates sets A  and B .  To do 

this, we merely need to check whether there is a path from A  to B in this modified 

(moralized ancestral) graph that avoids passing through S.  In this example, there is such 

a path:  namely the path from A  to B involving the arc at the top of the structure.  

Therefore we easily conclude that S  does not d-separate sets A  and B in the original 

graph G . 
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