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ABSTRACT 

   

This study evaluates two 16 year old photovoltaic power (PV) plants to ascertain 

degradation rates and various failure modes which occur in a “hot-dry” climate. The data 

obtained from this study can be used by module manufacturers in determining the 

warranty limits of their modules and also by  banks, investors, project developers and 

users in determining appropriate financing or decommissioning models. In addition, the 

data obtained in this study will be helpful in selecting appropriate accelerated stress tests 

which would replicate the field failures for the new modules and would predict the 

lifetime for new PV modules. The two power plants referred to as  Site 4A and -4B with 

(1512 modules each) were initially installed on a single axis tracking system in Gilbert, 

Arizona  for the first seven years  and have been  operating at their current location in 

Mesa, Arizona for the last nine years at fixed horizontal tilt Both sites experience hot-dry 

desert climate. Average degradation rate is 0.85%/year for the best modules and 

1.1%/year for all the modules (excluding the safety failed modules). Primary safety 

failure mode is the backsheet delamination though it is small (less than 1.7%). Primary 

degradation mode and reliability failure mode may potentially be attributed to 

encapsulant browning leading to transmittance/current loss and thermo-mechanical solder 

bond fatigue (cell-ribbon and ribbon-ribbon) leading to series resistance increase. 

Average soiling loss of horizontal tilt based modules is 11.1%. About 0.5-1.7% of the 

modules qualify for the safety returns under the typical 20/20 warranty terms, 73-76% of 

the modules qualify for the warranty claims under the typical 20/20 power warranty 

terms and 24-26% of the modules are meeting the typical 20/20 power warranty terms. 
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CHAPTER 1 

 

INTRODUCTION 

1.1 Background  

 

Approximately 10-years ago, Salt River Project (SRP) installed three photovoltaic 

systems (Site 4A, Site 4B, and Site 4C) in Mesa as part of its Earth-Wise
TM

 Energy 

Program. This program allows customers to purchase electricity generated from 

renewable energy sources.  

 

 

 

 

 

 

 

 

 

 

 

Site-4A Site-4B 

Site-4C 

Figure 1 Site-4A&4B, Mesa, AZ [1] 
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The PV systems in Phase 1 (Site 4A) and Phase 2 (Site 4B) use a total of 3,024 

monocrystalline silicon frameless PV modules, which cover an area of approximately 

20,617 square feet. These systems are 16-years-old, installed horizontally, and fixed in 

place. The DC power generated by the two PV systems is converted to alternating current 

by a SMA Sunny Central 125 kW inverter [1]. 

Since the modules have many years of operation, information on their durability and 

reliability issues can help predict the useful life of modules used in newer power plants. 

The results of this study along with the results of other similar studies can be used to 

better predict the useful life of modules in “hot-dry” desert climatic conditions. 

1.2 Objective 

The objective of this study is to evaluate 3,024 solar PV modules that were deployed 16-

years ago. This study was conducted to identify the major PV durability and reliability 

issues that are contributing to power loss at a string level as well at a module level. The 

main focus of this study is to substantiate 5 primary results: 

1. To calculate the degradation rates of modules and strings  

2. To obtain evidence confirming the absence/presence of potential induced 

degradation (PID). 

3. To highlight the durability and reliability issues particular to “hot-dry” climate. 

4. To highlight the losses in soiling due to a horizontally fixed tracking system. 

5. To look for effects of wind direction on performance degradation. 
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The results of this study will be beneficial to the PV industry since it will: allow 

researchers to design appropriate accelerated tests for newer modules; enable 

manufacturers to make better material choices for construction of modules; and assist 

financial communities to determine long-term PV profitability.  
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1.3 Scope of Project 

The following flowchart shows an outline of all the tests that were performed as a part of 

this power plant evaluation. The tests performed on site are: 

 144 soiled string level I-V measurements  

 42 cleaned individual modules I-V measurements 

 Visual Inspection, IR imaging and diode check of all 1512 modules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Tests Performed  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Need for Reliability and lifetime prediction 

 The reliability and lifespan of PV modules depends heavily upon module construction 

and the climate in which it is installed [2]. In today’s market, large scale PV investors 

routinely analyze the technology risk while focusing on reliability and durability issues.  

This is done to realize the return on investment (ROI) in the case of investors, and 

levelized cost of energy (LCOE, $/kWh) in the case of utility companies. In recent years, 

manufacturers offer warranties up to 25 years or more on their modules. Currently, little 

can be said about the effectiveness of these warranties, as most manufacturers have left 

the industry due to growing global competition. Numerous PV power plants have been 

established around the world, utilizing hundreds of thousands of these modules from now 

defunct manufacturers.  
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2.2 Reliability and durability of PV modules: 

Reliability: If the PV modules are removed (or replaced) from the field before the 

warranty period expires due to any type of failure, including power drop beyond 

the warranty limit, then those failures are classified as hard failures [3]. 

Durability: If the performance of PV modules degrades but still meets the warranty 

requirements, then those losses may be classified as soft losses or degradative losses [3]. 

  

 

Figure 3  Goal of the PV industry [3] 

SF = Safety Failure (Qualifies for safety returns) 

RF = Reliability Failure (Qualifies for warranty 
claims) 

DL = Durability Loss with or without Cosmetic 
Defects (Does not qualify for warranty claims)
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Towards a module’s end-of-life, multiple degradative mechanisms may develop and lead 

to wear-out failures due to accelerated degradative losses. Durability issues could be 

attributed to the materials used for manufacturing PV modules [3]. Reliability failures are 

catastrophic failures which could be attributed to the design and production issues. 

Numerous studies have been conducted on multiple power plants to identify and 

understand the different failure modes and mechanisms effecting modules exposed in the 

field. Once the failure modes and mechanisms are identified, they can be simulated in a 

controlled environment.  This method of simulating field like conditions at an accelerated 

pace in a controlled laboratory environment is called accelerated testing. This type of 

testing stresses a module for a certain period of time (acceleration factor) and provides 

valuable information regarding how long the module will last in the field. A typical 

manufacturer’s 20 year warranty guarantees its module to a point where if the Power > or 

= 80% of minimum rated power, the module is good and within warrantee.  

The failure or degradation modes in PV modules indicate symptoms, whereas failure or 

degradation mechanisms represent the course for arriving at these symptoms. Field 

failures and degradation losses may be classified as reliability failures and durability 

losses, respectively [3]. 
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2.3 Bathtub curve 

The failures that occur in the infant mortality stage are mostly due to quality and design 

issues, the region in the middle is considered as the useful life of the module, catastrophic 

failures are relatively lower in this region when compared to the beginning or the end of 

life, issues in the useful life of modules may be attributed to production quality issues. 

The final region is the end of life of modules where failures rates can increase and the 

modules end up producing less than 80% of their rated power, at which point in time, it 

makes more sense to decommission them [3]. 

 

 

 

Figure 4 Bathtub Curve (Hypothetical) [3] 
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2.4 Failure Mechanisms and Failure Modes 

A failure mechanism is responsible for one or more failure modes. A failure mechanism 

could be triggered by one or more failure causes and a failure mode could trigger one or 

more failure effects [3]. The field failure analysis approach for PV modules may be 

represented as shown in the following sequence  

Failure Mechanism (Cause)              Failure Mode (Effect) 

Example: 

Thermo-mechanical fatigue (Expansions-Contractions)           Broken interconnects 

(Arcing) 

Broken interconnects, solder bond failures, hotspots, encapsulant delamination, back 

sheet warping are examples of failure modes. Thermal expansion and contraction can be 

considered the major cause for broken interconnects and solder bond failures. 

Encapsulant delamination is caused by the sensitivity of adhesive bonds to ultra violet 

light at high temperatures or to humidity in field. Encapsulant delamination can also be 

caused by contamination from material (Excess Na in glass or acetic acid from 

encapsulant). Hot spots are mainly caused by shadowing, faulty cells, low shunt 

resistance, and failure of bypass diodes. Degradation Modes includes slow corrosion, 

gradual encapsulant discoloration, and back sheet detaching/cracking/warping. Gradual 

encapsulant discoloration can be caused by UV exposure at higher operating 

temperatures, reduced breathability, and/or inappropriate additives in EVA [3]. The 

major degradation modes found in “hot-dry” climates are solder bond deterioration and 

encapsulant discoloration.  
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2.5 Solder Bond Fatigue 

The mechanical and electrical quality of solar cell interconnection ribbon bonds is critical 

in optimizing photovoltaic manufacturing yield, energy conversion efficiency, and 

product life expectancy. During the soldering process, a significant differential in the 

thermal coefficient of expansion (TCE) between the copper ribbon and polysilicon takes 

place when processing temperatures are greater than 300ºC and above. This differential 

applies stresses to the substrate which can result in the formation of micro-cracks that 

may not be detected during the manufacturing process, and can result in a less than 

expected in-field product life span [4]. The ribbon wire is made of copper metal and 

soldered by SnPbAg as shown in Figure 5. The ribbon carries the current from each solar 

cell to the junction box. The main cause for solder bond cracks is the mismatch of the 

thermal expansion coefficient between the module material and ribbon wire solder. 

Solder bond fatigue/failure occurs mostly due to the following factors: 

 Thermal expansion and contraction. 

 Poor quality of solder bond process  

 Flexing due to wind loading 

 Vibration due to packing and transportation. 
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2.6 Encapsulant Discoloration: 

Photovoltaic (PV) devices are typically encapsulated using ethylene-vinyl acetate (EVA) 

to provide mechanical support, electrical isolation, and protection against environmental 

exposure. Under exposure to water and/or ultraviolet radiation, EVA will decompose to 

produce acetic acid that will lower the pH and generally increases surface corrosion rates. 

EVA has been shown to produce acetic acid that catalyzes corrosive processes [2]. 

According to a previous researchers study, browning of the encapsulant near the center of 

the cell was the most widely observed failure type at 89.1%, encapsulant browning can 

have an effect on the power output [10]. 

 

 

 

 

 

Solder 

Bond 

Silver 

Paste 

Epoxy 

Ribbon 

Wire 
C-Si Cell 

Figure 5 Solder interconnection between ribbon wire and silicon solar cell [4] 
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According to previous reports, browning in the South and West are not surprising when 

considering the actual solar insolation distribution. Based on published information, the 

southern and western regions of the United States have greater solar irradiance than the 

eastern or central regions. [5]. 

It was also verified based on these findings that due to the approximate nature of the 

module operation temperature data provided by the module manufacturers, the National 

Weather Service average maximum temperature data was later used to more accurately 

correlate the module operation temperatures with EVA discoloration. Based on National 

Figure 6 Case histories of EVA encapsulant discoloration in fielded modules [5] 
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Weather Service Station maximum average daily temperature data modules in Phoenix, 

AZ potentially operated at annual maximum temperatures greater than other test site 

locations surveyed. [5].Conclusions taken from the above report indicate that solar 

insolation in combination with module operating temperature appear to be primary 

factors in EVA encapsulant discoloration. All reported cases appeared in the South and 

West where both are comparatively high. This allowed for a better grasp of encapsulant 

discoloration and the conditions in which it occurs. 

2.7 Effect of Series Resistance 

Series resistance in a solar cell has three causes: firstly, the movement of current through 

the emitter and base of the solar cell; secondly, the contact resistance between the metal 

contact and the silicon; and thirdly, the resistance of the top and rear metal contacts. The 

main impact of series resistance is to reduce the fill factor (FF), although excessively 

high values may also reduce the short-circuit current. Series resistance does not affect the 

solar cell at open-circuit voltage since the overall current flow through the solar cell, and 

therefore through the series resistance, is zero. However, near the open-circuit voltage 

level, the IV curve is strongly affected by the series resistance. A straight-forward 

method of estimating the series resistance from a solar cell is to find the slope of the IV 

curve at the open-circuit voltage point [7]. 

Significant power losses are caused by the presence of shunt resistance Rsh). Low Rsh 

values are caused typically by manufacturing defects, rather than poor solar cell design. 

Low shunt resistance causes power losses in solar cells by providing an alternate current 

path for the light-generated current. Such a diversion reduces the amount of current 

flowing through the solar cell junction and reduces the solar cell’s voltage.  
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The effect of shunt resistance is particularly severe at low light levels, since there will be 

less light-generated current. The loss of this current to the shunt therefore has a larger 

impact. In addition, at lower voltages, where the effective resistance of the solar cell is 

high, the impact of a resistance in parallel is large [7]. 

2.8 Bypass Diode Failure: 

When one solar cell of the panel is shaded while the others are illuminated, a hot spot 

could appear and lead to the shaded cell destruction. The bypass diode is an efficient 

solution to eliminate the “hot spot” and maintain the current delivery [6]. Failed bypass 

diodes can lead to safety issues. 

2.9 Degradation Rates 

Arizona state university Photovoltaic Reliability Laboratory researched on 1900 modules 

in hot-dry climate of Tempe, Arizona and found that the degradation rates lie between 

0.6%/year and 2.5%/year depending on the model and manufacturer [3]. The major 

contributors for power degradation of the modules with glass/polymer modules appeared 

to be fill factor loss and short circuit loss. National Renewable Energy Laboratories 

(NREL) reported that the module degradation rate can be as high as 4%/year, but the 

median and average degradation rates are between 0.5%/year and 0.8%/year [8]. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 System description and site layout 

The plant is located in Mesa, Arizona. The plant consists of 3,024 modules arranged 

in 12 rows, 12 strings in each row as can be seen in Figure 1. These modules are 

mounted on a horizontally fixed tilt (slightly tilted to East), tracking system. The 2 

sites that were evaluated as part of this study have two separate SMA 125 KW 

inverters, disconnect switches and combiner boxes. The plant (composed of two 

systems, designated as Site 4A and Site 4B; aged 16 years) was initially (first 7 

years) installed on a 1-axis tracker (Gilbert, Arizona) and then moved to another site 

(Mesa, Arizona) where the modules were reinstalled at a fixed horizontal tilt (9 

years). 

Table 1 System Location 

 

 

 

 

 

System Location Latitude Longitude Elevation 
Year 

Commissioned 

Site 4A & 

4B 

 

Mesa, AZ 

 

33.4° N 111.7 W 1241ft 1997 
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Table 2 System Description 

 

As shown in figure 6 each system consists of 6 rows with 12 strings in each row oriented 

in the north-south direction. Each string has 21 modules connected in series as shown in 

Figure 9. The modules are installed with horizontal tilt. 

 

 

 

 

 

 

 

 

 

 

 

System 

Tilt/ 

Orientatio

n 

DC 

Ratin

g 

(kW) 

AC 

Ratin

g 

(kW) 

Years 

fielde

d 

Modul

e Type 

No. of 

Module

s 

Inverter 

Site 4A 

Horizontal 

fixed tilt. 

113.4 100 16 BRO 1 1512 

SMA 

125 

kW 

Site 4B 113.4 100 16 BRO 2 1512 

SMA 

125 

kW 

System-1 System-2 

Inverter-2 Inverter-1 

Figure 8 Site 4A & 4B Layout 
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Table 3 Module and String nameplate rating 

Model Design 

 
Nameplate rating 

Isc 

(A) 

Voc 

(V) 

Imax 

(A) 

Vmax 

(V) 

Pmax 

(W) 

FF 

(%) 

Module BRO 1 

, BRO 2 

Frameless 

Glass/Poly

mer 
4.8 21.7 4.4 17 71.8 75 

BRO 1, BRO 2 

String 

21 

modules/ 

string 
4.8 455.7 4.4 357 71.8 1575 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

String circuit connection at site 4A and 4B. The numbers indicate the modules and their 

position  

 

1 14 15

2 13 16

3 12 17

4 11 18

5 10 19

6 9 20

7 8 21

Figure 9 Site-4A&4B string circuit diagram 
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3.2 Data Collection and Processing:  

 

          

UNDERSTAND THE SYSTEM  LAYOUT
TRACKER SYSTEM , STRING CONFIGURATION, INVERTER 
SPEC, LOCATION OF SYSTEM DISCONNECT SWITCHES, 

COMBINER BOXES FUSES (AC/DC SIDE)

OBTAIN STRING LEVEL 
IV’S IN  AS IS CONDITION 

( NO CLEANING)

IDENTIFY THE 
BEST,MEDIAN AND 

WORST PERFORMING 
STRINGS

OBTAIN STRING LEVEL 
ALONG WITH MODULE 

LEVEL  DATA ON 
PREVIOUSLY IDENTIFIED 

STRINGS

CHARECTERIZATION

INFRA RED 
IMAGING

DIODE CHECK 
USING A LINE 
CONTINUITY 

CHECKER

VISUAL INPECTION 
ALONG WITH 

PHOTOGRAPHS

ANALYSIS AND CORRELATION OF DEFECTS 
FOUND DURING CHARECTERIZATION  WITH 

DROP IN PERFORMANCE

CURRENT-VOLTAGE 
CURVES

KEY FINDING / RESULTS

 

Figure 10 Flowchart of Tasks carried out. 
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3.2.1 Equipment Used On Site: 

 

a. Daystar’s DS-100C  I-V curve tracer  

b. Laptop computer with IVPC 3.0  software ( for curve tracer) 

c. Fluke temperature sensor with T and K-type thermocouples 

d. Inclinometer. 

e. Diode checker 

f. 1-monocrystalline and 1- polycrystalline reference cell. 

g. Curve tracer cables. 

h. Fluke TI-55 Infra-Red imaging camera. 

i. Safety equipment. 

j. Fluke digital Multimeters. 

k. Module cleaning equipment 

l. Ice Packs ( for field baseline testing) 

m. Insulation boards for causing a shading effect to check for failed diodes. 

 

 

 

 

 

Figure 11 Daystar I-V curve tracer 
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3.2.2 On site activities  

The first step in the evaluation of the 2 PV systems was initiated by gaining an 

understanding of the system’s layout which included: understanding how the strings were 

connected; how many modules comprised a string; location of the disconnect switches 

and combiner boxes. Safety was of the highest priority which is why the strings were 

isolated from both DC and AC sides and the fuses removed as a precautionary measure.  

3.2.3 Naming Convention 

The next step was to develop a naming convention which would help identify each string 

in each row, for both systems. This naming convention was strictly adhered to: A sample 

naming convention which is illustrated below, where (from left-right) S/N stands for 

south or north respectively because the modules were mounted across the north-south 

direction. Also, 1/2 stands for system-1 or system-2, 4/3 stands for row number and 2/1 

stands for the string number. The same modules were used in both system-1 and 2. The 

modules from Site 4A are referred to as BRO 1 and modules from Site 4B, BRO 2. 

 

 

 

 

 

 

      

 

S-1-4-2 N-2-3-1 

DIRECTION-SYSTEM #-ROW #-STRING # 

Figure 12 Naming convention 
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3.2.4 I-V measurements of modules and strings 

The current-voltage (I-V) curve provides module and string performance parameters such 

as such as maximum power (Pmax), short circuit current (sc), open circuit voltage (Voc), 

and fill factor (FF), as shown in the screenshot below in Figure 13.The I-V’s were taken 

by first switching off the ac/dc disconnect switches followed by removing the fuses at the 

combiner box. It was always ensured that the measurements were taken under clear and 

sunny skies at an irradiance level above 800 w/m
2
. I-V curves played a very important 

role in the entire study because they helped determine the high, median and low 

performing modules and strings, losses due to soiling, degradation data, diode failures, 

and module series resistance. 

 

 

 

 

 

 

 

 

 

 

Figure 13 I-V setup & I-V generated through software 

Reference Cell 

Setup 
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3.2.5 Baseline I-V measurements for modules 

Baseline tests had to be completed to obtain the voltage and current temperature 

coefficients, voltage (β), and current (α) to translate the measured data into standard test 

conditions (STC). A few select modules in the power plant were cooled using ice cubes 

and styrofoam boards with reflective surfaces to lower the module’s temperature. The 

temperature was monitored by using thermocouples attached to the back sheet of the 

module at the center of a cell. Once the temperature fell between 12° to 18° Celsius, the 

ice cubes were removed and the module surface was dried with dry rags to eliminate 

moisture. Ten I-V curves were taken between 18°C to 45°C and with irradiance of 

approximately 1,000 W/m
2
. 

 

 

 

 

 

 

 

 

 

 

Figure 14 Module cooled using ice and Styrofoam. 
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3.2.6 Translation procedure with the ASU-PRL template: 

Once the IV curves were obtained on site, the IVPC software would display important 

parameters of that string/module. These I-V curves were later translated to STC 

conditions via an automated Microsoft Excel spreadsheet developed by ASU-PRL. The 

curves were translated using the temperature coefficients obtained from the baseline 

measurements. This data was used for further analysis. 

 

            

           

 

 

 

 

 

 

 

 

 

 

 

Figure 15 ASU-PTL template for I-V curves translation 
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3.2.7 I-R imaging for identifying Hotspots 

This is a thermal diagnostic test that was conducted using a Fluke TI-55 IR camera. The 

purpose of this test was to determine the module’s ability to withstand localized heating. 

This localized heating could occur when a cell is in a string of cells connected in series 

and is negatively biased. In this condition, the cell can dissipate power in the form of heat 

instead of producing electrical power. This happens when the current produced by a 

given cell is lower than the string current. Cracked, shaded cells, broken interconnects, 

mismatched cells and/or failed bypass diodes also can cause hotspots. A drop in 

performance may be seen due to all the above mentioned reasons. If the cells in the 

module showed a temperature difference of more than 10-15°C when compared to rest of 

the cells, they were classified as hot spots. The steel cross beams supporting the modules 

did not have any effect on heating the modules.  However a general observation was 

made on how all modules had hotter junction boxes.  

 

 

 

 

 

 

       

 

 

Figure 16 Fluke TI-55 IR camera 
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3.2.8 Visual Inspection  

Visual inspections are performed to visually verify defects in the module. The defects are 

recorded on a template sheet along with clear photographs. The template sheets cover all 

module defects appearing on areas such as the back sheet, frame ground points, metal 

contacts on the cell, glass, seals etc. The inspection starts from the back sheet to the front 

end or vice versa. Defects that are found in this stage are crucial as they can be related to 

causes in drops of performance. These defects could be caused by prolonged exposure to 

extreme conditions, improper installation and handling, or manufacturer’s defects. Each 

module was inspected for defects such as encapsulant browning, encapsulant 

delamination, broken glass; interconnect breakages etc, using ASU-PRL’s check list of 

visual defects shown in Figure 17. 

 

 

      

 

 

 

 

 

 

 

 

 

Figure 17 ASU-PRL visual inspection checklist 
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Figure 18  Classification of Defects into Failures and Reliability Issues 
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3.2.9 Diode and line continuity check 

A diode checker was used to check for failed bypass diodes. This equipment consists of a 

transmitter and a receiver. The transmitter was connected to the common positive and 

negative terminals at the combiner box. The internal layout of the combiner box provided 

easy connection points since 12- strings could be checked at once by connecting the 

transmitter at one combiner box. The receiver was then held perpendicular to the bus 

bars; this can be done either through the front glass surface or the back sheet of the 

module. The receiver beeps and blinks a series of lights to show there is continuity in the 

bus bars and the string interconnects. The number of led lights blinking signified the 

strength of the signal. A flow chart illustrated below shows how the beeping noise and no 

beeping noise relates to the circuit continuity or occurrence of failed bypass diodes. 

 

 

 

 

 

 

 

 

Transmitter 

Receiver 

Figure 19 Transmitter and Receiver; diode checker 
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The test began when the modules were not shaded and the receiver was placed on bus 

bars of each string associated with diode. If no beeps were heard from the receiver, there 

were two possibilities to consider. 1) Either the module has broken interconnects or 2) its 

bypass diode has failed in the short circuit mode. Broken interconnects can be visually 

verified if the receiver does not beep over the busbar. If no broken interconnects are 

observed then a bypass diode failure can be suspected. This can be cross verified with the 

corresponding modules I-V curve or I-R image of the diode. If the receiver beeped on all 

bus bars, then half of the string was shaded and the receiver was placed on the bus bars of 

the shaded string underneath the module. If the receiver beeps in that case, it indicates 

that the diode is functional. If the receiver does not blink, then the diode has failed in 

open circuit condition. Only 2 failed bypass diodes (one in each system) were recorded at 

the Site 4A and 4B. 
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No Beep

No Beep/
Blink

Broken 
Interconnect

Bypass diode 
failed in short 

circuit

Beep/Blink

No shade 

Shade

Beep/Blink

Diode 
functional

By pass diode 
failed in open 

circuit

Cross 
check with 
IR scan and 

I-V curve

 

Figure 20 Flowchart for detection of failed diodes and broken interconnects using diode 

checker 
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3.2.10 PID in Hot- dry climatic conditions 

The modules from the best, median, and worst strings were arranged based on their 

position in the string and the overall percentage power degradation of each module in the 

string was plotted in a scatter plot. A trend line was drawn for each of the plots to reveal a 

constant trend in the degradation of modules with respect to their position (proximity to 

ground) in the string. 

String connection at systems -1 and -2 were analyzed and due to the absence gradual 

degradation based on the position of the modules along the trend line, it was concluded 

that there was no PID. 

3.2.11 Series resistance (Rs)  

The series resistance of modules was calculated by first normalizing the measured I-V 

curve to STC, after which the slope of the last ten data points (close to Voc) was 

calculated to obtain the Rs value. 

3.3 Data Analysis 

The best, median, and worst strings based on power were selected.  From these selected 

strings the best, median, and worst modules were then selected. The degradation %/year 

for Isc, Imax, Voc, Vmax, FF and Pmax were calculated. The parameters for these 

selected strings and modules were analyzed using the box plot feature in Minitab. The 

primary parameter responsible for the cause of power degradation is identified from the 

graph by choosing the median of the 5 parameters falling close to the median of the Pmax 

degradation (%/year). This is correlated with the defects seen in the visual inspection in 

order to identify the failure mode. 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

This chapter explains how various I-V parameters of the evaluated modules affected their 

degradation in Pmax. The modules from the best, median, and worst strings were 

separated into best, median, and worst modules. These modules were analyzed for 

durability and reliability issues. A detailed explanation of their degradation analysis, 

visual inspection results, potential induced degradation, along with soiling losses and 

wind effect analysis are also discussed in this chapter.  

4.1 Site 4A Performance Degradation Analysis 

The performance degradation calculations for these two systems were done by using the 

manufacturer’s nameplate rating. The nameplate data was compared to the data of an 

independent source’s data base for confirmation and it was later realized that the 

manufacturer’s nameplate rating was overrated by approximately 5%. Since earlier 

studies utilized manufacturer’s nameplate information, for the sake of consistency it was 

decided that this study should also use the manufacturer’s nameplate rating.   

As explained in an earlier chapter the best, median, and the worst strings were analyzed 

extensively to diagnose the durability issues. Usually the worst performing modules will 

bring out the reliability issues and the best performing modules will bring out the 

durability issues.  
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Figure 22  Plot for various I-V parameters degradation (%/Year) for the best string- 

best modules 
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The plots from Figure 22 and Figure 24 show that Imax and Isc have contributed to the 

overall degradation in Pmax. The median of the Pmax degradation rate is close to the 

median of Imax and Isc. This is due to significant levels of encapsulant browning which 

causes optical losses. A slight increase in series resistance is indicated by a drop in 

Vmax.The histogram in Figure 23 shows a normal distribution for the series resistance 

values (Rs) for the 30 best modules in Site 4A and 2. These modules experienced drop in 

power mainly due to optical losses, their low series resistance did not play a substantial 

role. 

 

 

 

 

 

 

 

 

 

 

 

Fresh Modules Best 30 Modules

Mean Rs 0.63 0.93

Median Rs 0.63 0.93

% increase N/A 30.30%

Table 4 Series Resistance comparison with fresh modules. 
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Figure 23 Histogram on Rs values for 30 best modules 
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Figure 25 Summary plots for various I-V parameter degradation (%/year) for best 

modules in Best, Median and worst strings in Site 4A.  

Figure 24 Plot for various I-V parameters degradation (%/Year) for the Median 

string- best modules. 
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The plot in figure 25 shows a summary of the best modules performance degradation rate 

for various parameters in the best, median, and worst strings. It can be seen once again 

that the Imax and Isc and are observed to be the major contributors for Pmax degradation 

in these strings due to a combined effect of encapsulant browning and an increase of 

more than 30 % in series resistance shown by the degradation in Vmax  

A steep drop in Imax and Isc are the parameters responsible for the degradation of Pmax, 

due to encapsulant browning. Drop in Vmax and FF is attributed to the series resistance 

increase.  

 

 

 

 

 

 

 

 

 

 

 

Imax, Isc are the major contributors for Pmax degradation, this is because these modules 

have encapsulant browning indicated by a higher drop in Imax and Isc.  

PmaxFFVmaxImaxVocIsc

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

D
e

g
re

d
a

ti
o

n
 R

a
te

 (
 %

/Y
e

a
r 

)

 Model-BRO 1 

Field Age = 16 Years

Worst String - Worst Modules ( 2 Strings; 6 Modules )

Figure 26 Plot for various I-V parameter degradation (%/year) for worst string- 

worst modules. 
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Figure 27 Summary plots for various I-V parameter degradation (%/year) for worst 

modules in Best, Median and worst strings. 

 

The plot in figure 27 shows a summary of the worst performing modules degradation rate 

from the best, median, and the worst strings. A drop in Imax and Isc along with FF and 

Vmax signifies encapsulant browning coupled with high series resistance. 

 

 

 

 

 

 

B = Best string; M = Median string; W = Worst string 
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Table 5 I-V Parameter order of Influence on Pmax degradation 

  Best Modules  Median Modules  Worst Modules 

2 BEST 

STRINGS 

Imax> Isc>FF>Vmax 

( Low Series resistance 

and high transmittance 

Losses due to 

encapsulant browning) 

Imax>Isc>FF>>Vmax Imax>Isc>FF>>Vmax 

2 

MEDIAN 

STRINGS 

Imax>Isc>FF>>Vmax Imax>Isc>FF>>Vmax Imax>Isc>FF>>Vmax 

2 

WORST 

STRINGS 

Imax>Isc>FF>>Vmax Imax>Isc>FF>>Vmax 

Imax> Isc>FF>Vmax 

(Encapsulant browning, 

high series resistance. 

 

The table above summarizes results on the analysis of the modules from the best, median 

and worst strings of Site 4A.  It can be seen that the Imax is affected first followed by the 

Isc and in the best modules in the best string, this is because of the effect of encapsulant 

browning.The worst modules have high series resistance (due to solder bond fatigue).The 

median modules in three different strings have the same order of influence of parameters 

on Pmax degradation. 

Table 6 Summary- of degradation and failure Modes and their effects on performance 

parameters for Model BRO-1. 

 

Module Quality Primary 

Parameter 

Affected  

Primary Degradation/Failure 

Mode 

Best Modules Imax, Isc 
Optical losses due to encapsulant 

browning. 

Worst Modules 
Imax, Isc , FF 

Vmax>>Voc 

Encapsulant browning and high 

series resistance due to solder 

bond fatigue.  
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4.2 Site 4B Performance Degradation Analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29 Plot for various I-V parameter degradation (%/year) for best string- best 

modules. 
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Figure 30 Plot for various I-V para meter degradation (%/year) for median string- best 

modules 

The effect of transmittace issues can be seen due to drop in Imax and Isc in the best and 

median modules as shown in Figure 29 and Figure 30. 

 

 

 

 

 

 

 

Figure 31 Plot for various I-V parameter degradation (%/year) for worst string- worst 

modules 

The drop in Imax and Isc indicates high levels of encapsulant browning the increase in 

Imax and FF indicates increased level of series resistance. 
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Table 7 I-V Parameter order of Influence on Pmax degradation 

The table above summarizes results on the analysis of the modules from the best, median 

and worst strings of Site 4B.  It can be seen that the Pmax is affected by the Imax 

followed by the Isc and in the best modules in the best string, this is because of the effect 

of encapsulant browning .The worst modules have high series resistance (due to solder 

bond fatigue) and optical losses due to browning.The median modules in three different 

strings have the same order of influence of parameters on Pmax degradation. 

Table 8 Summary of degradation and failure Modes and their effects on performance 

parameters for Model BRO 2. 

Module Quality Primary 

Parameter 

Affected  

Primary Degradation/Failure 

Mode 

Best Modules Imax, Isc 
Transmittance losses due to high 

discoloration, low series resistance 

Worst Modules Imax, Isc ,FF 
Transmittance losses along with 

high series resistance. 

 

 

 

  Best Modules  Median Modules  Worst Modules 

2 BEST 

STRINGS 

Imax>Isc>FF 

(Encapsulant 

browning  and low 

series resistance 

values) 

Imax>Isc>FF>Vmax Imax>Isc>FF>>Vmax 

2 

MEDIAN 

STRINGS 

Imax>Isc>FF>Vmax Imax>Isc>FF>Vmax Imax>Isc>FF>Vmax 

2 WORST 

STRINGS 
Imax>Isc>FF>Vmax Imax>Isc>FF>Vmax 

Imax>Isc>FF>Vmax 

High optical losses and  

series resistance  
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4.3 Degradation rates 

The histogram shown in Figure 32 indicates the mean and median degradation rate of 

modules in Site 4A as 1.078%/year and 1.1%/year respectively. The degradation values 

used for these plots were computed after considering a soiling loss of 11% based on 

Figure 52 .The red dotted line indicates the 20/20 warranty line which is inserted at 

1%/year; modules /strings on the left of this line will meet warranty requirements 

whereas modules/strings on the right of the line will not and are entitled for replacement.  
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Figure 32 Histogram of Power Degradation (%/year) for all BRO 1 modules  

 

 

 

 

 

 

 

 

 

 

Figure 33 Histogram of Power Degradation (%/year) for 10 Best modules for BRO 1 

 

1.351.201.050.900.750.60

40

30

20

10

0

Degradation Of Power (%/Year)

F
re

q
u

e
n

c
y

Mean 1.078

StDev 0.1657

N 244

Normal 

Histogram of Degradation of Power (%/Year) For BRO-1 Modules

Excluding Soiling Losses

Median = 1.1

Do not 

meet 

Meet 

2
0
/2

0
 W

a
rr

a
n

ty
 



43 

 

The histogram shown in Figure 33 indicates a mean and median value of 0.89%/year and 

0.9%/year respectively, for the 10 best modules selected from the best string. This 

indicates that all the best modules are still producing enough power to meet the warranty 

requirements. This module’s Pmax is primarily affected by encapsulant browning and 

very low series resistance; same is the case for the 10 best modules in Site 4B. 

 

Since, Pmax, FF, Voc and Isc are related through the equation Pmax= Voc*FF*Isc, drop 

in any one of these parameters can cause a drop in power. Therefore, in the case of the 

best modules the encapsulant browning causes an optical loss which affects the Isc 

causing a drop in power. If the Voc drop is considered zero, and the drop in Isc is equal 

to the drop in Imax   60% of the contribution to the drop is seen due to encapsulant 

browning and the remaining percentage can be calculated to obtain the contribution made 

by increase in series resistance. 
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Figure 35  Histogram of Power Degradation (%/year) for all strings with BRO 1 modules.  

 

The histogram in Figure 35 shows a mean degradation rate of 1.19%/year and a median 

degradation rate of 1.2%/year. A slightly higher degradation rate of strings as compared 

to the modules may be attributed to soiling losses, intermodule cable losses, and 

mismatch of modules within the string. 
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Figure 36 Histogram of Power Degradation (%/year) for all BRO 2 modules. 

The plot shown in Figure 36 indicates a mean degradation rate of 1.08%/year and a 

median degradation rate of 1.1%/year. 
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4.4 Visual Inspection 

 

 

Figure 40 Bar graph on defects for all BRO 1 modules 

4.4.1 Site 4A 

The bar graph shown above in Figure 40 accounts for the defects recorded for Site 4A, all 

756 modules have back sheet substrate warping between the J-box and the edge of the 

module and around the edges. This trend is typically seen in glass-polymer frameless 

modules because of the absence of a frame and thus a sealant between the back skin and 

the frame. Encapsulant browning covered 30-40% of every cell at the center on all 

modules. 6 modules had moderate to severe back sheet peel. Only 1 of 2 bypass diodes 

for a single module failed in the entire system.  
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The pie chart in figure 42 indicates that 74% of the modules in Site 4A have a Pmax 

degradation rate of above 1%/year, this drop categorizes them under modules with 

reliability failures because they fail to meet the warranty terms. A vast percentage of 

26% 
(<1%dr/year 

74%  
(>1%dr/year 

Reliability Failure, Durability Loss  
(252/1512 modules) BRO 1 

Durability Loss

Reliability Failure

Figure 42 Reliability failure and Durability Loss site-4A 

Reliability 
Failure 75.6% 
(>1%dr/year) 

 

Durability 
Loss 23.8% 

(<1%dr/year) 
 

Safety Failure 
0.5% 

Safety Failure, Reliability Failure, Durability Loss  
(1512 modules) BRO 1 

Durability Loss

Reliability Failure

Safety Failure

Figure 41 Durability loss, safety and reliability failure percentage for all 

modules in Site- 4A 
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modules are in yellow region of the pie chart because of a combined effect of high series 

resistance due to solder bond fatigue and optical losses due to encapsulant browning. The 

0.5% safety failure is due to one failed bypass diode, one broken module and 6 modules 

with back sheet delamination. The 26% of the total modules in the red region constitute 

durability loss because of only encapsulant browning and very low series resistance.  
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4.4.2 Site 4B 

 

Figure 43 Bar graph on defects for all modules Site-4B. 

The bar graph shown in  

Figure 43 depicts results similar to that of Site 4A; except for the modules with hot spots, 

back sheet delamination and failure of only 1 of 2 bypass diodes for a single module in 

the entire system. The hotspots and diode failure account for less than 1% of the defects 

seen in Site 4B. 

The pie charts in Figure 44 and Figure 45  indicate a durability loss and reliability failure 

percentage similar to that of modules in site 4A, but a higher safety failure percentage of 

1.7 because of 5 modules with back sheet delamination and one bypass diode failure. 
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Figure 45 Reliability failure and Durability Loss site-4B 

Figure 44 Durability loss, safety and reliability failure percentage for all 

modules in Site 4B 
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The modules shown in Figure 47 have hot spots, but they were not severe enough to 

cause a burn through the back sheet, hence they were not considered as safety failures. 

The cell hot spots on two different modules the voltage drop caused in the diodes because 

of these hotspots is not adequate enough to trigger the bypass diode. The temperature 

differences of the cells with hotspots were between 7-10
o
 C when compared to the 

surrounding cells. 

 

 

 

 

Figure 47 Hot Spots 
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Table 9 Back sheet Delamination typically seen on the edges of frameless models. 

 

The back sheet delamination shown in the images above have been considered as 

electrical safety hazards because the exposed surfaces can shock a person in the presence 

of moisture.  
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Figure 48 showing the significant amount of encapsulant browning on the cells that is 

affecting transmissivity of light. Browning occurs when UV rays begin to degrade the 

EVA. Eventually as the EVA degrades, it can form acetic acid that corrodes internal cell 

ribbons. 

 

 

 

Encapsulant 

Browning 

Figure 48 Encapsulant Browning 

Figure 49  Broken Module in Site 4A 
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4.5 Potential Induced Degradation (PID) 

Potential induced (PID) degradation is also responsible for durability issues in modules. 

The effect of voltage (PID) on the degradation of modules connected in a string was 

examined as well. PID occurs because numerous modules are connected in a string to 

achieve higher voltages. Three factors favored the absence of PID at the two evaluated 

plants, they are as follows: 

1. Series connection of PV modules to obtain higher voltage levels in a power plant 

setting; 

2. Positively biased strings throughout the power plant due to centralized negative 

grounding in the inverter. 

 

Figure 50 Absence of PID in Site 4A 
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From Figure 50 and  Figure 51 these plots indicate that the modules haven’t undergone 

any potential induced degradation due to high system voltages. A higher degradation rate 

was observed at the positive end.   

 Figure 51 Absence of PID in Site 4B 

4.6 Soiling Study 
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repeated for all the strings due to a time constraints and the height of the array above the 

ground.  

Figure 52 Soiling loss in site-4B 

Figure 52 shows an average of 11.1% for the soiling losses in the two randomly selected 

strings. The difference between the measured soiled and cleaned Isc (string level) was 

taken in order to accurately obtain the Isc loss %. 

4.7 Wind Effect On Durability 

The modules performance is also dictated by the operating temperature .Wind flow helps 

keep the modules cool. The wind direction in and around Phoenix AZ is typically from 

the south –west. If there is a wind direction effect, the strings in the south-west are 

expected to degrade at lower rate than the north-east array because the circulation of air 

would affect the operating temperature of the arrays. As shown in  Figure 53, there is 
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80 foot clearance on both the east and the west side of the installation, which eliminates 

any effect the wind might have.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 Site-4A &4B Google satellite image (approximate distances) 
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CHAPTER 5 

CONCLUSION 

 

5.1 Degradation Rates  

Average degradation rate is 0.85%/year for the best modules and 1.1%/year for all the 

modules (excluding the safety failed modules). On an average of all the modules, the 

modules do not meet the typical 20/20 warranty expectations. Primary safety failure 

mode is the backsheet delamination though it is small (less than 1.7%). Primary 

degradation mode and reliability failure mode may potentially be attributed to 

encapsulant browning leading to transmittance/current loss and thermo-mechanical solder 

bond fatigue (cell-ribbon and ribbon-ribbon) leading to series resistance increase. 

Average soiling loss of horizontal tilt based modules is 11.1%. About 0.5-1.7% of the 

modules qualify for the safety returns under the typical 20/20 warranty terms, 73-76% of 

the modules qualify for the warranty claims under the typical 20/20 power warranty 

terms and 24-26% of the modules are meeting the typical 20/20 power warranty terms. 

5.2 Encapsulant Browning and Series Resistance 

Encapsulant browning was widely witnessed on almost all modules in both the systems. 

This observation was compared to the results of other reports on the same model and it 

was realized that this is a common problem with the modules from this design. 

Encapsulant browning is the primary contributor for drop in power in the best modules 

due to optical losses and a combination of browning and increase series resistance caused 

due to solder bond fatigue is the cause for power drop in the worst modules. Previous 

studies done on the same model reported a degradation rate of 1.5%/year, this was 
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because the system that was evaluated was on a 1-axis tracker [11] whereas the system 

evaluated in this study experienced lower degradation rate (about 1.1%/year) due to 

lower annual sunlight exposure rate (first 7 years exposure on a 1-axis tracker and the 

next 9 years exposure on a fixed horizontal tilted rack). 

5.3 Potential Induced Degradation (PID) 

PID does not seem to be responsible for the degradation of negative grounded systems in 

the hot-dry desert climatic condition of Gilbert/Mesa, Arizona. 

5.4 Soiling Losses 

Since all modules in both systems were installed on a fixed horizontal mounting 

structure, the soiling loss was found to be high (about 11%).  

5.5 Wind Effect 

Since both sites 4A and 4B were open in all directions with no wind obstruction a 

minimum distance of 80 feet on the north and the south side, no effect of wind direction 

was seen on the strings. However, this needs to be further verified with additional studies 

through onsite simultaneous module temperature monitoring at various locations of the 

power plant along with the weather parameters. 
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APPENDIX A 

 

Site 4A &4B PLOTS FOR VARIOUS I-V PARAMETERS 
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