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ABSTRACT  

   

In blindness research, the corpus callosum (CC) is the most frequently 

studied sub-cortical structure, due to its important involvement in visual processing. 

While most callosal analyses from brain structural magnetic resonance images (MRI) 

are limited to the 2D mid-sagittal slice, we propose a novel framework to capture a 

complete set of 3D morphological differences in the corpus callosum between two 

groups of subjects. The CCs are segmented from whole brain T1-weighted MRI and 

modeled as 3D tetrahedral meshes. The callosal surface is divided into superior and 

inferior patches on which we compute a volumetric harmonic field by solving the 

Laplace's equation with Dirichlet boundary conditions. We adopt a refined tetrahedral 

mesh to compute the Laplacian operator, so our computation can achieve sub-voxel 

accuracy. Thickness is estimated by tracing the streamlines in the harmonic field. We 

combine areal changes found using surface tensor-based morphometry and thickness 

information into a vector at each vertex to be used as a metric for the statistical 

analysis. Group differences are assessed on this combined measure through 

Hotelling's T2 test. The method is applied to statistically compare three groups 

consisting of: congenitally blind (CB), late blind (LB; onset > 8 years old) and 

sighted (SC) subjects. Our results reveal significant differences in several regions of 

the CC between both blind groups and the sighted groups; and to a lesser extent 

between the LB and CB groups. These results demonstrate the crucial role of visual 

deprivation during the developmental period in reshaping the structural architecture 

of the CC. 
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INTRODUCTION 

Medical Background 

Of the 119 million people in the United States who are age 40 and over, 3.4 

million are visually impaired or blind. Worldwide, about 160 million people are 

similarly affected. Fortunately, new technologies such as corneal and retinal implants 

are emerging that have the potential to restore vision (Sieving et al., 2006; Belluck, 

2013). However, the effects of rehabilitation therapies may vary with age of onset of 

blindness, as visual cognitive areas may have been recruited by other senses, 

particularly in subjects who became blind at younger ages. Additionally, prior work 

(Voss et al., 2004; Doucet et al., 2006; Collignon et al., 2007; Gougoux et al., 2009) 

has demonstrated that understanding how sensory deprivation affects brain anatomy 

may help rehabilitation design in previously sensory deprived subjects for whom 

missing senses have been restored. 

In combination with recent advances in the collection and data-basing of brain 

MRI, anatomical and functional MRI analyses methods have begun to shed light on 

blindness adaptation mechanisms (Amedi et al., 2003; Leporé et al., 2009; Jiang et 

al., 2009; Park et al., 2009; Leporé et al., 2010; Bedny et al., 2011; Ricciardi and 

Pietrini, 2011; Voss and Zatorre, 2012; Wang et al., 2013a; Bock et al., 2013). As a 

non-invasive and high-throughput analysis tool, neuroimaging can help better 

understand the neuroanatomical correlates of blindness, cross-modal plasticity and 

its relationship to age of onset and thus improve post- blindness rehabilitation 

efficacy. In addition to this important clinical application, the study of the brain 

architecture of blind individuals versus age of onset has the potential to provide 

important and groundbreaking new insights on the old ”nature versus nurture” 

debate on the mind/brain development (Ricciardi and Pietrini, 2011). 
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For blindness research, the corpus callosum (CC) is a frequently studied 

subcortical structure in post-processing analyses of magnetic resonance images 

(Leporé et al., 2010; Bock et al., 2013). This is in part due to its deep involvement in 

visual processing in brain. The splenium of the CC carries fibers that connect visuo-

spatial areas of the brain, and the isthmus is also involved in visuo-spatial 

processing, as it contains fibers connecting the posterior parietal areas, which fuse 

multimodality sensory information (Hofer and Frahm, 2006). The CC undergoes 

extensive myelinization during development until adolescence, and waves of peak 

growth rates can be observed in the CC’s of children of different ages (Hua et al., 

2009). Hence, studying the respective impact of congenitally (CB) versus lately 

acquired blindness (LB) on the anatomy of the CC provides a unique model to probe 

how experience at different developmental periods shapes the structural organization 

of the brain. 

Related Work 

On the processing side, in T1-weighted MRI, its high contrast difference from 

surrounding structures make accurate mid-sagittal callosal segmentations 

straightforward for both manual and automatic methods (Thompson et al., 2003; 

Styner et al., 2005b; Luders et al., 2006, 2010). Additionally, its functional 

differentiation along an elongated sagittal axis has allowed researchers to focus on 

2D analysis of the mid-sagittal section, allowing for simpler and faster numerical 

tools, e.g. (Thompson et al., 2003; Luders et al., 2006, 2010; Tepest et al., 2010; 

Adamson et al., 2011; Di Paola et al., 2012; Herron et al., 2012). Even so, it is clear 

that a 3D structural analysis, which model CC morphometry with a continuous 

surface spanning over several image slices, can help visualization and may pick up 

some important information that is discarded by the single image slice processing. 
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We propose a novel geometric modeling pipeline for the analysis of the CC 

and apply it to study the influence of various ages of blindness onsets on the CC. 

while most studies have focused on 2D representations of this structure, our team 

(Wang et al., 2012b) compared surfaces generated from 3D CC in premature 

neonates to those of term-born controls. In that work, a surface grid was generated 

on the CC, and callosal thickness was computed as the distance from a medial axis. 

Statistical significance was assessed at each vertex on a vector containing the 

thickness and the deformation tensors from a multivariate tensor- based 

morphometry analysis (mTBM). The deformation tensors represent changes in area 

on the surface. However, for concave callosal surfaces, the medial axis is not well-

defined and does not always have a biologically meaningful interpretation. Here we 

propose a new thickness computation to be combined with the standard mTBM 

analysis as in (Wang et al., 2012b). Given 3D tetrahedral meshes of the CC, we use 

the tetrahedral mesh based Laplacian operator to compute a harmonic field. We 

adopt the volumetric Laplacian operator proposed in our prior work (Wang et al., 

2004a), which became the de facto standard for volumetric harmonic map research 

(Wang et al., 2004b; Li et al., 2007; Tan et al., 2010; Pai et al., 2011; Li et al., 

2010; Paille and Poulin, 2012; Wang et al., 2012a; Xu et al., 2013; Li et al., 2013; 

Wang et al., 2013b). We extend our prior work and rigorously prove that the 

conventional harmonic energy is equivalent to the discrete harmonic energy on a 

tetrahedral mesh and one may use the discrete volumetric Laplacian operator to 

compute the harmonic field. The thickness is then computed from the streamlines of 

the harmonic field. The estimated callosal thickness is well-defined, and should 

reflect the intrinsic 3D geometrical structure better than thickness derived from a 

medial axis, and hence facilitates consistent cross-subject comparisons.  
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In the field of computational anatomy, tensor-based morphometry (TBM) 

(Davatzikos, 1996; Chung et al., 2001) and more recently its multivariate extension, 

mTBM (Leporé et al., 2008; Wang et al., 2011), have been used extensively to 

detect regional differences in surface and volume brain morphology between two 

groups of subjects. In surface mTBM, brain T1-weighted MRIs from two groups of 

subjects are registered to a common template, and a Jacobian matrix J is computed 

at each vertex from the registration between a template and each of the subject’s 

images. The J s, or a function of their components, is used as metrics for group 

comparisons. Here we focus more specifically on mTBM on the callosal surface. Prior 

work (Wang et al., 2011) combining mTBM with other statistics such as the radial 

distance significantly improved statistical power. Intuitively, thickness and mTBM are 

complementary, as thickness describes distances roughly along the surface’s normal 

direction, while mTBM detects surface dissimilarities, including differences in the 

surface metric tensor induced by the particular surface parameterization. So we 

propose that a combination of thickness and mTBM will offer a complete set of 

surface statistics for callosal morphometry and hypothesize that they may boost 

statistical power to detect disease effects compared to 2D mid-sagittal analyses. 

Thesis Overview 

In this paper, we propose a combined thickness/mTBM multivariate 

morphometry statistic to study callosal differences associated with congenital-onset 

versus late-onset blindness. Our pipeline is applied on a data set consisting of: 14 

congenitally blind (CB), 10 late blind (LB; onset > 8 years old) and 20 sighted 

control (SC) subjects. Prior 2D TBM analyses of the corpus callosum (Leporé et al., 

2010) revealed reductions in the isthmus and the splenium of the corpus callosum in 

early but not late blind compared to sighted controls. However, comparisons of the 

early and late blind groups did not find any significant changes. Additionally, (Leporé 
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et al., 2010) observed changes in the frontal lobes, though those were not reflected 

in the 2D analyses of the genu of the CC. Here we set out to test our whether 

additional subtle blindness related changes may be detected by our more powerful 

method. 

 

Figure 1. Algorithm pipeline illustrated by intermediate results 

Figure 1 summarizes our overall sequence of steps used to analyze corpus 

callosum morphometry. First, we manually segment callosal contours (a). We model 

each of the CC with a tetrahedral mesh (b) with a triangle surface as it boundary (c). 

Then we apply our in-house conformal mapping and constrained harmonic map 

methods (Wang et al., 2010) to register callosal surfaces across all subjects ((d) and 

(e)). In (f), the registered surface is decomposed into two parts: superior (blue) and 

inferior (yellow) part. To estimate callosal thickness, the volumetric Laplace Beltrami 
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coefficients are used to solve the Laplace’s equation and the thickness is measured 

by the stream line lengths between superior and inferior parts (g). And (h) shows us 

the thickness color map on callosal surface: the red color means thick and the green 

color means thin. Last, multivariate statistics including thickness and multivariate 

tensor-based morphometry (mTBM) (Wang et al., 2010) are applied to identify 

regions with significant differences between any two of our three groups. False 

discovery rate (FDR) is used to assign global (corrected) p-values for effects seen in 

surface based statistical. 
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SUBJECTS AND PREPROCESSING 

Data Acquisition 

Subjects with no history of neurological, cognitive or sensorimotor deficits 

other than blindness participated in the study and were divided into two groups. The 

first group consisted of 14 congenitally blind individuals, aged between 16 and 61 

years (10 men, 4women). The second group consisted of 10 late-onset blind subjects 

(i.e., with loss of vision more than 8 years) aged between 42 and 60 years (3 men, 7 

women). Each of these groups was compared with a healthy group of 20 controls (9 

males, 11 females). Figure 2 lists the detailed of age, gender and blindness duration 

information for these three groups. In all cases, blindness was attributable to 

bilateral peripheral damage (including: lenticular fibroplasia, retinoblastoma, tumors 

restricted to the eyes, retinal detachment, Leber’s congenital amaurosis, retinas 

pigmentosa, accidents affecting the eyes and glaucoma) and led to total blindness. 

For brevity, we refer to congenitally and late-onset blind subjects as CB and LB for 

the rest of the paper. 

 

Figure 2. Detailed information for all subjects 
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The research protocol was approved by the ethics committees of the Center 

for Interdisciplinary Research in Rehabilitation, which coordinates research with blind 

subjects in the Province of Quebec. MRI scans were collected at the Centre 

Hospitalier de l’Université de Montreal (CHUM). All subjects provided written 

informed consent prior to testing. 

For each participant, high-resolution volumetric MRI scans of the brain were 

acquired on a 3T MP-RAGE Siemens Tim Trio MRI Scanner (Siemens Electric, 

Erlangen, Germany). The scanning protocol was identical for all participants. 

Structural T1-weigthed 3D MPRAGE sequence (voxel size: 1 × 1 × 1.2 mm3; matrix 

size: 240 × 256; slices: 160; sagittally-oriented MRI gradient echo sequence with 

repetition time (TR): 2300 ms; echo time (TE): 2.91 ms; inversion time (TI): 900 

ms; and field of view (FoV): 256 mm) were acquired for each subject using the same 

scanner, equipped with a 12-channel head coil. 

Preprocessing of Data 

 

Figure 3. Corpus Callosum Segmentation Results 
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Images were aligned and scaled to the ICBM-53 brain template (International 

Consortium for Brain Mapping) with the FLIRT software (Jenkinson and Smith, 2001), 

using a 9-parameter linear transformations (3 translations, 3 rotations and 3 scales). 

We then manually segmented the CCs with Insight Toolkit’s SNAP program 

(Yushkevich et al., 2006) as shown in Figure 3. Tracings were performed in the 

registered template space by a trained investigator (Y.K.) and the results were 

checked by an experienced neuroscientist (F.L.). We consulted neuroanatomical 

references of the corpus callosum to help guide the placement of the contours. 

The bottom row in Figure 3 shows the segmented CC contours overlaid on the MR 

image. The top row illustrates the built callosal surfaces overlaid on the MR images. 
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CALLOSAL THICKNESS ESTIMATION 

In our pipeline, the callosal thickness is estimated by two steps. First, by 

solving Laplace’s equation with volumetric Laplacian operators (Wang et al., 2004a), 

we build a harmonic field between superior and inferior callosal surfaces. It is 

followed by tracing the streamlines which are orthogonal to the equipotential 

surfaces in the computed harmonic field. 

Solving Laplace’s Equation 

Laplace’s equation ∆f = ∇2f = 0 in 3D Cartesian coordinates takes the form: 

 
(

  

   
 

  

   
 

  

   
)  (     )    (1) 

 f is called harmonic if it satisfies the Laplace’s equation with Dirichlet 

boundary conditions. The computed function is called the harmonic field. Assume 

there are two boundaries, B0 and B1, the harmonic field is computed by solving for 

the harmonic function fM : M → R, such that 

 

{

   ( )                 

  ( )                          

  ( )                          

 (2) 

Equation 2 has been used to estimate the thickness of cerebral cortex (Jones 

et al., 2000; Schmitt and Bohme, 2002; Yezzi and Prince, 2003; Hutton et al., 2008) 

and CC thickness on the mid-sagittal section (Adamson et al., 2011). Here we 

propose a tetrahedral mesh based approach to solve Equation 2 and achieve sub-

voxel accuracy on the boundaries. Compared with prior voxel-based schemes (Jones 

et al., 2000; Adamson et al., 2011; Schmitt and Bohme, 2002; Yezzi and Prince, 

2003; Hutton et al., 2008), our new work has two major advantages. First, because 

the boundary of a tetrahedral mesh is a surface, our work can combine thickness 

estimation with the surface registration results so that one can achieve a 

comprehensive morphometry analysis by integrating CC thickness and surface area 
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change information. Secondly, a smooth surface may better model the CC structure 

boundaries, which may overcome the common numerical inaccuracy in voxel-based 

thickness computations due to the limited resolution of 3D grid. 

Suppose M is a simplicial complex, and g : |M| → R3 a function that embeds 

|M| inR3, then (M, g) is called a mesh. For a 3-simplex, it is a tetrahedral mesh, Te, 

and for a 2-simplex, it is a triangular mesh, Tr. Clearly, the boundary of a tetrahedral 

mesh is a triangular mesh, Tr = ∂Te. 

 

Definition 1. (Function Space). 

All piecewise linear functions defined on M form a linear space, denoted by CPL(M). 

 

Definition 2. (Inner Product). 

Suppose a set of string constants k(u, v) are assigned, then the inner product on 

CPL(M) is defined as the quadratic form: 

 
      

 

 
∑  (   )( ( )   ( ))( ( )   ( ))

       

 (3) 

The energy is defined as the norm on CPL(M). 

 

Definition 3. (String Energy). 

Suppose f   CPL(M) , the string energy is defined as: 

 
      

 

 
∑  (   )‖ ( )   ( )‖ 

       

 (4) 

 By changing the string constants k(u, v) in the energy formula, we can define 

different string energies. Figure 4 shows the dihedral angle θ and edge l, to which 

the edge [P1, P4] is against in the given tetrahedron. Based on it, we can define the 

discrete harmonic energy. 
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Figure 4. Illustration of a tetrahedron 

 

Definition 4. (harmonic Energy (Wang et al., 2004a)). 

Suppose for edge {u, v}, it is shared by n tetrahedrons. In each tetrahedron, there 

is an edge which does not intersect with {u, v}, e.g. edge L in Figure 4. We call this 

edge is against to {u, v} in this tetrahedron. Thus edge {u, v} is against to a total of 

n edges, li, i = 1 … n, in these n tetrahedrons. Similarly, there is a dihedral angle 

which is associated with L, e.g. θ in Figure 4. We call this dihedral angle θ is against 

to edge {u, v} as well. So edge {u, v} is against to a total of n dihedral angles, θi, i 

= 1 … n, in these n tetrahedron. Define the parameters 

 
     

 

  
∑      (  )

 

   

 (5) 

Where li, i = 1 … n, is the lengths of the edges to which edge {u, v} is against in the 

domain manifold M. The string energy obtained is called the harmonic energy. 
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The string energy is always a quadratic form. By carefully choosing the string 

coefficients, we can make sure that the quadratic form is positive definite. This will 

guarantee the convergence of the optimization process. 

 

Definition 5. (Discrete Volumetric Laplace Operator). 

The piecewise Laplacian is the linear operator ∆PL: C
PL(M) → CPL(M) on the space of 

piecewise linear functions on M, defined by the formula 

    ( )  ∑  (   )( ( )   ( ))

       

 (6) 

If f minimizes the string energy, then f satisfies the condition 

∆PL(f ) = 0 

Suppose M1, M2 are two meshes and the map  ⃑     →   , is a map from M1 to 

R3. 

 

Definition 6. (Harmonic Energy of Maps). 

For a map  ⃑     →     ⃑  (        ), we define the energy as the norm of  ⃑: 

 
 ( ⃑)  ‖ ⃑‖

 
 ∑‖  ‖

 

 

   

 (7) 

The Laplacian is defined in a similar way. 

 

Definition 7. (Laplace Operator). 

For a map  ⃑     →   , the piecewise Laplacian of  ⃑ if 

     ⃑  (                 ) (8) 

 A map  ⃑     →    is harmonic, if and only if it has a normal component, and 

the tangential component is zero. 

    ( ⃑)  (    ⃑)
  (9) 
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Definition 8. (Conventional Harmonic Energy (Schoen and Yau, 1997)). 

Suppose f : M → R is a function defined on the mesh, the conventional harmonic 

energy is defined as 

 
 ( )  ∫ |  |

 
  

 

 (10) 

where dσ is the volume element of the 3 manifold and |∇f| is the gradient of the 

function. A harmonic function is a harmonic map from M to R, therefore a harmonic 

function has the property, e.g. Equation 1 

∆f = 0 

The following theorem provides the foundation for our work. 

 

Proposition 1. 

The discrete harmonic energy (Definition 4) and the conventional harmonic energy 

(Definition 8) are consistent. 

The detailed proof is given in the Appendix. The consistency between the 

conventional harmonic energy and discrete harmonic energy opens a new avenue for 

us to compute the harmonic map with the tetrahedral mesh. In the classical finite 

element literature, it has been proven that discrete solutions to the discrete Laplace 

equation converge to the smooth solution when the tetrahedral meshes are 

subdivided to the limit. With the discrete volumetric operator (Definition 5), we can 

conveniently compute the harmonic field with the tetrahedral meshes. 

Harmonic Field Computation 

Similar to our prior work on surface holomorphic 1-form computation (Wang 

et al., 2011), one can compute the volumetric harmonic field by solving a linear 

system defined with the Laplacian matrix. Here is the explanation of some key steps. 

For the details and convergence of the linear systems, the readers are referred to 
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the rich harmonic map and spectral analysis literature, e.g. (Schoen and Yau, 1997; 

Coifman et al., 2005). 

 

Definition 9. 

Given a tetrahedral mesh, the graph weight matrix is defined as 

 
     {

               

             
 

 

where ku,v is defined in Definition 5. Clearly, S is a sparse matrix and can be 

decomposed as 

 
  (

             

            

) 
 

where V and ∂V represent the set of internal vertices and boundary vertices, 

respectively. 

 

Definition 10. 

Under Dirichlet boundary conditions, the Laplacian matrix is 

Lp = DVV + DV∂V − SVV, 

where the diagonal matrix DV ∂V = diag(SV∂Vei), ei is the i-th column vector in an 

identity matrix, i.e., (DV∂V)ii = the sum of i-th row in WV∂V. 

With the discrete Laplacian operator definition, we compute the harmonic field 

with Dirichlet boundary conditions, 

 Lpx = c (11) 

where x is a |u| × 1 vector (|u| is the number of internal vertices). Note that 

x only contains unknown function values on internal vertices, i.e. WVV, as shown in 

the definition of Lp; and the constant vector c is computed by 

      
      ∑       

[   ]  
 

 

where fl is the specified function value on boundary vertices. 
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Thickness Profile Generation 

Equation 11 is the discretized version of Equation 2. After computing the 

harmonic field f by solving x for internal vertices in Equation 11, we can compute the 

streamlines to connect the two surfaces (Jones et al., 2000; Adamson et al., 2011). 

Computationally, we construct a streamline as a parametric curves u(s) with arc 

length parameter s. The thickness is defined as the total arc length of the streamline 

that traverses the CC from superior to inferior (or, alternatively, from inferior to 

superior) patches. Formally, we solve the following ordinary differential equation to 

construct the streamlines: 

 

{
  ( )   

  ( ( ))

|  ( ( ))|

 ( )                         

 (12) 

where x is a point on the stating surface patch and the streamline stops when 

it intersects the other surface patch. u′ takes different sign based on the starting 

surface patch. Solving for Equation 2 using B0 as either the superior or inferior 

surface, and B1 as the other surface, we can compute the thickness at each point on 

superior and inferior surfaces, respectively. 
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MULTIVARIATE MORPHOMETRIC ANALYSIS 

Algorithm 1 illustrates the algorithm pipeline of our multivariate morphometry 

computation. In the following, we explain each step in detail. 

1. Tetrahedral mesh and triangular mesh generation; 

2. Surface registration and surface decomposition; 

3. Callosal thickness computation; 

4. Multivariate morphometry feature computation. 

 

Algorithm 1. Multivariate Morphometry of 3D Corpus Callosum. 

Input: Binary image of segmented corpus callosum 

Output: Morphometry features for each boundary vertex, including thickness and 

deformation tensors. 

1. Build tetrahedral mesh from the binary image; build triangular mesh by 

computing the boundary of the tetrahedral mesh; 

2. Register surfaces via holomorphic 1-form method (Wang et al., 2011); 

decompose a surface into superior and inferior patches by tracing iso-parametric 

curves; 

3. Compute callosal thickness using the harmonic field; 

4. Compute deformation tensors; construct the multivariate morphometry 

features by combining mTBM and thickness features. 

 

Mesh Generation 

Our meshes are generated by an adaptively sized tetrahedral mesh modeling 

method (Lederman et al., 2011). The method produces meshes conforming to the 

voxelized regions in the image by minimizing an energy function consisting of a 

smoothing term, a fidelity term and an elasticity term. Figure 1(a) shows the binary 
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image of a segmented Corpus Callosum and (b) shows its tetrahedral mesh. The 

boundary of the tetrahedral mesh gives a surface triangular mesh for the callosal 

surface (Figure 1(c)). 

Surface Registration and Decomposition 

The goal of this step is to register CC surfaces across subjects and 

consistently decompose them into two pieces of surface patches for thickness 

analysis. Given the long and thin structure of a CC surface, existing area-preserving 

spherical mapping based subcortical algorithms (Styner et al., 2005a) may produce 

much distortion. For an accurate surface registration and decomposition, we adopt 

our holomorphic 1-form based method to compute a constrained harmonic map 

between CC surfaces (Wang et al., 2011). 

First, given a callosal surface, we label two consistent landmark curves at the 

caudal and rostral endpoints. They are biologically valid and consistent landmarks 

across subjects as shown in Figure 5(a) (blue lines). We call this process topological 

optimization. Given the callosal horizontal tube-like shape, these landmarks curves 

can be automatically detected by checking the extreme points along the first 

principal direction of the geometric moments of the surface. Secondly, we 

conformally map the callosal surface onto a rectangular planar domain with a 

holomorphic 1-form based conformal parameterization algorithm as in (Wang et al., 

2011). Specifically, by computing the exact harmonic one-form (Figure 5 (b)), its 

conjugate one-form (Figure 5 (c)), and canonical holomorphic one-form (Figure 5 

(d)), we compute the conformal parameterization of callosal surface. Figure 5(d) 

illustrates the conformal parameterization by texture mapping the checkerboard back 

to the surface. 



  19 

 

Figure 5. Illustration of callosal surface conformal parameterization 

Figure 5 shows the callosal surface conformal parameterization via 

holomorphic one-forms. (a) Topology change. Two cuts were made on each callosal 

surface extreme point. (b) One computed exact harmonic one-form, which is 

visualized by integrating the one-form on the open boundary surface. (c) Conjugate 

one-form of the one-form in (b). It is locally perpendicular to the one-form in (b). (d) 

The canonical holomorphic one-form, which induces a conformal parameterization 

from callosal surface to the Euclidean domain. The conformality is visualized by 

texture mapping of a checkerboard image where the planar parameterization 

coordinates are used as the texture coordinates. All the right angles in the texture 

are preserved on the brain surface. 

On the parameterized surfaces, we generate two iso-parametric curves which 

pass the extreme points on two lateral sides. By cutting along these two curves and 

removing their attached triangles (also the tetrahedron in the tetrahedral mesh), we 

produce superior and inferior surface patches, which are used for the callosal surface 

registration and thickness computation 
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Figure 6. Illustration of callosal surface registration 

Figure 6 illustrates the surface registration process. Holomorphic one-forms 

are used to induce two iso-u curves on the curvilinear coordinates which cut the 

callosal surface into two pieces, superior part and inferior part. Each piece of the 

callosal surface is conformally mapped to a rectangle in the parameter domain. The 

shading effect on the parameter space is generated by rendering the original 3D 

surface with the surface normal directions on each point. The planar 

parameterization results are used for surface registration and morphometric analysis. 

Finally, given two callosal surfaces (either superior patch or inferior patch) S1 

and S2 and their parameterizations, τ1 : S1 → R2 and τ2 : S2 → R2, we find a harmonic 

map τ : R2 → R2 between the parameter domains, such that: 

 τ ◦ τ1(S1) = τ2(S2), τ ◦ τ1(∂S1) = τ2(∂S2), ∆τ = 0. 
 

Then the map ϕ can be obtained by ϕ = τ1 ◦ τ ◦ τ2
−1 

Since τ is a harmonic map, and τ1 and τ2 are conformal maps, the resulting ϕ 

is a harmonic map. When landmark curves need to be matched, such as the 

boundaries of each component of the ventricles, we guarantee the matching of both 

ends of the curves. We also match the rest of the curves in 3D based on unit speed 

parameterizations of both curves. 

Thickness Computation 
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After the surface is decomposed into superior and inferior patches, we apply 

the tetrahedral mesh based callosal thickness algorithm to compute the callosal 

thickness. The details of the algorithm are described in Chapter 3. After solving the 

Laplace’s equation, we build a harmonic field between two surface patches. On the 

harmonic field, the level set of equal harmonic function values construct different 

layers. 

 

Figure 7. Illustration of the harmonic fields 

Figure 7 shows an example of computed surface layers. Different color surface 

represent surface level sets with equal function values. The left panel shows a 

volumetric rendering. The right panel shows a zoomed-in result after a cut along the 

sagittal direction. The stream lines are computed by tracing the normal directions of 

the surface level set. Finally, the computed stream line lengths define the thickness 

profile on the callosal surface. 

Multivariate Morphometry Feature Computation 

Our complete multivariate morphometry feature consists of deformation 

tensors in log-Euclidean space and callosal thickness. Given two triangles, [V1, V2, 

V3] and [W1, W2, W3], first, we isometrically embed them onto the plane R2; the 

planar coordinates of the vertices of Vi, Wj are denoted using the same symbols Vi, 

Wj. Then we explicitly compute the Jacobian matrix J, 

J = [W3 − W1, W2 − W1][V3 − V1, V2 − V1]−1 

The deformation tensor can be defined as S = (JTJ)0.5. Instead of analyzing 

shape change based on the eigenvalues of the deformation tensor, a new family of 
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metrics, the “Log-Euclidean metrics” (Arsigny et al., 2006) is used in multivariate 

tensor-based morphometry (mTBM). This conversion makes computations on tensors 

easier to perform, as they are chosen such that the transformed values form a vector 

space, and statistical parameters can then be computed easily using the standard 

formulae for Euclidean spaces. 

Similar to the practice in (Leporé et al., 2008; Shi et al., 2013a), we also 

linearly covary the multivariate statistics at each pixel with subject age and gender 

information. Let A represent one of the four statistic, and Acov is the new adjusted 

statistic. The Acov is computed by fitting the following general linear model to the 

data at each vertex: 

A = β0 + β1 × age + β2 × gender + β3 × diagnosis + error; 

where βi, i = 0, 1, 2, 3 are estimated regression coefficients at the specific 

vertex. Diagnosis is coded as a binary dummy variable (e.g. diagnosis = 0 (sighted 

control) and 1 (CB)) and gender is coded as a binary dummy variable (i.e. gender = 

0 (male) and 1 (female)) so that Acov = β3 × diagnosis + error = A − β0 − β1 × age 

− β2 × gender. For the multivariate measures, the regression is computed separately 

for each channel. 

The covaried statistics are used for a group difference study. For the group 

difference test, we run a permutation test with 5000 random assignments of subjects 

to groups to estimate the statistical significance (p-maps) in surface morphometry 

(Wang et al., 2011). 

To compute group differences with multivariate morphometry features, we 

then apply Hotelling’s T2 test on sets of multivariate morphometry values. Given two 

groups of (n × 1)-dimensional vectors, Si, i = 1, 2, p, Tj, j = 1, 2, q, we use the 

Mahalanobis distance M to measure the group mean difference, 



  23 

 
  

    

     

(   )∑  
  

 
(   ) 

 

where NS and NT are the number of subjects in the two groups, S and T are 

the means of the two groups and Σ is the combined covariance matrix of the two 

groups (Leporé et al., 2008). Since the statistic M is univariate, our analysis does not 

introduce any bias because of the increase in the number of variables. 
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RESULT 

Linking Morphometry and Clinical Characteristics 

At each surface point, associations were assessed between multivariate 

statistics and clinical characteristics. Our method picked up strong group differences 

in both hippocampal atrophy and ventricular enlargement between diagnostic 

groups. 

 

Figure 8. Comparison of p-maps with Thickness-mTBM 

Figure 8 shows statistical maps of callosal morphometry and thickness 

changes in CB vs. SC, CB vs. LB and LB vs. SC. 
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It is worthwhile noting that our results are consistent with previous work 

(Leporé et al., 2010) and with the hypothesis that splenium regions should be 

affected in all blind groups, but more so in the CB. Our results are also consistent 

with another DTI tractography study (Yu et al., 2007), which found fractional 

anisotropy was significantly reduced in the splenium of CB subjects. The splenium is 

primarily composed of fibers connecting the visuospatial areas of the brain. The 

differences seen here may be due to reduced myelination of these fibers in the 

absence of visual input. 

Other Morphometric Statistics  

To explore whether our multivariate statistics provide extra power when 

combining thickness with mTBM, in each experiment, we also conducted three 

additional statistical tests using the thickness and different tensor-based statistics 

derived from the Jacobian matrix. The other statistics we studied are: (1) the 

thickness (THK) itself; (2) the determinant of Jacobian matrix (Davatzikos, 1996; 

Chung et al., 2008); and (3) the mTBM (Leporé et al., 2008; Wang et al., 2010). For 

statistics (1) and (2), we applied a Student’s t-test to compute the group mean-

difference at each surface point. In case (3) and for our new combined measure, we 

used Hotelling’s T 2 statistics to compute the group mean-difference. In all sets of 

results, we detected significant areas around splenium areas for the combined 

measure. The CB also show significant changes in the body of the CC.  
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Figure 9. Comparison of p-maps with three statistics 

In Figure 9, Non-blue colors show vertices with statistical differences, at the 

0.05 level, uncorrected. The combined multivariate statistics outperforms all three 

individual statistics (the critical p-values for these maps are shown in Figure 10). 

All group difference p-maps were corrected for multiple comparisons using the 

false discovery rate method (FDR) (Benjamini and Hochberg, 1995). The FDR 

method determines the critical p-value, which is the highest threshold p-value that 
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controls the FDR at the given threshold, e.g. 5%. To rank which clinical measures 

were most strongly associated with callosal morphology, we created cumulative 

distribution function (CDF) plots of the resulting uncorrected p-values. The critical p-

value, which is the highest non-zero point at which the CDF plot intersects the y = 

20x line, represents the highest statistical threshold for which at most 5% false 

positive are expected in the map. If there is no such intersection point (other than 

the origin), there is no evidence to reject the null hypothesis. Also, steeper CDFs 

show stronger effect sizes. FDR results are shown in Figure 10. All measures are 

significant for the CB vs. controls, while only our new combined measure falls above 

the y = 20x line in the case of LB vs. controls. 

 

Figure 10. The cumulative distributions of the p-values 
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Figure 10 shows the cumulative distributions for difference detected between 

three diagnostic groups (CB, LB and SC) for all four statistics. The critical p-values 

are the intersection points of the curves and the y = 20x line. The new multivariate 

statistics achieved the highest critical p-values in all 3 comparisons. 
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DISCUSSION 

There are three main contributions in this paper. First, we propose an efficient 

tetrahedral mesh based method to compute the harmonic field. Prior work on voxel-

based brain thickness analysis (Jones et al., 2000; Adamson et al., 2011) relied on a 

three-dimensional cubic voxel grid to solve partial differential equations (PDE) in the 

potential field. However, due to the restrictions on the grid resolution which cannot 

precisely characterize the curved cortical surfaces in MR images, the measurement 

accuracy from this method is low and sensitive to noise. Our approach overcomes 

the defect of the limited grid resolution by adopting a high quality, adaptive 

tetrahedral mesh (Lederman et al., 2011) and a finite element based Laplacian 

operator (Wang et al., 2004a). Compared with prior work (Jones et al., 2000; 

Adamson et al., 2011), our PDE solving computation can achieve sub-voxel accuracy. 

Also because surfaces are easily computed from tetrahedral meshes, our method can 

be easily integrated with prior surface registration work (Wang et al., 2010, 2011, 

2013c) to achieve a comprehensive morphometry study. Second, we propose a 

multivariate statistics by combining the callosal thickness computed from our new 

method and mTBM. Lastly, through multiple comparisons, we identify statistically 

significant areas on CC between the CB and LB groups. This discovery may help 

further our understanding of brain plasticity and in the long term; improve the 

effectiveness of rehabilitation techniques for blind individuals. 

Our preliminary results on CB, LB and SC subjects are consistent with 

previous work and with the hypothesis that splenium regions should be affected in all 

blind groups, but more so in the CB. In addition, with our novel multivariate 

statistics, we found changes in the body of the CC in the LB group while no such 

difference was detected in (Leporé et al., 2010). In the late blind subjects, the 

process of myelination is relatively advanced, so that the structure of the corpus 
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callosum may not be that strongly influenced by the loss of visual perception. Our 

new discovery, generally consistent with this understanding, may provide additional 

insights to the myelination and cortical plasticity process. More importantly, these 

results also suggest that the newly proposed multivariate morphometry has more 

detection power in terms of effect size, likely because it captures callosal thickness 

and more directional and rotational information when measuring geometric 

differences. 

The work reported here is related to ongoing research on the heat kernel and 

spectral analysis work. Recently, surface based heat kernel methods have been 

widely used in image shape analysis (Chung et al., 2005), classification (Bronstein 

and Bronstein, 2011), and registration (Sharma et al., 2012). Surface spectral 

analysis techniques are applied to surface registration (Lombaert et al., 2012), 

cortical surface reconstruction (Shi et al., 2010, 2013b) and automatic corpus 

callosum extraction on cortical surfaces (Lai et al., 2011). They all involve the 

Laplacian-Beltrami operator computation. However, 3D heat kernel methods are still 

rare in the medical image analysis field. Based on a prior development (Wang et al., 

2004a), here we further show that the proposed discrete volumetric Laplacian 

operator can be adopted to compute the conventional harmonic energy. Besides the 

computational efficacy and efficiency, our method also takes numerous other 

advantages of the spectral analysis such as the measurement invariance of inelastic 

deformation and the robustness of the topological noise. We hope our work can lay 

down some of the theoretic foundation and attract some interest for further 3D heat 

kernel based method development in the neuroimaging field. 

In the future, we will combine and correlate our multivariate statistical 

framework with other MRI imaging systems, such as cortical morphometry and 

diffusion tensor imaging (DTI) tractography, to advance our understanding of 
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blindness and improve the effectiveness of rehabilitation techniques and quality of 

life for blind individuals. 
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