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ABSTRACT 

Digital to analog converters (DACs) find widespread use in communications 

equipment.  Most commercially available DAC’s which are intended to be used in 

transmitter applications come in a dual configuration for carrying the in phase (I) and 

quadrature (Q) data and feature on chip digital mixing.  Digital mixing offers many 

benefits concerning I and Q matching but has one major drawback; the update rate of the 

DAC must be higher than the intermediate frequency (IF) which is most commonly a 

factor of 4.  This drawback motivates the need for interpolation so that a low update rate 

can be used for components preceding the DACs.  

In this thesis the design of an interpolating DAC integrated circuit (IC) to be used 

in a transmitter application for generating a 100MHz IF is presented.  Many of the 

transistor level implementations are provided.  The tradeoffs in the design are analyzed 

and various options are discussed.  This thesis provides a basic foundation for designing 

an IC of this nature and will give the reader insight into potential areas of further 

research. 

At the time of this writing the chip is in fabrication therefore this document does 

not contain test results. 
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1 INTRODUCTION 

1.1 Design Goals 

The goal of this project was to design a 12 bit, 400 MSPS dual channel 

interpolating digital to analog converter with on chip digital mixing to be used in a 

transmitter application for the purpose of satellite communications.  One of the primary 

design objectives was to obtain a low static and dynamic mismatch between I and Q 

channels.  Minimum risk design methods were prioritized in order to achieve first pass 

success.  The chip was designed in a 0.18µm SOI CMOS process.   

The functional block diagram of the design is shown in Figure 1-1.  LVDS is used 

for the data interface.  Cascaded half-band filters provide an interpolation factor of eight. 

A double quadrature modulator is implemented in digital as Fs/4.  Current steering DACs 

output the modulated I and Q signals.  

 

 

Figure 1-1 Functional Block Diagram 
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1.2 Thesis Structure 

This thesis is divided into chapters which correspond to the cells within the 

functional block diagram of Figure 1-1.  The cells which were implemented in the chip 

are described in each corresponding chapter.  Concepts are developed from the ground up 

and the intention is to provide the reader with the necessary tools to analyze and design a 

similar cell.   

Chapter 2 provides an overview of LVDS communications.   The standards and 

benefits of LVDS are presented. The LVDS output driver cell which was created is 

described in detail.   

Chapter 3 develops the concept of interpolation.  The primary system level 

structure of a half-band filter is provided and its operation is described. 

Chapter 4 presents an overview of digital mixing.  The concepts of digital mixing 

are discussed in both the frequency and time domain in an attempt to clarify the material.  

The design of an Fs/4 bit mixer is provided. 

Chapter 5 gives a detailed account of the design of a current steering DAC.  The 

major components and several of the tradeoffs which need to be considered are discussed.  

DAC layout methodologies are presented along with various common centroid topologies 

for current arrays. 

Chapter 6 concludes with the final design of the chip at the top level.  The 

completed layout of the IC is presented. 



   

3 
  

2 LVDS 

2.1 LVDS Specification 

LVDS is an acronym for low voltage differential signaling and is a popular 

method for high speed digital communications between chips up to about 3GHz.  IEEE 

Standard 1596.3, developed in 1996, provides a basis for implementing LVDS circuits.  

Table 2-1 shows the main DC specifications derived from the standard for the driver and 

receiver cells.  Another standard for LVDS, ANSI/TIA/EIA-644, was developed by the 

Telecommunications Industry Association. 

Table 2-1 LVDS Specification 

LVDS DC Driver Specifications 

Symbol Parameter Min Max Units 

Vod Output Voltage Differential 250 400 mV 

Voh Output Voltage High - 1475 mV 

Vol Output Voltage Low 925 - mV 

 

LVDS DC Receiver Specifications 

Symbol Parameter Min Max Units 

Vidth Input Differential Threshold -100 +100 mV 

Rin Input impedance 90 110 Ω 

Vin Input Voltage Range 0 2400 mV 

Vhyst Input Differential Hysteresis 25 - mV 

 

 

LVDS drivers are typically designed to deliver a current of 3.5mA to a 100 ohm 

load which will generate 350mV.  The receiver detects this voltage to determine if the 

signal is positive or negative depending upon the direction of the current through the 

resistor.  As shown from the table, LVDS was developed when 2.5V was a popular 

supply voltage which accounts for the high common mode levels of the driver and the 

wide common mode range of the receiver.   
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LVDS offers many benefits for chip to chip digital communication.  Differential 

signals provide common mode rejection and help to reduce EMI (electromagnetic 

interference) providing a robust method of transferring data.  With a properly designed 

driver switching noise will be minimized and EMI will be further reduced, similar to the 

benefits seen in CML and ECL logic.  A low signal level offers the potential for higher 

speed by reducing the time for charging and discharging large on chip input capacitances 

which also helps to further reduce noise. 

2.2 LVDS Driver  

An ideal LVDS driver and receiver are shown in Figure 2-1.  The switches control 

the direction of current through the 100 ohm resistor of the receiver making the output 

signal positive or negative.  This circuit would be considered an analog solution because 

it requires a common mode feedback circuit (not shown) to set the voltage level of the 

output.  The circuit will have low EMI because the current sources are never turned off so 

no switching transients occur.   

 

 

Figure 2-1 Ideal LVDS Driver and Receiver 
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An alternative implementation which is often seen in FPGA’s is shown in Figure 

2-2.  This is a digital solution which uses external resistors to set the common mode and 

current levels.  The digital implementation is a simple approach that is guaranteed to be 

stable but has the potential to produce rail to rail transients if output transition times are 

not matched which will increase noise and degrade EMI performance.  

 

Figure 2-2 Digital LVDS Driver 

 

In the literature [Chen] and [Tajalli], the LVDS drivers presented both operate 

with a 1.8V supply and resemble the analog implementation of Figure 2-1.  Both of the 

designs utilize voltage CMFB which requires compensation capacitance to prevent 

instability.  The large switching transients required of the driver circuit makes an analog 

implementation difficult to stabilize with voltage CMFB as mentioned in [Tajalli]. 

Consider the circuit shown in Figure 2-3.  This is an analog LVDS driver 

implementation which utilizes current common mode feedback.  ISOURCE is designed 

to be slightly larger than ISINK.  The common mode feedback circuit sinks (ISOURCE – 

ISINK) to set the common mode to VCM.   
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Figure 2-3 Analog LVDS Driver 

 

An original approach to an LVDS driver based on the simplified circuit in Figure 

2-3 is shown in Figure 2-4.  This circuit is based on a rail to rail input folded cascode and 

is designed to operate with a 1.8V supply.  Standard differential CMOS switching levels 

are used as an input.  Current common mode feedback is used to set the common mode 

level to VCM and requires no compensation.  A thorough sensitivity analysis was 

performed on the circuit and it was determined to be very robust.  The gain and phase of 

the common mode feedback circuit for the LVDS driver is shown in Figure 2-5.  From 

the plots it can be seen that there are 3 poles and one left half plane zero in the CMFB 

loop.  With careful sizing the loop can be made stable without adding any additional 

capacitors. From a half circuit perspective, M10 and M12 are sized with minimum 

channel lengths but are still fairly large devices due to the high current requirement of 

3.5mA.  The parasitic capacitances of these devices establish the dominant pole of the 

loop.  The series combination of M12 CSD and the measuring resistor accounts for the 
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zero.  M17 and M18 are responsible for the remaining 2 poles. As long as M17 and M18 

are made relatively small with respect to M10 and M12 the remaining poles will be 

pushed out far enough to keep the circuit stable under all conditions. 

 
 

Figure 2-4 LVDS Driver Schematic 

 

 

 

Figure 2-5 CMFB Gain and Phase 
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For this chip, the LVDS driver circuit will provide the output synchronizing clock 

for an FPGA which will typically run at 50MHz and will be on the same circuit board. 

With bypass modes enabled the maximum frequency it will see is 400MHz.   

2.3 LVDS Receiver 

A receiver based on a 1.8V supply is unable to meet the common mode range 

specification of 0 to 2.4V but does not need to since this will only provide protection 

against high common mode noise and will not affect normal functionality.  Notice that 

the output driver common mode range specification is from 975mV to 1475mV which 

will work well with an n-channel comparator used for a receiver.  Rail to rail inputs could 

be used if a wider common mode range was desired.  A standard n-channel comparator 

was used as the receiver cell.  The input devices were chosen to have a thicker gate oxide 

in order to withstand transients up to 3.3V in case an interface circuit is used with a 

supply voltage higher than 1.8V.   

The specification states that the receiver cell should have a minimum hysteresis of 

25mV.  Hysteresis sets a different threshold for an increasing and decreasing transition 

which provides a voltage “guard band” and protects against noise in a system.   

Hysteresis was first proposed by Otto Schmitt, who is responsible for the design of the 

Schmitt trigger.  Some literature states that hysteresis will increase jitter but I have never 

found anything substantial to back up that statement.  Obviously hysteresis will result in 

an asymmetrical waveform if it is used in a clock circuit, but as long as there is only a 

small amount; the asymmetry should not pose an issue.  Hysteresis should only result in 

increased jitter if the noise is higher at the transitions than at the zero cross.  
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3 INTERPOLATION 

3.1 Interpolation Filter Basics 

Digital filters mimic analog filters by convolving an input digital signal with a 

digital representation of an analog filter.  There are two basics types of digital filters, FIR 

(Finite Impulse Response) and IIR (Infinite Impulse Response).  An FIR filter does not 

have feedback and will settle in a “finite” time.  An IIR filter has feedback and will never 

settle so it its settling time is “infinite”.  An FIR will require more computations for the 

same response but will always be stable due to not having feedback and linear phase can 

easily be achieved. 

An interpolation filter is a special application of digital filters which calculates the 

intermediate value between two consecutive values of a sampled signal.  From a black 

box perspective the output of an interpolation filter should look like the input signal was 

sampled at a higher rate as shown in Figure 3-1. 

 

Figure 3-1 Interpolation Example 

 

There are several different types of interpolation methods which produce varying 

results.  Linear interpolation is perhaps the easiest to understand; the midpoint value is 

just the average of two consecutive values.  Curve fitting methods based on polynomials 
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are also used.  The most popular methods involve using FIR filters to obtain the desired 

result.  One way to accomplish this is to “zero stuff” the input and convolve the new 

signal with a low pass filter.  So in order to interpolate by 2x, a zero data word should be 

placed after every input data word which can then be low pass filtered to produce an 

interpolated signal.  The output amplitude will be one half the value of the original due to 

the zeros.  The “zero stuffing” method is similar to the output of a return to zero DAC as 

shown in Figure 3-2.  Additional zeros can be added to increase the interpolation factor, 

resulting in further reduction of the output amplitude.   

 

 

 

 

Figure 3-2 Return to Zero 

 

Another method which can be used to interpolate a signal is to low pass filter the 

input with a special type of FIR filter called a half-band.  The output of a half-band filter 

is alternated with the original signal to produce an interpolated output.  This is a popular 

method of interpolation which has many benefits when compared to the “zero stuffing” 

method but can only be used for a factor of two.   

3.2 Half-band Filters 

The sinc function shown in Figure 3-3 is a perfect “brick wall” low pass filter if 

carried out to infinity.  If an input signal is convolved with this filter at ¼ intervals of a 

period, zero amplitude will be applied at every other term except for the origin which will 
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be 1.  A half-band filter performs this function, taking advantage of the zeros by 

convolving an input signal with a sinc at (nπ)/2 intervals which is similar to the concept 

used in Fs/4 digital mixing.   This gives a savings of ½ of the multipliers and is the reason 

why half band filters are popular.  If a filter is made symmetric the multipliers can be 

used twice to convolve a signal resulting in saving an additional ½ of the multipliers.  

Utilizing these two methods provides a significant savings in both power and area 

reducing the number of multipliers to ¼ of the original value.  

 

Figure 3-3 Sinc Function 

 

Half-band filters are a subset of Nyquist filters and are characterized by having a 

cutoff frequency of 0.5π.  When a sinc is truncated with an appropriate windowing 

function to make the filter finite, ripples are created in the passband and stopband.  In 

half-band filters the ripples are identical in both bands.   

The two filter structures shown below take advantage of the zeros in the sinc 

function.  The longer filter does not take advantage of symmetry, requiring twice as many 

multipliers as the shorter filter.  Notice that the shorter filter requires additional adders for 

implementation.  The additional adders are a small price to pay for the reduction in 

multipliers.   
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      Figure 3-4 Non-Symmetrical FIR                          

 

 

 

 

 

 

Figure 3-5 Symmetrical FIR                  

3.3 Half-band Filter Implementation 

The interpolation filter in this chip is based on 3 cascaded half-band filters which 

brings the interpolation factor to 8 as shown in Figure 3-7.  The 3rd interpolation filter is 

shown in Figure 3-6.  The data coming in is 12 bits.  The first adders in the chain are 13 

bits, so that no overflow occurs.  The multipliers have a 13 bit data input and a 17 bit 

coefficient with an output of 19 bits. The final adders are 20 bits, so that no overflow 

occurs.  At the input to the clamp the data stream is shifted to the left by 2 (multiplied by 

4) to account for the increase in adder bits and truncated to 12 bits. 
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A digital filter closely resembles its analog counterpart therefore overshoot will occur 

with large inputs.  The filter must recognize these occurrences and clamp the signal to the 

appropriate rail, which is the purpose of the clamp circuit.  The MSB of the last multiplier 

is compared with the (MSB – 2) bit, which is now the new MSB of the filtered data 

stream, to see if they are the same.  If they are not, the output is clamped to the 

appropriate rail. 

This particular circuit will run at a minimum of 200MHz, and will produce a 400MHz 

interpolated signal by outputting the delayed signal when the clock is high and the 

filtered signal when the clock is low.  

 

                              Figure 3-6 3rd Interpolation Filter 
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Major reductions in computation can be made to the design of a filter by 

increasing the number of individual cells as opposed to keeping the design modular.  For 

instance, each addition in a multiplier can be analyzed to determine if a carry is possible, 

if not the logic can be simplified.  Since cascaded half-band filters run at different speeds 

the modularity must be reduced to a certain degree to take full advantage of the power 

savings.  For example, the preceding filter runs at half the speed so it would only require 

half the pipelining.  The primary cost of implementation is additional design time. 

The coefficients for the multipliers were determined using MATLAB Filter 

Builder.  17 bit coefficients were required to meet the minimum SNR of 74dB.  The filter 

properties and multiplier coefficients are shown in Table 3-1 and Table 3-2 respectively.  

Each subsequent filter runs at twice the rate as the previous one.  The transition width can 

be relaxed and the poles can be decreased in each subsequent filter while maintaining the 

same SNR target as shown in Table 3-1.   

 

Figure 3-7 Cascaded Half-band Filters 

 

Table 3-1 Filter Properties 

 Filter 1 Filter 2 Filter 3 

Order 47 23 15 

Transition Width 0.2 0.4 0.6 

Clock Frequency MCLK / 8 MCLK / 4 MCLK / 2 
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Table 3-2 Filter Multiplier Coefficients 

Filter 1 Filter 2 Filter 3 

-0.000396728515625 -0.001556396484375 -0.00494384765625 

0.00115966796875 0.00823974609375 0.033935546875 

-0.0027008056640625 -0.026947021484375 -0.1353607177734375 

0.005462646484375 0.070220947265625 0.6063385009765625 

-0.009979248046875 -0.1721954345703125  

0.016998291015625 0.6221771240234375 

-0.0275726318359375  

0.043426513671875 

-0.067962646484375 

0.1098785400390625 

-0.2013092041015625 

0.6329193115234375 

 

MATLAB has an HDL Coder program which synthesizes filters with verilog but 

pipelining within the multiplier and accumulator cells is not an option.  Verilog could 

have been used to synthesize the cells but it was considered to be too much of a risk when 

they were initially designed.   It would be a great exercise to design them with verilog 

now that they are completed and compare the results.  The layout was completed using 

Cadence Encounter. 

 

 
 

Figure 3-8 Filter 1 Magnitude Response 
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Figure 3-9 Filter 2 Magnitude Response 

 

 

Figure 3-10 Filter 3 Magnitude Response 

 

4 DIGITAL MIXING 

4.1 Complex Mixing 

When a baseband signal is upconverted, mixed with a higher frequency carrier, 

two images are produced with respect to the carrier.  In a transmitter the higher frequency 

image is desired and the lower frequency image is an undesired byproduct which must be 

filtered out.  For the following diagram, FB = Baseband Frequency and FC = Carrier 

Frequency. 
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��	
(2��) ∗ � cos(2���) = AB
2 cos�2�(�� − �)� + AB

2 cos�2�(�� + �)� 

Fc FB FB Fc

-Fc+FB-Fc-FB Fc-FB Fc+FB

 

Figure 4-1 Upconversion 

 

The entire premise behind complex mixing comes from combining an in phase 

signal (I) with its quadrature component (Q), a signal which is delayed by 90 degrees.  

The signals are combined after upconversion so that the unwanted image is removed as 

shown below.   

�	
 = ����� + �!���� 

2 										
#$ = ����� − �!���� 

2% 	 

		����� = cos(	2�&'	) + jsin(	2�&'	)																					�!���� = cos(	2�&'	) − jsin(	2�&'	)			 

              						cos 																																																	sin 																																															 �!����  

 
Figure 4-2 Complex Mixing 
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The time domain equation for adding a sine and cosine of the same frequency is 

as follows. 

Acos(2�&) + Bsin(2�&) = *�� + ��	cos	+2�&	',$!- 	��	. 

If A=B=1, then this equation reduces to 

√2cos	02�& − �
42 

4.2 Modulator Architectures 

Three types of mixers are shown below.  The first mixer is a double sideband 

modulator which means that it produces both images.  The second mixer is a quadrature 

modulator, which is a single sideband mixer that cancels the image by combining the in-

phase signal with its quadrature.  The third mixer is a double quadrature modulator and is 

intended to be used in a two stage transmitter (Super Heterodyne) where the first 

upconversion is to the IF (Intermediate Frequency).  Its purpose is to provide a complex 

output so that the image can be cancelled in the final upconversion to RF.    

The following equations describe double sideband modulation which refers to 

Figure 4-3.  (LO stands for Local Oscillator)  

�	
(2��) ∗ cos(2��34) = 1
2 cos�2�(�34 − �)� + 1

2 cos�2�(�34 + �)� 

 

Figure 4-3 Double Sideband Modulator 
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The following equations describe quadrature modulation which refers to Figure 4-

4. 

6�	
(2��) ∗ cos(2��34)7 + 6
#$(2��) ∗ sin(2��34)7 = 8-� cos�2�(�34 − �)� +
-
� cos�2�(�34 + �)�9 − 8-� cos�2�(�34 − �)� − -

� cos�2�(�34 + �)�9  
= cos�2�(�34 + �)� 

 

Figure 4-4 Quadrature Modulator (SSB) 

 

The following equations describe double quadrature modulation which refers to Figure 4-

5. The Real IF output is the same as the quadrature modulator. 

	
Real	IF = cos�2�(�34 + �)� 

 

The Imaginary IF is as follows: 

6�	
(2��) ∗ 
#$(2��34)7 + 6
#$(2��) ∗ �	
(2��34)7 = 8-� 
#$�2�(�34 + �)� +
-
� 
#$�2�(�34 − �)�9 + 8-� 
#$�2�(�34 + �)� − -

� 
#$�2�(�34 − �)�9		
= sin�2�(�34 + �)� 
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Figure 4-5 Double Quadrature Modulator (Complex) 

4.3 Digital Quadrature Modulation  

In the analog domain an oscillator is a sine wave and in the digital domain it is a 

square wave.  In order to modulate a signal digitally, the input signal is multiplied by a 

square wave.  To perform quadrature modulation there must be an in phase LO and a 

quadrature LO, therefore the LO clocks must maintain a specific interval relationship to 

the Fs of the input signal.  Any oscillator value could be chosen but the cost of 

implementation is not the same.  Consider a cosine wave to be the LO.  If samples are 

taken at 90° intervals the output becomes 1, 0, -1, 0 as shown in Figure 4-6.  The 

quadrature LO will lag 90° behind the in phase LO so it becomes 0, 1, 0, -1 which is also 

a sine wave sampled at 90° intervals.  This is an easy way to implement a quadrature 

oscillator which requires minimal area and a low level of complexity. 
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Figure 4-6 90°Samples 

4.4 IQ Mismatch Considerations 

The purpose of quadrature modulation is to remove the image produced from 

mixing.  A digital modulator will have a perfect IQ match which is impossible for the 

analog counterpart but at some point the digital signal must become analog in order to be 

transmitted.  It is imperative to understand how mismatch affects the image as this will be 

of the upmost importance and will dictate the design of the DACs.   

Phase and amplitude mismatch will degrade the image cancelling capabilities of a 

quadrature modulator.  Figure 4-7 shows image rejection versus amplitude mismatch and 

Figure 4-8 shows image rejection versus phase mismatch.  Notice that amplitude 

mismatch is more forgiving than phase mismatch.  A mismatch of 1% amplitude will still 

produce about 47dB of image rejection whereas a 1% phase mismatch will drop the 

image rejection to 31dB. 
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Figure 4-7 Image Rejection vs. Amplitude Mismatch 

 

 

 

 

Figure 4-8 Image Rejection vs. Phase Mismatch 
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4.5 Double Quadrature Modulation Implementation  

Shown in Figure 4-9 is a one bit implementation of an Fs/4 mixer which generates 

the Imaginary IF.  The circuit requires the clock to be divided into 4 phases and selects 

either I, I,̅ Q	or	QD for the output depending upon the phase to create the modulated signal.  

The Real IF is generated with a similar circuit but with different phases as shown in 

Table 4-1.  To create the double quadrature modulator for 12 bit DACs, 24 copies of the 

circuit in Figure 4-10 are required.  As can be seen by the small number of gates, the 

implementation for digital mixing is very efficient. 

 

 
 

Figure 4-9 One Bit Mixer 

 

Table 4-1 Bit Selection Modulation 

Clock Phase Real IF Imaginary IF 

1 I Q 

2 QD I 
3 I ̅ QD 

4 Q I ̅
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5 CURRENT STEERING DAC 

5.1 Current Steering DAC Concepts 

A current steering DAC accepts a digital input and “steers” the direction of the 

current to either the positive or negative output terminal.  The output can either be a high 

side configuration which sources current or a low side configuration which sinks current.  

The current steering DAC architecture is the preferred choice for obtaining high speed 

operation.  Resistors are generally used to terminate the output of a current steering DAC 

to perform I-V conversion for further signal processing.  50 ohm termination resistors are 

the preferred choice for most designs, but 25 – 100 ohms is also quite common.  Figure 

5-1 depicts an example of a 3 bit low side current steering DAC. 

Binary weighted current sources results in the simplest implementation of a 

current steering DAC but suffers from poor monotonicity, degraded current matching and 

large switching transients.  Thermometer based current sources are monotonic, provide 

superior matching performance and produce smaller switching transients.  A high 

resolution design based entirely on thermometer code is possible but would be a difficult 

task from a layout perspective.  A segmented approach consisting of both binary and 

thermometer weighted current sources can provide good performance with reasonable 

layout requirements.  The overwhelming majority of DAC’s in production use a 

segmented design approach.  The upper bits (MSB’s) are thermometer coded since their 

requirements for matching are more stringent than the lower bits (LSB’s).  There are 

numerous different ways to segment the bits of a DAC.  Consider some of the 

possibilities of segmentation in a twelve bit DAC (6 MSB thermometer + 6 LSB binary), 
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(6 MSB thermometer + 6 LSB thermometer), (5 MSB thermometer + 4 ULSB 

thermometer + 3 LSB binary), etc.  

B0 B0x B1 B1x B2 B2x

50Ω 50Ω 

 

Figure 5-1 Three Bit Current Steering DAC 

5.2 DAC Architecture 

The DACs for this chip are a low side configuration with a segmentation 

consisting of 4 MSB thermometer, 4 ULSB thermometer and 4 MSB binary.  This 

approach breaks the MSB current sources into 16 unit cells (1 diode connected device 

and 15 sources). 

A dual channel DAC which is to be used in a transmitter application must have a 

very good match between the I and Q channels in order to achieve reasonable image 

rejection.  Correction circuits are often used to provide a better match both dynamically 

and statically.  A static match can also be achieved with brute force, utilizing area which 

has the benefit of minimizing risk.  Dynamic matching is a real challenge and is an area 

of active research.  The vast majority of the methods described in literature for dynamic 

correction are not production ready and are based on correction through characterization.  
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Dual channel DACs currently in production have hooks in the IC for amplitude and phase 

correction between channels.   

The dual channel DAC configuration for this chip was designed as a single DAC 

rather than two separate entities as shown in Figure 5-2.  There is one “golden” current 

source which sets all of the currents for the DAC’s.  The current arrays for each segment 

are intertwined, i.e. the MSB array contains 16 current sources from each DAC and 1 

current setting device.  2 currents leave the MSB and set the ULSB current sources and 1 

dummy cell was used for matching.  This brings the total number of matching devices to 

34 in the MSB array.  Internally the DACs will have a good static match due to sharing 

the same current but the one drawback is that the current can no longer be adjusted to 

compensate for external resistor mismatch.  The primary benefit of using this approach is 

improvement of the dynamic match.  Transients are constantly produced in a DAC from 

the gate drive of the output switching transients and from the switching of the output 

itself.  Parasitic capacitances allow some of the transients to find their way back to the 

gate of the current source which sets all of the currents, when this happens the current 

will change value and require time to recover depending upon the magnitude of the 

transient.  Since both DACs share the same source the error produced becomes common 

mode thus improving the dynamic match between the channels which increases image 

rejection.  Designing both DAC’s as one promotes better matching from both a design 

and layout perspective.  The output switches that connect to each array are of extreme 

importance in determining the dynamic match.  Both the I and Q DAC switches that 

control their respective source are in the same schematic cell and are common centroid 

with respect to the final clock line which actuates them. 
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Figure 5-2 Current Steering DAC Block Diagram 

 

Figure 5-3 shows the schematic for the three current arrays. This is a popular 

technique used by Analog Devices, Inc. which promotes monotonicity by using one bias 

current to set all of the currents.  The amplifiers are implemented as folded cascode 

OTAs.  Notice that the MSB and ULSB devices are double cascoded.  With the 

configuration of the ULSB being fed from the MSB the double cascode is absolutely 

necessary in order to obtain a high enough output impedance so that current division 

between the sources of the ULSB is implemented correctly.  The second cascode of the 

MSB was used to increase output impedance and to reduce capacitance by using a small 

device and placing it close to the switch, thereby reducing settling time for any glitches 

that might appear at the drain node of the cascode.  The output impedance of a DAC 

changes with each code due to devices being switched in and out of parallel, which is 
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referred to as code dependent output impedance.  Keeping the output impedance high 

helps to isolate the current sources and minimizes this effect.  

 

Figure 5-3 Current Array Structure 

5.3 Gate Drive Design 

The goal in designing a gate drive for a differential switch is to try and make the 

transistors act more like ideal switches.  In order to do this the transistors should switch 

infinitely fast and produce no disturbances.   

It is possible to switch a differential pair with a sculpted gate drive which will 

maintain a constant voltage on the source node.  This is non-trivial at fast speeds 

therefore in general practice a high switch point is chosen to ensure that both devices 

remain on during the switching transition.   This method minimizes source node 

disturbance and is easily implemented. 

This ASIC is intended for one application which targets performance parameters.  

There were several voltages available (1.8v, 3.3v, 5v) on the customer’s system level 

board implementation which allowed tremendous flexibility in controlling the gate drive 
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for the differential switch to achieve optimal results.  The switching voltage was chosen 

to be from 1.8v to 3.3v.  This is more than the minimum voltage required to switch but 

switching between power rails has the benefit of being able to source and sink large 

currents so that the gates of the switching transistors can be charged and discharged 

quickly.  This was shown to have a greater impact on performance than gate feedthrough 

caused by the larger switching transitions.   

The input signal used to determine if the switch will be positive or negative is 

generated from 1.8V logic and must be level translated to the higher voltage.  One way to 

accomplish this is shown in Figure 5-5.  The current source provides a pull-up bias for 

the gate of M2 when M1 is turned off.  The resistor is used to limit the current that will 

be sourced through M1 when its gate is pulled low by M3.  The current can be set to a 

low value but there is a power trade-off between the value of the resistor and the 

frequency of operation.  The resistor forms a low pass filter with the gate of M2 so the 

larger the resistor the longer it will take to turn M2 off when M4 is turned on.  M4 and 

M2 were sized to minimize this effect.  The lower inverter and buffer have matched 

delays.   

The actuating signal comes from a separate circuit referred to as the High Clock 

which transitions between 3.3V and 1.8V.  In Figure 5-4 the upper flip flop was designed 

by hand for high frequency operation otherwise all of the basic digital cells were from a 

standard cell library provided by the foundry.  The cross coupled inverter at the output is 

used to actuate the differential switch and was made popular by [Van den Bosch].  A high 

switch point can be achieved through proper sizing. 
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Figure 5-4 Gate Drive 

 

5.4 Differential Switch Considerations 

For a high speed design the differential switch must remain in saturation.  It is 

also desirable to use small devices to keep parasitic capacitances low, thereby increasing 

switching speed and reducing both gate and output feedthrough.  Capacitance must also 

be kept small at the source node so that any disturbance generated on that node can settle 

quickly to maintain the tail current at the desired level.  For this design a simple 

differential switch was chosen as shown in Figure 5-1.  In section 5.3 it was noted that 

the actuating voltage for the switch is between 1.8V and 3.3V.  A 3.3v device was used 

for the switch. The 50 ohm output resistors are intended to be connected to the available 

5V supply.  The switch is isolated in a deep trench with bulk connected to source to 

prevent overvoltage.     

During the design process, a coscoded switch implementation was investigated.  

In theory, cascoding would provide an advantage because the differential switch would 

be isolated from the switching transients generated at the output plus the switch would 

remain in a tighter controlled region of operation due to maintaining a constant VDS.   

There are 3 problems associated with cascoding the switch. The first obvious problem is 
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that additional capacitance is added to the output node which significantly hinders high 

frequency performance at low current levels.  Another problem is due to a leakage 

current which flows from drain to bulk of the cascode device when it is sinking current.  

For a high resolution design cascoding would require deep n-well or deep trench isolation 

to prevent SNR degradation.  Another potential problem will occur if a cascode device 

stays off long enough for the source node to float high causing the device to enter the 

cutoff region.  In this case a small glitch may occur when the device turns on as it enters 

saturation again.  This problem is exacerbated at low current levels.  

5.5 Sizing for Mismatch and Noise 

One of the main things to consider in designing a DAC is the size of the current 

sources that will be required in order to achieve a desired static resolution.  In this case 12 

bits was the target so a certain amount of tolerable error had to be decided upon.  A 

quarter of an LSB is generally considered to be a reasonable target.  This DAC will 

normally be used at the maximum FSR current of 30mA which gives an LSB current of 

approximately 7.3uA, so a quarter of an LSB would be about 1.8uA.  The MSB sources 

are divided into 16 unit cells carrying a maximum current of 1.875mA, therefore the 

required match would be 0.096%.   

Referring back to Figure 4-7 Image Rejection vs. Amplitude Mismatch, a 

mismatch of 0.1% will provide about 67dB of image rejection which is adequate for IQ 

matching.  Consider the extreme codes for a DAC, near maximum and minimum values; 

there will be many devices in parallel on one terminal but only a few in parallel on the 

other which would lead to the worst case matching condition.  The middle codes will 

have the best overall match between the two DAC’s.  Therefore a 0.1% static mismatch 
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at 1 sigma should correspond to the extreme code conditions and be the worst case 

between the two channels.   

The MSB current sources were designed for a 1 sigma 0.096% mismatch which 

was verified using a monte carlo simulation with mismatch models provided by the 

foundry.  The ULSB current array is comprised of 16 current cells and requires a 1.5% 

match for a quarter of an LSB deviation.  The binary array requirement is further reduced 

to the following values for each consecutive bit:  3%, 6%, 12% and 25%. 

The cheapest way to improve mismatch is to use a high overdrive if headroom is 

available.  Vt mismatch effects are considerably reduced with a lower gm.   After 

headroom is exhausted, area can be increased to satisfy system requirements.  Mosfet 

mismatch improves with the inverse square root of the area.   

%	F�
#G�H	I#
J,'�ℎ = %	LG�
�$'	I#
J,'�ℎ			
*(LG�
�$'	�G�,) ∗ M  

For example, if a device currently has a 10% mismatch and the desired match is 1%, the 

area would have to be increased by 100.  Correction circuits are often used to increase 

matching without increasing area at the cost of system complexity and are generally a 

necessity for DAC’s greater than 12 bit resolution. 

When designing a DAC it is important to take thermal and flicker noise into 

consideration so that it doesn’t interfere with meeting SNR requirements.  Thermal noise 

of a current mirror will reduce with increased area and with increased overdrive voltage.  

Flicker noise is primarily dependent upon device area.  Diode connected devices 

contribute a lot of noise so it is important to minimize the number of current mirror 

translations in a design for both noise and mismatch.  In this design, headroom was 
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abundant so overdrive of the MSB current sources was maximized (500mV).  The 

majority of the cascodes were sized to have an overdrive of 250mV. 

5.6 DAC Performance 

The maximum achievable SNR of a data converter is given by NOPQ = 6.02 ∗
(#		&	V#'
) + 1.76.  The maximum SNR for a 12 bit DAC is 74dB.   A “perfect” zero 

order hold output signal is needed to achieve this value, which can be approximated fairly 

close up to a given range of output power and frequency.  For a DAC with a large 

number of devices, an FFT with a reasonable number of cycles requires a long simulation 

time due to the oversampling needed to capture the majority of the transients.  Figure 5-5 

shows an output FFT of one DAC at maximum power (FSR=30mA and 50 ohm resistors) 

with a sampling frequency of 400MHz and an input signal of approximately 73.7 MHz.  

The output of the DAC was sampled at 4GHz, which was considered to be the minimum 

value needed to accurately depict performance.  The plot is shown up to Fs/2 (200MHz).  

At this bandwidth the DAC produces 70dB of SNR, which equates to an ENOB of 11.3 

bits.  

 
 

Figure 5-5 DAC FFT 
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The FFT in Figure 5-5 took about a week to run and still shows spreading at the 

fundamental.  Transient simulation can provide initial feedback into the performance of a 

DAC within a few minutes which drastically reduces the design time required for 

meeting performance objectives.  Insight is gained by analyzing the overshoot, 

undershoot and settling time. Transient parameters are code dependent so it is important 

to establish a specific code transition to determine the SNR for comparison tests. 

5.7 DAC Layout  

Current steering DAC’s are heavily dependent upon layout to achieve a good 

static and dynamic match.  From a physical design perspective, the static match is 

dependent upon the layout of the current arrays whereas the dynamic match is dependent 

upon the routing and interconnection of the final clock line to the gate drive circuits 

which actuate the output current signal.  The following paragraphs describe a few layout 

techniques which were used to help achieve the desired SNR that was reflected in 

simulation.   

The MSB current array is shown in Figure 5-6.  Each I and Q channel consists of 

16 current sources with one current setting device which brings the total number of 

matched devices to 33.  One dummy was added to the array to make it an even 34.  The 

unit cells were further broken down into 32 unit cells.  The figure below would be 

considered a strong common centroid.  It was designed in this manner based on its pattern 

and ease of wiring.  The devices form overlapped Xs and Vs which must then be 

connected horizontally so it requires several layers of metal to implement this centroid.  

In order to make the layout reasonably compact the source metal must cover the devices 
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so that the metal runs connecting the devices do not have to match.  It is preferable to 

have the metal which covers the devices to be as high as possible. 

  

 

Figure 5-6 MSB Array 

The ULSB current array is shown in Figure 5-7.  A standard common centroid was 

used for this cell since it does not need to match as well as the MSB array.  

 

 

Figure 5-7 ULSB Array 

 

The most important clock line in a DAC is the final clock which actuates the output 

gate drive.  Any mismatch will cause a phase error and degrade the IRR.  The final clock 

line was wired on top layer metal in a symmetrical fashion with an I switch bank on one 



   

36 
  

side and Q on the other.  The incoming clock signal from the clock generator was kelvin 

connected to the 3 switch arrays to provide a solid dynamic match of the clock line.  

Parasitic extraction was performed to verify that the clock routing would be sufficient to 

meet the design requirements.

 

6 FINAL DESIGN 

6.1 Top Level  

The block level diagram of Figure 1-1 is a fairly good representation of the chip 

but excludes a few primary cells, the bias generator and clock generator. 

There are a total of 5 clocks in this system which must work in unison. The digital 

mixer requires clock division by 2 and 4 to generate the phases necessary for modulation 

and the interpolation filters require clock division by 2, 4 and 8.  A “high” clock is 

derived from the master clock for improved actuation of the output differential switch.  

The clocks are retimed and buffered after being divided down.  The clock generator 

circuit supplies these clocks to the chip, controls the bypass modes of operation and 

signals for the synchronizing output clock.   

The bias generator operates as a pseudo bandgap.  A voltage input of 1.25V is 

accepted from a pin on the chip and is buffered to another pin connected to an external 

resistor which sets the “golden” current for the DACs.  The current in the resistor is 

equivalent to the current in one MSB cell.  Another amplifier inside the chip biases a poly 

resistor which sets the currents for all of the additional internal biasing. 

A chip containing this many transistors can be challenging to simulate at the top 

level due to extremely long time requirements.  At the top level functionality was tested 
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utilizing Ultrasim.  Performance simulations were completed at the cell level with 

Spectre.   

6.2 Pin Configuration and Description 

The pin configuration for the chip is shown in Figure 6-1 and the pin descriptions 

in Table 6-1. There are 2 separate power supplies, VDD (1.8V digital supply) and VA 

(3.3V analog supply).  VDD draws 500mW and VA draws 100mW at 400 MSPS 

operation.  At the request of the customer the input was made parallel LVDS.  The 

number of input pins could have been reduced by sharing the IQ pins and alternating their 

input sequence.  This alternative method is popular in industry due to the lowered pin 

count but requires the update rate to be double. 

 
 

Figure 6-1 Pin Configuration 
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Table 6-1 Pin Function Descriptions 

Pin No. Mnemonic Description 

1,3,5,56,58,60 

62,64,66,69,72,75 

Qx<0:11> Q negative input data, twos complement, LVDS 

2,4,6,57,59,61 

63,65,67,70,73,76 

Q<0:11> Q positive input data, twos complement, LVDS 

7 RESET Logic 0 resets all of the digital latches (1.8V 

Logic) 

8 SCLK Output synchronizing clock positive, LVDS 

9 SCLKx Output synchronizing clock negative, LVDS 

10,25,39,71 DGND Digital common 

11 MCLK Master clock positive input, LVDS 

12 MCLKx Master clock negative input, LVDS 

13,40 DSUB Digital substrate common 

14,16,18,20,23,26 

29,31,33,35,37,41 

I<0:11> I positive input data, two’s complement, LVDS 

15,17,19,21,24,27 

30,32,34,36,38,42 

Ix<0:11> I negative input data, two’s complement, LVDS 

22,28,68,74 DVDD Digital supply voltage (1.8V) 

43 BYP_FILT<0> Binary input used to bypass filters (1.8V Logic) 

44 BYP_FILT<1> Binary input used to bypass filters (1.8V Logic) 

45 BYP_MIX Logic 1 bypasses digital mixer (1.8V Logic) 

46 I_OUTx Negative I channel current output 

47 I_OUT Positive I channel current output 

48 Q_OUT Positive Q channel current output 

49 Q_OUTx Negative Q channel current output 

50,54 AGND Analog common 

51,55 VA Analog supply voltage (3.3V) 

52 IBIAS Current output, An external resistor placed from 

the pin to common sets the full scale range 

current of the DACs 

53 VREF High impedance reverence voltage input 

(1.25V), Replicates a bandgap voltage 

 

6.3 Floorplan 

The floorplan of the chip is shown in Figure 6-2.  It would have been preferred to 

have the current arrays close to each other but it was done in this manner to make routing 

of the signal lines more convenient.  The currents which are fed from the MSB current 
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array to the ULSB current array and from the ULSB current array to the binary currents 

are ran in coax lines to prevent switching noise from affecting the biasing. 

 
 

Figure 6-2 Floorplan 

 

6.4 Layout 

The final chip layout is shown in Figure 6-4.  At the customer’s request, a second row 

of bond pads were added to provide the option for additional power and ground 

connections.  Due to the high current requirement of the digital section large buses of top 

metal run the length of the chip connected to pins on both sides and branch out in a 

fingered fashion creating a solid power grid.  A few lines had to run behind the bond pads 

for proper connection.  The chip was fabricated on a multi-project wafer run which 
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delivers 5mm x 5mm tiles independent of active circuit size therefore area was abundant 

and was not a concern in the design. The active circuit area of the chip is approximately 

4.1mm x 4.7mm. 

 

Figure 6-3 Layout 
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6.5 Conclusion and Future Work 

The work presented in this thesis was based primarily upon proven methods of 

implementation.  No major risks were taken due to a tight schedule and the customers 

desire to produce a low risk chip with a high chance of first past success.  During the 

design process, two main areas of interest were investigated, analog FIR implementations 

and correction circuits.  These two areas complement each and are being used for my 

current and future research.  

The motivation for the analog FIR implementation was made keenly aware after 

viewing the layout area of the digital filters and their corresponding power requirements.  

A switched current approach has numerous advantages due to wired addition and scalable 

multiplication.  For example, the multipliers could be implemented as current mirrors and 

the adders could be eliminated by connecting the drains of the output transistors together 

to sum the currents.  From a die area and power standpoint this is a huge savings, but 

there are many hurdles to overcome. 

Correction circuits provide a very attractive area of research offering many 

possibilities.  During the course of this research several correction schemes were 

analyzed involving static and dynamic methods. Static correction at start up is most 

interesting because it introduces methods to increase die yield and has numerous 

applications without the associated risks of continuous and dynamic correction.  The 

mixed-signal FIR filter is just one case which would be applicable, correcting for the 

multiplier coefficient currents.  Applications for correction circuits are literally found 

everywhere in analog design.  
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