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ABSTRACT

The digital forensics community has neglected email forensics as a process, despite

the fact that email remains an important tool in the commission of crime. Current

forensic practices focus mostly on that of disk forensics, while email forensics is left as

an analysis task stemming from that practice. As there is no well-defined process to

be used for email forensics the comprehensiveness, extensibility of tools, uniformity

of evidence, usefulness in collaborative/distributed environments, and consistency of

investigations are hindered. At present, there exists little support for discovering,

acquiring, and representing web-based email, despite its widespread use. To remedy

this, a systematic process which includes discovering, acquiring, and representing web-

based email for email forensics which is integrated into the normal forensic analysis

workflow, and which accommodates the distinct characteristics of email evidence

will be presented. This process focuses on detecting the presence of non-obvious

artifacts related to email accounts, retrieving the data from the service provider, and

representing email in a well-structured format based on existing standards. As a result,

developers and organizations can collaboratively create and use analysis tools that

can analyze email evidence from any source in the same fashion and the examiner

can access additional data relevant to their forensic cases. Following, an extensible

framework implementing this novel process-driven approach has been implemented in

an attempt to address the problems of comprehensiveness, extensibility, uniformity,

collaboration/distribution, and consistency within forensic investigations involving

email evidence.
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Chapter 1

INTRODUCTION

The recent investigation of a senior U.S. intelligence official reaffirmed the impor-

tance of email forensics [2]. The investigation relied on the simple inspection of the

drafts folder of a shared email account, but if the suspects had taken the time to

make their correspondence more clandestine, a more sophisticated approach would

have been necessary to discover relevant email evidence. Current methodologies do

not address the possible intricacies introduced when an investigation centers around

the analysis of various email sources as shown in Fig. 1.1 and, furthermore, simple

inspection does not aid an examiner in detecting the presence of email which is not

locally stored [3, pg. 471] [4, ch. 11].

Consider a scenario in which a suspected computer criminal has communicated with

many parties about the nature and means of their actions using various communication

methods, including locally stored emails and webmail accounts. When an examiner

seizes a suspect’s hard drive, only the locally stored or cached email would be directly

available and the webmail accounts would remain undiscovered without substantial

manual effort, as seen in Fig. 1.2. These missing portions of data could lead to an

incomplete investigation report with respect to the suspected act. Even if evidence

resides locally in diverse formats, it is likely that an examiner would need separate

tools and methods to analyze each of them.

1.1 Traditional Forensics

In order to fully understand the problems in the current forensic process which will

be addressed, one must possess some background in the traditional forensic process.

1



Figure 1.1: The possible complexity of evidence apparent within a system

In particular, current forensic processes typically focus on disk forensics and email

forensics are left to be handled during the analysis phase of the investigation. Without

treating email forensics as a process-driven task, the success of the investigation may

hinge upon the examiner’s technical skill and intuition with regards to the specific

evidence. In this section, a brief overview of the traditional forensic process will be

given beginning with acquisition and continuing through authentication, analysis, and

presentation [5, ch. 1]. While more complex process models have been emerged over

time [6, ch. 6, sec. 1], the basic tenets of the process remain the same.

1.1.1 Acquisition

The goal of the acquisition phase is to obtain the relevant sources of information

which may be relevant to building a case. During the acquisition phase, the system

which contains evidence is first seized by the authorized parties, which may be law

2



Figure 1.2: The complexity of evidence directly apparent within traditional forensics

enforcement officials, technical staff, or a number other representative of the stakeholder

which will be conducting the investigation. Next, the data it stores is copied in one of

two fashions: live (or dynamic) acquisition, which is taken from a system as it runs

and changes (often including highly volatile forms of storage such as RAM [5, pg. 5]),

and static acquisition, which is taken from a system that is no longer changing (often it

has been powered off). This phase is one of the most important in the forensic process,

as it is the one which is most likely to introduce changes to the system which may

misrepresent the evidence required, invalidating it in a court of law [7, pp. 135]. Such

a copy is often referred to as a “forensic copy” [3, pp. 52] and is the representation

of the evidence most often worked with in an attempt to minimize the amount of

dangerous interactions with the original source of the data. Outside of the copies of

3



email evidence residing within the filesystem, there is currently no best practice with

regards to acquiring email evidence.

1.1.2 Authentication

The authentication phase is concerned with the validation and verification of the

forensic copy acquired. In the simplest sense, this means that the forensic copy is

checked against the original and verified to have undergone no changes [5, pp. 13],

however as the computing ecosystem evolves this task becomes nontrivial and some

argue that is no longer the case [6, pp. 19], especially with regard to live acquisitions.

This phase is most easily carried out using using cryptographic hash functions, such

as MD5 or the SHA family, which are often referred to as a “digital fingerprint” [4,

pp. 306] to explain their use as unique identifiers of pieces of data.

1.1.3 Analysis

The analysis phase is the one which most people envision when hearing the phrase

“digital forensics”. It is within this phase that an examiner attempts to discover

information about the suspect’s actions in order to recreate a time line of events

which either incriminates or exonerates the suspect. This phase is highly intuitive

and draws greatly upon the examiner’s technical knowledge as well as their past

experiences; because of this it is sometimes referred to as ”the art of forensics” [7, pp.

143]. Examples of tasks which may be carried out during analysis include examining

well-known file formats, looking in oft-ignored locations within storage media to

discover intentionally hidden or obfuscated evidence, and recovering deleted files which

the suspect may have tried to dispose of in an attempt to cover their tracks. While

this phase is clearly the one which yields the most important results, it is incomplete

if all of the possible evidence has been not acquired for its use.

4



1.1.4 Presentation

The final phase of traditional forensics is the presentation phase, in which a

complete narrative of the sequence of events is documented with accordance to any

laws or regulations in place to protect the accused [5, pp. 19]. This final representation

of the case must include all relevant documents which may be used by a disciplinary

committee or a lawyer in a court of law.

1.2 Problems in Email Forensics

From this discussion, it becomes clear that there is a need to provide a systematic

and forensically sound methodology for discovering, extracting, and representing

email evidence from media where it may not me immediately available. Using a

process-driven approach [8], an extensible framework for conducting comprehensive

and consistent acquisitions of email and representing them uniformly for the purpose

of forensics can be created. This will aid examiners in carrying out forensics more

efficiently while providing uniform results and more effectively through creating an

environment that facilitates collaboration. This framework will utilize pluggable

modules so that it may be provided as a service to multiple examiners without

requiring them to alter their forensic environment or tools. Also, multiple examiners

and tools have provided their own regulatory report and proprietary data formats,

forming a critical barrier to the sharing of work and results between organizations. To

mitigate this problem, the EFXML and EFRDF evidence container formats [8] will be

utilized to create a system which represents email evidence from varying data sources

uniformly in a structured and interoperable evidence container for collaborative email

forensics.

5



1.2.1 Comprehensiveness

Since the goal of forensic investigations is to create a full narrative of events, as

much evidence as possible should be collected through any process used during its

duration. As current methodologies leave discovering and acquiring email evidence

outside of those formats directly available in disk evidence to the examiner, a useful

process-driven approach should provide comprehensive evidence acquisition so that as

much email evidence as possible is detected through its use.

1.2.2 Extensibility

As the software ecosystem surrounding email has been changing rapidly since the

advent of the internet, any tool which handles only a specific data source is likely to

become outdated somewhat quickly. As such, a framework following a process-driven

approach should exist and be extensible so that, as best practices emerge, evidence

can be acquired from new services without large changes to an examiners forensic

environment.

1.2.3 Uniformity

Once the various evidence sources have been approached by a process-driven

framework to acquire data, there is a need to represent it uniformly. As differing

email sources will represent email evidence differently both internally (e.g. at the

service provider’s data center) and to the user, the problem of treating email as

a cohesive body of evidence rather than multiple disjoint parts arises. A uniform

evidence container allows for varying email sources to be shown in the same manner

so the examiner can focus on the task at hand (examining the characteristic email

messages) rather than on the specifics of each provider’s representation.

6



1.2.4 Collaboration/Distribution

Current forensic practices do not facilitate collaborative or distributed approaches

to forensics. Often, investigations may be hindered by barriers such as the physical

location of resources or conflicting policies of cooperating organizations. New ap-

proaches to forensics such as those presented in [1] attempt to address these issues

generally, but processes must be put in place to apply them specifically to acquiring

and representing forensic email evidence.

1.2.5 Consistency

As current practices in email forensics weigh heavily upon the technical skills and

past experiences of the examiner, a consistent approach to email forensics is difficult

to guarantee. These efforts can be further hindered during investigations focusing

upon active systems, which may change state (e.g. emails are received, deleted, or

both) in between separate acquisition events; such changes may bring into question

whether the examiner initially missed or ignored evidence rather than the state of the

system being changed. A well-defined methodology is needed to guarantee consistent

results of acquisitions taking place at different times or by different examiners and,

in the situation where differences are inevitable, their causes and results should be

well-known and clearly stated.

This thesis is organized as follows. In Chapter 1 an overview of the current state

of email forensics along with its problems will be discussed and in Chapter 2 a survey

of related work will be shown. Chapter 3 will present a process-driven methodology

for email forensics including its steps and their benefits. Chapter 4 will describe

an accompanying proof-of-concept implementation to carry out this process-driven

approach against a Gmail account. Following, Chapters 5 and 6 will show evaluations

7



in relation to the problems presented in Chapter 1 and discussion of the approach

and implementation with respect to the approach’s legality, bearing on the rules of

evidence, general usage, and limitations. This thesis concludes in Chapter 7 with a

summary of its contents, contributions, and future work.
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Chapter 2

RELATED WORK

While this work represents a new contribution to the field of email forensics, there

has been significant research into related fields. In this chapter a list of related works

used as support for this work will be presented with regards to comprehensiveness,

extensibility, uniformity, collaboration/distribution, and consistency as discussed in

Chapter 1.

2.1 Comprehensiveness

As more interactions become digitized, ranging from communications to finances,

a number of forensic hurdles present themselves [9]. Service-oriented computing

presents an interesting challenge, as examiners no longer see unified bodies of evidence

aggregated within traditional forensic mediums. Significant research has gone into

approaching specific services [10, 11], but little work has gone into establishing a best

practice approach to such evidence starting with the initial acquisition of disk-based

evidence 1 . Current tools only support email evidence which is directly evident in a

disk image or web-based accounts to which the credentials are currently possessed [12].

A full solution should include a means to discover credentials, map them to a given

service, and acquire the evidence from said service. In case there was ever any doubt

as to how important email is to private and corporate communication, the Executive

Summary [13] of the Radicati Group’s report titled “Email Market, 2012-2016” states

that the total number of worldwide emails sent each day in 2012 was about 144.8 billion,

1“Disk-based evidence” is meant to include all forms of digital evidence that have more traditionally
been part of an investigation, not just hard drives.

9



Table 2.1: Predicted daily email traffic in billions from 2012-2016 as published by
the Radicati Group

Year 2012 2013 2014 2015 2016

Total worldwide
144.8 154.6 165.8 178.3 192.2

emails/day (B)

% Change — 7% 7% 8% 8%

with steady growth predicted for years to come as shown in Table 2.1. Furthermore,

the report states that “the installed base of Corporate Webmail Clients is expected to

grow from 629 million in 2012 to over 1 billion by year-end 2016.” Clearly webmail

is a significant communication medium, however it is not addressed by traditional

forensics in a comprehensive manner.

Improvements in the forensic analysis of email have largely followed that of big

data — recent contributions to the field include statistical and machine learning

techniques used to facilitate stylometric analyses, author attribution, and more into

a cohesive analysis technique [14, 15, 16]. While these methods improve the ana-

lytic process of email forensics, there still lacks a holistic approach which provides

comprehensive results regardless of source format and the semantic details of the

evidence.

2.2 Extensibility

As previously mentioned in Chatper 2.1, there is significant research focus on

forensics related to specific services, but little in the way of a generic approach. Further,

current email forensics tools only handle a handful of specific email file formats and

service providers [12, 17, 18, 19] and offer no room for extensibility. With the ecosystem

of web service providers and email clients rapidly growing, over time these tools may
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begin to miss significant portions of relevant evidence, making extensibility of a

solution critical to the comprehensiveness of the evidence it discovers [20].

2.3 Uniformity

Best practices have emerged in the forensic representation of evidence. In particular,

XML has become known as a medium for the creation of well-structured forms of

evidence representation [21]. A well-known example of this is the Digital Forensics

XML (DFXML) format, used for representing disk media as a combination of disk

partitions, file systems, and file metadata in XML [22]. These formats facilitate the

storage, authentication and analysis of evidence in various ways, but do not meet

the needs of email forensics. Similar to disk forensics, email also contains indexable

metadata, in the form of headers, which can be useful to direct the focus of an

analysis. From this metadata alone, an examiner can detect communication flows

and evidence tampering, among other things. Just as filesystem metadata has been

shown to be useful in forensic investigations [23], the email headers are a valuable

source of information in a forensic investigation involving email [24]. These indexes of

email metadata are currently used in many email clients, though their representation

is not standardized and some are neither human readable nor easily utilized by

developers [25].

2.4 Collaboration/Distribution

As cybercrime grows, digital ”...forensics is increasingly a team effort...” and

requires collaborative tools [20]. Also, since many recent developments (e.g. high disk

capacity) in computing requires complex analysis to perform forensics on evidence,

distributed approaches have been proposed as a means to address performance issues

faced by examiners during investigations [26, 27]. A proposed cloud-based, collabora-
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tive forensic framework known as CUFF addresses these issues, but its application to

specific use cases is an ongoing effort [1].

2.5 Consistency

For forensic investigations to be successful, it is critical that their results be

consistent — that is that the same conclusions should be drawn by multiple examiners

acting independently. To achieve this, there has been a push to bring the scientific

method into the field, removing many of the intuitive processes which examiners

currently rely on [28].
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Chapter 3

METHODOLOGY/PROCESS

In brief, the process to be followed consists of discovering online credentials

from acquired evidence, mapping those credentials to their corresponding services,

extracting evidence from each service, authenticating and processing that evidence

into a standardized representation format, and then performing the actual analysis [8].

Fig. 3.1 depicts this flow. Each step in this process is detailed below.

3.1 Initial Acquisition

As in any investigation, once the examiner has secured the evidence, the first step

is to acquire a “forensic copy,” which for all purposes is an exact duplicate of the

original [3, pp. 52]. Forensic copies serve as a protection for the original evidence

since the examiner works with these instead of the originals, allowing them to perform

analyses without the risk of compromising the integrity of the evidence.

During the initial acquisition of a hard drive using tools such as dd or EnCase, the

data that is available is mostly limited to the structure of the drive as found in the

Master Boot Record (MBR) or in one of the Volume Boot Records (VBRs). From these

structures, the examiner can also extract additional information about the file system

for a particular volume, but again this only provides structural information, such as

which sectors on the disk store parts of a file. At this stage, there is no indication

of where any information related to the suspect’s online activity and accounts may

reside on the disk. For this reason, initial acquisition requires the additional steps of

credential discovery, evidence mapping, and supplemental acquisition, as described in

Chapters 3.2, 3.3, and 3.4, respectively.
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Figure 3.1: The traditional forensic workflow combined with the email approach

3.2 Credential Discovery

This process uses the term “credential” to denote any data which can identify the

owner of the credential (e.g. the suspect) in some useful way. The breadth of this

definition allows for its application without respect to the format in which the data is

stored or the type of service to which it is mapped. Also, while other terms indicate

a similar idea, such as “footprint” [29], “fingerprint”, and “profile”, none of these

convey their purpose within the process, which is to reestablish a connection with

online services to extract evidence. To this end the process defines a phase, “credential

discovery”, in which practitioners attempt to detect credentials stored in a piece of

evidence which an examiner can use to further recover additional evidence for the

investigation.

These credentials must first be discovered within the files stored in forensic copy of

created during the initial acquisition. The formats of credentials range from simplistic

(text files containing user names and passwords) to complex (session cookies), and

discovering all types of credentials will require an equally diverse set of approaches.

Some possible credential discovery approaches include:

• Brute force: Given a set of criteria (such as a regular expression) for what may

possibly be credentials, linearly search the evidence, including any file slack or

bad sectors. This has the disadvantage of being neither intelligent nor efficient.
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• Search known locations: Search for files known to regularly store credentials,

such as key ring databases, cookie files or databases, registry entries, etc. While

more efficient, this has a much narrower scope and may overlook legitimate

credentials.

• Heuristic-based: Using machine learning or similar techniques, learn through

past experiences and feedback from the examiner what constitutes a usable

credential when investigating the raw data.

Practitioners may develop other approaches, and each approach may have varying

levels of success on different data sets. As such, it may be necessary to use all available

approaches on each data set, depending on the computational resources available.

In the best case, a large-scale, distributed system would be utilized with as many

approaches as possible including proprietary internal tools, remotely hosted tools, and

open source tools to discover the largest possible set of credentials.

3.3 Evidence Mapping

Following the discovery of credentials, it is necessary to “map” them to a source

of evidence before performing any further acquisition. To achieve this mapping, the

discovered credentials must be reused to gain access to a remote service in either a

“targeted” or “blind” approach, which entail testing these credentials against a service

to which they are known to apply to or a service which they are not (to leverage the

human tendency to reuse credentials across many services), respectively. In other

words, this mapping determines what online service the suspect accesses using the

credential. Depending on the approach taken to discover a set of credentials, the form

in which they were stored, and any accompanying data stored with the credentials,

the difficulty of the mapping process may vary. Examples include email addresses or
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cookies which specify the domain to which they belong, spreadsheets organized in a

manner which makes this information evident to an examiner, or a text file may store

a user name and password with no indication of the service for which they are valid.

Manual examination may be necessary to complete the mapping process if this is the

case.

3.4 Supplemental Acquisition

After mapping a credential to a service, the next step is to acquire a forensically

sound copy of the service’s data. During the acquisition process, examiners must

follow established best practices for any data source from which they extract evidence

— this can be best achieved by defining an engine that utilizes modules which meet the

requirements of the rules of evidence to acquire this data. To ensure the process is

repeatable, the process treats this portion as a black-box engine which follows a set of

steps to present the recovered data in a source-agnostic form so that the next module

in the engine can process the evidence without regard to the source from which it

originates. This engine should reuse the credentials previously discovered, acquire the

most complete representation of the email (including headers and body), and then

store them as a separate copy in an intermediate format for the purpose of evidence

processing into a format which examiners will later use. Once these steps have become

well defined, automation becomes trivial and should be implemented as a means to

prove that the process is repeatable and forensically sound.

The nature of online storage requires careful consideration of data integrity and

authentication issues; it is infeasible to represent the data exactly as stored at the

remote location using this process; however, the focus of this process hinges on the

text-based content of email evidence (including the headers and the body of the

message) and not on the structure of the data stored on disk. As each email is a
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discrete, individually identifiable piece of data, a checksum of the plain text content of

the original form of an email message is the most useful check against data integrity.

As the acquisition process is automated, repeatable, and the data yielded is verifiable

using a hash, the evidence acquired in this phase is a forensic copy of the evidence in an

intermediate format [8]. Such an intermediate format is required as the representation

of emails in different systems will vary and influence the methods used to acquire

them.

3.4.1 Acquisition Definitions

To help justify the use of certain acquisition methods during this phase, it is useful

to draw parallels between different types of traditional forensic acquisition and the

circumstances characterizing supplemental acquisition from online sources.

The two types of acquisition are “static” and “live”, which correspond to acquiring

data from unchanging or volatile systems, respectively. Static acquisitions are carried

out against a data source which is unchanging, for example, “. . . a computer seized

during a police raid . . . ” [3, pg. 106]. Conversely, live acquisitions are performed on

systems in the process of running, often because “. . . the computer has an encrypted

drive . . . ” [3, pg. 106] or a live capture of memory may prove useful. When applied to

performing forensics on an email account, a static acquisition is equivalent to acquiring

data from stored Personal Storage Table (PST) files, frozen accounts, or logs from

journaling or Simple Mail Transfer Protocol (SMTP) servers, whereas a live acquisition

is equivalent to acquisition performed on active email accounts via Internet Message

Access Protocol (IMAP) or using other methods, running servers (SMTP, journaling,

etc.), or webmail services.

Further, two well-known approaches to acquisition are “logical” and “sparse”,

each of which is useful in different situations. Logical acquisitions target “. . . only
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specific files of interest . . . ” [3, pg. 107], similar to if an examiner were to target only

specific types of email archives (e.g. PST or mbox) or web services (possibly listed

in the browser cache) which will typically be directly visible in the disk image. The

traditional forensic approach is a clear example of a logical acquisition under this

definition, as portions of the body of evidence may be overlooked. A sparse acquisition

is more complete and includes the same data as a logical acquisition with the addition

of “. . . fragments of unallocated (deleted) data,” [3, pg. 107] and for email forensics

can be defined as extracting data from all sources identified in the credential discovery

phase, which may not be stored on the disk in any way.

3.5 Evidence Processing and Authentication

To increase the value of the intermediate representation mentioned in the previous

step, it is necessary to define a common evidence representation for the acquired

data to be processed into, shifting the focus of analyzing this data from handling

specific services to the task of email analysis itself. To simplify working with this data,

the representation should retain metadata about the data source as well as the data

itself, so as to clearly identify any specific characteristics of the data that would be

important during the reporting process. Using a common representation also adds the

benefit of being able to develop tools which treat the evidence in a source-agnostic

manner, since the representation abstracts away the differences between webmail and

locally stored emails, simplifying the development and validation/verification process

of forensic tools.

A well-structured format lends itself to the above goals, allowing for easy search-

ing, classification, and general use of the evidence while providing an extra layer

of abstraction from the raw evidence to help maintain the forensic integrity of the

information. When using a structured representation, an examiner can employ verifi-
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cation techniques (such as schema verification) to prove the accurate representation

of the evidence. Such a format and verification techniques also lends to the use

of this process in a collaborative environment; for example, an organization may

provide its implementation of an analysis tool remotely through a Service Oriented

Architecture (SOA) implementation or multiple organizations may create separate,

yet interoperable, tools using a common evidence representation.

Since the results of a forensic investigation must be accurate and verifiable, any

data used during it execution must be able to be authenticated at any time. In

order to properly authenticate the data after acquisition and processing, the evidence

representation format used should store the checksum generated during the acquisition

phase — such a checksum is created in practice by using cryptographic hash functions

including MD5, SHA1, SHA256, etc. By storing this checksum, examiners will be

able to confirm that the integrity of the data has not been compromised since it was

first acquired (perhaps during transit or by intentional tampering), or if necessary

and possible, they can perform a subsequent acquisition against the online service to

check for changes to the available data or verify the accuracy of the first acquisition

attempt.

3.6 Analysis

The next step after acquiring, processing, and authenticating the evidence is to

perform forensic analyses that will be informative for the purposes of the investigation.

Since the methodology only provides a process for the acquisition and storage of

supplemental evidence, the implementation of new analysis tools is beyond the scope

of this work. However, this methodology reduces the amount of effort required for

analysis of online evidence in two ways and presents two techniques to be used in a

successful analysis.
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3.6.1 Reduced Effort of Analysis

First, the approach removes the need to manually acquire supplemental evidence

as part of the examination workflow. The steps of discovering credentials, mapping

them to online services, acquiring data from the service, and processing the data

into a standard format are all performed automatically, saving time while providing

increased breadth to the incident report.

Second, such a methodology specifies that the standardized data storage format

should have a way by which to validate its structure. Three benefits arise from this

requirement: 1) acquired data in a validated format gives tool developers confidence

in the structure and type of the data; 2) developers do not need to write analysis

tools to handle multiple formats, since it is possible to convert evidence to the format

used in the process, making tools more reusable; 3) a comparison of the output from

multiple tools allows for checking accuracy 1 or for evaluating performance.

With these benefits, the selected approach provides significant advantages in

collaboratively discovering, collecting, and analyzing evidence stored by online services.

3.6.2 Analysis Techniques

When analyzing email, the most common approach is to use syntactic reasoning

based on the headers of email evidence [24]. Analyses using this technique is based

upon examining structural features of emails such as the fields defining who the sender

and recipient(s) are. An examiner may, for example, notice that a suspect has recently

been communicating with a known criminal and use this knowledge to focus their

investigation on emails related to those activities. Recently, this has been achieved

1As discussed in [30], validating forensic tools by comparing their output is important, but requires
executing the tools against the same evidence.
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Figure 3.2: The Possible Complexity of Information Flows within Email

through the use of XML evidence containers [21] which can easily be queried using

query languages such as XPath.

Another approach is the use of semantic reasoning, which uses computers to

draw conclusions from evidence based upon the contents of fields in well-structured

data. In email forensics, this may be used to query all emails whose body contains

mention to specific topics or are addressed to known criminals. More importantly,

when investigating multiple suspects this approach may be used to reveal information

about the structure of or information flows within a group. For example, consider a

situation in which three suspects are complicit in a crime though two of the suspects

never communicate directly, as seen in Fig. 3.2 — if the examiner does not infer

the connection between the two suspects who aren’t making direct contact, blame

may be placed soley on the intermediary. Using semantic reasoning tools, a query

could be created which examines the connections between the senders and recipients

of messages across the three distinct bodies of email evidence, creating a clearer

picture of the course of events being investigated. In other cases, this same query may

reveal that information could be flowing through another person outside of the group

being investigated and point examiners towards new suspects who have evaded law

enforcement thus far.
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These two analysis techniques clearly provide a benefit with regards to the ease of

the beginning phases of analysis and to increasing the thoroughness of the investigation.
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Chapter 4

IMPLEMENTATION DETAILS

To demonstrate the framework, the details of a plugin-based forensics framework

for online evidence, called PlugsE 1 will now be presented.

4.1 The PlugsE Framework

PlugsE is a framework implemented in Python meant to act as the black box

engine mentioned in Chapter 3.4 consisting of separate modules to handle each step of

the forensic process and a backbone which integrates them into a seamless tool. It has

been developed with extensibility in mind, where adding a specific implementation of

any step in this process is achieved by a system administrator manually adding entries

to one of four JavaScript Object Notation (JSON) manifest files which specify to the

PlugsE backbone the name of the module, the type of data (DFXML file, Google

cookies, keyring file, etc.) it handles, as well as how to access the module from a

programmatic standpoint. The access vector could be, for example, a command-line

executable or a service available via a Remote Procedure Call (RPC) interface such as

REST. PlugsE stores a manifest file for each step in the forensic process and parses

them using the Python json library to create a vector table which the backbone uses

to map the different types of data it is presented with to a specific implementation of

a step. Through the use of these manifests, each step in the forensic process can be

viewed as a collection of modules which implement differing approaches to the specific

forensic task at hand.

1Available at https://bitbucket.org/jpaglier/plugse
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Figure 4.1: The PlugsE framework

Figure 4.2: The Class Structure of the PlugsE Backbone

Each module must both accept as input and return as output JSON representations

of the data being acted upon coupled with logging information (start/end times, check-

sums, module name and version), which aids in providing a common representation of

data within the system, facilitating interoperability of modules written by different

developers, organizations, or even in distinct languages. Any binary data within the

JSON representation is necessarily encoded into Base64 so that it may be represented

as a string. In the case of the initially acquired data being passed into credential

discovery modules, the PlugsE backbone utilizes Python’s base64 library to do the

encoding. A summary of PlugsE’s class structure can be seen in Fig. 4.2.

When executing, PlugsE is first started by an examiner running it while passing

in the initially acquired data, in this example it is assumed to be a DFXML file along

with a raw disk image acquired using the dd tool. Following, PlugsE will enumerate all

existing modules from its manifest files based on which step the implement, creating
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Figure 4.3: Sequence Diagram Showing the Information Flow Through the PlugsE
Framework

the vector table. From here, PlugsE loops through each step in the forensic process,

passing each module the types of data which it expects; this executes in a chain-like

fashion where the results of one module are passed as inputs into the next. Finally, the

uniform evidence representation of the email evidence is returned to the practitioner.

This process can be seen in Fig. 4.3.

This modular approach offers a number of interesting benefits including that a

developer can implement a number of data flows within the forensic process and a

step in the forensic process may be offloaded to a remote server via RPC to a module

provided by another organization in a SOA fashion, with the backbone and examiner

being oblivious to the geographical location or implementation details of the web

service. These qualities may benefit a distributed, collaborative approach to forensics,

such as the one laid out in the CUFF framework [1]. Further, as modules implement

only a single step in the forensic process, their structure can be greatly simplified,

easing development and aiding in their validation and verification, as seen in Fig. 4.4.
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Figure 4.4: A High-Level Representation of Henson’s Structure

Figure 4.5: PlugsE’s Command Line Interface Output

As a proof of concept, PlugsE’s command line interface, as seen in Fig. 4.5, and the

online evidence acquisition steps from Chapter 3 will be used to retrieve the contents

of a Gmail account using cookies containing session information that is still valid.

4.2 Initial Acquisition

This implementation, makes the assumption that an examiner has already com-

pleted the work of initial acquisition (as described in Chapter 3.1) of a hard drive from

a desktop computer and created a forensic copy. Ideally, this would be performed

using a system such as the one presented in [1], which allows for the analysis of

evidence to automatically begin after acquisition. As previously mentioned, this can

be achieved through the use of tools such as dd or EnCase. Also, the modules in
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Algorithm 1 A simple method that searches for a file by traversing the file system
one directory at a time

rpaths← {}
for all q ∈ path set do

rpaths← rpaths ∪ { resolve(q) }
end for
for all p ∈ rpaths do

position← root dir ; not found← False
for all dir ∈ p do

if dir /∈ position then
not found← True
break

end if
position← dir

end for
if not found then

continue
end if
create initial mapping(p)

end for

this implementation depend on the DFXML representation of the evidence, so the

examiner (or the tools used by the examiner) must ensure its creation in this phase

using the fiwalk tool.

4.3 Credential Discovery

With a forensic copy of the target device accessible, it is now possible to be-

gin searching for credentials. By creating a PlugsE discovery module, Henson 2 ,

that searches for browser cookies utilizing a Search known locations approach,

one easily discovers the cookies for the Chrome browser on a Windows machine at

%USERPROFILE%\AppData\Local\Google\Chrome\User Data\Default\Cookies.

While other browsers’ cookies are also in known locations, this file is the focus of this

proof of concept.

2Available at https://bitbucket.org/jpaglier/henson
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Searching for the existence of a known path is a straightforward approach, taking

as input a list of paths for which to search. First, it decodes all of the paths, meaning

it resolves any Windows system variables to all matching explicit paths. Then it splits

each path into its subdirectories and iterates through them, checking for their presence

in a representation of the filesystem’s structure created beforehand from the DFXML

file. If the full path exists, this is recorded for later use. The complexity of Algorithm 1

is O(n ·m), where n = |resolved paths| and m = |dir contents|. It is assumed that

the search space |p| will be limited because it is searching for known paths of common

programs, meaning it does not have the same capacity for expansion the way that

n or m do. For example, in the case of Chrome cookie files in Windows 7, the path

specified previously will resolve to C:\Users\<user name>\AppData\Local\Google\

Chrome\User Data\Default\Cookies, which is a total of 9 directories before reaching

the desired file. This step is achieved using fiwalk’s provided Python library, giving

a programmatic interface to the files in the initially acquired storage media through

the use of FileObject objects.

After discovering the cookie database, the last task the module performs is to store

important information about the possible credential source in a JSON file for use in

the Evidence Mapping phase. While the discovery module cannot map the credential

to a service because it did not search the contents of the database for service-specific

information, it stores the source, format, checksum, and time of discovery of the

credential in a JSON file as illustrated in Fig. 4.6. With this, PlugsE’s logging process

has the information it needs and the relevant evidence mapping modules know which

files to use when carrying out their discovery attempts. The module then returns the

JSON file to the main PlugsE process which passes it to any modules registered for

handling a cookie credential. Because of the modular approach of PlugsE, Henson
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"start_time ": "2013 -09 -10 T16 :07:00.853000" ,
"version ": 1.0,
"end_time ": "2013 -09 -10 T16 :07:01.426000" ,
"credentials ": [

{
"checksums ": {
"sha1": "2 a9d2f492f9d4ce4f902c2f0b4a80fb84b0a1d50",
"md5": "b6ea39052c7e425b2743c385a1f006c9"
},
"errors ": [],
"contents ": "..."
"filename ": "Users/pag/AppData/Local/Google/Chrome/User Data/Default/Cookies"
},

...

Figure 4.6: An Abbreviated Sample of Henson Output

was implemented in 175 lines of code (including comments) and using simple, freely

available libraries..

4.4 Evidence Mapping

Now that the cookies have been discovered, PlugsE invokes all evidence mapping

modules registered to work with cookie databases, passing the possible credential

sources to each of them. In some cases, it may be necessary at this point for the

examiner to manually map the credentials to a service, as mentioned in Chapter 3.3.

PlugsE will determine that this is the case when one of two things happens: 1) no

mapping module has been registered to work with the source and format of a credential,

or 2) none of the registered modules were successful in mapping it to a service. For

this proof of concept, a tool named Crumbler 3 was written in Python to attempt to

map existing cookies to a live Gmail session. Crumbler imports the cookie database

from its native SQLite format to a custom subclass of the common Cookie Python

object.

In this example, identifying the cookies for a Gmail account is straightforward

because the fields shown in Fig. 4.7 will be present in the cookie database passed to

this module as input when opened using Python’s sqlite3 library. The mapping

3Available at https://bitbucket.org/mmabey/crumbler
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module for PlugsE searches for these fields and uses the cookielib library to load

them into a browser powered by the Selenium web driver 4 . Using Selenium, the

cookies are reused to attempt to gain access to the Gmail inbox — a successful access

is counted as a detection. Upon detection PlugsE creates an entry in the mapping

table which identifies this cookie database as containing credentials for Gmail. Fig. 4.8

shows what this entry looks like. Although the complexity of this module depends on

the efficiency of the Python sqlite3 5 library, it only searches for a constant number

of keys in the target and stops searching when any key is not present, which means it

contributes no more than O(1) complexity to the library’s operations.

Interestingly, Gmail allows users to grant other Gmail addresses access to their

account without reentering their password. The account that is granted access is

called a “delegate” and can read all the emails in the granter’s account as well as

send emails on their behalf. While Gmail does not provide IMAP access to delegate

accounts, creating the delegate prolongs access to the target account past the two

week expiration date of the cookies, allowing for any needed follow-up acquisition.

Because of this, as long as the cookies are still valid Crumbler performs each of the

steps for adding a delegate as outlined in the Google help pages 6 , which takes O(1)

time. Once this process has completed, the grantee can access the target account by

logging in to Gmail, clicking on their email address in the top right hand corner of

the screen, and selecting the target account from the list of accounts to which they

have access.
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Figure 4.7: All the cookies created by logging in to Gmail

4.5 Supplemental Acquisition

As mentioned in Chapter 3.4, tool developers must determine the best practice for

acquiring data stored by a distinct online service based on the type of credential(s)

discovered previously and the service’s features. For this proof of concept with Gmail,

it had to be discovered what features are apparent when only the browser cookies are

available to be used to log in. While the optimal acquisition method for retrieving a

copy of all emails is to do so via IMAP, cookies are specific to the HTTP protocol and

will not work to authenticate through IMAP. If plain text credentials (user name and

4http://seleniumhq.org/

5http://docs.python.org/2/library/sqlite3.html; complexity of individual operations not provided.

6http://support.google.com/mail/answer/138350
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"start_time ": "2013 -10 -10 T18 :14:00.942000" ,
"version ": 1.0,
"end_time ": "2013 -10 -10 T18 :27:21.626000" ,
"credentials ": [

{
"checksums ": {
"sha1": "2 a9d2f492f9d4ce4f902c2f0b4a80fb84b0a1d50",
"md5": "b6ea39052c7e425b2743c385a1f006c9"
},
"errors ": [],
"contents ": "..."
"service ": "gmail"
},

...

Figure 4.8: An Abbreviated Sample of Crumbler Output

Delivered -To: burdenedreflect@gmail.com
Received: by 10.220.174.193 with SMTP id u1csp57274vcz;

Fri , 8 Nov 2013 13:35:06 -0800 (PST)
X-Received: by 10.224.32.66 with SMTP id b2mr27904352qad .80.1383946506094;

Fri , 08 Nov 2013 13:35:06 -0800 (PST)
Return -Path: <update+o6hhc6of@facebookmail.com >
Received: from mx-out.facebook.com (outmail010.ash2.facebook.com. [66.220.155.144])
...

Figure 4.9: An Abbreviated Sample of Spatula’s Intermediate Representation

password) were discovered, acquisition via IMAP would be possible. Further, since

only the browser cookies are available to work with in the proof of concept, there is a

limited ability to change any account settings that will help the process of acquisition.

The final challenge to acquiring data from Gmail is that the only method for

retrieving the raw email data is to essentially “screen scrape” the pages returned

during a web session, parsing through the HTML and using regular expression patterns

or searching through the Document Object Model (DOM) for the desired elements. A

tool, Spatula 7 , was developed for the purpose of downloading the contents of a Gmail

account, again using Selenium. This tool navigates into each email present in the user’s

account and uses the “Show Original” option to provide an mbox representation of the

evidence. This view is then stored as mbox, which is an intermediate representation as

mentioned in Chapter 3.4 as seen in Fig. 4.9. The output is then returned via stdout

— a sample is shown in Fig. 4.10. Special care had to be taken when developing this

7https://bitbucket.org/jpaglier/spatula
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"start_time ": "2013 -09 -26 T09 :11:00.029000" ,
"version ": 1.0,
"end_time ": "2013 -09 -26 T09 :40:01.728000" ,
"credentials ": [

{
"checksums ": {
"sha1": "9 c35cb5e1b21a98f7285d6565e8e3e8cfeb838a0",
"md5": "5 c7e4b81e8a7a89ecb3ee5656db133d1"
},
"errors ": [],
"mailbox ": "ICAgICAgICAgICAgICAgICAgICAgICAg ..."
},

...

Figure 4.10: An Abbreviated Sample of Spatula’s Output

tool, as it was discovered that Gmail limits the number of requests you can make to a

single account within a certain time period; too much activity is flagged as “unusual”

and results in a lockout period anywhere from one to twenty-four hours. As such, a

mandatory wait period is enforced in between each page of email scraped to decrease

the average rate of outgoing requests. The messages should then be processed into a

standard format, as discussed in the following section.

While it is clear that a few circumstances have to be ideal in order for this

acquisition process to work, namely that the owner of the credentials is always signed

in, that the cookies have not yet expired and are discoverable by some means, and that

the notification banner of having added the delegate account will not compromise the

investigation. It is inevitable to retain these circumstantial dependencies. However,

one might also assert that those investigations for which they do not hold have not lost

access to evidence that otherwise would have been accessible, while those for which

they do hold have gained access to a great source of information 8 .

8Either way, to achieve comprehensive forensic analysis on email evidence, it is believed such an
approach is necessary and beneficial.
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4.6 Evidence Processing and Authentication

To demonstrate the evidence processing phase, the framework must convert our

intermediate representations to a well-structured format which follows the current

best practices of the forensic process.

4.6.1 Evidence Representation

During the development of this proof of concept, a survey of the strengths and

weaknesses of existing formats was conducted and it was concluded that the mbox

format [31] was the best suited to the purposes of the process. The mbox format

is a flat-file, plain text representation of email which is easy to parse and human

readable; these traits greatly reduce the time needed for examination of evidence

and development of tools, both of which are costly in terms of resources and time.

Furthermore, normally mbox stores attachments in some form of directory structure

related to their messages so that attachment analysis could be started as part of an

automated process, separate from the email data. Using mbox is also useful even when

processing the common PST format as tools from libPST 9 provide the conversion.

Finally, mbox is valid for use as a forensic copy format as it is “. . . output readable

by sight, shown to reflect the data accurately . . . ” and thus “. . . is an original” [3, pg.

162], so long as the acquisition process used was sound.

A current trend in digital forensics is the use of XML as a data representation

format, allowing for a firm layer of abstraction “. . . between feature extraction and

analysis . . . ” and “. . . a single, XML-based output format for forensic analysis

tools . . . ” [21]. For evidence representation in existing methodologies, DFXML is a

standard to represent disk, partition, file system, and file data in a unified manner [22].

9http://www.five-ten-sg.com/libpst/
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A major benefit of DFXML is the generality of its representation; regardless of disk

geometry or forensic copy format, the evidence is represented in the same manner.

When analyzing email evidence, the most significant metadata is contained within

the header of the email itself. Email headers include information such as the sender

and recipient (From and To), unique message identifiers (Message-ID), reply addresses

(Reply-To), and more [32]. Even without considering the content or body of emails,

these headers have been shown to be useful in forensic investigations as a means to

achieve author attribution, detect attempts to obfuscate sequences of events during

a time period of interest [24], as well as identify communication flows and perform

social networking analysis.

Although DFXML is quite efficient for representing massive amount of data from

a filesystem, it is ill-suited for storing the header information of emails, as file system

metadata is not closely related to the analysis of evidence contained within email

messages. While it could be extended to fit this purpose, the resulting format would

become overly encumbered and its size efficiency greatly reduced. Because of this two

new representations which are more suitable for email forensics, but maintain some

of the standard elements introduced in DFXML (such as byte runs of discrete pieces

of evidence) were defined. These new formats are known as Email Forensics XML

(EFXML) and Email Forensics Resource Description Framework (EFRDF). While

these two representations are functionally equivalent, they were designed with different

purposes in mind. While EFXML lends itself mostly to syntactic reasoning methods,

EFRDF is meant to be used when examining the highly semantic nature of information

contained within email evidence, as discussed in Chapter 3.6.2. More importantly,

investigations utilizing multiple bodies of email evidence which, when combined, may

reveal complex information flows through social interactions may benefit from semantic
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(126FB =3553193)(126 FC =55914899)(126 FD=30f2 )(879D=Ubuntu Webserver)
(879E=4 FBBFD99 .7030003 @gmail.com )(879F=4 fbbfd99 )(87A1

=1402698178870255137)(126 FE =3556285)(126 FF =55927429)(87 A2
=4 FBBFDF5 .1020909 @gmail.com )(87A3=<4FBBFD99 .7030003 @gmail.com >)

(87A4=4 fbbfdf5 )(87A6 =1402698281367293275)(12700=3557382)(12701=55931778)
(87A7=4 FBBF6D5 .4060203 @heypete.com )(87A8=4 fbbf6d5 )(87AB

=1402699518649060034)(12702=3558521)(12703=55936289)(9 AE5 =16f2)
(87AC=CAJJCUitGw3eJVdyK5o1XDuH=nOa_gg2UTGVaH6U8L9kkO+Ua3w@mail.gmail.com)
(87AD=<4FBBFD99 .7030003 @gmail.com > <4FBBFDF5 .1020909 @gmail.com >)(87 AE

=4 fbbf6fc )(87B1 =1402699557081490979)(12704=3559 eb2 )(12705=55942834)
(87B2=4 FBC07DD .1040100 @gmail.com )(87B3

Figure 4.11: A Sample of a Thunderbird Mail Summary File

<?xml version=’1.0’ encoding=’ISO-8859-1 ’?>
<mailbox type="mbox">

<message >
<Subject >&lt;Re: problem with dovecot&gt;</Subject >
<Date>

<year>2003</year>
...

</Date>
<From>

<sender >
<alias>&lt;Jesse Peterson&gt;</alias>
<email>jpeterson275@attbi.com</email>
</sender >

</From>
<non-standard >

<X-Original-To >dovecot@proctrol.fi</X-Original-To >
</non-standard >
<byte_runs file_offset="1101673" len="2159"/>
<checksum >

<md5>8e4bb7462b991183cf5b2adc87970227 </md5>
</checksum >

</message >
</mailbox >

Figure 4.12: An Abbreviated Sample of the EFXML Format

analysis. EFRDF is based upon the Resource Description Framework standard [33], a

subset of XML often used for semantic representations of data.

As email is text-based and can be easily represented in XML without complicated

encoding, EFXML and EFRDF present many of the same benefits presented by Alink

et al. [21] and Garfinkel [22], including easy searching and classification of information.

Non-XML indexes of email metadata do exist in the current software ecosystem,

but are not tailored to use in email forensics. For example, the Thunderbird email

client stores metadata as Mail Summary Files (MSFs) in a format known as Mork.
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<?xml version=’1.0’ encoding=’ISO-8859-1 ’?>
<mailbox:Class>

<mailbox:type>mbox</mailbox:type>
<message:Class>

<message:Subject >&lt;Re: problem with ...&gt;</message:Subject >
<message:Date>

<Date:year>2003</Date:year>
...

</message:Date>
<message:From>

<From:sender >
<sender:alias>&lt;Jesse Peterson&gt;</sender:alias>
<sender:email>jpeterson275@attbi.com</sender:email>
</From:sender >

</message:From>
<message:non-standard >

<non-standard:X-Original-To >...</non-standard:X-Original-To >
</message:non-standard >
<message:byte_runs file_offset="1101673" len="2159"/>
<message:checksum >

<checksum:md5>8e4bb7462b991183cf5b2adc87970227 </checksum:md5>
</message:checksum >

</mailbox:message >
</mailbox:Class>

Figure 4.13: An Abbreviated Sample of the EFRDF Format

However, this indexed data is neither human readable nor easily parsed [25] and is of

limited use, as seen in Fig. 4.11. As an added benefit of using an XML-based format,

EFXML and EFRDF have clearly defined schemas which can verify the output from

tools that generate these formats. As an example of their differing, yet equivalent,

representations, a To field reading:

To: jsmith@gmail.com

would yield the EFXML element:

<To>
<recipient >

<email >jsmith@gmail.com</email>
</recipient >

</To>
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or the EFRDF element:

<message:to >
<to:recipient >

<recipient:email >
jsmith@gmail.com

</recipient:email >
</to:recipient >

</message:to >

which accurately represent the “To” header field in a much more structured manner,

allowing for easily focusing on or excluding messages based upon their apparent

recipients. Similarly, to reflect the data extraction capabilities provided by the

“byte runs” element in DFXML, it includes a simplified element which details the span

of bytes within the mbox file where the email resides and can be extracted from using

tools such as those designed for DFXML, the Unix command dd, or other comparable

programs. While line numbers would be equally useful with regard to the mbox format,

it was decided to use the “byte runs” field in each representation to follow existing

standards. Abbreviated samples of the EFXML and EFRDF representations of a

mailbox can be seen in Figs. 4.12 and 4.13, respectively.

4.6.2 Evidence Processing

This proof of concept includes two tools for parsing mbox files into corresponding

EFXML and EFRDF representations, named mbox2efxml 10 and efxml2efrdf 11 .

mbox2efxml was loosely based on Philip Guo’s create mbox summary tool [34], but

with comprehensive support for the email headers specified in [32] and well-formed

XML through the use of the lxml library 12 .

10Available at https://bitbucket.org/jpaglier/efxml

11Available at https://bitbucket.org/jpaglier/efxml2efrdf

12http://lxml.de/index.html
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Algorithm 2 The process mbox2efxml follows to parse mbox files

procedure mbox2efxml(mbox paths)
known headers← RFC4021 Headers
efxml = {}
for all mailbox ∈ mbox paths do

for all message ∈ mailbox do
headers← extract headers(message)
for all header ∈ headers do

if header ∈ known headers then
efxml← efxml ∪ process(header)

else
efxml← efxml ∪ header

end if
end for

end for
end for
return efxml

end procedure

Because the mbox2efxml tool only works with mbox archives, it assumes that if the

email was originally in a different format, some tool has already made the conversion

to mbox. For example, libPST’s readpst 13 tool reads in a PST file and outputs

a separate mbox file for each folder contained within the PST. These separate files

are then iterated over and each message within them is processed. This tool runs

in O(m · n · q) time where m = |mbox paths|, n = |messages| for all mailboxes, and

q = |headers| for all messages, as outlined in Algorithm 2.

The efxml2efrdf tool works in a similar fashion to mbox2efxml by reading in

an EFXML file using the lxml library and converting the contents to its EFRDF

equivalent. While leaving out the body of the email may limit the scope of a semantic

reasoning approach like was discussed in Chapter 3.6.2, explorations into the costs

and benefits of its exclusion are left to future work, where further investigation will

be able to discover the subtleties of a semantic approach. The structure of EFXML

and EFRDF as specified in their schemas helps overcome one shortcoming of mbox as

13http://www.five-ten-sg.com/libpst/rn01re01.html
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it relates to forensics, which is that there is no way to add metadata to the file. Of

particular interest are the fields which help maintain the chain of custody by storing

information on the name of the program that created the mbox, EFXML, and/or

EFRDF files; the version of the programs; the date and time of their creation; the

target email address; the size of the mbox file; and MD5 and SHA1 checksums for

the mbox file. With this information, it is possible to keep track of how the evidence

was acquired, authentication information for the entire set of emails 14 , and what

programs handled the evidence at what time, all of which are required by the rules of

evidence.

4.7 Analysis

This approach creates well-defined, structured, and verifiable representations of

email data. Since they are XML formats, developers can easily craft tools and validate

them using common XML parsing libraries to facilitate the analysis process, much

like DFXML. Also, with the intermediate mbox format and the EFXML/EFRDF

abstractions, forensic analyses using syntactic or semantic analysis techniques can

be carried out while the forensic copy remains intact, regardless of the data source’s

original storage format. The development of analysis tools remains as future work.

14Unless the target account has been frozen by the provider, acquiring emails from the same
account at two different times will likely yield two distinct data sets, preventing the checksums from
matching. As such, the checksums are provided for integrity checks against the same mbox archive
to ensure it does not change while being analyzed and not against past or future acquisitions.

40



Chapter 5

EVALUATION

To demonstrate the value of this approach and the proof of concept implementation,

a number of experiments were run and their quantitative measures will be presented.

First, the comprehensiveness of the approach will be measured by quantifying the

number email messages acquired during a traditional forensic investigation and one

using PlugsE, which implements this methodology. Second, the extensibility of PlugsE

will be shown through an example where a manifest file is updated to instruct the

framework to use a tool newly introduced into the system. The uniformity of the

evidence container formats will be evaluated by comparing the Gmail representation

of an email with the internal representation created when Thunderbird retrieves the

same message using IMAP. The value of the approach and framework with respect to

collaboration and distribution of work will be measured by examining its usefulness in

an existing collaborative forensics framework known as CUFF [1]. The consistency of

the approach will be measured by comparing multiple acquisitions of evidence against

a source where known changes have been made, allowing for the effects of such changes

to be measured and enumerated. Finally, the performance of modules will be measured

when running in real computer environments. These measures accurately represent

the effectiveness of this work with respect to the problems presented in Chapter 1.2.

5.1 Comprehensiveness

Since a major goal of this work is to provide more comprehensive view of email

evidence, an evaluation of this trait of the approach must be presented. Given a

system containing:
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Email Evidence Acquired through Traditional Forensics

PST

37.5%

Unknown

62.5%

Figure 5.1: The coverage of email evidence provided by traditional forensics

• A PST file which holds 1,500 emails

• Credentials mapping to:

– A Gmail account which holds 2,000 emails

– A Yahoo account which holds 300 emails

– A Hotmail account which holds 200 emails

for a total of 4,000 emails, using traditional forensics only 1,500 emails are directly

available in the evidence, representing only 37.5% of the evidence, as seen in Fig. 5.1.

By using PlugsE to achieve comprehensive results, a further 62.5% of the evidence

was recovered as seen in Fig. 5.2.

As there is greater coverage of email evidence from this example, it is clearly shown

that this process gives a more comprehensive approach to email forensics.

5.2 Extensibility

PlugsE was designed with extensibility in mind and its implementation reflects

this strongly. At runtime, the PlugsE backbone parses four JSON manifest files to
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Email Evidence Acquired through PlugsE

PST

37.5%

Hotmail

5%Yahoo

7.5%

Gmail

50%

Figure 5.2: The coverage of email evidence provided by PlugsE’s comprehensive
process

load the plugins into the system, as described in Chapter 4.1. Each entry in this

manifest file contains the tool name, the types of input that are required for this tool

to run, the types of input that are optional for this tool to run (perhaps to increase

the breadth of its results), the output type of the tool, whether it runs as a local

command or remotely, the name of any required interpreters, and the access vector

for the program (a URL or path to a program). Once these fields have been added

to the manifest, PlugsE will automatically pass the proper inputs to it if all of the

required input types are retrieved from the previous step. An example manifest entry

can be seen in Fig. 5.3.

The use of the manifest files allows for system administrators to simple handle the

installation of tools and basic configuration editing instead of needed to know the

intricate implementation details of the PlugsE backbone itself, which would require

programming knowledge. In this way, PlugsE is a pluggable framework with a focus

on extensibility.

Since it has been shown that PlugsE addresses the need for extensibility in an

environment handling email forensics, a need to represent the comprehensively acquired
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{
"Henson ":

{
"version ": 1,
"required_input ": [" dfxml","raw"],
"optional_input ": [],
"output_type ": "chrome_cookie",
"run_type ": "cmd",
"interpreter ": "python",
"access_vector ": "/usr/bin/henson.py"

}
}

Figure 5.3: An Entry in a Manifest File

Figure 5.4: Gmail’s Presentation of Email — Internal Representation is Unknown

data uniformly arises when handling emails from many sources which each handle

email differently.

5.3 Uniformity

As mentioned in Chapter 3.4, different web services and email clients will represent

email in differing ways, both internally and externally. For example, Gmail and
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Delivered -To: jpaglier@email.asu.edu
Received: by 10.227.204.7 with SMTP id fk7csp144504wbb;

Tue , 5 Nov 2013 04:50:50 -0800 (PST)
...
Date: Tue , 5 Nov 2013 13:50:09 +0100
From: Marcus Meissner <meissner@suse.de>
To: OSS Security List <oss -security@lists.openwall.com >
...
Subject: [oss -security] CVE Request: additional fix for CVE...
...
Hi,

Our QA found that the reproducer in CVE -2012 -2825...

Figure 5.5: Internal Mbox Representation of Email Used by Thunderbird

Thunderbird will represent emails differently as seen in Figs. 5.4 and 5.5. These

differing representations may pose a barrier to a forensic investigation in the sense

that the task of email analysis may become tightly coupled with the representation

being handled. To mitigate this hurdle, a uniform evidence representation must be

defined to shift the focus away from the representation of email and towards the actual

analytical methods being employed. To achieve this, the use of EFXML and EFRDF

to represent that data can be shown to be beneficial.

After supplemental acquisition, the evidence processing modules in PlugsE convert

intermediate representations of email (which are influenced by the best practices

established for supplemental acquisition of a given service) into EFXML/EFRDF

representations. This yields the same representation no matter the source of the data,

as seen in Fig. 5.6.

Now that a uniform evidence container is used to represent emails from various

sources has been shown to be useful, the benefit of aiding in collaboration and

distribution of forensic tasks can be explored.

5.4 Collaboration/Distribution

Forensic investigations are becoming increasingly collaborative in a number of

ways — multiple organizations may be conducting a joint investigation with a need
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<?xml version=’1.0’ encoding=’ISO-8859-1 ’?>
<mailbox type="gmail">

<message >
<Subject >&lt[oss-security] CVE Request: ...&gt;</Subject >
<Date>

<year>2013</year>
...

</Date>
<From>

<sender >
<alias>&lt;Marcus Meissner&gt;</alias>
<email>meissner@suse.de</email>
</sender >

</From>
<To>

<recipient >
<alias>&lt;OSS Security List&gt;</alias>
<email>oss-security@lists.openwall.com</email >
</recipient >

</To>
...

</message >
</mailbox >

Figure 5.6: uniform Representation from Either Data Source

to share evidence and workload, proprietary tools may be shared using a service-

oriented architecture approach (such that the implementation details of their tools

aren’t revealed), and the combination of those two issues lends itself to cloud based

implementations of forensic platforms such as CUFF [1]. This architecture provides a

unique approach to collaborative and distributed forensics in which stored evidence

can be shared across organizational boundaries and forensic tasks are distributed

among cloud nodes to provide scalable collaborative forensics. However, CUFF has not

yet been tailored to a specific use case and tools must be developed in order to leverage

it. In an environment like CUFF, PlugsE would be extremely powerful as it can

easily leverage the distributed nature of the system. While the PlugsE backbone may

reside on a single Analysis Node Instance, different steps in the forensic process (i.e.

collections of PlugsE modules) may reside on other nodes or specific tools may only be

available on certain Analysis Node Instances due to licensing or hardware issues. As

PlugsE manifests are easily updated by a system administrator without programming

knowledge, PlugsE can easily be managed within such a dynamic system. Furthermore,

the ability of PlugsE to use RPC to communicate with modules that are not run
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Figure 5.7: An Overview of the Cuff Architecture [1]

locally, the framework can easily be used in such a cross-organizational cloud-based

environment. An added benefit of this RPC approach is that modules not deployed

within a CUFF system may still be used by invoking tools in other systems using

the same RPC methods. The use of uniform, language-agnostic representations and

standard web communication models grants a great deal of freedom when designing a

collaborative or distributed forensic environment.

PlugsE’s pluggable architecture and use of a uniform evidence representation

adds the clear benefit of collaboration and distribution of labor among actors in a

forensic investigation. While this is extremely useful, due to the rules of evidence later

discussed in Chapter 6.2, any approach must provide a consistent representation of the

evidence so there is no question about the authenticity, admissibility, completeness,

and reliability of the evidence.
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Table 5.1: Set of checksums after emails have been deleted and/or received

Operation Set of Checksums

First acquisition

ab357d3e9cfda62d51d9e39f8f1cad3d

fe41c3cd42318d0ba21f75eb9b72cc5f

84964e521a39865bb138c0046b3af45f

Email deleted

ab357d3e9cfda62d51d9e39f8f1cad3d

fe41c3cd42318d0ba21f75eb9b72cc5f

84964e521a39865bb138c0046b3af45f

Email received

ab357d3e9cfda62d51d9e39f8f1cad3d

fe41c3cd42318d0ba21f75eb9b72cc5f

84964e521a39865bb138c0046b3af45f

aaa59f984ba63e54f493c77b830e99ed

Email both deleted and received

ab357d3e9cfda62d51d9e39f8f1cad3d

fe41c3cd42318d0ba21f75eb9b72cc5f

84964e521a39865bb138c0046b3af45f

66efa0786721811f6e04fb6d62c1b6d4

5.5 Consistency

The well-defined, process-driven nature of the approach presented in Chapter 3

and the automated nature of the PlugsE framework presented in Chapter 4 provide a

consistent approach to email forensics, which holds great weight with regards to the

rules of evidence, particularly in repeatability. Since PlugsE also takes checksums of

the evidence which is acquired, during subsequent acquisitions it becomes simple to

check if the state of the data source has changed as the checksums will not match. To

evaluate this property of the system, an experiment was devised in which the elements

of the set of MD5 checksums of email messages acquired during multiple acquisitions of

the same data source were compared when an email was deleted, an email was received,

and finally when one email was deleted and another was received, as seen in Table 5.1.

From this information, it became trivial to determine which changes had been made
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Figure 5.8: Time to discover known cookies in Chrome cookie database

to the system using basic reasoning. When the emails in a subsequent acquisition

were a proper subset of those in the first supplemental acquisition, emails had been

deleted and the converse signifies that new emails had been received. When neither

case were true and the checksums still did not match, assuming the supplementary

acquisition module functions properly, it could be inferred that emails have both been

deleted and received. This information may be especially useful during intelligence

operations where surveillance is the goal of the investigation rather than ex-post-facto

examination.

Since the automation provided by PlugsE provides a consistent representation of a

user’s email activities, the final evaluations needed are those related to the performance

of the approach previously discussed.

5.6 Performance

As differing implementations of each step of the forensic process will vary based

on data source, this evaluation will focus mainly on two factors: (1) the efficiency of
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Figure 5.9: Conversion times of single mbox files in the Enron data set by number
of messages

EFXML and (2) the running time of sample implementations of each step to show an

example of the process functioning in a useful manner.

Initially, a test of the Search known locations algorithm was tested and was

confirmed to be roughly linear, taking about 2 milliseconds for every 100 file objects

listed in a DFXML record. When the process was carried through to evidence mapping,

another 10 seconds per discovered Chrome cookie database containing Gmail cookies

was added.

To evaluate the Email Forensics XML format and the evidence processing step, we

designed an experiment which compares the size of Personal Storage Table (PST) files,

their respective mbox files, and their EFXML representations. The PST files used

were the publicly available Enron Corporation email data 1 , which measures 8.70GB

1Acquired from http://www.enrondata.org
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Figure 5.10: Average Size of mbox and EFXML Representations Relative to PST in
the Enron Data (Normalized)

across 148 mailboxes, containing a total of 517,431 messages and 3,299 folders (once

decompressed).This dataset does not include attachments or certain redacted portions

of the original data. Each PST file was then converted into its respective mbox

representation using the readpst tool available through libPST, yielding 1.2GB of text

data. Then these mbox files were processed using the mbox2efxml tool discussed in

Chapter 4.6 generating 614MB of data after approximately 3.5 minutes of processing

on an Acer Aspire 4830T 2 .

When recording the time taken to process each mbox file individually, as seen in

Fig. 5.9, the average processing time per message was 0.57ms. Fig. 5.9 also shows

a roughly linear increase in processing time with regard to the number of messages,

confirming the estimate of O(m · n · q) running time. A comparison relative to mbox

size, after conversion from PST, is depicted in Fig. 5.10, which visually demonstrates

2http://www.cnet.com/laptops/acer-aspire-timelinex-4830t/4505-3121 7-35029979.html
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that the file sizes are positively correlated across this dataset. There was a notable

decrease in file size when converting from PST into mbox, which may be explained by

the block allocation scheme used in the PST format.

Following the step of processing the evidence into EFXML, a number of verification

tasks were carried out including reproducing checksums and comparing counts of

messages between the original and EFXML representations. Due to the nature of

email data, it is possible to observe a size increase in particularly imperfect cases (e.g.

where volume of header data exceeds the volume of body data) after the addition of

the EFXML tags to the data 3 ; however, these evaluations point toward an average

case which does not approach this situation. Potential size decreases could be seen

when considering attachments in the body of evidence.

5.7 Summary of Results

The effectiveness of the approach and the PlugsE framework have been evaluated

with respect to comprehensiveness of the evidence acquired, the uniformity of differing

representations of the same pieces of evidence, the use in collaborative and distributed

forensics systems, the consistent performance of the approach, and the performance

of the modules developed. These evaluations represent a solution to the problems

described in Chapter 1.2.

3In fact, such a case became apparent when using a sample acquired at
http://www.dovecot.org/tmp/dovecot-crlf
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Chapter 6

DISCUSSION

To build upon the previous evaluations, discussing this work in relation to the

important topics of the rules of evidence, collaboration, and general use of the approach

is important.

6.1 A Note on Legality

It must be emphasized that this approach requires special consideration to laws

regarding the search and seizure of evidence. In many territories, it may be necessary

to secure a subpoena or warrant before using an approach like ours. However, in

the event that the necessary procedures have been followed and the service provider

remains uncooperative, this method provides examiners with an alternative means of

acquisition for the sake of prompt response, as discussed by Richard Littlehale 1 in

his testimony before the U.S. House Judiciary Subcommittee on Crime, Terrorism,

Homeland Security & Investigations on March 19, 2013 [35]. It is critical that

practitioners consult proficient legal counsel before utilizing the information contained

herein.

6.2 Rules of Evidence

Any forensic framework must uphold the rules of evidence (authenticity, admissi-

bility, completeness, and accuracy/reliability), which are the canonical guidelines for

handling evidence. The following is a discussion of how this approach supports these

important principles.

1Assistant Special Agent in Charge, Technical Services Unit, Tennessee Bureau of Investigation.
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The authenticity of evidence from online sources relies on the same arguments as

other live acquisition methods, which by nature are difficult to verify [36]. While our

framework is capable of facilitating the protection of evidence authenticity, it remains

an issue for developers to implement sound acquisition plugins for PlugsE that capture

an accurate representation of the acquired data.

Admissibility implies two key concepts: 1) that the evidence was acquired following

proper procedures, and 2) that it was handled properly after acquisition. As discussed

in Chapter 6.1, it is the responsibility of practitioners to understand their duties with

regard to the first item. However, this framework facilitates the second item by using

the EFXML and EFRDF files to record details about the tools that acquired and

processed the evidence, which examiners can include in chain of custody forms when

necessary.

For evidence to be complete, the format into which it is acquired needs to accurately

reflect the original data, as mentioned in Chapter 4.6. Without cooperation from

the service provider, it is impossible to know the exact structure of the original

data, so focus instead be placed on retaining the available data using standards

such as RFC 4021 [32] as a guide. Even though these tools may omit newlines,

control characters, and other non-essential data during the processes of acquisition

and conversion to mbox, they preserve all the header information, body text, and

attachments, which are the portions of interest and which will hold sway in a legal

setting. Furthermore, I reiterate that this approach provides examiners access to

relevant evidence not available after a simple acquisition of a hard drive, aiding the

examiner to form a more clear, complete, and well-informed report on the suspect. I

do, however, feel that the algorithm discussed in Chapter 4.6 is costly and should be

improved upon in future work. This may be achieved through defining and extracting

only specific headers which reveal important information flows (reducing a linear factor
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to a constant), using semantic reasoning to determine which messages to focus on, or

other yet unexplored tactics. As EFXML and EFRDF are structured data formats,

they may facilitate these future approaches by simplifying the development process of

tools which utilize them and following current trends in the forensics community [21].

This implementation ensures the reliability and accuracy of evidence it handles by

measuring the integrity of each message by taking its checksum during supplemental

acquisition and evidence processing. With this, an examiner may verify the evidence

has remained unchanged after each step of the process. Also, because there are

schemas provided for EFXML and EFRDF, developers can ensure the reliability of

their own tools more easily.

6.3 Collaboration

This approach facilitates collaboration in many ways. First, it presents a platform

for tool developers that allows them to focus on building their algorithms and modules

correctly without having to devote precious time to the acquisition of email data

or handling its native format, much the same way that DFXML has done for disk

forensics [37]. Second, the use of language agnostic formats such as JSON, EFXML,

and EFRDF allows for interoperability between modules in the system, allowing

for both collaborative development and the sharing of work among developers with

different technical backgrounds as well as allowing for organizations to provide their

implementations as SOA products without revealing the intimate details of their

methodologies, which may reveal trade secrets or other proprietary information. The

ability to share work and tools allows for scenarios where different examiners within

one or more organizations can take responsibility for different steps in the forensic

process, which could be further enhanced by use in a collaborative forensic system

such as CUFF [1]. Finally, the use of PlugsE manifest files gives the system a degree

55



of autonomy, where an administrator need not have detailed programming expertise,

and further increases interoperability by abstracting the details of how modules are

accessed; to a practitioner the use of locally-hosted command line tools becomes no

different from using a remotely-hosted SOA product accessed over an RPC protocol

while logging information contained within their outputs maintains the chain of

custody.

6.4 General Use of the Approach

While the dialogue is this thesis focuses mostly on forensic investigations in law

enforcement settings, this is not the only environment in which the approach would

be useful. As business intelligence and incident response processes mirror those of

criminal investigations, this work may be used in industry settings when conducting

inquiries into misconduct, misuse of resources, or any other violation of an employee’s

obligation to their employer. Further, since businesses typically own the machines from

which evidence is acquired, the lack of an expectation of privacy on the part of their

employees may present more relaxed requirements than those which law enforcement

agencies face.

6.5 Limitations of the Approach

This process-driven approach is not without limitations which will now be discussed.

First, while this work does present a repeatable process for conducting email

forensics, it does not present a universally applicable best practice for credential

discovery, evidence mapping, and secondary acquisition of any given email service;

that is to say that it the best practice for applying this process to one email web service

may differ from another. Along with this limitation, the PlugsE implementation of

this framework may not present fully comprehensive results in every case which it
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is employed as the results are dependent upon the modules available to it and their

implementations of the best practices previously mentioned. As the ecosystem of

email service providers grows and changes, tool developers must take special care to

continuously implement and refine tools to handle challenges as they are introduced.

Second, in situations where a live acquisition approach has been taken against

active email accounts practitioners must take special care to ensure this evidence

is properly presented as a snapshot of a system in flux. In preparation for using a

live acquisition methodology tool developers and practitioners must enumerate the

limitations and effects of such an approach beforehand and show them to be within

the restrictions placed upon the investigation by the rules of evidence. If these steps

are not followed, the evidence may be ruled inadmissible and negatively affect the

outcome of the investigation.

Finally, as previously mentioned in Chapter 6.1, there are many legal implications

which must be taken into account when using this approach. First, focus must be

placed on upholding the rights of the suspect during the investigation. Further, all

modules being used during the investigation must go through thorough verification

and validation processes to ensure their proper functioning and representation of the

evidence acquired with respect to the rules of evidence. For example, the mbox2efxml

tool presented for Chapter 4.6 may contain behavior which would misrepresent the

evidence acquired during the supplemental acquisition phase of the methodology; as

such, no modules presented in this work should be used directly in legal proceeding until

they have been subjected to proper scrutiny. Failure to follow either of these guidelines

may also invalidate evidence, negatively affecting the outcome of investigation.
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Chapter 7

CONCLUSION

To conclude this work, a summary of the work at large, its contributions, and

tasks left to future work will now be presented.

7.1 Summary

This work has defined a general methodology for carrying out email forensics and

shown a proof of concept implementation with evaluation results. This approach

broadened the definition of credentials, identified methods for discovering credentials,

and demonstrated the need for a generic evidence representation. The implementation

has shown an example of credential discovery for Gmail accounts, a method for

reestablishing existing Gmail sessions, the steps needed to carry out a supplemental

acquisition, and a completed evidence processing phase generating both an intermediate

mbox representation of email evidence and proposed EFXML/EFRDF representations

of email headers upon which further analysis can be carried out while addressing

the need to facilitate collaboration amongst developers and organizations during the

creation of tools for forensic investigations as well as the investigations themselves.

7.2 Contributions

This work represents contributions to the field of email forensics in three distinct

areas: 1) the benefits of a new process-driven approach to email forensics 2) the

benefits of using a well-structured and uniform evidence representation 3) and the

benefits of PlugsE and its sample modules, a realization of the approach.
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7.2.1 Process-Driven Approach

The proposed and evaluated process-driven approach provides a new method for

conducting acquisitions of email for forensics where, instead of treating it simply as

a task to be carried out during the evidence investigation, it is treated in much the

same way as disk forensics where the evidence itself is the main focal point of the

process as described in Chapter 3. While these results could previously be achieved

through manual examination of disk evidence, there lacked a formal approach to the

task. Further, the success of an examination using only manual examination hinged on

the examiners technical skills (i.e. discover, map, and reuse credentials then acquire

the data) as well as past experiences (e.g. previously having reused cookies to retrieve

email evidence and concluding it is a worthwhile approach), where this process-driven

approach leaves the task of creating a consistent approach to email forensics to the

developers of forensic tools to allow examiners to focus their efforts on the actual

analysis of the evidence. As this process can be automated, it increases the reliability

of acquired evidence and repeatability of the process used to acquire it, which adds

weight to the results of an examination according to the rules of evidence. Also, the

comprehensiveness of the acquired evidence is also greatly increased by ensuring that

evidence is acquired from all available data sources, rather than only the storage media

initially acquired. Finally, by defining the distinct steps in the process (credential

discovery, evidence mapping, supplementary acquisition, and evidence processing)

best practices can be defined for each task required to conduct email forensics and

provides a common vocabulary for researchers to use when discussing what these best

practices entail.
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7.2.2 Evidence Representation

Following the trends in the forensics community to use well-structured, uniform

XML based evidence containers [21] such as DFXML [37], two new evidence containers

tailored for use in email forensics, EFXML and EFRDF, were designed and developed

as discussed in Chapter 4. In addition, schemas to accompany these evidence repre-

sentations were developed to aid in the validation and verification of evidence. These

evidence containers abstract away the technical details of how and where evidence

was stored and allows for examiners to focus on the emails themselves as evidence

and the tools which use them. Since EFXML is purely XML-based, it lends itself to

easy syntactic reasoning approaches to email analysis, such as querying for specific

header fields using the XPath query language. EFRDF, on the other hand, provides a

format which can be utilized in semantic reasoning engines to draw conclusions about

the evidence based upon the characteristics of these header fields, which may be used

to reveal information flows which are not directly evident across multiple bodies of

evidence. As these formats store all relevant forensic information including dates,

checksums, and tool versions it lends itself to maintaining the chain of custody and

aids examiners in verifying that they have followed the rules of evidence. Finally, the

well-structured nature of these containers allows for forensic tool developers to verify

the proper functioning of their tools and examiners to validate their output.

7.2.3 Realization of Approach

PlugsE as presented in Chapter 4 was developed as a realization of the process-

driven methodology defined previously. PlugsE is a pluggable framework which allows

for the system to be extended and grow as best practices emerge for various email

service providers, fully realizing the comprehensiveness of the methodology. As it
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provides interfaces for either local tools or remote tools accessible via RPC, PlugsE

also greatly aids in collaborative and distributed forensic examinations such as those

facilitated in systems like CUFF [1]. A proof of concept implementation of each

step in the forensic process has also been provided, showing a useful approach to

reusing credentials in the form of browser cookies to gain a more complete body of

evidence through the automated processing of disk-based evidence. The following

tools have been designed and implemented to support this framework: a credential

discovery tool Henson which utilizes the Search Known Locations method to discover

credentials stored in cookie databases, an evidence mapping tool Crumbler to detect

the presence of active email sessions, a supplementary acquisition tool Spatula which

uses these sessions to screen scrape the evidence, and two evidence processing modules

mbox2efxml and efxml2efrdf which facilitate the proposed evidence representation

schemas EFXML and EFRDF. The developed tools and framework facilitate novel

approaches to the analysis of email evidence so examiners can further reveal information

flows which may otherwise go unnoticed.

7.3 Future Work

Throughout the course of this work, numerous research problems presented them-

selves. First, since credentials are defined as any pieces of information which may

reveal the existence of further email evidence, new approaches to discovering and

reusing the various types of credentials which may exist on a system, such as those in

the form of text files or encrypted keyring systems, will be investigated. By continuing

research in this direction, the comprehensiveness of this process will greatly increase

the value of following the methodology.

Next, further best practices for each step in the process will be investigated and

established to increase the forensic soundness of the tool. This research should focus
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greatly on following the rules of evidence while aiding examiners in maintaining the

chain of custody and give legal staff solid ground from which to present the results of

an investigation.

This process may also be useful in situations other than those of email forensics,

business intelligence, and incident response — its applications in other realms will

be explored. Particularly, this approach may be generalized to handle all kinds of

remote services in the rapidly growing ecosystem of services and service providers.

Remotely maintained storage and software applications are rapidly gaining traction

in the consumer market and should also be addressed by the forensic community to

create more and more comprehensive narratives of events during investigations.

Finally, tools and novel approaches to the analysis of the evidence acquired during

the process which leverage the usefulness of the evidence container formats presented

alongside it will be investigated and developed. In particular, the usefulness of

semantic reasoning on email evidence will be explored past the simple examples

previous presented. More thorough feature extraction based on the body of email

evidence may also be aided during an analysis utilizing semantic reasoning techniques

and the costs and benefits of including the body of the email in the container formats

must be explored. As part of this work, improvements upon Algorithm 2 should be

explored to reduce its cost. While analysis tasks are not addressed by this work,

they are an important step in the forensic process. Utilizing the evidence containers

presented herein may support the previously mentioned novel approaches to analytical

tasks.
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