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ABSTRACT

Immunosignaturing is a medical test for assessing the health status of a patient by

applying microarrays of random sequence peptides to determine the patient’s immune

fingerprint by associating antibodies from a biological sample to immune responses.

The immunosignature measurements can potentially provide pre-symptomatic diag-

nosis for infectious diseases or detection of biological threats. Currently, traditional

bioinformatics tools, such as data mining classification algorithms, are used to pro-

cess the large amount of peptide microarray data. However, these methods generally

require training data and do not adapt to changing immune conditions or additional

patient information.

This work proposes advanced processing techniques to improve the classification

and identification of single and multiple underlying immune response states embed-

ded in immunosignatures, making it possible to detect both known and previously

unknown diseases or biothreat agents. Novel adaptive learning methodologies for un-

supervised and semi-supervised clustering integrated with immunosignature feature

extraction approaches are proposed. The techniques are based on extracting novel

stochastic features from microarray binding intensities and use Dirichlet process Gaus-

sian mixture models to adaptively cluster the immunosignatures in the feature space.

This learning-while-clustering approach allows continuous discovery of antibody ac-

tivity by adaptively detecting new disease states, with limited a priori disease or

patient information. A beta process factor analysis model to determine underlying

patient immune responses is also proposed to further improve the adaptive clustering

performance by formatting new relationships between patients and antibody activ-

ity. In order to extend the clustering methods for diagnosing multiple states in a

patient, the adaptive hierarchical Dirichlet process is integrated with modified beta

process factor analysis latent feature modeling to identify relationships between pa-
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tients and infectious agents. The use of Bayesian nonparametric adaptive learning

techniques allows for further clustering if additional patient data is received. Sig-

nificant improvements in feature identification and immune response clustering are

demonstrated using samples from patients with different diseases.
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5.2 Dual disease state data Ẑ (LOF and transposed) and ground truth Key 81

5.3 The first 20 significant eigenvalues from each multi-disease dataset. . . . 85

5.4 BPFA results for MDD1 in Z-PREDICTn . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.5 BPFA results for MDD2 in Z-PREDICTn . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 MDD1 Z-PREDICTn results using all equations of (5.1) . . . . . . . . . . . . . . 88

5.7 MDD1 Z-PREDICTn results not using (5.1c) and (d) . . . . . . . . . . . . . . . . . 90

5.12 MDD1 results for ZBPREDICTn. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.8 MDD2 Z-PREDICTn results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9 MDD2 Z-PREDICTn results not using (5.1c) and (d) . . . . . . . . . . . . . . . . . 92

5.10 ZBPREDICTn results for MDD1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.11 BPFA results for MDD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.13 MDD2 results for ZB-PREDICTn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1 H-PREDICT results for MDD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 H-PREDICT results for MDD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 HB-PREDICT results for MDD1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 HB-PREDICT results for MDD2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 Naive Bayes classification of single disease datasets. . . . . . . . . . . . . . . . . . . 113

7.2 B-PREDICT results for Dataset 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 ZB-PREDICT binary matrix results for various parameters . . . . . . . . . . . 118

7.4 C results comparisons for various training sets . . . . . . . . . . . . . . . . . . . . . . . 121

xii



Chapter 1

INTRODUCTION

The ability to detect disease pathogens by the use of peptide microarrays [1–3], which

may be used to detect a variety of biological molecules [4–6], has led to the develop-

ment of immunosignaturing. Immunosignaturing is a technique that has been devised

to create a snapshot or fingerprint of patient pathology at a given point in time [7–14].

This is done by using microarrays preset with randomly generated peptides as a mea-

surement device for patient samples with various antibodies. Antibodies will prefer-

entially bind to peptide sequences based on the sequence order and three-dimensional

shape via molecular associations specified by traditional organic chemistry interac-

tions [15]. For peptides of sufficient length, multiple antibodies are able to bind to

a particular peptide chain, as there are up to seven different epitope regions present

[7]. As greater number of peptide chains, and hence a greater number of microar-

ray spots, are included, the higher the resolution into a variety of diseases, and the

more difficult data analysis becomes especially between multiple measurements. The

focus of this work is to develop adaptive methodologies for immunosignaturing that

are capable of discovering relationships between patient disease states and to group

patients with similar disease states.

1.1 Motivation

One important aspect of immunosignaturing is the construction and interpre-

tation of the microarray data. Randomly generated peptide sequences, in this case

with a length of 17 amino acids and three additional linker peptides, are plated onto

a glass slide capable of holding thousands of such plated samples [7, 9]. Each plated
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spot contains only one peptide type whose amino acid sequence and location on the

plate are known [10]. When a patient sample is applied, molecules from the sample

will preferentially bind to the plated peptides, producing a signature unique to the

patient at a particulate point in time [11, 12]. An example of the microarray plate,

printer, and slide reader is shown in Figure 1.1. This plate construction differs from

traditional microarray work where pathology-specific, known, non-random sequences

are plated instead of randomly generated [16]. The traditional methodology provides

insight into a specific pathogen or gene rather than detecting a variety of pathological

ailments [9]. While immunosignaturing is considered highly sensitive and inexpensive

[17], some critical parameters of the immunosignaturing array include the number of

amino acids included in the random chain, the number of overall sequences included

in the microarray slide, and the time between pathogen exposure and microarray mea-

surement [18]. As demonstrated in [9], immunosignaturing microarrays are capable

of distinguishing disease presence at a variety of time points after exposure.

As more spots with unique sequences are added, data analysis becomes both

challenging and repetitive. Additionally, there is a desire to increasingly add pa-

tient immunosignatures to account for population based variation [19, 20]. Statistical

tools such as the t-test and analysis of variance (ANOVA) are often used for mi-

croarray analysis [21–23], and have been applied to immunosignaturing as well [24].

It should be noted that any down selection that occurs from these statistical tests

would need to be fully repeated every time a new patient immunosignature microar-

ray data set is received. Once peptides of interest are identified, further analysis or

disease classification can be performed to investigate the binding regions [20, 25]. A

variety of clustering and classification schemes were applied to different microarray

data in order to aid in data analysis [26–29]. These methods were also used for im-

munosignaturing analysis [7, 10, 24], however, they required training data and are
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(a) (b)

(c)

Figure 1.1: Peptide microarray processing and resulting data: (a) nanoprinter; (b)
microarray reader; and (c) example slide and spots.

not adaptive. This is complicated further by the fact that each peptide can bind to

multiple antibodies and each antibody can bind multiple peptides [30]. This does not

easily allow for the addition of further microarray data for each patient, or for addi-

tional patients to be analyzed without re-implementing the algorithm. Additionally,

these methods do not address the concern of considering fixed versus random data

effects [31]. Supervised learning methods such as support vector machines (SVMs)

were used for improved performance over unsupervised clustering methods [32]. The

SVMs make use of distance measures in higher dimensional feature spaces for effec-
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tive separation and classification. However, they require adequate training datasets,

which may not always be available (e.g., in the presence of a new biothreat). Some

model development for traditional microarray work was investigated to improve over

SVM techniques [33], though a training set is still required. Furthermore, complicat-

ing effects for peptide arrays (such as multiple binding effects and variation between

arrays) are examined in [34], which uses many of the techniques discussed thus far but

applies them to screen out data not deemed useful. Of further interest is the investi-

gation of underlying features within a factor model, as investigated by [35], and using

principal component analysis (PCA) [9, 10]. However, the PCA method assumes that

information content may be maximized across the same orthogonal bases which may

not always be true. Further improvements to the PCA technique was performed us-

ing exploratory factor analysis [24]. Other latent factor models were investigated in

[35] where gene interdependence was examined but individual known sequences were

targeted. Additionally, factor modeling via beta process feature analysis (BPFA) was

examined by [36] for human virus challenge studies paired with patient symptoms,

but this only focused on determining the total number of factors and contributing

genes in each virus challenge.

The presented classification methods and latent factor models are not adap-

tive to changes. Adaptive in this case can mean several things, such as extensible

to additional incoming microarray data, model parameter adaptability on-the-fly for

newly received data, and updated classification based on model factors. An adaptive

clustering scheme based on the Chinese restaurant process (CRP) was presented in

[37, 38] to cluster gene microarray data for gene relationships. A binary clustering

model was presented in [39] that is based on latent feature analysis, but it assumes

that the features act as latent individual clusters, which may be too restrictive. It is

important that the immunosignaturing data model relies on flexible feature relation-
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ships that may not be immediately obvious or known to the user and may require

user information. This approach is useful when those performing the analysis are

not familiar with immunosignaturing, the patient population, or model fitting and

classification algorithms.

Of further interest is the extensibility of the methods to multiple underlying

states, including disease pathologies, for complex classification in disease diagnosis or

for research cases that desire to show disease relationships between multiple diseases.

It is restrictive to assume patients are afflicted with a single condition at any given

time [40], especially since the presence of multiple diseases can require additional

care considerations [41]. Furthermore, disease relationships may be of interest as

diseases may be related leading to similar treatments [42]. Single disease classifica-

tion for immunosignaturing has been investigated for a variety of diseases including

Alzheimer’s [10], influenza [9, 11], glioblastoma [20], and pancreatic disease (includ-

ing type 2 diabetes, pancreatic cancer, pancreatitis, and pre-stage pancreatic cancer)

[8]. No direct extension to multiple states is considered, and the adaptive methods

in [43, 44] are not directly applicable as they assume single disease states. Addition-

ally, these adaptive methods do not provide diagnosis information after classification,

though it would be easy to extend these to classification by the incorporation of a few

known immunosignatures for each known disease. Some similar adaptive methods for

multi-state membership have been discussed in [45], but this method uses the Indian

buffet process ”IBP” to model each different category and relates each separate fea-

ture to each view. Building on the immunosignaturing results discussed in [43, 44],

this would necessitate multiple BPFA runs to generate all the different categories,

which is computationally intensive and redundant. Another method is discussed in

[46], using the IBP to create multiple cluster membership relationships. However,

this approach returns to the assumption that a single feature is indicative of a single
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state and that the clustering feature space is not the same as the latent feature space,

which previous work has shown may not be the best approach for immunosignaturing.

Improved classification was achieved using latent feature spaces for immunosignatur-

ing [44]. As such, there is a desire for an adaptive method that provides diagnosis or

disease relationship information that is capable of multi-disease analysis.

1.2 Thesis Contributions

There are two major contributions in this thesis work that propose unsu-

pervised or semi-supervised adaptive learning clustering algorithms for immune re-

sponses. The first contribution concentrates on patients with immunosignatures re-

sulting from a single state. The second contribution is on patients with multiple

underlying states. Note that we published some of this work in [43, 44, 47, 48].

1.2.1 Single State Clustering

The first part of this work focuses on obtaining immunosignature feature mod-

els for immunosignaturing data analysis. These models mathematically represent re-

lationships between patients and various single underlying states (i.e. diseases) with

limited a priori patient or disease information. Using these features, we propose

methods for adaptive clustering that allow for new incoming patient data, without

requiring us to re-process previous patient or supplemental training data. The main

contributions for the first part of this work are as follows:

• We propose two different approaches for feature extraction that improve immune

state separation. The first approach obtains discriminatory immunosignature

features by modeling the distribution of normalized binding intensities using the

beta probability density function. This allows for multiple distribution shapes

whose parameters can be optimally estimated to succinctly encode information
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about the distribution of the peptide binding intensities. This is useful when

states may have similar antibody occurrences but in different quantities. The

second approach is an extension of PCA to identify features that encode highly

variable data. The extension to a higher truncation value than previous meth-

ods accounts for greater than 90% of the immunosignature data, and it is useful

when different significant antibodies are present but with similar overall anti-

body distributions. These two methods are used to determine visible spaces as

well as for overall dimensionality reduction techniques.

• We develop an algorithm to extract hidden features from the visible features.

Combining both the visible and latent features, we propose two clustering algo-

rithms: a heuristic algorithm based on the output from the beta process factor

analysis (BPFA) algorithm, and an adaptive Dirichlet process Gaussian mix-

ture modeling (DP-GMM) algorithm. Both clustering methods are based on

the novel interpretation of a modified BPFA binary feature matrix to allow for

combinations of features to describe single states. This modification allows for

the novel introduction of reward or penalty criteria for various clustering condi-

tions that are application specific. The user can then account for a wide range

of cases, including cases with a low tolerance for error and cases that are more

tolerant to allow for feature relationship discovery.

• We develop methodologies for unsupervised identification of disease features

linked directly to unique patient groups, using only the patient immunosignature

median intensity values and requiring no training data or additional information.

This is a novel application in the immunosignaturing space.

These main contributions are based on several proposed methods. The PRE-

DICT (PCA REsolution with DPGMM for Immunosignature Classification Testing)
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B-PREDICT (Beta PDF REsolution with DPGMM for Immunosignature Classifica-

tion Testing) methods use DP-GMMs to identify groupings given PCA and beta dis-

tribution parameters, respectively [43, 47]. These methods assume that each patient

belongs to only one group. By using the blocked Gibbs Markov chain Monte Carlo

(MCMC) algorithm, Gaussian distributions are constructed for each group. This can

lead to misclassification and disease state misdiagnosis. The DP-GMM based meth-

ods allow adaptive identification of groupings between immunosignatures using only

the microarray median intensity data and further allows clustering of novel groupings

without the need for a training data set. While these methods show promising results,

for some cases the features are not always clearly associated with a single group.

In the Z-PREDICT (Z matrix from PCA REsolution and Discovery for Im-

munosignature Classification Testing), Φ-PREDICT (Φ PCA REsolution and Discov-

ery for Immunosignature Classification Testing) and ZB-PREDICT (Z matrix from

Beta PDF REsolution and Discovery for Immunosignature Classification Testing),

beta process factor analysis (BPFA) is used to identify latent features within the

data set and with the possibility of multiple feature grouping for each disease state

[44]. Note that this happens after the visible features are identified and encoded in

the data. In fact, this method produces a ”feature fingerprint” for each of the states

which can then be used for clustering and ultimately disease identification. The BPFA

is also able to highlight the relationship between the peptide sequences and latent fea-

ture groups, though further investigation of this phenomena is outside the scope of

this work. This provides a method for identifying spots which may be related to par-

ticular diseases without re-running the microarray for each disease state separately.

Again, by using a blocked Gibbs sampler, the posterior distribution parameters that

mathematically describe these relationships can be estimated. These methods are

further extended to include DP-GMM clustering in BIO-PREDICT (BPFA Including
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prOcessing with PCA REsolution and DP-GMM for Immunosignature Classification

Testing) and BIOB-PREDICT (BPFA Including prOcessing with Beta PDF REs-

olution with DP-GMM for Immunosignature Classification Testing), leading to an

adaptive clustering method that is paired with the adaptive model determination of

the latent features.

The ability to adaptively determine underlying features for immunosignatures

with the possibility of recognizing novel features over time is new to immunosigna-

turing. In both the DP-GMM and BPFA, new patient data may be considered as it

is received without changing the clustering of previously analyzed patients. While we

achieved good performance, BPFA clustering alone becomes difficult for immunosig-

naturing due to the multiple feature combinations and multiple patients. As such,

adaptive clustering is shown to perform better when DP-GMM is combined with

BPFA.

1.2.2 Multiple State Clustering

The contributions for the first part of this work focuses on single underlying

states in patients, which may be too restrictive in practice. As a patient may have

multiple disease states, each data entry needs to be classified into multiple groups.

In addition to multiple diseases per patient, it is also possible that a single disease

has multiple stages or state relationships need to be explored, such as phylogenic tree

creation for multiple disease states. As such, additional contributions are provided

for multiple underlying states. Although these contributions are used for clustering

immunosignaturing data with multiple underlying diseases, our approach of combin-

ing adaptive methodologies is novel and our proposed methods are flexible enough for

adaptation to a variety of problems, even outside of the medical immunosignaturing

area. The main contributions for this work are as follows:
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• We propose a novel method for multi-state analysis and clustering that builds

upon the corresponding single state methods, and we develop unique comparison

criteria. The multi-state analysis is based upon the presumption that feature

combinations are indicative of single disease states, but we also allow integration

of the feature that combinations to indicate multiple states. Furthermore, the

new combination of visible feature spaces and latent feature spaces allows us

to capture cases of initial data with high variability and data with different

distributions.

• We develop a flexible method based on the hierarchical Dirichlet process (HDP)

that combines the visible features (from PCA or beta distribution fitting) and

latent features (from BPFA) and then compares the overall features using a

modified binary feature matrix comparison to enable adaptive clustering across

multiple data groups. Direct application of the HDP to the multi-state features

without the modified feature matrix does not yield good performance unless

additional data processing steps are performed to extract the clustering results.

This novel, enabling step also allows for the introduction of penalty or reward

conditions for various comparisons that are application specific. This allows

for flexibility across a variety of conditions where either strict user conditions

create low tolerance for error, or where some variation is allowed for the sake of

discovery. Additionally, this approach allows the novel determination of present

states without the need for state significance thresholding specified by the user

as well as reduced subjective user interaction.

• We develop the multi-state analysis for immunosignaturing data and key dis-

ease state data with flexible parameters to allow subsequent refinement and

expansion of the algorithms linked to possible biological phenomena for better
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understanding. This intentional design allows the algorithms to be refined in a

meaningful way as additional biological information is generated.

These main contributions are based on several proposed methods. The first

method is an extension of the Z-PREDICT and ZB-PREDICT methods to allow

for the comparison of n > 1 state possibilities. These methods are referred to as

Z-PREDICTn (Z-matrix from Beta PDF REsolution and Discovery for Immunosig-

nature Classification Testing up to n-states) and ZB-PREDICTn (Z-matrix from Beta

PDF REolution and Discovery for Immunosignature Classification Testing up to n-

states). While not adaptive, these methods allow for classification assuming that a

number of underlying states is known [47]. In this method, the BPFA is provided

with key state data and dataset information, and an average profile for each single

state is constructed. The unknown state data is then compared to this average key

data to achieve a ranking profile for each data entry and each state.

In order to eliminate the need to know underlying state information, we de-

velop the H-PREDICT (HDP of PCA REsolution and Discovery for Immunosignature

Classification Testing) and HB-PREDICT (HDP of Beta PDF REsolution and Dis-

covery for Immunosignature Classification Testing) methods. In these cases, the state

ranking profiles for each unknown data entry is classified using the HDP, allowing for

common clustering criteria over each distinct ranking profile. It should be noted that

without the ranking comparison described in Z-PREDICTn and ZB-PREDICTn, the

direct application of the HDP or even the DP-GMM is not possible. This is because

each immunosignature entry would still only be assigned to a single cluster.

1.3 Immunosignaturing Descriptions

A variety of datasets are used throughout this work to demonstrate the various

algorithms. In order to show functionality for single state algorithms, a state is
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defined as a single disease and each data entry is the corresponding information, i.e.

immunosignature, for each patient. In the case of multi-state algorithms, a state is still

considered an underlying disease, but each patient (i.e. data entry) is assumed to have

more than one underlying disease. Additionally, different methods require different

definitions of classification success. Immunosignaturing data from the Arizona State

University Biodesign Institute [14] was used to demonstrate the performance of each

method. Median peptide intensity was used for all analysis. It should be noted that

the disease selection is irrelevant for these data set constructions. Any combination

of diseases could have been selected. As such, any deviations from these datasets is

discussed in the corresponding results sections. Additionally, while there are roughly

10,000 unique sequences present in the array, they are often replicated at least once.

As such, where applicable, datasets are reduced first by averaging together the median

intensity values of repeated sequences.

1.3.1 Single Disease Dataset Descriptions

Microarray data sets for each patient derived from the CIM10K microarray

template [9] were used. All methods described in this section were performed on

several distinct datasets. Dataset 1 consists of 30 individuals with one of six disease

states: breast cancer, normal, glioma, cocci, sarcoma, and asthma post. The patient

order is according to the disease order just listed. No species or time point infor-

mation is specified for these individuals. These are sometimes identified as C1-C6

respectively on corresponding Dataset 1 tables. Dataset 2 consists of 25 individuals

with one of five disease states: Alzheimer’s, asthma, influenza, Q-fever, and normal.

These are sometimes identified as C1-C5 respectively on the corresponding Dataset

2 tables. Again, patients are placed in the dataset per the disease order previously

indicated. No time point information is specified for these individuals. Individuals
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in the Alzheimer’s, influenza and normal are from human samples, Q-fever individ-

uals are mouse sample, and asthma samples are unspecified. No species information

is used in the analysis and all immunosignatures are analyzed in the same manner.

Median intensity values from the immunosignaturing microarrays are used, and all

control sequences and machine mis-reads are removed from the datasets before anal-

ysis. Data types were chosen to represent a variety of disease states and even species

where applicable, in order to show that no prior information is required other than

the median intensity data to separate patient populations.

1.4 Report Organization

The dissertation is organized as follows. Chapter 2 provides background on the

DP-GMM and the blocked Gibbs sampler, develops the PREDICT and B-PREDICT

clustering algorithms and provides simulations of the algorithm performance. Chapter

3 presents theBPFA using the blocked Gibbs sampler and presents the Z-PREDICT

and ZB-PREDICT algorithms with corresponding clustering results. The DP-GMM

and BPFA are combined to form the BIO-PREDICT and BIOB-PREDICT clustering

algorithms which are discussed in Chapter 4 with corresponding immunosignature

clustering results. Chapter 5 proposes and demonstrates the performance of multi-

state clustering algorithms Z-PREDICTn and ZB-PREDICTn. The HDP is discussed

in Chapter 6 and the H-PREDICT and HB-PREDICT clustering algorithms and

their performances are presented. The performance of different proposed clustering

algorithms is compared with the performance of a naive Bayes classifier in Chapter

7. Finally, in Chapter 8, conclusions and extensions to future work are discussed.

A graphical depiction of the clustering algorithm progressions is given in Figure 1.2.

The direction of the arrows demonstrates the flow of each algorithm, and the steps

needed by the algorithm are given by the boxes the arrow line crosses. For example,
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BIO-PREDICT is obtained using PCA features, BPFA features, BPFA feature matrix

analysis, and DP-GMM. The acronyms used in the dissertation are summarized in

Table 1.1, and the acronyms we used for the proposed clustering algorithm names are

defined in Table 1.2.

Figure 1.2: Summary depicting proposed clustering algorithms.
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Table 1.1: Alphabetical list of acronyms used in this dissertation.

Acronym Description

BP Beta Process

BPF Beta Probability Distribution Function Fit

BPFA Beta Process Factor Analysis

CMA Circular Moving Average

CRP Chinese Restaurant Process

CRF Chinese Restaurant Franchise

DP Dirichlet Process

DP-GMM Dirichlet Process Gaussian Mixture Model

GMM Gaussian Mixture Model

HDP Hierarchical Dirichlet Process

IBP Indian Buffet Process

LOF Left Ordered Form

LOOCV Leave One Out Cross Validation

MCMC Markov Chain Monte Carlo

MDD Multi-Disease Dataset

MLE Maximum Likelihood Estimator

PCA Principle Component Analysis

PDF Probability Distribution Function

RIC Relaxed Immunosignaturing Clustering/Classification

SIC Strict Immunosignaturing Clustering/Classification

SSLB Single State Lower Bound

SSUB Single State Upper Bound
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Table 1.2: Alphabetical list of acronyms for proposed clustering algorithms.

Acronym Description

BIO-PREDICT BPFA Including prOcessing with PCA REsolution and

DP-GMM for Immunosignature Classification Testing

BIOB-PREDICT BPFA Including prOcessing with BetaPDF REsolution with

DP-GMM for Immunosignature Classification Testing

B-PREDICT BetaPDF REsolution with DP-GMM for Immunosignature

Classification Testing

HB-PREDICT HDP of Beta PDF REsolution and Discovery for

Immunosignature Classification Testing

H-PREDICT HDP of PCA REsolution and Discovery for

Immunosignature Classification Testing

PREDICT PCA REsolution with DP-GMM for Immunosignature

Classification Testing

ZB-PREDICT Z-matrix from Beta PDF REsolution and Discovery for

Immunosignature Classification Testing

ZB-PREDICTn Z-matrix from Beta PDF REsolution and Discovery for

Immunosignature Classification Testing up to n-states

Z-PREDICT Z-matrix from PCA REsolution and Discovery for

Immunosignature Classification Testing

Z-PREDICTn Z-matrix from PCA REsolution and Discovery for

Immunosignature Classification Testing up to n-states

Φ-PREDICT Φ PCA REsolution and Discovery for Immunosignature

Classification Testing

16



Chapter 2

FEATURE SELECTION AND ADAPTIVE CLUSTERING USING DIRICHLET

PROCESS GAUSSIAN MIXTURE MODELING

Processing immunosignature data can be computationally intensive due to the large

number of spots on a single array and the fact that there is at least one microarray

sample for each patient of interest. Immunosignature microarrays are designed to

have a large number of random peptide sequences; the CIM10K array has 10,000 se-

quences [9] and the most current immunosignature microarray technology has 330,000

sequences [14]. As a result, we want to reduce processing complexity without unnec-

essarily losing the relationship between patients and disease state. It is also important

to develop a processing method that does not require significant patient, disease state,

immunosignaturing, or microarray knowledge for accurate performance. We consider

two feature models for data reduction and discernible feature space mapping: princi-

pal component analysis (PCA) and beta probability density function fitting (BPF).

Once features that depend on disease states are extracted, clustering can be performed

to group patients according to disease state. We specifically consider the Dirichlet

process Gaussian mixture model approach to design an adaptive, unsupervised clus-

tering method without requiring prior training data.

2.1 Principal Component Analysis

The PCA method was previously used for immunosignature feature extraction

to reduce the overall data dimensionality of the median peptide intensities [9, 10].

PCA is a general technique that seeks to approximate a signal by removing redun-

dancy, retaining only essential signal properties [49, 50]. The immunosignaturing
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data has high dimensionality (∼ 104) and the number of patient samples (∼ 5 to 100)

is much smaller than the dimensionality. Due to the large difference between data

dimensionality and samples, a modified covariance estimate is required to achieve a

robust PCA representation [51]. Without this approximation, PCA would result in

high condition numbers and large estimation errors.

Given a vector x = [x1 x2 . . . xN ] of N data points the PCA representation

is given by [52, 53]:

x = µx + ΛΓ + ε (2.1)

where Γ is a matrix of factor parameters, Λ is a vector of the eigenvalues λ1, λ2, . . .,

µx is a vector of data means, and ε is the error vector. PCA generally requires that

the mean vector is removed before the decomposition. The model assumes that [52]:

E[x] = E[ε] = E[Γ] = 0. (2.2)

E[·] denotes the expectation operator. The covariance matrix Cx of the zero-mean

data is given by:

Cx = ΛΛT + C∆ (2.3)

where C∆ = E[εεT ] is the error covariance matrix. For very large N , a large covari-

ance matrix needs to be reliably calculated. The sampled version does not provide a

good estimate of the covariance matrix of x due to the large data dimensionality. In-

stead, we use an improved covariance estimate using sample shrinkage. The estimate

of the i, jth element of the covariance matrix, i, j = 1 . . . N is given by [51]:

Ĉi,j =


σi,i i = j

r̂i,j
√
σi,iσi,j i 6= j

(2.4)
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where r̂i,j is the correlation estimate and ρ is the estimated shrinkage intensity [51]:

r̂i,j =


1 i = j

ri,j min(1,max(0, 1− ρ)) i 6= j

(2.5a)

ρ =

∑
i 6=j σ

2
ri,j∑

i 6=j r
2
i,j

(2.5b)

σri,j is the estimated variance of sample correlation ri,j, si,j is the sample variance:

si,j =
1

κ− 1

κ∑
k=1

(xk,i)− x̄j (2.6a)

x̄i =
1

κ

κ∑
k=1

xk,i (2.6b)

where x̄i is the sample mean and xk,i is the kth observation of xi, k = 1, . . . , κ. If

we normalize xi to have zero mean and unit variance, we can obtain the estimate

variance of the correlation in equation (2.5b) as [54]:

σ2
ri,j

=
κ

(κ− 1)3

κ∑
k=1

(w∗k,j,i − w∗i,j)2 (2.7)

where:

ri,j =
κ

κ− 1
w∗i,j, (2.8a)

w∗i,j =
1

κ

n∑
k=1

w∗k,i,j, (2.8b)

w∗k,i,j = (x∗k,i − x∗i )(x∗k,j − x∗j) (2.8c)

x∗i =
1

κ

n∑
k=1

x∗k,i (2.8d)
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When applying this modified covariance estimate, it is possible to produce a

more robust PCA representation that contains more accurate eigenvalues [51]. Once

the data dimensionality is reduced, the log of the PCA components is taken in order

to address the scale discrepancy between dimensions. The reduced data dimension-

ality is found by performing eigenvalue analysis and keeping only components with

sufficiently large eigenvalues. It is up to the researcher to determine what percentage

of the original data is kept. This percentage can be calculated by dividing the sum

of the kept eigenvalues over the total of all eigenvalues. For the immunosignature

data, the number of unique peptide microarray spots per patient and the reduced di-

mensionality is the median intensity of the microarray spots mapped to the log PCA

domain (i.e. log of the linear combination of the median intensity of the microarray

spots). Note that the log was used to help with feature space separation.

2.2 Beta Probability Density Function Fitting

The second method for feature extraction is based on fitting microarray bind-

ing intensity data to the parameters of beta probability density functions (PDFs)

[57–61]. The beta PDF fitting (BPF) approach uses maximum likelihood to estimate

the beta PDF parameters that best fit a microarray data sample [55, 56]. These

beta distribution parameters are used to define the dimensionality and encode the

immunosignaturing behavior in a limited number of parameters. This is also a repre-

sentation of the visible process features (median intensity distributions) that the user

can discern by data examination. The two beta distribution parameters α and β cre-

ate the two-dimensional space, effectively reducing the dimensionality from ∼10,000

to 2. While this is a dramatic dimension reduction, it provides a good first estimate of

the intensity behaviors between the different populations without running individual

statistics between all of the groups and without individually investigating every pep-
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Figure 2.1: Example of beta probability density functions.

tide comparison between groups. Two example histograms are given in Figure 2.2,

one for a patient with breast cancer and one with normal pathology, with beta PDFs

fitted for each patient using un-normalized median intensity immunosignature data.

Note that in the algorithm the data is normalized for patients so that the intensity

values are between 0 and 1. This is required in order to use the beta PDF, which is

only defined between 0 and 1. The beta PDF is selected because of the diverse PDF

shapes that may be described by its α and β parameters, as seen in Figure 2.1. The

beta PDF for the nth patient, n = 1, . . . , N is given by [62]:

β(xl,n;α, β) =
Γ(α + β)

(Γ(α)Γ(β))
xl,n

α−1(1− xl,n)β−1 (2.9)

where xl,n, l = 1, . . . , D is the lth microarray data value for the the nth patient.

The beta PDF parameters that best fit the data of the n patient are found using

maximum likelihood estimation (MLE) as:

{ân, b̂n} = arg max
α,β

D∏
l=1

β(xl,n;α, β) , (2.10)
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(a) Histogram of the intensity values for a
patient with breast cancer and the beta
PDF that best fits the data.
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(b) Histogram of the intensity values for a nor-
mal patient with and the beta PDF that best
fits the data.

Figure 2.2: Beta PDFs fit to histograms of patient immunosignaturing data.

where α and β are the PDF parameters. This can be extended to the N patients

within the data set such that there are now vectors of parameters that fully describe

the set of immunosignaturing datasets for various patients, where each dataset has a

single α̂n and α̂n value found using MLE. Modeling the distribution of D-dimensional

normalized binding intensities xn = [x1,n, x2,n, . . . , xD,n] for the nth patient, n =

1, . . . , N , we can obtain the PDF parameter vectors:

α = [α̂1, α̂2 . . . , α̂N ], (2.11a)

β = [β̂1, β̂2 . . . , β̂N ] (2.11b)

The resulting output is that the nth patient is characterized by the two beta PDF

parameters α̂n and β̂n describing the beta PDF created by its median intensities.

2.3 DP-GMM Clustering of Immunosignatures

In order to facilitate adaptive clustering of immunosignature data, we model

data features using Dirichlet process Gaussian mixture models. Modeling features
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reduces the large dimensionality of the immunosignatures and thus the computational

cost of the clustering algorithm; it also provides insight into the relationships between

patients with similar diseases.

2.3.1 Conjugate Priors

Before discussing the DP-GMM clustering algorithm, we first provide some

background on conjugate priors from a Bayesian setting, on Dirichlet processes and

on Gaussian mixture models. If the posterior distributions p(θ|x) are in the same

family as the prior probability distribution p(theta), the prior and posterior are then

called conjugate distributions, and the prior is called a conjugate prior for the like-

lihood function. Markov chain Monte Carlo MCMC methods and blocked Gibbs

sampling algorithms are built upon the premise of conjugate priors. This views pa-

rameter estimation as a Bayesian inference problem where the posterior PDFs are

estimated based on data used for estimation [63]. This exploits a conjugate prior re-

lationship that explicitly describes these parameter relationships in a Bayesian sense.

Considering a random data vector x and a random parameter vector ψ, and assum-

ing similar statistical characteristics for the posterior PDF p(ψ|x) and the prior PDF

p(ψ), then the posterior and prior PDFs are considered conjugate distributions. The

prior PDF is then the conjugate prior for the likelihood function p(x|ψ) [63–65]. The

relationship between these PDFs is given by Bayes theorem as:

p(ψ|x) =
p(x|ψ)p(ψ)

p(x)
(2.12)

This relationship is often represented as:

p(ψ|x) ∝ p(x|ψ)p(ψ) (2.13)
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The term hyperparameter is also used in the context of conjugate priors. Hy-

perparameters are PDF parameters that have their own prior distributions and can

be estimated using MCMC methods [3]. Essentially, it is a distribution over the

parameters of a particular distribution. Initial distributions with conjugate priors

are chosen for their known relationships and ease of implementation to create more

efficient algorithms.

2.3.2 Dirichlet Process and Gaussian Mixture Modeling

Using conjugate priors, we discuss next Gaussian mixture modeling (GMM)

and the Dirichlet process (DP). The DP-GMM is used in a variety of applications [66–

69] to model data distributions using an unlimited number of mixture components

[70]. Given a data or feature vector x, a mixture model is described by the PDF

p (x|θ1, . . . ,θM) =
M∑
m=1

wm p (x;θm) , (2.14)

where {w1, . . . , wM} are the individual mixture component weights, θm is the parame-

ter space representing the PDF p(x|θm), and M is the number of mixture components

[71]. The goal of the mixture model is to estimate M , wm, and θm, m = 1, . . . ,M that

best fit this data. The DP-GMM provides an adaptive approach to determine cluster

model parameters [72] where an infinite number of mixture components and weight-

ing factors are theoretically possible [73]. In this case, p(x;θm) ∼ N (x;µm,Σm) is a

Gaussian PDF with a parameter vector consisting of the mean and covariance of the

PDF, θm = {µm,Σm}. Therefore, the mixture model can be specified with Gaussian

distributions such that a complete representation of clustering in the space is:

p (x|w,µ,Σ) =
M∑
m=1

wmN (x;µm,Σm) . (2.15)
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In a Bayesian sense, a prior PDF must be selected in order to determine the

nonparametric statistics related to a dataset. The DP is a prior in which a base

distribution, G0, and an innovation parameter α, fully describe the DP [71]. The

innovation parameter effectively describes how likely a new data point is to be placed

within a cluster of previous data or in a newly formed cluster. In the stick-breaking

algorithm of the DP [74], this corresponds to how fine the breaks or cluster divisions

are made. Consider the distribution [75]:

G ∼ DP(α,G0), (2.16a)

θn|G ∼ G, n = 1, . . . , N. (2.16b)

that is drawn from a DP with innovation parameter α and base distribution G0

with {θ1, . . . ,θN}. Then, G0 is the expected value of G and α determines how

close G is to G0. In particular, G is discrete and has the following stick-breaking

representation [74]:

θm ∼ G0, m = 1, . . . ,∞

vi ∼ Beta(1, α), i = 1, . . . ,∞

wm = vm

m−1∏
i=1

(1− vi), m = 1, . . . ,∞

G(θ) =
∞∑
m=1

wm δ(θ − θm) . (2.17)

where where δ(·) is the Kronecker delta function. This designation comes from the

idea that a unit length stick may be broken such that the size of each successive

break is representative of wm = Pr (θ = θm). To understand the assignment to a
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particular cluster θn, it is possible to integrate out G, thus describing the Pólya urn

relation [70, 76–79] given by:

p(θn|Θ(−n), α,G0) =
1

α +N − 1

N∑
n′=1
n′ 6=n

δ(θn − θm) +
α

α +N − 1
G0(θn), (2.18)

where Θ(−n) are the parameters except for θn, and N
(−n)
m is the number of variables

in Θ(−n) that are equal to θm. This representation may be rewritten as:

p(θn|Θ(−n), α,G0) =
1

α +N − 1

M∑
m=1

N (−n)
m δ(θn − θm) +

α

α +N − 1
G0(θn) (2.19)

This further helps to illustrate the functionality of the innovation parameter, α. In

particular, the probability of choosing an existing cluster value is given as Pr(θm =

θn) = N
(−n)
m /(α + N − 1), and the probability of selecting a new cluster value is

given by Pr(θm 6= θn) = α/(α + N − 1). This then leads to the DP-GMM repre-

sentation as described in Equation (2.15) whose corresponding stick-breaking process

representation is given as:

θm ∼ G0, m = 1, . . . ,∞, (2.20a)

vk ∼ Beta(1, α), k = 1, . . . ,∞, (2.20b)

wm = vm

m−1∏
k=1

(1− vk), m = 1, . . . ,∞, (2.20c)

cn|w ∼ Categorical(w), n = 1, . . . , N, (2.20d)

xn|cn ∼ p(xn|θcn), n = 1, . . . , N. (2.20e)

The variable cn indicates which of the M possible clusters includes xn and categor-

ical refers to the assignment to one of the M possible clusters. While in theory the

DPGMM is infinite, a practical truncation limit may be selected such that the trun-
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cated representation is a close approximation of the infinite case, and it can also help

to simplify the numerical calculations for approximating the DP [80]. This limit M ,

can be set by the user or it can be calculated directly. The truncation error is related

to M and is given by [81]:

4N exp(−(M − 1)/α). (2.21)

In actuality, the value of M may be larger than the true number of latent clusters for

a particular data set. Additionally, if M is calculated, then it can be adjusted by the

innovation parameter α, as in Equation (2.21).

2.3.3 The Dirichlet Process and Blocked Gibbs Sampler

This conjugate prior relationship is used extensively to simplify calculations for

posterior distributions estimated using the blocked Gibbs sampler algorithm. Using

an MCMC technique such as the blocked Gibbs sampler, it is possible to iteratively

estimate posterior distribution parameters [82]. Considering the mixture model given

in Equation (2.14) and using the notation of Equation (2.20), the blocked Gibbs

sampler, at the ith iteration in the Markov chain estimates [80, 82]:

θ(i)
m ∼ p (θm|c(i−1),xn), m = 1, . . . ,M, (2.22a)

c(i)
n ∼ p (cn|Θ(i),w(i−1),xn), n = 1, . . . , N, (2.22b)

w(i)
m ∼ p (wm|c(i)), m = 1, . . . ,M. (2.22c)
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These can be expressed in terms of conjugate prior relationships [80]:

p (θm|c,xn) ∝ G0(θm)
∏

n:cn=m

p (xn|θ), m = 1, . . . ,M, (2.23)

p (cn|Θ,w,xn) =
M∑
m=1

(
wm p (xn|θm)

)
δ(cn −m), n = 1, . . . , N, (2.24)

p (wm|c) = vm

m−1∏
j=1

(1− vj), m = 1, . . . ,M (2.25)

where vm is also defined as:

vm ∼ Beta
(

1 +N∗m, α +
M∑

m′=m+1

N∗m′
)
, (2.26)

and n : cn = m denotes the indices in c such that cn = m, and N∗m is the number of

elements in c that are equal to m.

While this describes the conjugate prior relationship, the specific mathematical

equations for the BGS execution require the selection of the prior and likelihood

distributions. In the case of the DP-GMM, the likelihood distribution is Gaussian

where as the prior distribution, G0 is Normal-Wishart. The Normal-Wishart PDF is

used because this is the multidimensional generalization for the DPGMM. Thus, the

relationship between the prior and posterior distributions may be described by [63]:

G0(θ) , NW (µ,Σ−1 ; µN , τN , ξW , ιW) , (2.27a)

p (θ|c,X) , NW (µ,Σ−1 ; µ̃N , τ̃N , ξ̃W , ι̃W) (2.27b)
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The hyperparameters µN , τN , ξW , ιW , µ̃N , τ̃N , ξ̃W , ι̃W are described by [63]:

µ̃N =
τN µN +Nµx

τN +N
, (2.28)

τ̃N = τN +N , (2.29)

ι̃W = ιW + Σx +
τN N

τN +N
(µN − µx) (µN − µx)T , (2.30)

ξ̃W = ξW +N , (2.31)

and µx and Σx are the mean and covariance of X, and µN , τN , ξW , and ιW are user

specified with the restrictions:

τN > 0, (2.32a)

ξW > D − 1 (2.32b)

where D is the number of dimensions in x. The algorithm and further description

of the update equations for the implementation of the blocked Gibbs sampler are

provided in Algorithm 1.

Gaussian mixture modeling in the Bayesian sense is described as using a Gaus-

sian prior to probabilistically describe data subgroup behavior within an overall data

population. The mixture of subgroup distributions defines group membership with-

out providing group identification. The DP is one such method of yielding subgroup

clusters, and it may rely on various distributions to describe the data behavior by

way of features [73]. In the immunosignaturing case, the distributions correspond to

the normalized binding intensities, which may have a variety of distribution shapes.

The learning of the associated distribution parameters can be done via recursive es-

timation through construction of a Markov chain.
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2.4 DP-GMM Immunosignature Clustering Algorithms

2.4.1 DP-GMM Clustering with PCA Features

While the DPGMM is an effective way to adaptively cluster various data sets,

it can be computationally intensive. Thus, the PREDICT, or PCA REsolution with

DPGMM for Immunosignature Classification Testing is presented to help analyze im-

munosignaturing data. PREDICT uses the log results of principal component analysis

(PCA) for dimensionality reduction followed by the DPGMM for classification. In

this way, patients are clustered with other patients sharing similar feature character-

istics, in this case PCA features. One underlying assumption for this method is that

the patient will have only a single disease pathology. This is due to the fact that

the DPGMM will assign each patient to a single cluster during each iteration of the

blocked Gibbs sampler. While average values are computed based on a user specified

number of sample iterations, the end result is still a single cluster assignment.

2.4.2 DP-GMM Clustering with Beta PDF Fitting Features

There are alternative feature reduction schemes to PCA, including beta PDF

fitting, as discussed here. The B-PREDICT, or Beta PDF REsolution with DPGMM

for Immunosignature Classification Testing, algorithm uses Beta PDF fitting to re-

duce the immunosignaturing feature space, and then feeds a scaled result of that

into the DPGMM. The scaling is left to the user, and is simply available to avoid a

small numbers problem when clustering. In this manner, B-PREDICT is identical

to PREDICT, except that it uses Beta PDF fitting to reduce the feature space, and

as such requires less computations than the PCA based method (e.g. for a modified

covariance matrix), and the feature space will always be two dimensions.
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2.5 DP-GMM Clustering Results

2.5.1 Strict and Relaxed Immunosignaturing Clustering Criteria

Before discussing the results for each of the methods, it is helpful to define

what is considered correct or successful classification. When dealing with biological

disease data amongst patients, it is possible that different patients, although having

the same disease, will have different responses to diseases. Physically this may cor-

respond to a range of symptoms, their severity, their progression over time, etc. For

example those infected with influenza may experience a combination of a variety of

symptoms [83]. While each patient may have a slightly different disease expression

for a particular disease state, in general it is possible to group individuals by these

expressions. However, this may result in multiple groupings that describe the same

disease state. As such, we discuss a strict and a relaxed definition of immunosigna-

turing clustering success.

In the strict immunosignaturing clustering/classification definition (SIC), only

one group may exist per disease state and any individual falling outside the group

whose ground truth would indicate the same disease will be seen as a misclassification.

In the relaxed immunosignaturing clustering/classification (RIC) definition, multiple

groups may be used to represent a single disease as long as two or more individuals

are present in this additional group. However, it will be considered a misclassification

if individuals from another disease state are incorrectly placed in this group. It is

believed that these two definitions will offer some flexibility to compare the results

from the various methods, but without allowing various algorithm parameters to

be set such that each patient is considered a new group. In some cases it may be

more appropriate to use the SIC definition of classification success if no underlying

relationship indicating multiple groupings is available. For example, a training set of
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data may be used to help determine if multiple groups are present for a particular

disease state. In cases where an underlying relationship is present, it may be more

appropriate to use the RIC definition of classification success.

2.5.2 Results Using the PREDICT Clustering Algorithm

In order to demonstrate the clustering performance of the DP-GMM based

algorithms, we use the datasets described in Chapter 1. As previously stated, the

dimensionality in this case is defined by the PCA of the microarray median intensity

data assuming that the dimensionality is defined by the number of peptide sequences.

After PCA, dimensionality is defined as linear combinations of peptide intensity re-

sults determined by the significant eigenvalues from the PCA. The PCA algorithm

was applied as in equations (2.1) and (2.4) and the log was taken as the input to the

DPGMM. At minimum, the first three principle components were selected for Dataset

1, which represents 93.5% of the data, and the first five principal components were

used from Dataset 2 which represents 93.5% of the data. Further dimensions may be

added if desired from the PCA results, but the number of components was selected

based on the plots of the eigenvalues as shown in Figure 2.3.

The confusion matrices for Dataset 1 with diseases identified as C1-C6 may

be found in Table 2.1 and 2.2. The innovation parameter α was set to 15, the error

was set to 5x10−1, which produced a truncation of M = 83. For the blocked Gibbs

sampler, 2000 iterations were done for burn-in and 2000 sample iterations were then

performed. The dataset 1 PREDICT results of the clustering can be seen in Figure

2.4. The true disease states are color coded for viewing ease, and the bar heights

indicate class assignments by the algorithm. Another representation is given in the

same figure to help show how bar heigh relates to the clustering results where each

face represents a patient, and the color is indicative of the ground truth disease
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(b) Eigenvalue plot from Dataset 2.

Figure 2.3: The first 20 significant eigenvalues from PCA analysis of each dataset.

information. In this depiction, patient color represents the underlying disease and

cluster color represents the corresponding cluster for each disease. Instances with

matching patient and cluster colors are correct clustering and instances with different

colors are incorrect clustering. The correct classification for both SIC and RIC was

60%. The confusion matrices for Dataset 2 with diseases identified as C1-C5 may be

found in Table 4.3 and 4.4. The innovation parameter α was set to 35, the error was

to 1x10−4, which results in M = 485. For the BGS, the number of burn-in iterations

was set to 2000 and the number of sample iterations was set to 3000. The dataset 2

PREDICT results can be seen in Figure 2.5; the SIC and RIC results were both 64%.
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(b) Clustering results using PREDICT.

(c) Clustering results using PREDICT.

Figure 2.4: PREDICT results for Dataset 1

Class C1 C2 C3 C4 C5 C6

C1 4/5 0/5 1/5 0/5 0/5 0/5

C2 0/5 0/5 1/5 0/5 4/5 0/5

C3 1/5 0/5 4/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 3/5 0/5

Table 2.1: Dataset 1 PREDICT SIC
confusion matrix.

Class C1 C2 C3 C4 C5 C6

C1 4/5 0/5 1/5 0/5 0/5 0/5

C2 0/5 0/5 1/5 0/5 4/5 0/5

C3 1/5 0/5 4/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 3/5 0/5

Table 2.2: Dataset 1 PREDICT RIC
confusion matrix.
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(c) Classification results using PREDICT

Figure 2.5: PREDICT results for Dataset 2
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Class C1 C2 C3 C4 C5

C1 3/5 0/5 0/5 0/5 0/5

C2 0/5 3/5 0/5 0/5 0/5

C3 0/5 0/5 1/5 0/5 4/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 2.3: Dataset 2 PREDICT SIC
confusion matrix.

Class C1 C2 C3 C4 C5

C1 3/5 0/5 0/5 0/5 0/5

C2 0/5 3/5 0/5 0/5 0/5

C3 0/5 0/5 1/5 0/5 4/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 2.4: Dataset 2 PREDICT
RIC confusion matrix.

2.5.3 Results Using the B-PREDICT Clustering Algorithm

B-PREDICT was used to analyze Dataset 1 and 2 whose MLE fit Beta PDF

feature space may be seen in Figures 2.6 and 2.7. For Dataset 1, α = 15 and the

error was set to 1, which gives a truncation of approximately M = 73, and 2,000

burn-in iterations were done in the blocked Gibbs sampler followed by 2,000 itera-

tions for sampling. The confusion matrices with disease identified as C1-C6 are given

in Tables 2.5 and 2.6. The true disease states are color coded for viewing ease, and

the bar level for each measurement is the class membership per the final clustering.

Using SIC, a rate of 70% was achieved as compared to a classification rate of 76.7%

for RIC. For Dataset 2, the innovation parameter was set to α = 45 and the error

was 0.1, giving M = 312. The number of burn-in iterations was set to 2000 and the

number of sample iterations was set to 3000. The SIC and RIC were each 64%.

36



Feature Parameter

F
e

a
tu

re
 P

a
ra

m
e

te
r

 

 

0 2 4 6 8 10 12

0

2

4

6

8

10

12

Breast Cancer
Normal
Glioma
Cocci
Sarcoma
Asthma post

−14

−12

−10

−8

−6

−4

(a) BPF features and DPGMM results.

0 5 10 15 20 25 30 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C
la

s
s

Patients

 

 
Breast Cancer
Normal
Glioma
Cocci
Sarcoma
Asthma post

(b) Clustering results.

Figure 2.6: B-PREDICT results for Dataset 1.
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(b) Clustering results.

Figure 2.7: B-PREDICT results for Dataset 2.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 2/5 0/5 0/5 0/5 1/5

C3 0/5 0/5 4/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 3/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 1/5 1/5 0/5 0/5 0/5 2/5

Table 2.5: Confusion matrix for
Dataset 1 B-PREDICT using SIC.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 2/5 0/5 0/5 0/5 1/5

C3 0/5 0/5 4/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 1/5 1/5 0/5 0/5 0/5 2/5

Table 2.6: Confusion matrix for
Dataset 1 B-PREDICT using RIC.
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Class C1 C2 C3 C4 C5

C1 3/5 0/5 0/5 0/5 0/5

C2 1/5 2/5 0/5 0/5 0/5

C3 0/5 2/5 3/5 0/5 0/5

C4 0/5 0/5 0/5 3/5 1/5

C5 0/5 0/5 0/5 0/5 5/5

Table 2.7: Confusion matrix for
Dataset 2 B-PREDICT using SIC.

Class C1 C2 C3 C4 C5

C1 3/5 0/5 0/5 0/5 0/5

C2 1/5 2/5 0/5 0/5 0/5

C3 0/5 2/5 3/5 0/5 0/5

C4 0/5 0/5 0/5 3/5 1/5

C5 0/5 0/5 0/5 0/5 5/5

Table 2.8: Confusion matrix for
Dataset 2 B-PREDICT using RIC.

2.6 Model challenges for PREDICT and B-PREDICT

Both PREDICT and B-PREDICT seek to encode information on the visible

processes discernible to the viewer for immunosignaturing data. With PREDICT,

the multidimensional PCA execution requires large, robust covariance matrices for

correct PCA. While one shrinkage target is given in equation (2.5), there are multiple

shrinkage targets for data with different structures, as given in [51]. As such, it

is useful to have some prior knowledge of the data itself so that an appropriate

shrinkage target may be selected. Furthermore, using PCA to decrease the overall

dimensionality adds complexity if one is trying to determine which peptides play a

role in each cluster. This is because now individual peptides are not represented

by the dimensionality, but rather these are mapped into the PCA domain and are

represented by combinations of peptides.

In the case of B-PREDICT, specifically dealing with the 2D BPF, while the

drastic feature space reduction is especially favorable for complexity and time, re-

lying solely on PDF shapes can eliminate significant underlying data patterns that

would be useful for classification, especially those whose process is unobserved by the

viewer. As this case uses MLE, it suffers from all drawbacks present in the MLE.
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For example, MLE fitting using single mode PDFs will miss some cases with multi-

modal distributions, or cases were outliers corresponding to biological significance are

present. This is especially true when assuming that there is no initial investigation by

the analyzer into the PDF shape for each microarray, which is a reasonable assump-

tion when dealing with data from many patients. In addition to these drawbacks,

the DP-GMM has some limitations which affect both PREDICT and B-PREDICT.

The first, and probably most important, limitation is that while cluster formation

is potentially infinite, data membership to a given cluster is limited to one. This

would mean that one patient may only be clustered in one group at any given time.

When clusters correspond to disease types, this means that a patient is identified as

having only one disease. Pathogenically it is possible for patients to have reactions to

multiple diseases at any particular time, making the single membership requirement

restrictive. In addition to this issue, the DPGMM only provides information on clus-

tering membership, not on disease identification. In order to associate a particular

disease with a particular cluster and provide patient diagnosis, a well defined train-

ing set would be needed, even though this training set is not required for clustering

itself. Another drawback is that of the a priori assumptions and assignments. The

DP-GMM requires an initial distribution assignment (in this case it is Gaussian) that

is theoretically supposed to model the data well in the parameter space. There may

be other distributions that provide better classification outcomes. This also leads to

assumptions for the innovation parameter α. The a priori value of this innovation

parameter is critical to cluster formation. Setting this value too large or to small

may cause too strict or too loose of group membership associations, thus impacting

the classification. Similarly, the truncation factor M is critical in that selecting a

value too large may unnecessarily and negatively impact overall computation time.

However, setting this parameter too small may result in very large truncation error.
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Algorithm 1 Blocked Gibbs sampling for DP-GMM using an D-dimensional
dataset X

Input: Dataset X = {x1, . . . ,xN}, DP innovation parameter α, Normal-
Wishart hyperparameters µN , τN , ξW , ιW , DP truncation limit M .

Output: Samples {µ(i)
m ,Σ

(i)
m , c

(i),w(i)}Li=1

Repeat for i = 1, 2, . . . , Gibbs iterations:

1. Update for θ(i)
m = {µ(i)

m ,Σ
−1(i)
m } ∼ p (µm,Σ

−1
m |c(i−1),X), m = 1, . . . ,M .

(a) Let Xm = {xn : c
(i−1)
n = m} and Nm = |Xm|, for m = 1, . . . ,M .

(b) For all clusters, m = 1, . . . ,M , compute,

µxm
=

1

Nm

∑
n:c

(i−1)
n =m

xn

Σxm =
1

Nm

∑
n:c

(i−1)
n =m

(xm − µxm
)2

µ̃N ,m =
τN µ̃N +Nmµxm

τN +Nm

,

τ̃N ,m = τN +Nm ,

ι̃W,m = ιW + Σxm +
τN Nm

τN +Nm

(m− µxm
) (m− µxm

)T ,

ξ̃W,m = ξW +Nm .

(c) Draw samples for Σ−1(i)
m from the Wishart distribution,

W (Σ−1
m ; ι̃W,m, ξ̃W,m), for m = 1, . . . ,M .

(d) Finally draw samples for µ
(i)
m from the Normal distribution,

N (µm; µ̃N ,m,
Σ

(i)
m

τ̃N ,m
), for m = 1, . . . ,M .

2. Update for c
(i)
n ∼ p (cn|µ(i),Σ−1(i),w(i−1),X), n = 1, . . . , N .

(a) Let qm,n , w
(i−1)
m N (xn;µ

(i)
m ,Σ

(i)
m ), m = 1, . . . ,M and n = 1, . . . , N .

(b) Normalize q′m,n = qm,n∑M
m=1 qm,n

,m = 1, . . . ,M and n = 1, . . . , N .

(c) Draw samples for c
(i)
n ∼

∑M
m=1 q

′
m,nδ(cn,m), n = 1, . . . , N .

3. Update for w
(i)
m ∼ p (wm|c(i)), m = 1, . . . ,M .

(a) Draw samples βj ∼ Beta
(

1 +N∗m, α+
∑M

m′=m+1 N
∗
m′

)
, where N∗m ,

|{n : c
(i)
n = m}|, m = 1, . . . ,M .

(b) Finally evaluate w
(i)
m = βm

∏m−1
j=1 (1− βj), m = 1, . . . ,M .
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Chapter 3

CLUSTERING USING BETA PROCESS FACTOR ANALYSIS

The beta process factor analysis (BPFA) model decomposes data into a linear com-

bination of latent features for factors, providing information on the data’s underlying

structure. This is similar to the DP-GMM in that it also relies on a base distribution

to describe the behavior of a parameter space. Unlike the DP, it is based on the beta

process (BP) which is a true completely random measure [75, 84]. With mixture mod-

eling and the DP-GMM, each element could only belong to a single group; this differs

from BPFA where each item may have multiple group membership [53]. This may

lead to the identification of underlying relationships between groups, offering a refined

feature space for the clustering process. Additionally, while the DP-GMM requires a

user specified feature or parameter space in addition to the underlying distributions

as model parameters, BPFA only requires the specification of the underlying model

distributions and learns the number of underlying latent features.

3.1 Beta process theory and related representations

The beta process [85] is useful in Bayesian nonparametric modeling for latent

features [86–88], especially given the implementable conjugate prior relationship in-

herent in the prior. A generalization was presented in [89] where the BP was shown

to be a special case of the kernel beta process. The construction of the beta process

may be described as [86, 90]:

H(Bk) ∼ Beta(αBH0(Bk), αB(1−H0(Bk)) (3.1)
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where k = 1, ..., K are the individual partitions or latent features, Bk is the partition

itself in the space, and αB is a positive scalar. H0 is the continuous probability

measure on the same measurable space. Thus, as K → ∞, Hk → H. Similarly, the

BP has a stick-breaking representation [90, 91]:

θij
iid∼ H0/γ, (3.2)

Vij
iid∼ Beta(1, αB), (3.3)

H(θ) =
∞∑
i=1

Ci∑
j=1

i−1∏
l=1

(1− Vij)δθij , (3.4)

Ci
iid∼ Poisson(γ) (3.5)

where γ = H0({B1...BK}) and iid stands for independent and identically distributed.

While the BP is infinite in feature number, a practical truncation limitation is

often applied to approximate the BP. As the truncation limit increases, it will become

a closer approximation of the theoretical infinite case. A finite approximation and a

two parameter version may be generated [86]:

HK =
K∑
k=1

(πkδφk), (3.6a)

φk
iid∼ H0, (3.6b)

πk ∼ Beta(a/K, b(K − 1)/K), k = 1 . . . K (3.6c)

It should be noted that π = {π1, . . . , πK} serves as a new measure of the space, and

it is a parameter for a Bernoulii process, zk,n which will serve as a binary indicator

variable for the latent features to be discovered [86, 92]:

zk,n ∼ Bernoulli(πk) (3.7)
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The combination of Equations (3.6) and (3.7) form a prior for the BPFA.

Another similarly related process is the Indian buffet process (IBP). The structure

is the same as in Equations (3.6) and (3.7), but the second parameter of the beta

distribution, b(K−1)/K simply becomes equal to 1 [92]. While K is indicative of the

truncation coefficient, it is also the maximum number of latent features in BPFA. As

such, it is important for K to be sufficiently large to fully capture the latent feature

interactions within a data set. In practicality, K should not be chosen so large as

to impede quick calculation and convergence for the parameter estimation. The K

value selection is discussed in Section 3.3.

3.2 Beta process factor analysis and blocked Gibbs sampler

As in the case of the DP-GMM, a blocked Gibbs sampler is employed for the

BPFA model parameter estimation. Both a Gibbs sampler method and a variational

Bayes (VB) method can be used to implement BP algorithms [93, 94]. While it

is noted that the Gibbs sampling method may require more iterations to converge

than a VB method [93], its ease of implementation makes it a suitable selection for

immunosignaturing work. Further extensions using collapsed and accelerated Gibbs

sampling with regards to the IBP are discussed in [95]. An MCMC method was

selected for its overall flexibility. The blocked Gibbs sampler was chosen in order

to improve overall performance. The blocked Gibbs sampler also relies heavily on

conjugate priors. In order to construct the algorithm, it is necessary to devise a model

to describe the data that is capable of exploiting these conjugate prior relationships.

Using [53, 86], this BPFA model is described as:

X = ΦZ + E (3.8)
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where X is the immunosignaturing data, matrix Φ and binary matrix Z are parameter

matrices that describe latent features, and E is the error. For a single dataset (i.e.,

patient in the case of immunosignaturing), this can be expressed as:

xn =
K∑
k=1

zk,nφk + e (3.9)

where X = [xT
1 . . . xT

N ] is the (D×N) data matrix, Φ = [φT
1 . . . φT

K ] is the (D×K)

latent factor matrix, Z = [zT1 . . . zTN ] is the (K×N) factor weight binary matrix, and

zn is the (1×K) binary vectors of the nth patient.

A weighted version of this decomposition can be used depending on the re-

quired factor model output [86]. For further discussion, X is considered to be DxN

with D being the data dimensionality and N being the number data points in each

dimensionality. Additionally, Φ is DxK where K is the truncation value or maximum

number of latent features. Finally, Z is KxN and E is DxN . The additional inter-

mediate random variable π is used as a precursor for describing Z per equation (3.7).

For this model, Z is considered to be Bernoullli distributed, π is Beta distributed, Φ

is Gaussian, and the variance of the error E is Inverse-Gamma. This makes X also

Gaussian with a mean of ΦZ and a variance of σ2
eI where I is the identity matrix.

The model parameter relationships are described as [86]:

X ∼ N (ΦZ, σ2
eI), (3.10a)

σ2
e IΓ(c, d), (3.10b)

φk ∼ N (0,Σφk), (3.10c)

zk,n ∼ Bernoulli(πk), (3.10d)

πk ∼ Beta(α, β) (3.10e)
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Figure 3.1: BP block diagram.

where n refers to the nth element of N data points, φk refers to the kth column of

Φ, and zk,n refers to the nth element of the kth row of the Z matrix. The relationship

between these random variables is given in Figure 3.1.

The conjugate prior relationships are the basis for the MCMC technique con-

sidered here for BPFA. When this is applied to the blocked Gibbs sampler framework

for each of the BPFA parameters for the ith iteration, this becomes:

π
(i)
k ∼ p(π|Z(i−1), α

(i)
0 , β

(i)
0 ), k = 1 . . . K, (3.11a)

φ
(i)
k ∼ p(φk|Φ(i−1),Z(i−1), σ2

e
(i−1)

,X), k = 1 . . . K, (3.11b)

z
(i)
k,n ∼ p(zi,k|Φ(i),Z(i−1), σ2

e
(i−1)

, π(i),X), k = 1 . . . K, n = 1 . . . N, (3.11c)

σ2
e

(i) ∼ p(σ2
e |Φ(i),Z(i), σ2

e
(i−1)

,X) (3.11d)

There are also hyperparameters (az, bz, cz, and dz) that are also updated in the blocked

Gibbs sampler, but they utilize different priors and are conditional functions of both

the initialized value for each hyper-parameter, as well as the other estimated matrices

in each iteration. These hyper-parameters are used to describe other distributions and
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are only indirectly related to the estimated model parameters of interest. It should

be noted that the update order within the blocked Gibbs sampler does not matter as

long as the most recent updates are used for each new estimation. The blocked Gibbs

sampler algorithm with specific update equations for BPFA is given in Algorithm 2.

Noting that ||·|| is the norm of the expression, combined together, this provides

the following conditional PDFs:

β-distributed π
(i)
k ,

β
(
π

(i)
k ; a(i)

z , b
(i)
z

∣∣ Z(i−1), a, b
)

(3.12)

a(i)
z =

a

K
+

N∑
n=1

z
(i−1)
k,n (3.13)

b(i)
z =

b(K − 1)

K
+N −

N∑
n=1

z
(i−1)
k,n , (3.14)

Gaussian distributed φ
(i)
k ,

g
(
φ

(i)
k ;µ

(i)
φ , Σ̃

(i)

φ

∣∣ Φ(i−1),Z(i−1), σ2 (i−1)
e ,X

)
(3.15)

Σ̃
(i)

φ =
(
z

(i−1)
k z

T,(i−1)
k ID σ

−2 (i−1)
e + Σ−1

φ

)−1

(3.16)

µ
(i)
φ =

[(
z

(i−1)
k z

T (i−1)
k IDσ

−2 (i−1)
e + Σ−1

φ

)−1

σ−2 (i−1)
e

N∑
n=1

z
(i−1)
k,n

K∑
k′=1
k′ 6=k

z
(i−1)
k′,n φ

T (i−1)
k′

]
, (3.17)
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where zk is the kth row of Z and Bernoulli distributed z
(i)
k,n

Bernoulli
(
z

(i)
k,n;ψ(i)

∣∣Φ(i),Z(i−1), σ2 (i−1)
e ,π(i),X

)
(3.18)

ψ(i) =

1 +
1− π(i)

k

π
(i)
k

exp

(σ2
e)

(i−1)

2

∥∥∥∥∥∥∥∥xn −
K∑
k′=1
k′ 6=k

z
(i−1)
k′,n φ

(i)
k′

∥∥∥∥∥∥∥∥
2

−

∥∥∥∥∥∥∥∥xn − φ
(i)
k −

K∑
k′=1
k′ 6=k

z
(i−1)
k′,n φ

(i)
k′

∥∥∥∥∥∥∥∥
2

−1

, (3.19)

and inverse Gamma distributed σ
2 (i)
e ,

IΓ
(
σ2 (i)
e ; c(i)

z , d
(i)
z

∣∣∣ Φ(i),Z(i),X
)

(3.20)

c(i)
z = c+ (ND/2) and (3.21)

d(i)
z = d+

1

2

N∑
n=1

∥∥∥∥∥xn −
K∑
k′=1

z
(i)
k′,nφ

(i)
k′

∥∥∥∥∥
2

. (3.22)

3.3 Selection of K for BPFA

The remaining item to be defined for BPFA for the immunosignaturing model

is the selection of the user defined truncation parameter K. When using this model

and referring to π in both Equation (3.10) and (3.6), α0 and β0 are defined as [86]:

α0 =
a

K
, (3.23a)

β0 =
b(K − 1)

K
(3.23b)

where a and b are similar to the innovation parameter α in the DP-GMM. In the

BPFA, these parameters help to define the multi-feature presence of each item to
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Algorithm 2 Blocked Gibbs sampling for BPFA using an D-dimensional
dataset X

Input: Dataset X = [x1, . . . ,xN], beta process positive scalars a and b, the
truncation limit K, and inverse gamma hyperparameters c and d.

Output: Samples {π,Φ,Z,σ2
e}Lj=1 from the posterior pdf P (π,Φ,Z,σ2

e|X).

Repeat for j = 1, 2, . . . , Gibbs iterations:

1. Update for {πk} ∼ β
(
π

(i)
k ; a

(i)
z , b

(i)
z

∣∣ Z(i−1), a, b
)
, k = 1 . . . K

(a) Draw: β
(
π

(i)
k ; a

K
+
∑N

n=1 z
(i−1)
k,n , b(K−1)

K
+N −

∑N
n=1 z

(i−1)
k,n

∣∣ Z(i−1), a, b
)

2. Update for {zk} ∼ Be
(
z

(i)
k,n;ψ(i)

∣∣Φ(i−1),Z(i−1), σ
2 (i−1)
e ,π(i),X

)
, k =

1 . . . K .

(a) Draw: Be

z(i)
k,n;

1+
1−π(i)

k

π
(i)
k

exp

 (σ2
e)(i−1)

2

∥∥∥∥xn −∑K
k′=1
k′ 6=k

z
(i−1)
k′,n φ

(i−1)
k′

∥∥∥∥2

−

∥∥∥∥xn− φ(i−1)
k −

∑K
k′=1
k′ 6=k

z
(i−1)
k′,n φ

(i−1)
k′

∥∥∥∥2



−1∣∣∣∣∣∣∣∣Φ

(i−1),Z(i−1), σ
2 (i−1)
e ,π(i),X


3. Update for {Φ} ∼ g

(
φ

(i)
k ;µ

(i)
φ , Σ̃

(i)

φ

∣∣ Φ(i−1),Z(i), σ
2 (i−1)
e ,X

)
, k=1 . . . K

(a) Draw: g
(
φ

(i)
k ;µ

(i)
φ , Σ̃

(i)

φ

∣∣Φ(i−1),Z(i), σ
2 (i−1)
e ,X

)
.

(b) Define: Σ̃
(i)

φ =
(
z

(i)
k z

T,(i)
k ID σ

−2 (i−1)
e + Σ−1

φ

)−1

(c) Define: µ
(i)
φ =

[
Σ̃

(i)

φ σ
−2 (i−1)
e

∑N
n=1z

(i)
k,n

∑K
k′=1
k′ 6=k

z
(i)
k′,nφ

T (i−1)
k′

]
4. Update for {σ2

e} ∼ IΓ
(
σ

2 (i)
e ; c

(i)
z , d

(i)
z

∣∣∣ Φ(i),Z(i),X
)

(a) Draw: IΓ
(
σ

2 (i)
e ; c

(i)
z , d

(i)
z

∣∣∣ Φ(i),Z(i),X
)

(b) Define: c
(i)
z = c+ (ND/2)

(c) Define: d
(i)
z = d+ 1

2

∑N
n=1

∥∥∥xn −∑K
k′=1 z

(i)
k′,nφ

(i)
k′

∥∥∥2

48



0 10 20 30 40 50 60 70
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
ro

b
a

b
ili

ty

Increasing K

 

 
a=1 b=1 N=200

a=1 b=100 N=200

a=1 b=0.1 N=200

a=5 b=1 N=200

a=.1 b=1 N=200

a=10 b=1 N=200

a=1 b=1 N=1000

Figure 3.2: Example distributions for K truncation selection.

be classified. Thus, while K is user defined, there is an interrelationship between a,

b, and K that affects the latent feature groupings during estimation. Furthermore,

truncation of K far below the true underlying feature amount will result in sub-

optimal latent feature memberships, further affecting the classification. As such, it is

desired to know approximately the value of K. Further complicating the selection is

the interaction of N , which is defined by the input data, on the Poisson distribution

indicated in Equation (3.2). This interaction is given as [86]:

λP =
N∑
n=1

a

b+ n− 1
(3.24)

where λP is the parameter for the Poisson distribution. An example of this effect is

given in Figure 3.2. Thus, one should select a value of K that encompasses enough

of the Poisson distribution specified by the parameter given in Equation (3.24).

The IBP has very similar functionality to the BPFA algorithm in that a beta

process prior is used as in equation (3.6c), but the innovation parameters are changed
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such that α0 = a/K but β0 = 1 [92]. The link between the IBP and the beta process

may be thought of as CRP:DP::IBP:BP [96]. Further discussion of the IBP may be

found in [97].

3.4 BPFA and immunosignaturing input data format

When dealing with immunosignaturing data, there are at least two possible

use cases for analysis of incoming patient data. While each case does not impact how

the BPFA is modeled or executed, it does impact how the input data is used within

the BPFA. In each case, it will effectively change the random variable that is used

to further classify patients based on underlying disease state. In this work, reduction

in the number of peptides for analysis is performed by using either PCA or BPF as

discussed in Sections 2.1 and 2.2. Further refinement is then done by the BPFA.

In the first format, the feature model still follows the format of Equations

(3.8) and (3.10), but the dimension D is defined as the number of patients while the

number of data points N is defined as the microarray intensity measurements, or some

dimensionality reduction thereof, for each patient. This case would be useful when

additional microarray data points are received for patients over time, but the overall

number of patients does not change. This then means that the estimated value of the

Φ matrix, represented as Φ̂, and found after using the blocked Gibbs sampler, would

be the parameter that describes the relationship between patients and underlying

features. It is these latent features that are thought to represent the underlying

states (i.e. diseases) for patients. In this case, the estimated Z matrix, hereafter

represented as Ẑ, would represent the relationship between peptides or combinations

of peptides (after dimensionality reduction) to latent features.

In the second format, which also follows the general model structure given

in Equations (3.8) and (3.10), dimensionality D is defined as the number of peptide
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sequences, or peptide sequence combinations after dimensionality reduction. This

then means that N is defined as the number of patients being analyzed. For this case,

the Φ̂ matrix from the blocked Gibbs sampler iterations will illustrate the relationship

between latent features and peptides (or peptide combinations after dimensionality

reduction). This may be used to show which peptide or peptide combinations play a

role in various disease states, similar to how the Ẑ matrix was used in the previous

format. This then means that the Ẑ matrix derived from the execution of the blocked

Gibbs sampler may be use to highlight the underlying feature representations for each

patient, and thus the underlying disease state for each patient. This is similar to how

the Φ̂ matrix was used in the previous format.

3.5 Clustering Using BPFA

3.5.1 BPFA with Z-matrix and PCA Features

Once the Φ̂ and Ẑ matrices are found from BPFA, it is possible to use a variety

of classification or clustering schemes to determine patient groupings based on dis-

eases. The first is the Z-PREDICT or Z-matrix from PCA REsolution and Discovery

for Immunosignature Classification Testing, uses the log of the PCA feature space as

first presented in PREDICT as the input to the BFPA. Since the Ẑ matrix is a binary

feature matrix, features are either present, as represented by a 1, or not present, as

represented by a 0.

If there are not too many latent features found during BPFA application, then

it may be possible to simply inspect the feature combinations and determine which

patients contain similar feature representations. This can be time consuming as the

data grows, and therefore a more formal representation is desired. However, the Ẑ

matrix then needs to be modified such that incorrect comparisons can be penalized
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without negatively impacting correct correlation matches. This is accomplished by

replacing all zero entries with a negative one, and is known then as the matrix Y.

The replacement of these strategic values introduces the concept of penalty and re-

ward criteria for the Ẑ matrix which can be modified depending on the clustering

problem. This matrix is then multiplied by the transpose of itself to find the feature

vector correlations amongst all vectors. This can mathematically be described as the

following modifications to the Z matrix:

Y = (2Z− 1), (3.25a)

C = YTY (3.25b)

This may also be thought of as taking the non-normalized dot product of

each K dimensional binary feature vector with every other binary feature vector.

Individual comparisons with high C values are more likely to be classified together

correctly. For example, consider the Ẑ matrix given in Figure 3.3. This matrix

is presented in left ordered form (LOF) [92] and is transposed for readability with

features being all zeros removed. Each patient has an associated set of features that

may be represented by a binary feature vector.

For example, consider patient 1 whose binary feature vector is z1 = [1, 1, 0, 0, 0, 0].

After equation (3.25a), this becomes y1 = [1, 1,−1,−1,−1,−1]. In order to see if

this patient should be clustered with patient 2, whose modified binary feature vector

is y2 = [1, 1,−1,−1,−1,−1], find the correlation (or dot product) of these two vec-

tors. The result of this correlation is y1 · y2 = 6. Now, compare the modified binary

feature vector for patient 1 with that for patient 25 (y25 = [−1, 1,−1,−1,−1, 1]); the

correlation in this case is four. Since the correlation between patient 1 and patient

25 is lower than the correlation between patient 1 and patient 2, it is more likely
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Figure 3.3: Example Ẑ matrix

that patient 1 and patient 2 should be clustered together than patient 1 and patient

25. This pairwise comparison may be done for all the patients and a ranking of their

correlations may be achieved.

3.5.2 BPFA with Z-matrix and Beta PDF Fitting Features

In Z-PREDICT, PCA was used for dimensionality reduction. Similarly, BPF

may be used as well as described in section 2.2. In the ZB-PREDICT method (Z-

matrix from BPDF REsolution and Discovery for Immunosignature Classification

Testing), scaled BPF is used to reduce the immunosignature data dimensionality.

This is then fed into the BPFA for latent feature discovery. The latent feature binary

Ẑ matrix is then modified according to equation (3.25a). Again, the higher the C

value, the more likely two patients are to be grouped together due to the fact that

their latent feature spaces are closer matches to one another, as is seen when using

the Z matrix modifications to penalize incorrect matches.
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3.5.3 BPFA with Φ Matrix and PCA

Another method, Φ-PREDICT, may be used to determine patient cluster-

ing by disease as well. This is also known as Φ PCA REsolution and Discovery

for Immunosignature Classification Testing. As previously discussed, this requires

the input data matrix to be transposed from that discussed in Z-PREDICT or ZB-

PREDICT. As opposed to previous methods, Φ̂ (the MCMC estimate of Φ) is a

non-binary feature matrix governed by the distribution given in equation (3.10). Due

to the non-binary nature of this matrix, it may be more difficult to determine patient

groups by simple inspection. As such, a simple quantization scheme may be employed

to determine patient groups. Each latent feature may be assigned to a pre-determined

user specified quantization level. This will lead to a quantized version of Φ̂, which

means that each patient will have different quantized latent feature representations.

By inspection, it will be possible to see which patients contain feature combinations

at identical quantization levels and group these patients together. It should be noted

that the results from the Φ̂ matrix may be fed into the DP-GMM for further adaptive

classification. This was not investigated in this work due to other positive results

using alternative methods.

It should be noted that there is still an RIC and SIC application for these

classification results. However, since the Φ-PREDICT method is much more user

involved in terms of specifying clustering parameters, the definition of SIC and RIC

are slightly changed. SIC is still the exact match of all features but now is extended

to all quantization levels. The definition of RIC is more user specific. For RIC, it is

still the matching of features, but in this case the user may elect to allow for some

variation amongst features that do not match. This can be though of as allowing

the majority of features to be correctly matched (example results in [44], which were
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produced before the inception of RIC and SIC), or it may be thought of as allowing

feature variance within a certain number of quantization levels. Additionally, as the

number of examined features increases, the less likely they are to match at every

quantization level all the time, making the analysis overly restrictive.

3.6 BPFA Clustering Results

3.6.1 Results of BPFA with PCA Features

In this case, the input data matrix to the BPFA will be transposed. This means

that D is the number of peptide combinations selected from the PCA of the median

intensity data, and N is the number of patients. For Dataset 1 the resulting Φ̂ and Ẑ

matrices as well as the estimated reordered π̂k values are presented in Figure 3.4. The

Ẑ matrix is in the LOF configuration [92] and transposed. Features containing no

entries were removed in order to easily show the feature relationships. In this case, it

is the Φ̂ matrix that illustrates the relationship between the peptide combinations and

underlying features and Ẑ illustrates the relationship between features and patients.

Three PCA components were used in this analysis which represents 93.5% of the data

and K = 50. A total of 2000 burn-in iterations and 3000 sample iterations were used

for the blocked Gibbs sampler. The confusion matrices for SIC and RIC cases are

given in Tables 3.1 and 3.2. The SIC result was 60% and the RIC result was 73.3%.

For Dataset 2 the resulting Φ̂, Ẑ, π̂k are presented in Figure 3.5. Once again,

Ẑ is presented in LOF configuration, transposed, and with features have zero entries

removed. Five PCA components were used for this analysis which accounts for 93.5%

of the data and K = 50 for this analysis. A total of 3000 burn-in iterations and 3000

sample iterations were used. The resulting SIC and RIC were both 88%.
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Figure 3.4: BPFA results from Dataset 1
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Figure 3.6: Z-PREDICT classification results.
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Class C1 C2 C3 C4 C5 C6

C1 3/5 0/5 0/5 0/5 0/5 0/5

C2 0/5 3/5 0/5 0/5 1/5 0/5

C3 1/5 0/5 3/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 2/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 1/5 2/5

Table 3.1: Dataset 1 confusion matrix
for Z-PREDICT using SIC.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 0/5 3/5 0/5 0/5 1/5 0/5

C3 1/5 0/5 3/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 1/5 2/5

Table 3.2: Dataset 1 confusion matrix
for Z-PREDICT using RIC.

Class C1 C2 C3 C4 C5

C1 4/5 0/5 0/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5

C4 1/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 3.3: Dataset 2 confusion matrix
for Z-PREDICT using SIC.

Class C1 C2 C3 C4 C5

C1 4/5 0/5 0/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5

C4 1/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 3.4: Dataset 2 confusion matrix
for Z-PREDICT using RIC.

3.6.2 Results of BPFA with Beta PDF Fitting Features

Two datasets were analyzed with ZB-PREDICT. The results of the BPFA

may be seen in Figures 3.7 and 3.8 for Dataset 1 and 2 respectively. For Dataset 1,

K = 50 was used along with 2000 burn-in iterations and 2000 sample iterations. The

Resulting RIC and SIC were 83.3% for both. For Dataset 2, K = 50 was used along

with 2000 burn-in and 2000 sample iterations. This resulted in 76% RIC and SIC.
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Figure 3.7: ZB-PREDICT BPFA results from Dataset 1
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Figure 3.9: ZB-PREDICT clustering results.
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Figure 3.8: ZB-PREDICT BPFA results from Dataset 2

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 3/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 3/5 0/5 0/5 0/5 0/5 2/5

Table 3.5: Dataset 1 confusion matrix
for ZB-PREDICT using SIC.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 3/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 3/5 0/5 0/5 0/5 0/5 2/5

Table 3.6: Dataset 1 confusion matrix
for ZB-PREDICT using RIC.

60



Class C1 C2 C3 C4 C5

C1 5/5 0/5 0/5 0/5 0/5

C2 2/5 1/5 2/5 0/5 0/5

C3 0/5 0/5 4/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 3.7: Dataset 2 confusion matrix
for ZB-PREDICT using SIC.

Class C1 C2 C3 C4 C5

C1 5/5 0/5 0/5 0/5 0/5

C2 2/5 1/5 2/5 0/5 0/5

C3 0/5 0/5 4/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 3.8: Dataset 2 confusion matrix
for ZB-PREDICT using RIC.

3.6.3 Results of BPFA with Φ Matrix and PCA

As previously stated, data matrix X is of size DxN . When patients are used

as the dimensionality of this matrix, D, this means that the input data matrix must

be arranged such that the rows of the matrix contain the N peptide PCA components

desired. The simplistic quantization scheme as described in section 3.5.3 was utilized

for classification. For these results, RIC is defined as having the exact same features

at the exact same quantization levels with the except of a single feature that is within

a single quantization level of the rest of the group.

For Dataset 1 the resulting Φ̂ and Ẑ matrices as well as the estimated π̂k values

are reordered and presented in Figure 3.10. The Ẑ matrix is presented in left ordered

form (LOF) [92] and are transposed with features containing no entries removed in

order to easily show the feature relationships. In this case, it is the Φ̂ matrix that

illustrates the relationship between the patients and underlying features. It is possible

to see that the combinations of underlying features are indicative of the disease states

of each of the patients. A simple classification scheme is included in Figure 3.11 for

dataset 1 that is produced by simple quantization of the values of each entry in the
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matrix. Also shown in this figure is the comparison of every patient to every other

patient for both a scaled and unscaled image. The number of PCA components used

in this analysis was 31 which represents 99.93% of the data and K = 50 for this

analysis. A total of 2500 burn-in iterations and 2500 sample iterations were used for

the blocked Gibbs sampler. The confusion matrices for the SIC and RIC cases are

given in Tables 3.9 and 3.10. This led to a SIC result of 43.3% and a RIC result

of 53.3%. For Dataset 2 the resulting Φ̂, Ẑ, π̂k are presented in Figure 3.12. Once

again, Ẑ is presented in the LOF configuration, transposed, and with features having

zero entries removed. The simple classification scheme is shown in Figure 3.13 which

is produced from simple quantization of the values of each entry in the Φ̂ matrix.

The number of PCA components used in this analysis was 26 which accounts for

essentially 100% of the data and K = 50 for this analysis. A total of 2000 burn-in

iterations and 2000 sample iterations were used. The SIC and RIC confusion matrices

are given in Table 4.3 and 4.3 respectively. SIC was 60% while RIC was 68%.
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Figure 3.10: BPFA output for Dataset 1
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(b) Ẑ from Dataset 2

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Kth Atom

π
K

(c) Descending order π̂k from Dataset 2

Figure 3.12: BPFA output for Dataset 2
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Class C1 C2 C3 C4 C5 C6

C1 2/5 0/5 0/5 0/5 0/5 0/5

C2 0/5 1/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 1/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 2/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 0/5 0/5 0/5 2/5

Table 3.9: Dataset 1 confusion matrix
for Φ-PREDICT results using SIC.

Class C1 C2 C3 C4 C5 C6

C1 2/5 0/5 0/5 0/5 0/5 0/5

C2 0/5 3/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 2/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 2/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 0/5 0/5 0/5 2/5

Table 3.10: Dataset 1 confusion ma-
trix for Φ-PREDICT results using
RIC.

Class C1 C2 C3 C4 C5

C1 1/5 0/5 0/5 3/5 0/5

C2 0/5 1/5 1/5 3/5 0/5

C3 0/5 0/5 4/5 1/5 0/5

C4 0/5 0/5 0/5 5/5 0/5

C5 0/5 0/5 1/5 0/5 4/5

Table 3.11: Dataset 2 confusion ma-
trix for Φ-PREDICT results using
SIC.

Class C1 C2 C3 C4 C5

C1 1/5 0/5 0/5 3/5 0/5

C2 0/5 1/5 1/5 3/5 0/5

C3 0/5 0/5 5/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 3.12: Dataset 2 confusion ma-
trix for Φ-PREDICT results using
RIC.

3.7 Challenges with BPFA Clustering

Several challenges to these classification schemes exist, the first of which is

the increased computational overhead as the number of patients increases; in other

words, a larger C matrix is generated. Additionally, as K increases, the C values

may increase, leading to an artificial inflation of the values simply due to more shared

features. Thus, it will not be possible to compare C values from different dataset runs
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when new BPFA results are generated, though this may be solved by normalizing the

resulting feature vectors. Additionally, the quantization scheme for Φ-PREDICT

is user specified and its performance is dependent on the appropriate level being

employed. If there are too many quantization levels used, then it is less likely that

patients with similar diseases will have the exact same features at the exact same

quantization levels due to too fine resolution. If there are too few quantization levels,

there is the possibility that patients with different diseases will have similar feature

representations at identical quantization levels due to too poor resolution.

Furthermore, extra care is needed when determining what will be considered

correct classification using this method. Definitions for SIC are fairly straightforward,

but when considering RIC, the user must select appropriate amounts of variation that

will be considered allowable in the final classification analysis. This is often tied to

the classification parameters selected such as number of quantization levels or number

of features considered. As such, this creates a highly variable picture as to what can

be considered correct classification, and may need to be considered on a case by case

basis, depending on how the output will be used. This can also lead to different

interpretations for SIC and RIC criteria as well. For example, it might be perfectly

acceptable in a research or discovery setting to allow for some variation in the feature

quantization levels, where as in the clinical setting, one may want to go with the SIC

definition as clinical action will be taken based on the results.

For this reason, matrices comparing each output to that of every other output

are provided for easier results viewing. It is possible that further analysis on these

comparison matrices (such as thresholding for what will be considered correct classi-

fication) would yield additional insights into the classification results. Additionally,

all of these methods are non-adaptive and do not easily allow additional patient data

to be analyzed; this method was not further explored within the context of this work.
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While the BPFA is very useful in highlighting underlying feature relationships,

it does not inherently perform classification for immunosignaturing data based on

the less restrictive definition that multiple features may describe a disease state.

For example, once having found the Φ̂ and Ẑ matrices in each case, it may not

be intuitively obvious which patients should be grouped together. This is especially

difficult as the number of features increases. As such, further classification algorithms

may still be needed to illustrate the patient groupings. Additionally, the number of

estimated parameters is much greater than in the DP-GMM based methods previously

discussed, which leads to increased computational complexity and execution time.

While improvements in these areas are not the focuses of this work, it is possible to

further refine the algorithms, such as by the implementation of parallel architectures,

to improve the BPFA execution.

With regards to the BPFA model parameters themselves, the prior distribu-

tion assumptions were also selected in this case to provide some nice conjugate prior

simplifications. Other distributions may be selected that could be more appropriate

to the data types and improve the subsequent classification. Additionally, the inno-

vation parameters a and b (and the equation related K) play a role in how latent

features are grouped together. Therefore, it is possible to select these parameters

such that features are not usually grouped together or such that they are very often

grouped together. The user input is somewhat critical for these parameters, and they

should be carefully selected based on how conservative one needs to be in terms of

missclassification.
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Chapter 4

INTEGRATED DP-GMM AND BPFA CLUSTERING

4.1 Integration of DP-GMM Clustering with BPFA Latent Feature Analysis

While beta process factor analysis (BPFA) allows for the determination of

underlying features that describe the patient, disease, antibody, and peptide rela-

tionships measured by immunosignaturing, it requires a clustering scheme in order

to group the latent features. This is because clustering is based on combinations of

features rather than the more restrictive assumption of one feature corresponding to

one cluster only. Although the heuristic clustering schemes discussed in Chapter 3

using the Φ̂ and modified Ẑ matrices as estimations of Equation (3.8) were success-

fully used, their expansibility and utility is somewhat limited. This is because the

heuristic clustering algorithms become increasingly difficult to use as the number of

features, patients, or patient data increases. As such, an adaptive method like the

DP-GMM may be used to perform the clustering.

A combined approach using the Dirichlet Process (DP) and BPFA is used to

learn a dictionary for image construction in [98], but does not focus on identifying

latent features. In [46], an infinite overlapping mixture model was used by assigning

data to multiple clusters following the Indian buffet process (IBP), assuming under-

lying features as clusters, but this is too restrictive for immunosignatures. In [99],

a combined beta process DP model was considered for a compressive sensing frame-

work, but it doesn’t consider both visible and latent processes. A further use of the

DP with the IBP is described in [45], which assumes that there are multiple clustering

interpretations for the resulting features rather than a single grouping.
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4.1.1 DP-GMM and BPFA Clustering Using PCA Features

The same DPGMM algorithm presented in Algorithm 1 may be used to adap-

tively classify both the Φ̂ or the Ẑ matrices in order to show patient groups that

indicate similar disease states. The BIO-PREDICT, or BPFA Included prOcessing

with PCA REsolution and DPGMM for Immunosignature Classification Testing,

combines PCA dimensionality reduction with the BPFA for latent feature identifi-

cation, and then feeds the result of the Ẑ matrix into the DPGMM for adaptive

clustering. In terms of immunosignaturing, this method provides a flexible, adaptive

method for on-the-fly clustering that is applicable in the situation where additional

data for new patients is received, or when additional immunosignaturing data for

existing patients is received. This method does not require any modification of the

existing BPFA or DPGMM algorithms, making it a good fit and logical next step

for the immunosignaturing clustering problem. The combination of these two meth-

ods allows for complex feature relationships that are algorithmically determined via

Bayesian nonparametrics rather than described by only the observable data charac-

teristics available to the researcher. Additionally, since the clustering is adaptive, it

is able to update model parameters and adjust to new incoming data.

4.1.2 DP-GMM and BPFA Clustering Using Beta PDF Fitting Features

Just as PCA was used for dimensionality reduction in BIO-PREDICT, the beta

probability density function fitting (BPF) can be used to obtain the BIOB-PREDICT,

or BPFA Including prOcessing using Beta PDF REsolution with DPGMM for

Immunosignature Classification Testing algorithm. This approach uses beta PDF

fitting for feature reduction, followed by BPFA for latent feature identification, and

a reduced and transposed Ẑ matrix is then fed into the DP-GMM for adaptive clus-
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tering. This method provides an alternative to PCA in the BIO-PREDICT method,

thereby limiting the feature space to two dimensions for all patient samples.

4.2 Clustering Results for Integrated Clustering Approaches

4.2.1 Results of DP-GMM with BPFA and PCA

Several datasets were analyzed using the BIO-PREDICT method. For Dataset

1, the Z-PREDICT BPFA results given in Figure 3.4 were used as the input for BIO-

PREDICT (as opposed to running the same data from the PCA stage). For the

remaining DPGMM stage, α = 35 was chosen, the number of burn-in iterations was

2000, and the number of sample iterations was 3000. For the Dataset 2, the BPFA

results of Z-PREDICT in Figure 3.5 were used. The remaining DPGMM step used

α = 45, and 2000 burn-in iterations and 3000 sample iterations were used. The re-

sults of the clustering are seen in Figures 4.1(a) and 4.1(b), and the corresponding

confusion matrices are seen in Tables 4.1, 4.2, 4.3, and 4.4. The clustering result for

this was found to be 76.7% for both SIC and RIC for Dataset 1 and 88% for both

SIC and RIC for Dataset 2.

Class C1 C2 C3 C4 C5 C6

C1 0/5 1/5 1/5 3/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5 0/5

C3 0/5 1/5 3/5 0/5 0/5 0/5

C4 1/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 0/5 3/5

Table 4.1: Dataset 1 confusion matrix
for BIO-PREDICT using SIC.

Class C1 C2 C3 C4 C5 C6

C1 0/5 1/5 1/5 3/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5 0/5

C3 0/5 1/5 3/5 0/5 0/5 0/5

C4 1/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 0/5 0/5 2/5 0/5 0/5 3/5

Table 4.2: Dataset 1 confusion matrix
for BIO-PREDICT using RIC.
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Figure 4.1: BIO-PREDICT results

Class C1 C2 C3 C4 C5

C1 4/5 0/5 0/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5

C4 1/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 4.3: Dataset 2 confusion matrix
for BIO-PREDICT using SIC.

Class C1 C2 C3 C4 C5

C1 4/5 0/5 0/5 0/5 0/5

C2 0/5 4/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5

C4 1/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 4.4: Dataset 2 confusion matrix
for BIO-PREDICT using RIC.

4.2.2 Results of DP-GMM with BPFA and Beta PDF Fitting

The BIOB-PREDICT algorithm was performed using the BPFA outputs given

in Figures 3.7 and 3.8. For the remaining DPGMM step for Dataset 1, α = 35, 2000

burn-in iterations, and 3000 sample iterations were used. This results in a SIC and

RIC clustering rate of 83.3% in both cases. For Dataset 2, the remaining DPGMM

steps used α = 35, 2000 burn-in iterations, and 2000 sample iterations. For this data

set, the SIC and RIC clustering results were both 76%.

73



0 5 10 15 20 25 30 35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

C
la

s
s

Data

 

 
Breast Cancer

Normal

Glioma

Cocci

Sarcoma

Asthma post

(a) BIOBPREDICT results from Dataset 1.

0 5 10 15 20 25 30

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

C
la

s
s

Patients

 

 

Alzheimers

Asthma

Influenza

Qfever

Normal

(b) BIOBPREDICT results from Dataset 2.

Figure 4.2: BIOB-PREDICT clustering results.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 3/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 3/5 0/5 0/5 0/5 0/5 2/5

Table 4.5: Dataset 1 confusion matrix
for BIOB-PREDICT using SIC.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 2/5 3/5 0/5 0/5 0/5 0/5

C3 0/5 0/5 5/5 0/5 0/5 0/5

C4 0/5 0/5 0/5 5/5 0/5 0/5

C5 0/5 0/5 0/5 0/5 5/5 0/5

C6 3/5 0/5 0/5 0/5 0/5 2/5

Table 4.6: Dataset 1 confusion matrix
BIOB-PREDICT using RIC.
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Class C1 C2 C3 C4 C5

C1 5/5 0/5 0/5 0/5 0/5

C2 2/5 1/5 1/5 0/5 0/5

C3 0/5 0/5 4/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 4.7: Dataset 2 confusion matrix
BIOB-PREDICT using SIC.

Class C1 C2 C3 C4 C5

C1 5/5 0/5 0/5 0/5 0/5

C2 2/5 1/5 1/5 0/5 0/5

C3 0/5 0/5 4/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 4.8: Dataset 2 confusion matrix
for BIOB-PREDICT using RIC.

4.3 BIO-PREDICT and BIOB-PREDICT Model Challenges

For BIO-PREDICT, the PCA steps require correct eigenvalue truncation, as

well as the assumption that the data can be maximized along orthogonal basis. The

modified covariance matrix also requires an understanding of the underlying data in

order to select an appropriate shrinkage factor. These challenges require additional

user analysis and input. For the BIOB-PREDICT algorithm, the BPF step results

in a large amount of data loss when reducing to two parameters, and assumes that

the feature space is sufficient to capture subtle antibody differences. For both BIO-

PREDICT and BIOB-PREDICT, while using the DP-GMM is an improvement over

the proposed simple clustering schemes in that it is adaptive, it still has its own chal-

lenges (see section 2.6). The issues with innovation parameter selection, underlying

distribution selection (Gaussian), and single cluster membership are tradeoffs. Addi-

tionally, the BPFA steps require the selection of a distribution and feature parameters,

and while a version is presented here, other distributions may be more suited to the

data. Thus, both methods can prove to be computationally intensive when evaluated

using the blocked Gibbs sampler method in a Markov chain Monte Carlo framework.
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Chapter 5

MULTIPLE STATE CLUSTERING USING BPFA

5.1 Motivation for Multiple Disease State Clustering

It has been shown that it is possible to model and cluster immunosignaturing

data using Bayesian nonparametric techniques such as Dirichlet process Gaussian mix-

ture modeling (DP-GMM) and the beta process factor analysis (BPFA) when these

are incorporated into a broader algorithm flow. The previously presented cluster-

ing algorithms assume only patients with a single state, or single underlying disease.

However, there may be instances when clustering or classification into multiple un-

derlying states is necessary. For example, a patient may suffer from more than one

disease or multiple strains of the same disease [40].

There is also a desire not only to determine patient pathology groupings, but

also to determine pathology combinations in patients (i.e., the presence of multiple

diseases). Other possible examples include the desire to identify a single disease as well

as the disease stage, the need to illustrate single disease relationships where multiple

relationships are possible with other diseases, and the desire to know both diseases

and symptoms. Additionally, there may be relationships between single diseases or

disease manifestations (such as expanded relaxed immunosignaturing classification,

RIC, criteria) that are not explored when a single group is assigned. As such, ad-

ditional algorithms need to be developed to allow multiple cluster membership for a

single patient sample. Furthermore, while clustering was successful in previous re-

sults, there was no disease identification determined; results are restricted to only the

basic groupings amongst patients.
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There is a desire to extend the single state techniques to accommodate for

multiple underlying states and provide flexibility for further analysis. We propose to

modify the heuristic Z matrix based clustering algorithms in Chapter 3 for determin-

ing multi-state relationships amongst patients by introducing known information for

desired states [48]. This may also be thought of as training data required for state

identification but is not used for clustering. In the case of disease data, this would

mean immunosignatures that are associated with a known disease state.

5.2 Algorithms for Multiple State Clustering Based on BPFA

5.2.1 PCA Features with BPFA for Multiple State Clustering

Previously, it was demonstrated that it is possible to separate patient groups

using the Z-PREDICT algorithm and further using the BIO-PREDICT algorithm

to facilitate easier clustering. The inputs in both of these cases were log PCA data

based on individual patient immunosignatures consisting of the median intensities of

peptide sequences on the microarray. The combinations of latent features were used

to define a single disease state, where more than one feature may be indicative of

a particular patient group. However, these algorithms will only indicate underlying

feature combinations; they do not directly separate out which feature combination

pertains to which disease unless a training set of data is available. This training

data, or disease key data, is necessary for diagnosis in order to establish the baseline

responses for known states.

In order to expand Z-PREDICT to be useful for n underlying states, some

equation modifications need to be made. As such, the Z-PREDICTn, or Z-matrix

from PCA REsolution and Discovery for Immunosignature Classification Testing

up to n-states, algorithm is developed. In this method, a master key for single states
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(i.e., training data for the single state) is used to compare against the individual data

entries with multiple underlying states. The algorithm is built upon the basis that

the latent features for multi-state patients are some mathematical operation between

the feature vectors for the individual states. For example, note that Patient 1 (a

representative disease key) in Figure 5.1 has a feature vector of z1 = [110000] and

Patient 15 (another disease key) has a feature vector of z15 = [101100]. Each of these

is a feature vector for a separate disease. Compare this to Patient 9 whose feature

vector is z9 = [111100] and whose patient contains both diseases that are represented

by z1 and z15, which can be seen as a logical operation union between the two vectors,

notably the ”or” function in this case.
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Figure 5.1: Example of dual disease state data Ẑ (LOF and transposed)

To create a method to exploit this, a modification of binary BPFA matrix Ẑ

(the estimate of the binary matrix in Equation (3.8)) is necessary. The matrix of

single state keys is known as the M matrix, and consists of a single feature vector for

each known state, where the feature vector is meant to represent the weighted values

of each feature within a representative population with only that state. The Ẑ matrix
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then needs to be modified such that incorrect comparisons will be penalized. This

is accomplished by replacing all zero entries from the original BPFA output with a

negative one. This is known then as the matrix Y. The compete absence of a feature

is denoted by -1 and strong presence of a feature is denoted as 1. The master keys

for the single disease are then appended to Y, and the new matrix is referred to as

A. This matrix is then multiplied by the transpose of itself, and the upper-triangular

portion is kept while the lower-triangular portion is set to zero, and only the first R

rows are kept. This can be described as a new Z matrix modification and comparison

scheme between the known key data and the unknown patient data with the following

mathematical representations:

Y = g.(2Z− 1) (5.1a)

Y = [N; P] (5.1b)

M(r) =

q∑
1

pq,rN(r), r = 1 . . . R (5.1c)

A = [M; P] (5.1d)

C = UT[(hA)T (hA) + c, R] (5.1e)

Where UT[., R] keeps only the upper triangular portion of the matrices that corre-

spond to the desired R rows, R is the number of master keys (i.e., the number of

rows) in M, P is the portion of Z that contains only entries with unknown states

and no key results, N is the portion containing only the non-averaged key results, p

is the number of results in Z that correspond to each state, and g and h are scaling

factors and c is a constant that helps to account for very small number multiplication

if necessary. Additionally, q is the total number of patients in that particular state

and their individual weights are pq,r. In general, the parameter pq,r can be adjusted

to account for varying amounts of competing antibodies, in the case of immunosig-
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naturing. This can also be thought of one possible way to incorporate information

surrounding inhibition, such as competitive inhibition [101, 102]. This Z-PREDICTn

method may also be thought of as a non-normalized scaled dot product or correlation.

An alternative representation which does not average together keys for known states

may be obtained by omitting Equations (5.1c) and (5.1d) with Y = A. This is similar

to the procedure for Z-PREDICT, but may lead to a more complex representation

of the classification. However, this can help account for instances where entries are

repeated in the training data, or known keys. This difference will be discussed further

in the data simulations.

For immunosignaturing, the single states are individual diseases and the multi-

state case is when a patient immunosignature contains antibody representations in-

dicative of multiple underling diseases. As as example of this process, it is assumed

that the ground truth, or single state known keys, of patients 1-5 (breast cancer) and

11-15 (glioma) are known of Figure 5.1. Thus, in order to provide a single vector

describing each particular disease state, the entries are averaged together, creating

disease ”master keys.” This may be seen in Figure 5.2, where the first row is the

average of all of the breast cancer feature responses, and row 2 is the average of all

the glioma feature responses. They are referred to as the ground truth disease master

keys for these two disease states.

Based on results given in Figure 5.2, comparisons may now be made between

each remaining patient (rows 3-7) and the two ground truth disease keys given in

rows 1 and 2 by using Z-PREDICTn. This comparison (i.e. C) is given in Table 5.1,

when all scaling factors of Z-PREDICTn are set to 1. Note that K1 and K2 refer to

rows 1 and 2 in Figure 5.2 corresponding to breast cancer and glioma ground truth

keys respectively. Also note that R3-R7 refer to rows 3-7 of Figure 5.2 corresponding

to each of the five patients with two disease states. Note that negative numbers in the
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Figure 5.2: Dual disease state data Ẑ (LOF and transposed) and ground truth Key

resulting C matrix values show little similarity between the key and patient feature

vector of interest and positive numbers show higher similarity. From this matrix it is

possible to see that all patients (R3-R7) show positive C values with K1, indicating

that they most likely share the disease state breast cancer. The relative strengths

are given by the C values. Similarly C values of all but two patients are positive,

indicating that they also most likely have glioma. Again, the relative strengths are

given by their C values. In this example, this would result in correct classification of

all 5 patients with K1 and 3 patients with K2.

Key K1 K2 R3 R4 R5 R6 R7

Breast Cancer (K1) 2.80 0.48 3.20 2.00 1.60 1.60 3.20

Glioma (K2) 0.48 2.16 0.40 -0.80 -2.00 2.00 0.40

Table 5.1: C matrix results from Figure 5.2
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5.2.2 Beta PDF Fitting Features with BPFA for Multiple State Clustering

Similarly to how PCA may be used for dimensionality reduction in Z-PREDICTn,

beta PDF fitting (BPF) may be be used as an alternative. This method is called ZB-

PREDICTn, or Z-matrix from Beta PDF REsolution and Discovery for Immunosignature

Classification Testing up to n-states, and is used when n ≥ 2. This method uses BPF

reduction fed into BPFA for latent feature identification. The Ẑ matrix is then mod-

ified according to Equation (5.1). The C matrix then describes the relationships.

Again, with the immunosignaturing work discussed here, a state is a single disease

while multiple states is indicative of a patient having multiple diseases. However, for

other work any number of concurrent unknown underlying states does not change the

ZB-PREDICTn algorithm execution.

5.3 Multiple Disease State Clustering Results

5.3.1 Multi-Disease Dataset Descriptions

Two sets of disease datasets containing patients with single and dual disease

pathologies are also considered. The first group, labeled as multi-disease Dataset 1, or

MDD1 consists of 20 sets of key (or ground truth) immunosignatures, five from each

of the disease states: breast cancer, sarcoma, glioma, and normal. Then, ten sets of

immunosignatures were used for classification. The first five contained immunosigna-

tures corresponding to breast cancer and sarcoma, while the remaining five contained

immunosignatures corresponding to sarcoma and glioma. Immunosignatures were

placed in the following order for the analysis: 5 breast cancer, 5 breast cancer +

sarcoma, 5 sarcoma, 5 sarcoma + glioma, 5 glioma, and 5 normal. Each dual disease

immunosignature was created by taking the average of two different immunosigna-

tures, one from each disease, where median intensities of corresponding sequences
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were averaged together. The second set of data, known as multi-disease dataset 2

or MDD2, consisted of 59 sets of key immunosignatures, 20 Alzheimer’s immunosig-

natures (the first 20 entries), 20 cocci immunosignatures (entries 41 through 60), 10

myeloma immunosignatures (entries 61-70), and 9 normal immunosignatures (entries

71-79). The multi-disease immunosignatures (entries 21-40) had both Alzheimer’s

disease and myeloma.

Again, each dual disease immunosignature was created by taking the average of

two different immunosignatures, one from each disease, where the median intensities of

corresponding sequences were averaged together. Note that, where possible, different

immunosignatures were used than what are represented in the training data, but due

to small dataset availability for some diseases and the desire to show the algorithm

functioning under various conditions, some were repeated in the sarcoma, Alzheimer’s,

and myeloma groups. However, this does not greatly impact the results for the

algorithm since each repetition represents only a small portion of the training data

used in each comparison. Analysis and discussions on this averaging with relationship

to the biological model are provided in Section 7.1.

5.3.2 Type 1 and 2 Clustering Errors for Multi-disease Data

For single disease state clustering results are described using relaxed (RIC)

and strict (SIC) definitions. However, when analyzing classification results for multi-

disease datasets, it is possible to have multiple types of misclassifications where some

diseases may be classified correctly and others may not. Type I and Type II error

definitions may be used for this patient data. Statistically speaking, the Type I

error generally describes the outcome of incorrectly rejecting a null hypothesis (false

positive) [100]. In the case of immunosignaturing, a false positive occurs when a

patient has a disease but the classification fails to indicate the presence of this disease.
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The Type II error generally refers to the failure to reject a null hypothesis (false

negative) [100]. For immunosignaturing classification, this means that a patient is

classified as not having a particular disease when in fact they do have that disease

pathology.

While these same definitions can be applied to the single disease states as

well, it is more straightforward to report the cases of correct classification rather

than delineate between the different error cases. However, for dual disease state

data, it becomes necessary as some algorithm parameters may work better for certain

disease states. As such, multi disease state data will be reported by indicating the

true positive, true negative, Type I error, and Type II error for each disease state.

The true positive and true negative rates will be combined and referred to as correct

classification and the Type I and Type II error rates will be combined and referred to

as incorrect classification [100]. When using adaptive clustering, the final category,

no result, indicates that the clustering fell outside of the main results and disease

presence could not be automatically determined based on the classification results

alone without additional analysis by the user. To provide a conservative estimation

of the performance, the no result category is considered a misclassification.

5.3.3 Multiple Disease Clustering Results using PCA and BPFA

The Z-PREDICTn algorithm was evaluted with two datasets, MDD1 and

MDD2. The eigenvalue plots for MDD1 and MDD2 may be seen in Figure 5.3. The

first 11 principal components were used for MDD1, representing 93.2% of the data,

while the first 15 principal components were used for MDD2, representing 94.7% of

the data. The post BPFA results for the PCA of MDD1 and MDD2 may be seen in

Figure 5.4 and Figure 5.5. For both datasets, K = 50, and 2000 burn-in and sample

iterations each were used.
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Figure 5.3: The first 20 significant eigenvalues from each multi-disease dataset.

For MDD1, the C values are given in Table 5.2 and also plotted in Figure 5.6

for readability. Figure 5.8 and Table 5.3 correspond to MDD2. It should be noted

that row 5 (Key 5) in both datasets is simply blank and is inserted for readability

only. As one can see from Figure 5.6 and 5.8, the higher the value, the more likely

the patient is to have a particular disease. The patient entries for C are presented as

a stem plot for readability with the x-axis representing each patient and each color

coded stem in the plot representing the comparison with the known disease keys. For

each dataset, g = 10 and h = (1/100)1/2.

However, without knowing how many states, i.e. diseases, are present, it be-

comes difficult to provide a meaningful threshold of where disease significance begins

and therefore determine which diseases are present. Thus, in order to determine how

many true positive, true negative, type I error, and type II error classification results

there are, it is necessary to know the value of n where n > 1 and is the number of

states (i.e. diseases) of interest. However this is not possible without some supple-

mental patient knowledge. It is assumed that the value of n is known (n = 2 in both

cases here). While this determination may be done via several means, it is outside

this chapter’s scope; an alternative approach will be discussed in Chapter 6. Based
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Figure 5.4: BPFA results for MDD1 in Z-PREDICTn

on this assumption, the classification results in each case are summarized in Tables

5.10 and 5.11. For MDD1 this led to a true combined classification rate of 95% and

a combined error classification rate of 5%. For MDD2, this led to a combined true

classification rate of 87.5% and a combined error classification rate of 12.5%.

Also given are the un-combined results where Equations (5.1c) and (5.1d) were

removed and Y = A. All other parameters for the MCMC steps are the same. The

stem plots become cumbersome to read with so many comparisons, and thus a com-

parison matrix is given in Figures 5.7 and 5.9. For classification purposes, entries

in the top two values for each comparison were taken. The tables of comparisons
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Figure 5.5: BPFA results for MDD2 in Z-PREDICTn

for each case are given in Tables 5.5 and 5.7. This resulted in 68% combined cor-

rect classification and 32% combined error for MDD1 and 59.5% combined correct

classification and 40.5% combined error for MDD2.
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Key K1 K2 K3 K4 K5 R6 R7 R8

Breast Cancer (K1) 14.76 11.00 9.40 10.20 13.00 13.00 13.00 13.00

Sarcoma (K2) 11.00 17.00 11.40 13.00 15.00 15.00 15.00 15.00

Glioma (K3) 9.40 11.40 12.52 10.12 13.40 9.40 9.40 9.40

Normal (K4) 10.20 13.0 10.12 12.20 13.40 11.80 11.80 11.80

Key R9 R10 R11 R12 R13 R14 R15

Breast Cancer (K1) 13.00 13.40 11.00 11.00 9.00 9.00 7.00

Sarcoma (K2) 15.00 13.00 13.00 13.00 15.00 15.00 13.00

Glioma (K3) 9.40 11.40 11.40 11.40 11.80 11.80 9.80

Normal (K4) 11.80 11.40 11.40 11.40 11.00 11.00 9.00

Table 5.2: Table of MDD1 Z-PREDICTn results
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Figure 5.6: MDD1 Z-PREDICTn results using all equations of (5.1)

5.3.4 Multiple Disease State Clustering Results Using Beta PDF Fitting and BPFA

The results for MDD1 are shown in Figures 5.10. For these results, 2000 burn-

in iterations and 2000 sample iterations were used in the blocked Gibbs sampler with

K = 50 and c = 0. The result for C is shown in Table 5.8 and Figure 5.12. This

resulted in a combined correct classification of 65% and a combined error of 35%. For

MDD2 the results may be seen in Figure 5.12 where 2000 burn-in iterations and 2000
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Key K1 K2 K3 K4 K5 R6 R7 R8

Alzheimer’s (K1) 14.49 13.29 14.30 12.90 15.10 15.10 15.10 15.10

Cocci (K2) 13.29 14.76 15.80 15.20 14.00 14.00 14.00 14.00

Myelmoa (K3) 14.30 15.80 19.16 17.40 15.40 15.40 15.40 15.40

Normal (K4) 12.90 15.20 17.40 20.00 14.00 14.00 14.00 14.00

Key R9 R10 R11 R12 R13 R14 R15 R16

Alzheimer’s (K1) 12.50 12.50 14.70 14.70 14.70 14.70 14.70 14.70

Cocci (K2) 12.20 12.20 14.20 14.20 14.00 14.00 14.00 14.00

Myelmoa (K3) 13.40 13.40 15.40 15.40 15.40 15.40 15.40 15.40

Normal (K4) 12.00 12.00 14.00 14.00 14.00 14.00 14.00 14.00

Key R17 R18 R19 R20 R21 R22 R23 R24

Alzheimer’s (K1) 12.30 12.30 14.90 13.90 14.90 14.90 14.90 11.90

Cocci (K2) 12.00 12.00 16.40 14.40 16.40 16.40 14.00 12.40

Myelmoa (K3) 13.40 13.40 19.40 17.40 19.40 19.40 15.40 16.60

Normal (K4) 12.00 12.00 18.00 16.00 18.00 18.00 14.00 14.00

Table 5.3: Table of MDD2 Z-PREDICTn results

Disease True + True - Type I Type II

Breast Cancer 5/5 5/5 0/5 0/5

Sarcoma 10/10 0/0 0/0 0/10

Glioma 5/5 5/5 0/5 0/5

Normal 0/0 8/10 2/10 0/0

Table 5.4: Indication and error rates for dataset 1 after Z-PREDICTn

sample iterations with K = 50 and c = 100 were used. The results for C may be seen

in Figure 5.13 and Table 5.9. This led to a combined correct classification of 100%

and a combined error of 0%.
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Figure 5.7: MDD1 Z-PREDICTn results not using (5.1c) and (d)
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Figure 5.12: MDD1 results for ZBPREDICTn
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Disease True + True - Type I Type II

Breast Cancer 16/25 14/25 11/25 9/25

Sarcoma 35/50 0/0 0/0 15/50

Glioma 25/25 23/25 2/25 0/25

Normal 0/0 23/50 27/50 0/0

Table 5.5: MDD1 Z-PREDICTn results with (5.1c) and (d) removed
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Figure 5.8: MDD2 Z-PREDICTn results

Disease True + True - Type I Type II

Alzheimer’s 15/20 0/0 0/0 5/20

Cocci 0/0 20/20 0/20 0/0

Myeloma 20/20 0/0 0/0 0/20

Normal 0/0 15/20 5/20 0/0

Table 5.6: MDD2 Z-PREDICTn results.

Disease True + True - Type I Type II

Alzheimer’s 124/400 0/0 0/0 276/400

Cocci 0/0 292/400 108/400 0/0

Myeloma 151/200 0/0 0/0 49/200

Normal 0/0 135/180 45/180 0/0

Table 5.7: MDD2 Z-PREDICTn results with (5.1c) and (d) removed
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Figure 5.9: MDD2 Z-PREDICTn results not using (5.1c) and (d)

Key K1 K2 K3 K4 R6 R7 R8

Breast Cancer (K1) 30.00 -2.00 14.00 -14.00 -10.00 10.00 10.00

Sarcoma (K2) -2.00 20.40 -0.40 13.20 22.00 18.00 18.00

Glioma (K3) 14.00 -0.40 7.60 -6.00 -2.00 2.00 2.00

Normal (K4) -14.00 13.20 -6.00 14.00 18.00 6.00 6.00

Key R9 R10 R11 R12 R13 R14 R15

Breast Cancer (K1) 10.00 -30.00 30.00 -30.00 30.00 30.00 30.00

Sarcoma (K2) 18.00 2.00 -2.00 2.00 -2.00 -2.00 -2.00

Glioma (K3) 2.00 -14.00 14.00 -14.00 14.00 14.00 14.00

Normal (K4) 6.00 14.00 -14.00 14.00 -14.00 -14.00 -14.00

Table 5.8: ZBPREDICTn C for MDD1
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Figure 5.10: ZBPREDICTn results for MDD1
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Figure 5.11: BPFA results for MDD2
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Figure 5.13: MDD2 results for ZB-PREDICTn
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Key K1 K2 K3 K4 K5 R6 R7 R8

Alzheimer’s (K1) 35.00 27.30 38.00 4.22 42.00 42.00 42.00 42.00

Cocci (K2) 27.30 25.80 32 13.77 38.00 38.00 38.00 38.00

Myelmoa (K3) 38.00 32.00 50.00 5.55 50.00 50.00 50.00 50.00

Normal (K4) 4.22 13.77 5.55 33.33 15.55 15.55 15.55 15.55

Key R9 R10 R11 R12 R13 R14 R15 R16

Alzheimer’s (K1) 36.00 36.00 42.00 42.00 42.00 42.00 42.00 42.00

Cocci (K2) 22.00 22.00 38.00 38.00 38.00 38.00 38.00 38.00

Myelmoa (K3) 30.00 30.00 50.00 50.00 50.00 50.00 50.00 50.00

Normal (K4) -4.44 -4.44 15.55 15.55 15.55 15.55 15.55 15.55

Key R17 R18 R19 R20 R21 R22 R23 R24

Alzheimer’s (K1) 42.00 42.00 34.00 34.00 34.00 34.00 42.00 42.00

Cocci (K2) 38.00 38.00 26.00 26.00 26.00 26.00 38.00 38.00

Myelmoa (K3) 50.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00

Normal (K4) 15.55 15.55 -4.44 -4.44 -4.44 -4.44 15.55 15.55

Table 5.9: Table of MDD2 ZBPREDICTn results

Disease True + True - Type I Type II

Breast Cancer 3/5 1/5 4/5 2/5

Sarcoma 6/10 0/0 0/0 4/10

Glioma 4/5 5/5 0/5 1/5

Normal 0/0 7/10 3/10 0/0

Table 5.10: Indication and error rates for MDD1 after ZB-PREDICTn

Disease True + True - Type I Type II

Alzheimer’s 20/20 0/0 0/0 0/20

Cocci 0/0 20/20 0/20 0/0

Myeloma 20/20 0/0 0/0 0/20

Normal 0/0 20/20 0/20 0/0

Table 5.11: Indication and error rates for MDD2 after ZB-PREDICTn
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Chapter 6

H-PREDICT AND HB-PREDICT FOR MULTIPLE STATES

While Dirichlet process Gaussian mixture modeling (DP-GMM) is useful for clas-

sification in applications where there are multiple unknown states that need to be

adaptively clustered, it is not able to provide classifications in more than one group

for a single patient. One way around this issue is to use the hierarchical Dirichlet pro-

cess (HDP) in conjunction with modified beta process factor analysis (BPFA), which

simply places a prior over the initial distribution, and then executes the DP-GMM

as given in Algorithm 1. While it is possible to apply patient comparisons as inputs

to the DP-GMM, further bookkeeping is required. This is simplified with the HDP.

6.1 Hierarchical Dirichlet Process Theory

The HDP is simply an extension of the DP to include an additional DP prior

on the base measure. In the same way that the DP may be thought of as a ”Chinese

restaurant process” (CRP), the HDP may be thought of as a ”Chinese restaurant

franchise” (CRF) [103], or a non-parametric extension of linear Dirichlet allocation

[104]. The HDP is very flexible in that it allows for multiple hierarchies, which is useful

in diverse topics such as music, target tracking, and speech [105–108]. Assuming a

base distribution S, the hierarchical extension is given by:

G0 =
∞∑
m=1

βmδ(θ − θh,m) (6.1a)

Gj =
∞∑
m=1

πj,mδ(θ − θh,m) (6.1b)

θh,m ∼ S (6.1c)
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An extension to Equation (2.20, where j = 1 . . . J is the cohort number, forms a

stick-breaking representation of the HDP [109]:

G0|γh, A ∼ DP(γh, A), (6.2a)

Gj|αh, G0 ∼ DP(αh, G0), (6.2b)

β′k ∼ Beta(1, γh), k = 1, . . . ,∞, (6.2c)

βm = β′k

m−1∏
l=1

(1− β′l), m = 1, . . . ,∞, (6.2d)

π
(h′)
j,k ∼ Beta(αhβm, αh(1−

m∑
k=1

(βk))), k = 1, . . . ,∞, (6.2e)

π
(h)
j,k = π

(h′)
j,k

m−1∏
l=1

(1− π(h′)
j,l ), m = 1, . . . ,∞ (6.2f)

The HDP equations are identical to the DP, except now a prior has been

placed on the base distribution Gj. This prior for the new base distribution is itself

a Dirichlet process with an innovation parameter γh and an underlying distribution

S. Note that αh is an innovation parameter in the DP. The subscript h in Equation

(6.2) denote the HDP dependence. The conditional distribution over which an item

(patient) may belong to a particular group (disease cluster) is given by [103, 109]:

mj,i|mj,1:i−1, αh ∼
∑
m

nj,m∑
m′ nj,m′ + αh

δ(θ − θh,m) +
αh∑

m′ nj,m′ + αh
δ(θ − θnewh,m ) (6.3)

where m is a particular cluster and nj,m is the number of patients already present

in a cluster. While only two hierarchical levels are explored here, the HDP can be

extended to as many as desired depending on the problem to be solved. The blocked

Gibbs sampler algorithm with update equations for may be found in Algorithm 3.

Several papers have focused on using the HDP as a remedy to the co-clustering

problem, including [110] and [111] for haplotype reconstruction where data is unlikely
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to be pooled together. It is also investigated in [112] in a multilevel format for

human EEG monitoring and in [113] for brain fiber tract clustering. In each of these

cases, some modification of the HDP or data set model was required in order to

successfully perform the co-clustering. The immunosignaturing results determined

in Z-PREDICTn and ZB-PREDICTn lend themselves to direct implementation of

the HDP, as the data has a natural separation into groups per patient. Note that

while it is possible to apply the DP-GMM as well to the results of the Z-PREDICTn

and ZB-PREDICTn, additional bookkeeping would need to be performed in order

to first combine all patient results into a single group and then further to break

the resulting clustering into groups per patient. While the DP-GMM itself may

be relatively straightforward for cohorts with few patients present, it becomes more

tedious if the patient numbers in each cohort increases.

Although work has been done to make the implementation of the HDP more

efficient [114], implementation via a blocked Gibbs sampler is investigated here to

maintain consistency with prior immunosignaturing work performed with the DP-

GMM. In the case of immunosignaturing, two levels will be sufficient to allow for

clustering across multiple cohorts, each with their own patient groups. This is because

the first level of clustering (local) will take care of the group assignment to a particular

disease state while the second level (global) will ensure that the available clusters will

be the same across all available cohorts.

6.2 HDP Based Multiple Disease State Clustering

6.2.1 PCA Features with HDP

While successful clustering for immunosignaturing was previously demonstrated

for single diseases using PREDICT, B-PREDICT, BIO-PREDICT, and BIOB-PREDICT,

98



it did not extend the clusters to disease diagnosis or multiple disease states. While

this may be sufficient if only the total number of disease states is desired, or if one is

only interested in the incidence of a new disease in a population, missing diagnoses

is impractical at a clinical level for everyday medicine. Therefore, it is desirable to

extend the previous results to include diagnosis information in addition to the ability

to extend beyond a single disease diagnosis.

The HDP is a natural addition to this work in that generally diagnosis re-

quires some sort of training data where the ground truth disease state is known.

As such, a method is devised that builds upon the Z-PREDICTn previously dis-

cussed in that the results of C are then fed into the HDP for adaptive clustering.

This method is called H-PREDICT, or HDP of PCA REsolution and Discovery for

Immunosignature Classification Testing.

6.2.2 Beta PDF Fitting Features with HDP

Similar to how PCA can be used to reduce the dimensionality in the H-

PREDICT algorithm, BPDFF can be used as an alternative. The output of ZB-

PREDICTn may be fed into the HDP. This is called HB-PREDICT, or HDP of Beta

PDF REsolution and Discovery for Immunosignature Classification Testing. This

allows the user to restrict the dimensionality to two, rather than an indeterminate

number of principal components.

6.3 HDP Clustering Results

6.3.1 Clustering Results of PCA with HDP

The H-PREDICT algorithm was tested against with datasets MDD1 and

MDD2. The MDD1 classification results corresponding to Figure 5.6 are given in
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Figure 6.1. The C matrix stem plot is also given again for reference. The classifica-

tion results are also summarized in an additional graphical representation as well. In

this depiction, each face has a number associated with it that corresponds to which

patient the data point originates from. Each group represents a cluster created in H-

PREDICT. The clusters correspond to having a state present (solid circle) while the

disease not present cluster has a slash through the cluster. Entries that are incorrectly

clustered have an asterix (*) next to their patient number. Table 6.1 summarizes the

classification results, with a combined correct classification of 75% and a combined

error rate of 12.5%. The innovation parameters were αh = γh = 3 with 5000 burn-in

iterations and 5000 sample iterations.

The MDD2 classification results corresponding to Figure 5.8 are given in Figure

6.2. The C matrix stem plot is also given again for reference. The correct combined

classification was 57.5% while the combined error rate was 20%. The innovation

parameters were αh = γh = 6 and for the blocked Gibbs sampler, 2000 burn-in

iterations and 5000 sample iterations were used.

Disease True + True - Type I Type II No Result

Breast Cancer 5/5 2/5 0/5 0/5 3/10

Sarcoma 10/10 0/0 0/0 0/10 0/10

Glioma 2/5 4/5 1/5 3/5 0/10

Normal 0/0 7/10 2/10 0/0 1/10

Table 6.1: MDD1 H-PREDICT classification summary
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(b) HDP classification results.

(c) HDP classification results.

Figure 6.1: H-PREDICT results for MDD1

Disease True + True - Type I Type II No Result

Alzheimers 10/20 0/0 0/0 9/20 1/20

Cocci 0/0 14/20 1/20 0/0 5/20

Myeloma 11/20 0/0 0/0 3/20 6/20

Normal 0/0 13/20 0/20 0/0 7/20

Table 6.2: MDD2 H-PREDICT classification summary

6.3.2 Clustering Results of Beta PDF Fitting with HDP

The HB-PREDICT classification results for MDD1 are given in Figure 6.3.

The stem plot of the C matrix is also given again for reference. The innovation
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(a) Modified Ẑ matrix from reduced MDD2.
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Figure 6.2: H-PREDICT results for MDD2

parameters were αh = γh = 4 and 2000 burn-in followed by 2000 sample iterations

were used. The combined correct classification was 50% while the combined error was

25%. The HB-PREDICT MDD2 classification results are given in Figure 6.4 with

the classification results summarized in Table 6.4. The combined correct classification

was 70% while the combined error was 15%.
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Figure 6.3: HB-PREDICT results for MDD1
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Disease True + True - Type I Type II No Result

Breast Cancer 2/5 0/5 1/5 2/5 5/10

Sarcoma 7/10 0/0 0/0 2/10 1/10

Glioma 4/5 5/5 0/5 1/5 0/10

Normal 0/0 2/10 5/10 0/0 3/10

Table 6.3: MDD1 HB-PREDICT classification summary
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Figure 6.4: HB-PREDICT results for MDD2

Disease True + True - Type I Type II No Result

Alzheimers 18/20 0/0 0/0 2/20 0/20

Cocci 0/0 5/20 12/20 0/0 3/20

Myeloma 19/20 0/0 0/0 1/20 0/20

Normal 0/0 14/20 0/20 0/0 6/20

Table 6.4: MDD2 HB-PREDICT classification summary

6.4 H-PREDICT and HB-PREDICT Model Challenges

There are several difficulties with using the HDP in a classification framework

as presented in the previous sections. First, with both algorithms, a two cluster

approach is used to indicate which diseases are present. It is possible that there are

multiple clusters of interest to the user, rather than just a binary disease diagnosis.
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Algorithm 3 Blocked Gibbs sampling for HDP using an D-dimensional co-
hort X with J individual subgroups

Input: J datasets X = {x1 . . . ,xN}, HDP innovation parameters αh and γh,
Normal-Wishart hyperparameters µN , τN , ξW , ιW , DP truncation limit M .

Output: Samples {µ(i)
m ,Σ

(i)
m , c

0(i),w
(i)
0,J}Li=1

Repeat for i = 1, 2, . . . , Gibbs iterations:

1. Update for θ(i)
m = {µ(i)

m ,Σ
−1(i)
m } ∼ p (µm,Σ

−1
m |c(i−1),X), m = 1, . . . ,M .

(a) Let Xm = {xn : c
(i−1)
n = m} and Nm = |Xm|, for m = 1, . . . ,M .

(b) For all clusters, m = 1, . . . ,M , compute,

µxm
=

1

Nm

∑
n:c

(i−1)
n =m

xn

Σxm =
1

Nm

∑
n:c

(i−1)
n =m

(xm − µxm
)2

µ̃N ,m =
τN µ̃N +Nmµxm

τN +Nm

,

τ̃N ,m = τN +Nm ,

ι̃W,m = ιW + Σxm +
τN Nm

τN +Nm

(m− µxm
) (m− µxm

)T ,

ξ̃W,m = ξW +Nm .

(c) Draw samples for Σ−1(i)
m from the Wishart distribution,

W (Σ−1
m ; ι̃W,m, ξ̃W,m), for m = 1, . . . ,M .

(d) Finally draw samples for µ
(i)
m from the Normal distribution,

N (µm; µ̃N ,m,
Σ

(i)
m

τ̃N ,m
), for m = 1, . . . ,M .

2. Do the global update.

(a) Draw samples βg ∼ Beta
(

1 +N∗m, γh +
∑M

m′=m+1N
∗
m′

)
,

where N∗m , |{n : c
(i)
n = m}|, m = 1, . . . ,M .

(b) Update for w
(i)
m ∼ p (w0

m|c(i)), m = 1, . . . ,M .

Finally evaluate w
(0,i)
m = βm

∏m−1
g=1 (1− βg), m = 1, . . . ,M .
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Algorithm 3 Continued

3) Do the local updates for all J groups

a) Let qjm,n , w
j,(i−1)
m N (xjn;µ

(i)
m ,Σ

(i)
m ), m = 1, . . . ,M and n =

1, . . . , N .

b) Normalize qj,′m,n =
qjm,n∑M

m=1 q
j
m,n
,m = 1, . . . ,M and n = 1, . . . , N .

c) Update for c
j,(i)
n ∼ p (cjn|µ(i),Σ−1(i),w(i−1),X), n = 1, . . . , N . Draw

samples for c
j,(i)
n ∼

∑M
m=1 q

j,′
m,nδ(c

j
n,m), n = 1, . . . , N . Note that

c = c1:J .

d) Draw samples βjl ∼ Beta
(
αhw

j,(i−1) +N∗m, αh(1− wj,(i−1))
)
, where

N∗m , |{n : c
j,(i)
n = m}|, m = 1, . . . ,M .

e) Update for w
j,(i)
m ∼ p (wjm|cj,(i)), m = 1, . . . ,M . Finally evaluate

w
j,(i)
m = βjl

∏m−1
l=1 (1− βl), m = 1, . . . ,M .

As such, additional disease or patient information would be required in order to

interpret additional clusters. Further, when ”no result” groups are created, additional

information may be required in order to determine patient diagnosis. Fortunately,

because this method is executed in a multidimensional embodiment, it is possible

to add other patient features or data points as a multidimensional patient vector,

and classify hierarchically based on that information as well. Additionally, with

every additional layer of hierarchy, computational complexity increases, leading to

increased execution time for convergence in the blocked Gibbs sampler.
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Chapter 7

COMPARISON OF PROPOSED CLUSTERING ALGORITHMS

Now that various methods have been proposed and applied to various datasets, the

results discussion is presented. In the case of the single disease methods, this includes

comparison with a known method that performs well for immunosignaturing anal-

ysis. For the multi-disease methods, no alternative analysis has been presented for

immunosignaturing, and alternate Bayesian non-parametrics are not suitable without

further modification. Each method’s link to the biological model is discussed in order

to provide a background and reasoning for some of the model selection.

7.1 Method relationships to the biologic model

A variety of methods have been presented, each with their own benefits and

tradeoffs for immunosignaturing analysis. Before these results are discussed in depth,

it is helpful to have an understanding of the biological models that they each repre-

sent. As with most models, these seek to represent the natural phenomena (in this

case disease pathology) in a simplified way for better understanding. In terms of

immunosignaturing arrays, it has been shown that the presence of a disease state will

be indicated by the binding of antibodies specific to that particular pathology to the

random, but known, peptide sequences present on the glass immunosignaturing slide.

Particular antibodies will bind with varying affinities to the peptide sequences present

in the spot locations based on chemical interactions [15]. As such, the fluorescence

combinations will be indicative of various disease states [7–13].

In the case of PREDICT (PCA REsolution with DP-GMM for Immunosigna-

ture Classification Testing) and B-PREDICT (Beta PDF REsolution with DP-GMM
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for Immunosignature Classification Testing), these combinations are reduced to ei-

ther distribution parameters that represent the binding behavior (B-PREDICT) or

principal component analysis (PCA) components used to eliminate small binding

contributions (PREDICT), and then the Dirichlet process Gaussian mixture model

(DP-GMM) is used to classify patients based on these parameters. In the case of

PREDICT, the PCA components themselves are representative of combinations of

peptide binding results, and thereby are the high intensity value spots of interest.

Since these are discernible by data inspection, these are considered visible processes

to the viewer. While there is still useful information to be gleaned from the peptides

that are not high intensity, because the peptide array is fixed, if one knows which

peptides are considered high intensity, then it is also known which are not considered

high intensity.

It should also be noted that the threshold for significant peptide combinations

is determined by the eigenvalue analysis, which is user determined. Thus, the user

is indirectly setting a threshold for intensity significance. For B-PREDICT rather

than directly or indirectly imposing a significance threshold for the intensity mea-

surements, a more holistic view is taken to describe the distribution of all the peptide

intensity measurements. This has some advantages in that no peptides are discarded

in the analysis, aside from those having no or negative measurements from the ac-

tual equipment, which are discarded in in any case. Interestingly, the PCA and beta

PDF fitting (BPF) dimensionality reductions are complementary, and datasets may

do better with one or the other based on their antibody characteristics. For example,

it is possible that peptides of interest will be discarded during the eigenvalue analysis,

especially if only a few small pathological changes are present. These changes may be

lost due to the imposed thresholding, and important disease information subtleties

will be lost. Conversely, the BPF version will miss multi-modal distributions and
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their subtle changes, and may not have the resolution to distinguish distributions

that are very similar, but whose underlying peptide combinations are very different.

As such, it is important to retain both dimensionally reduction techniques and allow

the user to apply the case more suited to their analysis, even though this may require

additional data or user consideration.

In the case of Φ-PREDICT (Φ PCA REsolution and Discovery for Immunosig-

nature Classification Testing), Z-PREDICT (Z-matrix from PCA REsolution and

Discovery for Immunosignature Classification Testing), and ZB-PREDICT (Z-matrix

from Beta PDF REsolution andDiscovery for Immunosignature Classification Test-

ing), the beta process factor analysis (BPFA) is performed on the BPF or PCA

down-selected dataset (i.e. encoding of the discernible feature space). In this way,

latent features are discovered for each algorithm. As previously discussed, prefer-

ential antibody binding leads to high intensity spot combinations, which are then

summarized through BPF or PCA and then classified to indicate disease pathology.

When the BPFA is introduced, it creates an additional step in the process where by

the disease pathology is now linked to K latent features, and those K latent features

are linked both to patient and to the high intensity peptides of interest. As such, the

classification is performed on the latent features themselves, rather than the metrics

that are directly related to a biological phenomena. It should also be noted that while

the BPFA can show the latent feature relationships, it does not identify the latent

features themselves. In the case of immunosignaturing, this means that the algo-

rithm does not provide a link to a biological phenomena for the K features. However,

this fact itself does not prevent clustering, as in BIO-PREDICT (BPFA Including

prOcessing with PCA REsolution and DP-GMM for Immunosignature Classification

Testing) or BIOB-PREDICT (BPFA Including prOcessing with Beta PDF REsolu-

tion with DP-GMM for Immunosignature Classification Testing), or further analysis,
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such as in the case where peptide analysis is studied. Peptide analysis was not the

focus of this work, but as each of these methods was able to identify patients with sim-

ilar feature profiles, the BPFA may also be used to study peptides of significance for

each disease. It is interesting to note that in order to toggle between methods that

are geared towards examining disease diagnosis and those that are geared towards

peptide analysis, all one needs to do is transpose the initial data matrix X containing

the median peptide intensities, and then execute the proper method. This will simi-

larly change the dimensionality from peptides (in the case where disease diagnosis is

the preferred path) to patients (in the case where peptide analysis is desired). These

methods allow for complementary analysis to occur when using the same dataset, and

represent diverse options in the toolbox for those studying immunosignaturing.

When considering multiple diseases, the same biological ties still exist, but

they are simply expanded to include a wider range of disease possibilities. In Z-

PREDICTn (Z-matrix from PCA REsolution and Discovery for Immunosignature

Classification Testing up to n-states) and ZB-PREDICTn (Z-matrix from Beta PDF

REsolution and Discovery for Immunosignature Classification Testing up to n-states),

the subsequent Z matrix analyses are done simply to compare known disease profiles

of the patients. Thus, the same latent K features are now known for some diseases

(although they are still not related to a known biological phenomena), and these can

be compared to the K feature profiles for patients with unknown disease pathologies.

While these methods are demonstrated in the presence of multiple diseases for each

patient, they are still valid in single disease settings, especially when there is a desire

to understand disease relationships. It is possible that disease pathogens that share

biological similarities will share very similar pathology responses. One example of

this would be the relationship of small pox to that of cow pox. Although these are

separate pathogens that affect different species, their relationships to one another have
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allowed for similar antibody responses from the human immune system [42]. Thus,

if diseases share similar combinations of high intensity spots, it may be possible that

they share similar immunosignaturing intensity distribution parameters or similar

high intensity peptide combinations. As such, it is possible that they will share similar

latent features, thereby leading to similar Z matrices, and similar clustering results.

Thus, these methods may be useful to show disease similarities, such as structure or

phylogenic relationships. Further work may be done in this area to better explore

disease relationships.

It is also useful to note that in Φ-PREDICT, Z-PREDICT, ZB-PREDICT,

BIO-PREDICT, BIOB-PREDICT, Z-PREDICTn, and ZB-PREDICTn, the unweighted

BPFA algorithm is used. Though more restrictive than the weighted case, this was

thought to be the simplest case from the biological model standpoint in that each

estimated matrix could be used to describe a particular biological relationship. For

example, in Z-PREDICT, the Z matrix indicates the relationship between latent fea-

tures and patients while the Φ matrix represents the relationship between the latent

features and prominent peptide intensity combinations. The introduction of a matrix

of weights would require further biological understanding for which no data was taken

for immunosignaturing. However, this leads to some assumptions with the biological

model being represented, especially in the case of multiple diseases. It is possible

that antibodies may bind to multiple peptide spots and that there may be some com-

petition between antibodies for binding sites [19]. The biological model in this case

assumes that this is not a dominant affect. It is possible that the introduction of

the weight matrix in the BPFA may indicate which peptide combinations are at odds

with one another when binding (outside the scope of this work).

Thus, as the relationships become more complicated, an adaptive classifica-

tion scheme is useful. While it is possible to use the DP-GMM directly on the
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Z-PREDICTn or ZB-PREDICTn results, this would lead to additional bookkeeping.

As such, the HDP is a useful tool yielding the H-PREDICT (HDP of PCA REsolution

and Discovery for Immunosignature Classification Testing) and HB-PREDICT (HDP

of Beta PDF REsolution and Discovery for Immunosignature Classification Testing)

algorithms. In a clinical setting a medical professional is only interested in whether

or not a patient has a particular disease, hence the desire for only two clustering re-

sults (the patient has the disease or the patient does not have the disease). However,

in the case where disease relationships need to be understood, several sub-groups or

additional clusters may be useful. These could correspond to further biological states

such as having previously had the disease, or perhaps instances where the patient is

somewhere in the disease response continuum, as in the are of time course data.

Given these assumptions and limitations to the model, further refinement is

possible. The inclusion of the weight matrix along with some additional biologic

information on the binding effects of the antibodies themselves could lead to a more

refined model, especially where further analysis of the peptides themselves is desired.

In the case of patient classification, additional clusters could be identified and tied to

other biological states in patient pathology, for example those corresponding to time

effects in disease states. Given the basis for these models, further discussion of each

method will be undertaken next.

7.2 Single State Comparison to Naive Bayes Classification

For comparison purposes in the area of single disease results, the same single

data sets were analyzed using the naive Bayes approach indicated in [7]. This method

was selected for comparison because it represented the highest performing method in-

dicated amongst the presented algorithms. Peptides were selected using the ANOVA

method and at the ∼ 200 peptide significance level, though due to p-value thresh-
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olding dataset 1 only had 198 peptides and dataset 2 only had 197 peptides. Two

methods were selected to create training sets for this method. Due to limited data

availability for some of the diseases, the first training set was constructed as a circu-

lar moving average [115] (CMA) of four of the five immunosignaturing microarrays

for each disease. This can also be thought of as leave one out averaging where for

each entry in the training set for each disease state, the average of all but one (the

one currently being classified) of the microarray median intensity data is used. This

creates a conservative comparison by which to compare the other single disease state

immunosignaturing results, as not much variation exists between the training set and

actual datasets for the naive Bayes implementation which theoretically will provide

good classification results. The results for each dataset are given in Figure 7.1. The

resulting confusion matrix for each dataset is given in Tables 7.1 and 7.2. The second

training set was contrived by using leave one out cross validation (LOOCV) [7, 116–

118]. These results are also given in Figure 7.1, and the corresponding confusion

matrices are given in Tables 7.3 and 7.4. Note that for these cases the SIC and RIC

criteria are differently described. In this case, CMA is considered SIC while the RIC

is considered the LOOCV case. Dataset 1 had a correct classification rate of 80% and

40% while dataset 2 had a correct classification rate of 84% and 84% for the CMA

and LOOCV methods respectively. The better of the two classification results for

each dataset will be used for comparison purposes.
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(a) Dataset 1 with CMA.
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(b) Dataset 2 with CMA.
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(c) Dataset 1 with LOOCV.
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(d) Dataset 2 with LOOCV.

Figure 7.1: Naive Bayes classification of single disease datasets.

Class C1 C2 C3 C4 C5 C6

C1 5/5 0/5 0/5 0/5 0/5 0/5

C2 0/5 4/5 0/5 1/5 0/5 0/5

C3 1/5 0/5 3/5 1/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 0/5 1/5

C5 0/5 0/5 0/5 0/5 3/5 2/5

C6 0/5 0/5 0/5 0/5 0/5 5/5

Table 7.1: Confusion matrix for
Dataset 1 using naive Bayes with
CMA.

Class C1 C2 C3 C4 C5

C1 5/5 0/5 0/5 0/5 0/5

C2 0/5 2/5 0/5 0/5 3/5

C3 0/5 0/5 5/5 0/5 0/5

C4 0/5 0/5 0/5 4/5 1/5

C5 0/5 0/5 0/5 0/5 5/5

Table 7.2: Confusion matrix for
Dataset 2 using naive Bayes and CMA.
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Class C1 C2 C3 C4 C5 C6

C1 3/5 0/5 2/5 0/5 0/5 0/5

C2 1/5 1/5 1/5 2/5 0/5 0/5

C3 2/5 0/5 2/5 1/5 0/5 0/5

C4 0/5 2/5 0/5 2/5 1/5 0/5

C5 0/5 0/5 1/5 1/5 2/5 1/5

C6 0/5 0/5 0/5 0/5 3/5 2/5

Table 7.3: Confusion matrix for
Dataset 1 using naive Bayes and
LOOCV.

Class C1 C2 C3 C4 C5

C1 4/5 1/5 0/5 0/5 0/5

C2 1/5 4/5 0/5 0/5 0/5

C3 0/5 1/5 4/5 0/5 0/5

C4 0/5 1/5 0/5 4/5 0/5

C5 0/5 0/5 0/5 0/5 5/5

Table 7.4: Confusion matrix for
Dataset 2 using naive Bayes and
LOOCV.

7.3 Algorithm Robustness and Sensitivity

There are several steps in the algorithm that require user input for success-

ful execution. The first user interaction happens with the PCA visible feature and

dimensionality reduction step. In this step, eigenvalue truncation happens at some

user specified point thereby creating the threshold for significance. If the truncation

limit is to too low, not enough data will be selected for good feature resolution. If the

truncation limit is too high, little performance gain may be achieved while drastically

increasing the amount of data required to analyze. As such, data is truncated at

greater than 90% to help capture the majority of underlying variance in the datasets.

The user must exercise some discretion in selecting the truncation limit, and some

iteration may be necessary to show that sufficient information has been included.

An alternative approach would be to include a performance metric that is automati-

cally calculated and then approach the truncation limit selection like an optimization

problem. However, this expansion is outside the scope of this work.
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The next place user interaction may be required is in the execution of the DP-

GMM. The user must specify either the total number of clusters (M) or must specify

an error threshold, in addition to the innovation parameter α and base parameters.

These selections drive the clustering behavior of the algorithm. If one selects values

that are very restrictive, it is possible to achieve a new cluster for every single data

point, while values that are not sufficiently restrictive may lead to only a single cluster

being identified. While this may seem like a highly variable process, some solutions

will better describe the data.

This analysis is performed by simply inspecting the data and clustering com-

parison. Note that this comparison does not require that one know the true underlying

state in order to determine if the clustering solution is a good match. This simply

requires inspecting the created clusters and determining if the clusters accurately re-

flect the feature space behavior. An example of the clustering results overlaid in the

feature space may be seen in Figure 7.2. As one can see from this image, the estimated

Gaussian distributions roughly match with the data. When considering the cluster-

ing of the latent BPFA feature space, this is demonstrated in the heuristic clustering

methods presented in the Z-PREDICT and ZB-PREDICT algorithms. While it may

be argued that such inspection violates the theoretical purposes behind using these

adaptive methods, the practical application of such algorithms does not happen in a

vacuum. Data need not be inspected or analyzed by human intervention, but could

be done via some broader algorithm analysis. For example, one could compute the

number of points in each cluster and determine the naturing of the clustering result.

Another place in which the user interaction will be required is the selection

of parameters for the BPFA. Similar to the DP-GMM, parameters may be set so

restrictively that all features are shared or that no features are shared. However,

with the BPFA it was observed that when moving away from optimal solutions the
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(b) Classification results.

Figure 7.2: B-PREDICT results for Dataset 2.

Z matrix becomes highly variable. This can result in all features being zero or one

regardless of the K truncation value chosen. This simply means that the parameters

selected do not allow for good estimation given the dataset. A secondary metric that

may be used to determine if adequate parameters have been selected is to look at the

ordered values of π values and determine if only a few significant values are present

while the others are close to zero. However, once the user is in the approximate

vicinity of optimal parameters some variation can be seen in the Z matrix results.

In this case, one cannot directly inspect the feature space to determine if parameter

selection is adequate due to the fact that this is a latent feature space that is not

observable to the user. As such, one must pay careful attention to the Z matrix. In

the case of the data examined here, very little variation was seen in features, with only

a few appearing or disappearing when the initial parameters were changed. However,

this does not mean that this will be the case for all data. An example of feature space

comparisons is given in Figure 7.3. Note that when the features vary by an order of

magnitude, the determined feature space does not drastically change. This can also

be seen by examining the unrounded results for the same parameters. However, when

the parameters are very drastically changed, the ability to resolve individual features
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is lost. A large number of small valued features may be seen throughout the Ẑ matrix.

Note that other than the a and b parameters, all other features were held constant:

K = 50, and the number of burn-in and sample iterations were 2000. One way to

overcome the issue of not being able to observe the latent feature space directly would

be to include data whose ground state is known, such as in the multi-disease state

option, and optimize for the known data. This provides the opportunity to narrow

the feature space while simultaneously examining the performance. This may also be

done automatically through an optimization problem where known data performance

is monitored and set up as an optimization problem. This is outside the scope of this

work as it was not immediately necessary or heuristically performed by the user, such

as in the case of Z-PREDICTn and ZB-PREDICTn.

Finally, it should be noted that since most of the model estimation for all

algorithms are MCMC based algorithms, slightly different results may be obtained

by running the algorithms multiple times with exactly the same parameters. This is

due to the fact that different chains will iterate towards slightly different estimations.

One way to overcome this issue is to run the same parameters with multiple chains and

then analyze each of the results using some success criteria, such as fit to the feature

space. This is why for all simulations performed in this dissertation, each MCMC

step was run a minimum of three times and then the best solution was selected.

7.4 Multi-State Comparison to the Single State Limits

In order to understand the multi-state data combined performance results, it is

helpful to compare other algorithms of similar functionality. However, for immunosig-

naturing data of this type, no prior work was available for multi-state analysis. As

such, we consider the improvement over the theoretical best performance that can be

achieved in the case of single state analysis. However, if the multi-state algorithms
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(d) LOF ẐT for Dataset 1, no rounding, a=1e-
4, b=1

Figure 7.3: ZB-PREDICT binary matrix results for various parameters

perform worse than if a single state version were used in its place, no improvement

can be claimed. We define two terms to describe the theoretical best performance

limit for multi-state analysis when analyzed with single-state methods.

The first term is the ”Single State Upper Bound,” or SSUB, which is simply

the highest possible true positive and true negative results that could be achieved

for n underlying states when analyzed with a single state method, since only one

state may be identified in the single state methods. As such, the ”Single State Lower

Bound,” or SSLB, is then defined as the lowest type I and type II error that could

be achieved given the SSUB. The SSUB and SSLB refer to the combined true posi-
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tive/true negative or combined type I/type II error percentages respectively. To find

these values, it is first necessary to examine the true positive, true negative, type I and

type II error values, as can be seen in the first four columns of Table 7.5, represent-

ing the limits when this is performed over Ψ key comparisons. This can give more

information than the combined SSLB and SSUB values in that certain algorithms

may be more adept at achieving good results in one of the categories at the expense

of the others. For example, an algorithm may achieve good true positive or negative

results but at the expense of some of the error terms. The combined correct results,

or SSUB, and the combined error, or SSLB, over all comparisons are then given in the

last two columns. Note that this arrangement is true under the assumption that all

N datasets have n underlying states. It should also be noted that, unlike previously

discussed multi-state algorithms, the ”no result” category is not factored in due to

the underlying assumption of perfect clustering, but only single state identification.

In reality, perfect clustering is not likely given the methods discussed previously.

True + True - Type I Type II SSUB SSLB

N
nN

NΨ−nN
NΨ−nN

0
nΨ−nN

nN−N
nN

1+Ψ−n
Ψ

n−1
Ψ

Table 7.5: Single state limits

7.5 Multi-Disease Dataset Training Set Comparison

While the single state clustering methods do not require a comparison dataset

to perform the clustering, training datasets would be required in order to complete

the classification. While this would be relatively straightforward by including im-

munosignature data for known diseases and running it in parallel through the various

single state algorithms, it would still create a semi-supervised environment. Similarly,

the multi-disease methods require known immunosignature data in order to complete
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the clustering. However, in this case the data is an integral part of the algorithm,

though it is not necessarily used in the adaptive portions for model estimation. As

such, some discussion is useful in terms of the performance seen in previous results

in order to understand the impact to the method.

Consider MDD1; previous results have a low number of available datasets

for several of the diseases, and thus removing any one immunosignature datapoint

may have critical impact on the performance. For instance, the results for the C

matrix are given in Figure 7.4(a). There is some redundancy in the data points

due to the low number of available datasets (the sarcoma and a single entry in the

glioma key datasets). This represents a full averaging of all available datasets in

the key comparison data. In order to see this impact, the averaging step, Equation

(5.1c), is removed from the Z-PREDICTn algorithm and all datasets are compared

to every key. This result in shown in Figure 7.4(b). While this provides a more

complete picture of the interactions, the thresholding becomes more difficult in that

many of the data points overlap, where as previously only the top results in each case

need to be considered. In this figure, there are quite a few top results present. As

such, the top two values for each patient were considered. Given this complexity, we

want to unite the two approaches so that analysis is simplified. As such, the CMA

approach discussed in section 7.2 is used here these results are represented in Figure

7.4(c). There is not much difference between this and Figure 7.4(a), meaning the full

averaging approach is nearly equivalent to the CMA approach. The results for these

three training set methods are presented in Table 7.6. For the full averaging training

data, the combined correct classification was 95% with a total combined error of 5%.

For the training data with no averaging, the combined correct classification was 68%

with a total combined error of 32%. For the CMA training data the combined correct

classification was 92.5% with a total combined error of 7.5%.
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Figure 7.4: C results comparisons for various training sets

Disease True + True - Type I Type II

Full Averaging 20/20 18/20 2/20 0/20

No Averaging 76/100 60/100 40/100 24/100

CMA 19/20 18/20 2/20 1/20

Table 7.6: Indication and error rates for dataset 1 after Z-PREDICTn
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7.6 Results summary table

Tables providing the classification results for all methods are given in Tables

7.7 and 7.8. Note that combined correct classification and combined error rates are

given for the multi-disease datasets.

Method
Dataset 1 Dataset 2

SIC RIC SIC RIC

PREDICT 60% 60% 64% 64%

B-PREDICT 70% 76.7% 64% 64%

Z-PREDICT 60% 73.3% 88% 88%

ZB-PREDICT 83.3% 83.3% 76% 76%

Φ-PREDICT 43.3% 53.3% 60% 68%

BIO-PREDICT 66.7% 66.7% 88% 88%

BIOB-PREDICT 83.3% 83.3% 76% 76%

Naive Bayes 80% 40% 84% 84%

Table 7.7: Single state algorithm clustering performance comparison.

Method
MDD1 MDD2

Correct Error Correct Error

Z-PREDICTn 95% 5% 87.5% 12.5%

ZB-PREDICTn 65% 35% 100% 0%

H-PREDICT 75% 12.5% 57.5% 20%

HB-PREDICT 50% 25% 70% 15%

Single State Limits 75% 25% 75% 25%

Table 7.8: Multi-state algorithm classification performance comparison.
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7.7 Method results discussion

Considering Table 7.7, one can see that no method provides 100% correct

classification in all datasets. As such, there are tradeoffs for each method. First

considering the naive Bayes approach, this method requires a training set regardless

of whether the CMA or LOOCV approaches are selected. The LOOCV approach

as provided in literature was expanded to a CMA approach in order to determine

if there were more optimal training sets that could provide improved performance

understanding. The CMA approach performed as well or better than the LOOCV

approach for both datasets. Both these methods have the benefit of providing di-

agnosis information using a straightforward approach with fairly low computational

complexity. However, the inherent tradeoff with these approaches are that they are

supervised and good for single classification assignments. If a novel pathogen response

is detected, it will automatically attempt to bin it into one of the known disease states

present in the training data.

While it may be possible to contrive methods that expand on the naive Bayes

approach in order to compensate for this, such as thresholding the resulting compar-

ison values in the algorithm, multiple novel biothreats would all be lumped together.

Additionally, since a training set is required, the clustering is highly dependent on

the use of a good training set. For some of the data analyzed, only a limited number

of immunosignatures were available. Furthermore, there is concern that the training

data will need to take into account not only all known diseases for classification, but

also be representative of a variety of pathological responses for one particular disease

state. It is conceivable that even within a patient population that the manifesta-

tions of a single disease may take on a variety of immune responses, and accurately

capturing these in the training data would be required for accurate classification.
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This then leads to the necessity for unsupervised methods that are capable of

detecting varied immunological responses without the need for comprehensive train-

ing data. These methods are represented by the remaining methods detailed in Table

7.7. As one can see from these results, no method resulted in perfect clustering

and that some results may be disease state dependent. Additionally, some methods

performed better, as well as, or worse than the CMA and LOOCV naive Bayes em-

bodiments. However, in general, as the methods grow in complexity, their clustering

results improve.

When considering the PREDICT and B-PREDICT methods, one can see that

there may be a slight improvement when using the B-PREDICT approach. However,

for reasons explained in section 7.1, it is important to retain both methods to have a

variety of approaches for the corresponding variety of biological responses that may

be received. Furthermore, these two methods provide a great way to downselect

the data dimensionally from ∼ 10000 unique sequences, to some lower number of

significant data points, though it should be cautioned that the term ”significant”

may also be subjective. It is also worth noting that though the results vary from

60% to ∼76%, these two methods represent the lowest computational requirements

for the adaptive learning algorithms presented here. Thus, it may be possible that

if the immunosignaturing approach was downsized for applications where on-the-

fly analysis was required, such as battlefield or rural settings where sophisticated

equipment is scarce and diagnosis time is critical, this may be an acceptable first

step in helping diagnose pathogens. Additionally, it may be possible to improve

this method by incorporating additional patient data, such as symptoms or time

of infection, to extend the multidimensional data arrays prior to input into the DP-

GMM. As such, these methods may still have important applications in non-lab based

settings. However, we want to improve upon these methods for better clustering.
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This then leads to the Φ-PREDICT, Z-PREDICT, and ZB-PREDICT meth-

ods, whose common adaptive step is the BPFA. From the results presented in Table

7.7, Φ-PREDICT performs the worst out of these three methods. This could be due

to the fact that while the latent feature determination is adaptive, the subsequent

clustering analysis is not and requires additional subjective user input for both the

quantization levels as well as the definitions of SIC and RIC. Because these can be

quite varied, and because a fairly conservative approach was discussed in section 3.6.3,

somewhat low correct clustering results are presented here. However, this does not

mean that this method cannot be expanded or still useful in a lab based setting. This

method provides the unique ability to not just show feature presence in a binary sense

(as with Ẑ based methods), but to show feature presence linked to quantity. This

can help to detect more subtle changes in the antibody profiles rather than simply

a binary on/off state analysis. It should also be noted that it may be possible to

improve this classification by the application of the DP-GMM rather than a user

specified quantization scheme. Additionally, this method employed PCA and did not

delve into a similar method that would employ the BPF dimensionality reduction

scheme. These were not pursued due to the increased performance gains found when

using the Z-PREDICT and ZB-PREDICT methods, which inherently required less

user interaction.

In both Z-PREDICT and ZB-PREDICT, the BPFA is used to determine un-

derlying features that are not directly discernible to the user. However, it does this

by focusing on the binary presence summary indicated by the Ẑ matrix. This pro-

duces immense gains over the Φ-PREDICT method and was as good or better than

either the PREDICT or B-PREDICT methods, and in some cases the naive Bayes

approaches. While these are more computationally intensive, they do provide addi-

tional insight into the binding behavior for the various disease states, which may be
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reflected in the performance of each algorithm on the different disease datasets. This

again highlights the need to have the adaptive approach be flexible enough to capture

varied pathology responses while still providing good clustering. The main issue with

these three methods, however, is the fact that the clustering itself is not adaptive.

While this is inherently not a problem, as the datasets grow in both the number of

patients and possibly even the number of peptides analyzed, there is a need to con-

stantly adapt the output to the changing parameters. As such, adaptive clustering

expansions of the Z-PREDICT and ZB-PREDICT methods were proposed.

These expansions are called the BIO-PREDICT and BIOB-PREDICT meth-

ods, and their results are comparable to those achieved in Z-PREDICT and ZB-

PREDICT, as seen in Table 7.7. This helps to link together the adaptive determina-

tion of underlying or latent features with clustering based on those features. What is

important to note is that this requires an expanded view of the BPFA in that single

features are not indicative of single disease states. Rather, multi-feature combinations

are indicative of disease states. As such, the feature spaces are treated as multidi-

mensional spaces for input into the DP-GMM. The downside is that now two MCMC

techniques are required, and the computational complexity of execution increases.

It is useful to note that the maximum amount of clusters that may be repre-

sented by K features from the BPFA is 2K , meaning that even if too few features

are selected for BPFA analysis or if the values of a and b are set to cause a high

amount of feature combination, it may still be possible to obtain resolution between

disease states. However, while the DP-GMM only needs to estimate a single weight

for each class as defined by M , a precision, and a mean value for each data point (per

Algorithm 1), the number of items to estimate for each of the patients in the BPFA

is very dependent on the value selected for K. As such, DK values are estimated for

the Φ matrix, KN values are estimated for the Z matrix, and a single value for σ2
n
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for the error. Thus, as the number of features specified for the BPFA increases, the

number of estimate computations greatly increases.

Furthermore, it is important to have sufficient data present such that the BPFA

achieves good resolution. This can be improved and even expedited by good selection

of the priors. While the same is true for the DP-GMM, the rate of estimated values

increases at a slower rate defined by the truncation factor M . However, these two

methods performed comparably to the naive Bayes approaches, but did not require

training sets in order to perform the clustering. It is worth noting as well that there

are methods in literature that exist to combine the DP-GMM and BPFA, but had

this approach been used first, the view of multiple underlying features corresponding

to a single disease may have been lost. While this may not have been critical when

clustering the immunosignatures, it is critical if one ever has the desire to link the

features back to the biological effects happening amongst the peptide groups. It is

also critical if there is a desire to reward or penalize certain behavior based on the

tolerance for error in the end use application. However, the combination of these two

methods may be possible improvements for future work.

Each of the methods described previously (naive Bayes, PREDICT, B-PREDICT,

Φ-PREDICT, Z-PREDICT, ZB-PREDICT, BIO-PREDICT, and BIOB-PREDICT),

have a common underlying assumption in their execution. This assumption is that

all patients have only a single disease state at a given time, which may be too re-

strictive in practice, especially in a clinical setting. Furthermore, with the exception

of naive Bayes, these methods do not provide the critical disease diagnosis link that

is desired (i.e. they do not inherently perform classification without the introduction

of known disease state data). While it is possible that known immunosignatures may

be included to help identify each cluster (and even possibly eliminate the need for

separate SIC and RIC criteria), this was not undertaken due to the recognized re-
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strictiveness of the single disease state requirement. However, this would not impact

the detection of a novel biothreat in a population, for which immunosignatures may

not be available.

In order to expand upon the single disease restriction, but to also retain the

adaptive learning elements of these methods, four new method were proposed. These

include Z-PREDICTn, ZB-PREDICTn, H-PREDICT, and HB-PREDICT. The re-

sults for these multi-disease embodiments maybe be seen in Table 7.8. The Z-

PREDICTn and ZB-PREDICTn are direct expansions of the Z-PREDICT and ZB-

PREDICT methods previously discussed, in that they now incorporate known im-

munosignatures for which to compare patient data. This requires further expansion

of the BPFA results to now include the possibility that the feature combinations are

indicative of single disease states, and also that combinations of these combinations

may be indicative of multiple underlying states. This is yet another reason why the

direct linkage between the BPFA and other adaptive classification methods may be

difficult to implement for immunosignaturing. These types of relationships may have

been missed and thus resulted in single disease classification had they been combined

directly or had the Z-PREDICT or ZB-PREDICT methods been used blindly.

It should also be noted that the Z-PREDICTn and ZB-PREDICTn methods

still improve upon the CMA and LOOCV naive Bayes methods in that multiple

diseases may now be identified. As one can see, these methods provide fairly good

classification results, but at the expense of needing additional information in order

to identify present diseases, notably that one must know the number of underlying

diseases. This could also be considered a thresholding problem where the user may

specify a level of significance in order to identify the present diseases. It may also

be possible to modify the naive Bayes approach to perform in a similar manner

by avoiding the final group assignment in the algorithm, and simply plotting the
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comparisons made to the training data and then imposing the user specified threshold.

However, this was not pursued due to the user specified threshold requirement.

Two additional methods were proposed: H-PREDICT and HB-PREDICT.

These methods seek to adaptively classify the values achieved when comparing the

known key immunosignatures with those of unknown patients. Due to the variation

seen in the comparison values for the various patients, it is possible that the classifi-

cation results will be lower than that for Z-PREDICTn and ZB-PREDICTn, which

is reflected in Table 7.8. Note that it would be possible to apply the DP-GMM to

the results of the Z-PREDICTn and ZB-PREDICTn algorithms, but not directly. In

order for that occur, patients must not be seen as a multidimensional dataset, and

all data must be combined into a single dimension disease set. While this is not

impossible, it does require additional bookkeeping in order to glean patient diagnosis

information. As such, the HDP is explored instead, where by the patient data is still

seen as a single dimension dataset, but now is separated into patient corpora. This

then eliminates the need for additional data combination and separation steps that

would be required for the DP-GMM. Additionally, this helps to link formally the

possible combination of the HDP and the BPFA. This also allows for the expansion

of patient data sets to include other information (such as symptoms or time point

data) to improve classification. The downside to the H-PREDICT and HB-PREDICT

methods are that they have higher computational complexity than the Z-PREDICTn

and ZB-PREDICTn methods due to the adaptive learning for diagnosis.

All methods as listed in Tables 7.7 and 7.8 result in the creation of an adaptive

learning framework for immunosignaturing with improved detection and diagnosis

capability. While touched upon briefly in this section, there is still much work to be

done. Possible extensions will be further discussed in the next section.
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Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Conclusion

Given the methods summarized in Tables 7.7 and 7.8, we have shown that it is

possible to analyze immunosignaturing data using Bayesian nonparametric adaptive

learning techniques to facilitate the identification and clustering of single disease state

data without the need for a training set or supervised learning techniques, as well as

shown that it is possible to diagnose individuals with multiple disease pathologies.

This is done while maintaining method flexibility to account for varied biological

responses both on an individual level as well as within a patient population. Further-

more, the adaptive framework comprising all previously discussed methods provides

algorithms with a variety of computational complexities. In Table 7.7 the methods,

with the exception of the previously reported naive Bayes method, are presented in

order of increasing complexity. The tradeoff presented is generally that the greater

complexity yields better performing clustering. For example, PREDICT (PCA REso-

lution with DP-GMM for Immunosignature Classification Testing) and B-PREDICT

(Beta PDF REsolution with DP-GMM for Immunosignature Classification Testing)

are the methods with the lowest overhead as they contain the dimensionality reduc-

tion and Dirichlet process Gaussian mixture modeling (DP-GMM) applications only,

and are simultaneously one of the lowest performing methods (60%-76.7%). The

Z-PREDICT (Z-matrix from PCA REsolution and Discovery for Immunosignature

Classification Testing), ZB-PREDICT (Z-matrix from Beta PDF REsolution and-

Discovery for Immunosignature Classification Testing) and Φ-PREDICT (Φ PCA
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REsolution and Discovery for Immunosignature Classification Testing) methods are

the next most computationally intensive methods, but yield some of the best perfor-

mance results (43.3-88%), with the lowest performing method being due to required

user specified significance levels. While Z-PREDICT and ZB-PREDICT yield good

results, they require some additional Z matrix manipulation after the fact. This can

be eliminated by the application of the BIO-PREDICT (BPFA Including prOcess-

ing with PCA REsolution and DP-GMM for Immunosignature Classification Testing)

and BIOB-PREDICT (BPFA Including prOcessing with Beta PDF REsolution with

DP-GMM for Immunosignature Classification Testing) methods, which automate this

step. As such, the BIOB-PREDICT and BIO-PREDICT methods have some of the

best clustering results (66.7%-88%), but are also the most computationally complex.

Inherent in all of these approaches is the assumption that each immunosig-

nature should be grouped in a single cluster. This may be overly restrictive when

considering that patients may have multiple pathologies, or in cases where additional

data, such as disease stage or time point, is required. Furthermore, it would be help-

ful to combine cluster identification, such as disease diagnosis in the case of multiple

diseases, with the method. This then leads to the Z-PREDICTn (Z-matrix from

PCA REsolution and Discovery for Immunosignature Classification Testing up to

n-states) and ZB-PREDICTn (Z-matrix from Beta PDF REsolution and Discovery

for Immunosignature Classification Testing up to n-states) methods. These meth-

ods achieved fairly good results when tested on combination data (65%-100%) with

fairly low error (5%-35%). While these methods do require the adaptive BPFA in

execution, they do not cluster automatically. Additionally, since these methods in-

corporate a training set but this training set is only used in the final comparison

steps of the algorithm outside of the adaptive learning framework, these are consid-

ered semi-supervised. The ability to adaptively classify based on the multi-cluster
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data is then explored, resulting in the H-PREDICT (HDP of PCA REsolution and

Discovery for Immunosignature Classification Testing) and HB-PREDICT (HDP of

Beta PDF REsolution and Discovery for Immunosignature Classification Testing)

methods. While these methods resulted in slightly lower classification results due to

less known user information as compared to the Z-PREDICTn and ZB-PREDICTn

methods, they also extended the adaptive framework to diagnosis capabilities. This

resulted in correct classification in the range of 50%-75% with combined errors in

the range of 12.5%-25%. Additionally, the use of the Z-PREDICTn, ZB-PREDICTn,

H-PREDICT, and HB-PREDICT methods allows for application to multiple different

research problems outside of immunosignaturing as well.

The combination of these methods results in a flexible framework for adaptive

clustering and ultimately diagnosis that is useful both in cases where novel data

point introduction is possible with no known prior information (such as in the case

of a new disease in a population), as well as in cases where cluster identification is

required and multiple cluster membership is desired (such as in the case of multiple

disease presence). This framework is flexible enough to incorporate additional data

outside of immunosignaturing, and even be used for other unrelated problems where

the researcher desires similar outcomes to those discussed here. This then represents

an improved modeling and diagnostic framework.

8.2 Future Work

While this provides a foundation for the use of adaptive methods in immunosig-

naturing and helps to expand the area of latent feature combination clustering, espe-

cially in the case of multi-cluster membership and identification, there is still much

more to be explored in these areas. First, for the single cluster membership case, the

Φ-PREDICT method may be expanded to include adaptive learning clustering, thus
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eliminating the need for user specified thresholds and quantization. This could pos-

sibly help increase the accuracy, as well as determine an amount of membership for

various features, as opposed to the binary case when only the Z matrix is considered.

For dimensionality reduction, other methods may be more appropriate than

simply distribution fitting or PCA. Single distribution parameters may miss multi-

modal embodiments, and PCA supposes that all relevant data is maximized along

the selected orthogonal bases. Other dimensionality reduction schemes may be more

appropriate, or even combinations of these schemes, such as the use of both PCA

and BPF, may result in improved performance. Further, each application involving

the use of the DP-GMM, BPFA, and HDP models may select different priors that

could result in further clustering or diagnosis improvements. The application of dif-

ferent base distributions as well as the exploration of alternate MCMC methods to

improve efficiency are both possible directions. It may also be possible to set up

these improvements as an optimization problem where the previously user specified

parameters, such as innovation parameters, are now optimized in process, rather than

remaining static throughout the estimation steps. Additionally, it may be desireable

to extend the BPFA models to include feature weighting, though some additional

thought is required for the biological representation behind this weigh matrix.

Additional model refinements may also be possible to better represent the bio-

logical mechanisms at play in antibody binding. For instance, this work simplifies the

approach as a first step to include the assumption that only non-competitive effects

are dominant, which may not be the case depending on the antibodies present or the

peptide sequences used. This may be one way to incorporate a weighted model, with

possible negative numbers indicating competitive effects. Additional studies may also

be done to show the biological relationships between diseases, resulting in phylogenic

trees for various diseases. This could be accomplished by doing a comparison between
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model parameters and present features for similarly related diseases and thus extended

to show latent relationships between diseases previously thought unrelated. Further

work may also elect to focus on specific peptides present in various disease states. In

fact, these same methods may be able to be used with minimal modification, with

the exception of transposing the initial input data matrix (i.e. the immunosignature

data). This could help to better understand specific antibodies, and lead to refining

of microarrays for specific diseases.

In the case of multi-cluster membership for a single patient, additional re-

search is also possible. In the most straightforward case, additional data may be used

(such as time course data, symptom data, etc) to show relationships between these

different metrics. Interestingly, this data can be included at a variety of steps in the

algorithms including at the data reduction step as simply another dimension, post-

dimensionality reduction as another dimension, post BPFA as another feature (albeit

not necessarily a latent one), or pre-HDP to create a multidimensional dataset as in-

put. It may also be possible to achieve improved classification results by the adoption

of a different Z matrix modification scheme. The method presented here is related to

a non-normalized dot product, which may not be the most optimal. It is possible that

one could combine this step with the naive Bayes approach but rather than assigning

the datapoint to the top comparison value, simply use the entire set of comparison

values as a cohort input to the HDP. The flexibility of the framework presented here

allows for a variety of methods to be tried and optimized without compromising the

final diagnosis intent in the algorithm. Another possible direction is the use of the

hierarchical BPFA as opposed to a single BPFA dataset, which would then allow for

generalization of input datasets. However, this would require an adjustment in the

Z matrix modification that occurs pre-HDP. This could also be investigated as an

optimization problem with a variety of available input datasets.
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Finally, it is possible to use these methods in a variety of problems outside

of immunosignaturing. These methods would be most helpful in high dimensionality

data situations where there is a desire to adaptively learn, cluster, and classify the

input data. This can included cases where single cluster membership is desired, as

well as cases were more complex classification relationships need to be understood,

such as in the case of multi-cluster assignment.

Given this discussion, there are a variety of directions that can be pursued

using these methods. As such, this work is seen as a solid initiation point with further

classification and computational improvements possible. This can help to further

improve the immunosignaturing platform as well as extend to other cases where there

is a desire to link multi-feature analysis with multi-membership classification.
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schemes,” The Annals of Statistics, vol. 1, pp. 353–355, 1973.

[78] C. E. Antoniak, “Mixtures of Dirichlet processes with applications to Bayesian
nonparametric problems,” The Annals of Statistics, vol. 2, pp. 1152–1174, 1974.

[79] M. West, P. Muller, and M. D. Escobar, “Hierarchical priors and mixture mod-
els, with applications in regression and density estimation,” in Aspects of Un-
certainty, P. R. Freeman and A. F. Smith, Eds. John Wiley, 1994, pp. 363–386.

[80] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-breaking
priors,” Journal of the American Statistical Association, vol. 96, pp. 161–173,
2001.

143



[81] D. Chakraborty, N. Kovvali, J. Zhang, A. Papandreou-Suppappola, and
A. Chattopadhyay, “Adaptive learning for damage classification in structural
health monitoring,” 43rd Asilomar Conference on Signals, Systems and Com-
puters, pp. 1678–1682, 2009.

[82] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov chain Monte Carlo
in practice. CRC press, 1996, vol. 2.

[83] A. S. Monto, S. Gravenstein, M. Elliott, M. Colopy, and J. Schweinle, “Clin-
ical signs and symptoms predicting influenza infection,” Archives of Internal
Medicine, vol. 160, no. 21, p. 3243, 2000.

[84] M. Jordan, “Hierarchical models, nested models and completely random mea-
sures,” Frontiers of Statistical Decision Making and Bayesian Analysis: in
Honor of James O. Berger. New York: Springer, 2010.

[85] N. Hjort, “Nonparametric bayes estimators based on beta processes in models
for life history,” The Annals of Statistics, vol. 18, pp. 1259–1294, 1990.

[86] J. Paisley and L. Carin, “Nonparametric factor analysis with beta process pri-
ors,” Proceedings of the 26th International Conference on Machine Learning,
pp. 777–784, 2009.

[87] E. Fox, E. Sudderth, M. Jordan, and A. Willsky, “Joint modeling of multiple
related time series via the beta process,” arXiv:1111.4226, 2011.

[88] ——, “Nonparametric Bayesian learning of switching linear dynamical sys-
tems,” Advances in Neural Information Processing Systems, vol. 21, pp. 457–
464, 2008.

[89] L. Ren, Y. Wang, D. Dunson, and L. Carin. (2011) The kernel beta process.
[Online]. Available: http://people.ee.duke.edu/∼lcarin/KBP NIPS2011 Final.
pdf

[90] J. Paisley, A. Zaas, C. Woods, G. Ginsburg, and L. Carin, “A stick break-
ing construction for the beta process,” Proceedings of the 27th International
Conference on Machine Learning, 2010.

[91] T. Broderick, M. Jordan, and J. Pitman, “Beta processes, stick-breaking and
power laws,” Bayesian analysis, vol. 7, no. 2, pp. 439–476, 2012.

[92] Z. Ghahramani, T. L. Griffiths, and P. Sollich, “Bayesian nonparametric latent
feature models,” in Valencia World Meeting on Bayesian Statistics, Benidorm,
Spain, 2006.

[93] G. Polatkan, M. Zhou, L. Carin, D. Blei, and I. Daubechies, “A
Bayesian nonparametric approach to image super-resolution,” arXiv preprint
arXiv:1209.5019, 2012.

[94] F. Wood, T. Griffiths, and Z. Ghahramani, “A non-parametric Bayesian method
for inferring hidden causes,” arXiv preprint arXiv:1206.6865, 2012.

144



[95] D. Andrzejewski, “Accelerated gibbs sampling for infinite sparse factor analy-
sis,” Lawrence Livermore National Laboratory (LLNL), Livermore, CA, Tech.
Rep., 2011.

[96] R. Thibaux and M. I. Jordan, “Hierarchical beta processes and the indian buffet
process,” in International Conference on Artificial Intelligence and Statistics,
vol. 11, 2007, pp. 564–571.

[97] T. Griffiths and Z. Ghahramani, “Infinite latent feature models and the indian
buffet process,” 2005. [Online]. Available: http://eprints.pascal-network.org/
archive/00001359/

[98] M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and
L. Carin, “Nonparametric Bayesian dictionary learning for analysis of noisy and
incomplete images,” IEEE Transactions on Image Processing, vol. 21, no. 1, pp.
130–144, 2012.

[99] M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, and L. Carin, “Compres-
sive sensing on manifolds using a nonparametric mixture of factor analyzers:
Algorithm and performance bounds,” IEEE Transactions on Signal Processing,
vol. 58, pp. 6140–6155, 2010.

[100] D. J. Sheskin, Handbook of parametric and nonparametric statistical procedures.
crc Press, 2003.

[101] K. Okazaki and S. Takada, “Dynamic energy landscape view of coupled binding
and protein conformational change: Induced-fit versus population-shift mecha-
nisms,” Proceedings of the National Academy of Sciences, vol. 105, no. 32, pp.
11 182–11 187, 2008.

[102] J. R. Crowther, The ELISA guidebook. Springer, 2000, vol. 149.

[103] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Sharing clusters among
related groups: Hierarchical Dirichlet processes,” in Advances in Neural Infor-
mation Processing Systems. MIT Press, 2005, pp. 1385–1392.

[104] G. Heinrich, “Infinite LDA implementing the HDP with minimum code
complexity,” Technical report, arbylon.net, Tech. Rep., 2011. [Online].
Available: http://arbylon.net/publications/ilda.pdf

[105] M. Hoffman, D. Blei, and P. Cook, “Content-based musical similarity computa-
tion using the hierarchical Dirichlet process,” in Proceedings of the International
Symposium on Music Information Retrieval, 2008, pp. 349–354.

[106] E. B. Fox, E. B. Sudderth, and A. S. Willsky, “Hierarchical Dirichlet processes
for tracking maneuvering targets,” in 2007 10th International Conference on
Information Fusion. IEEE, 2007, pp. 1–8.

145
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