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ABSTRACT  

   

The speech of non-native (L2) speakers of a language contains phonological rules 

that differentiate them from native speakers. These phonological rules characterize or 

distinguish accents in an L2. The Shibboleth program creates combinatorial rule-sets to 

describe the phonological pattern of these accents and classifies L2 speakers into their 

native language. The training and classification is done in Shibboleth by support vector 

machines using a Gaussian radial basis kernel. In one experiment run using Shibboleth, 

the program correctly identified the native language (L1) of a speaker of unknown origin 

42% of the time when there were six possible L1s in which to classify the speaker. This 

rate is significantly better than the 17% chance classification rate. Chi-squared test (1, 

N=24) =10.800, p=.0010 In a second experiment, Shibboleth was not able to determine 

the native language family of a speaker of unknown origin at a rate better than chance 

(33-44%) when the L1 was not in the transcripts used for training the language family 

rule-set. Chi-squared test (1, N=18) =1.000, p=.3173 The 318 participants for both 

experiments were from the Speech Accent Archive (Weinberger, 2013), and ranged in 

age from 17 to 80 years old. Forty percent of the speakers were female and 60% were 

male.  The factor that most influenced correct classification was higher age of onset for 

the L2.  A higher number of years spent living in an English-speaking country did not 

have the expected positive effect on classification. 
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CHAPTER 1 

INTRODUCTION 

This thesis describes the design of a computer program, Shibboleth, which 

automatically recognizes the native language (L1) or dialect of a non-native speaker 

(NNS) from written phonetic transcriptions of articulatory features in the non-native 

language (L2).  The thesis begins with a brief history of the problem, followed by a 

chapter describing the design of the Shibboleth modules.  After this description, the 

results of two experiments testing the accuracy of the program are reported.  The thesis 

finishes with a discussion of the results of the experiments, issues found while conducting 

the experiments, and future work on Shibboleth.   

While human listeners can usually tell if someone is a NNS of their own 

language, they can usually only place the original language of the speaker if the speaker 

displays a high degree of accentedness and if the accent belongs to an L1 with which the 

listener is familiar.  This program aims to classify NNSs of a language by their L1 for any 

language with sufficient speech samples in the Speech Accent Archive (Weinberger, 

2013).  Not only will accurate classification be a useful outcome in itself, it is likely that 

more pronunciation information and developmental processes from a variety of 

interlanguages will be discovered.  

The program described in this thesis and all related experiments were conducted 

at the Naval Research Laboratory in Washington, D.C., under the Pathways program.  

The work was funded under Work Unit #55-4290.  I was responsible for designing the 

Shibboleth program and conducting the experiments, while the underlying Java software 

was coded by two colleagues at the laboratory. 
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Since Shibboleth arises from a multi-disciplinary background in linguistics and 

machine learning, some key terms used in this thesis may be unfamiliar.  The definitions 

used for key terms in this thesis are located in Appendix A. 
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CHAPTER 2 

BACKGROUND 

2.1  History 

Foreign accent, according to Major (2013), is “a pronunciation deviating from 

what a [native speaker] expects another [native speaker] to sound like.”  Almost all NNSs 

who have acquired a language past very early childhood have some trace of foreign 

accent in their speech, even though a younger age of acquisition seems to be highly 

correlated with a lower perceived amount of foreign accent to native speakers (Flege, 

Munro, & MacKay, 1995; Flege, Frieda, & Nozawa, 1997; Piske, MacKay, & Flege, 

2001; Flege, Yeni-Komshian, & Liu 1999; Long, 1990).  Even children whose age of 

onset is as young as three years old still are not always wholly native in their 

pronunciation (Flege et al., 1999). In addition, speakers of different dialects within the 

same L1, for example, Northern and Southern American English, will be perceived as 

having accented speech when speaking with a member of the other dialect. 

 There are two avenues through which the accent of a NNS may differ from that of 

a native speaker: transfer from the NNS’s L1 and developmental processes based on 

language universals (Major, 2008). 

Positive transfer from the L1 of the NNS that results in the NNS achieving a 

native-like pronunciation of a segment will not be found by Shibboleth, as the segment 

should be identical to the representative sample.  Negative transfer at the level of phonic 

interference will be one of the main areas of interest.  There are four basic types of 

phonic interference from the L1 that affect the secondary sound system.  These include 

under-differentiation of phonemes, over-differentiation of phonemes, reinterpretation of 
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distinctions, and phone substitution (Weinreich, 1968).  In addition to these four basic 

types, phonological processes, phonotactic interference, and prosodic interference also 

occur. Shibboleth is able to use phone substitution, under-differentiation of phonemes, 

some types of phonotactic interference, and some cases of reinterpretation of distinctions.  

Syllable structure changes are more difficult, due to automatic syllable alignment issues.  

Shibboleth cannot use over-differentiation of phonemes or prosodic interference at this 

time. 

In addition to transfer from a NNS’s L1, language universals also play a part in 

the production of foreign accent.  These are substitutions that are not explained by 

transfer from the L1, but are explainable in terms of first language acquisition.  For 

example, in one study, a six year old Icelandic child used developmental processes more 

often than transfer processes to produce novel affricates and fricatives while learning 

English as an L2.  However, he also seemed to use transfer from his L1 to determine the 

difficulty of the novel segments (Hecht & Mulford, 1987).  Developmental processes can 

also be used to explain Saudi Arabian Arabic speakers in a study by Flege (1980) whose 

voice onset times for stops gradually became more native-like as their L2 proficiency in 

English increased.  This gradually improving approximation also occurs in L1 acquisition 

of English stops (Macken & Barton, 1977).  It is likely that L2 speakers of higher 

proficiency will tend to use universal substitutions more often than transfer from the L1, 

and that these substitutions will gradually decrease as the speakers gain proficiency 

(Major, 2008).  Shibboleth is able to use universal substitutions at the segmental level. 
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2.2  Related Work 

While there have been a few automated accent recognition projects attempted, 

none were identical to what is done in Shibboleth.  The most similar precursors to this 

work are the STAT system at George Mason University (GMU) (Kunath & Weinberger, 

2009) and the accent classification work done by Angkititrakul and Hansen (2006).  

STAT also made automated comparisons between written phonetic transcriptions from 

the GMU Speech Accent Archive (Weinberger, 2013) and phonological speech patterns 

of a NNS with English as an L2, but, unlike Shibboleth, no classification attempt of a 

speaker with an unknown L1 was attempted.  The classification system used by 

Angkititrakul and Hansen (2006) operated similarly in theory to Shibboleth, but a larger 

amount of data was needed for training and a different classification algorithm was used 

over a smaller number of languages. 

 Other systems, such as the dialect recognition program at the Lincoln Laboratory 

at the Massachusetts Institute of Technology use acoustic data and a very small number 

of dialects or languages are analyzed (Shen, Chen, & Reynolds, 2008).  When using 

acoustic data, the analyst has to derive the useful phonological data from the proposed 

acoustic difference suggested by the system.  Additional similar approaches include 

language or dialect recognition from acoustic data (Campbell, 2008; Choueiter, Zweig, & 

Nguyen, 2008) and individual speaker recognition from acoustic data (Campbell, 

Campbell, Reynolds, Singer, & Torres-Carrasquillo, 2006). 

2.3  Participants and Data 

The Shibboleth project currently relies on samples of speech gleaned from the 

GMU Speech Accent Archive (2013), compiled by the director of linguistics at GMU, 
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Dr. Steven Weinberger.  The archive is composed of both native and non-native English 

speakers each reading the same 69-word passage in English, discussed in section 3.1.6.1.  

This passage was written by Weinberger to maximize the number of phonemes and 

phoneme combinations in a relatively short utterance, though it does not contain data for 

all phoneme combinations common in American English.   

The samples in the Archive were collected by means of personal interviews, 

unmonitored recording on the GMU campus (a recording device was set up in a hallway 

near the linguistics department), and through samples submitted in email over the 

internet.  Since there were many different collection techniques used by several 

individuals over a span of 15 years, the manner and means of recording varied greatly.  

The participants were also more likely to be individuals who had access to a computer 

with internet access and audio recording capabilities.  They were also more likely to be 

students at GMU or a friend or relative of a student at GMU than the average member of 

the population. 

The transcribers of the data were graduate students at GMU in an advanced 

phonology class with at least one previous semester of phonological transcription.  Each 

transcription was done by two students and Weinberger, with disagreements handled by 

group discussion until a transcription could be agreed upon.  Each student did three to 

four transcriptions over a semester, and, in the latter years of the project, used programs 

such as Praat (Boersma & Weenink, 2013) for assistance.  

The 1542 participants in the Speech Accent Archive range in age from five to 97 

years, with 698 female participants and 844 male participants.  The participants’ average 

age was 33.1 years at the time of recording.  English is the L1 for 449 of the participants 
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and an L2 for the other 1,093 participants.  The average age of English onset for the 

NNSs is 12.3 years.  The specific demographics of the subset of the Archive participants 

used in each Shibboleth classification study are shown within Chapter 4, Language 

Classification Experiment, and Chapter 5, Language Family Classification Experiment.   
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CHAPTER 3 

DESIGN AND PROCESS 

The Shibboleth program is comprised of two main modules, the rule-set creation 

module and the speaker comparison module.  This design is suitable for practical reasons, 

since it means either module can be altered and improved independently of the other, as 

long as the expected output of the rule-set creation module and the expected input of the 

speaker comparison module remain compatible.  Easy, independent alteration of the 

modules means that if, for example, there are advances in classification algorithms, a new 

algorithm can be plugged into the speaker comparison module with no or minimal 

changes to the rule-set creation module.  Likewise, if there are improvements to the input 

of the rule-set creation module, it will not greatly affect the speaker comparison module.  

At the present time, the output from the rule-set creation module, a set of Microsoft 

Spreadsheet Format (XLS) files, must be input into the speaker comparison module as a 

separate, non-automated process by the user.  Eventually, the data transfer process 

between modules will be streamlined to be automatic, so it will appear to the user as one 

inclusive procedure. 

3.1  Rule-Set Creation Module.  

The rule-set creation module’s main function is to create a rule-set consisting of a 

collection of possible rules which, when taken together, illustrate how a non-native 

accent in a language or dialect differs from the native-like pronunciation of that language 

or dialect.  This accent could be due to negative transfer from the NNS’s native language 

or dialect or it could be due to developmental processes based on language universals.  

Negative transfer at the level of phonic interference will be one of my main areas of 
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interest.  As mentioned earlier, I will be able to use phone substitution, under-

differentiation of phonemes, some types of phonotactic interference, and some cases of 

reinterpretation of distinctions in this system.  I will not be finding rules based on the 

over-differentiation of phonemes, prosodic interference, or syllable structure changes at 

this time.  I will also be able to use universal substitutions at the segmental level in this 

program, though most other developmental processes are not as easily captured.  

The rules created are described as a difference between articulatory features in the 

speech of a speaker in the training group and a reference text.  No acoustic features are 

taken into account at this time, largely because the data set I am using did not contain 

acoustic features.   

A rule-set is any collection of rules that describes a speaker’s or a group of 

speakers’ feature changes when compared to a given reference sample.  A rule-set for a 

language, family, or dialect is created from the changes of multiple speakers from the 

same native language, family, or dialect speaking the same L2 (e.g. multiple native 

German speakers speaking American English).  The rule-set characterizing the accent of 

these speakers in the L2 will comprise the training rule-set for this L1 when they are 

speaking the same L2. 

All of the phonetic differences between a speaker and a reference sample are 

represented in a spreadsheet (shown in Appendix C), which includes the articulatory 

features of a phone before it was changed (the input), the articulatory features of the 

phone after the change (the output), the environment (i.e. phone) preceding the phone in 

question (the pre-environment), the environment following the phone in question (the 
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post-environment), how frequently this change occurred per speaker and per rule-set, and 

when a phone was inserted or deleted (a special category of change).   

3.1.1  File types and compatibility. The rule-set creation module takes as input 

strings of International Phonetic Alphabet (IPA) characters encoded by Unicode escape 

sequences and stored in Rich Text Format (RTF) files and gives as output a Comma 

Separated Value (CSV) file.  The IPA text is a broad transcription of an audio file.  The 

transcription is created by a team of transcribers, in the case of speech samples to be 

included in the rule-set, or the IPA text from a dictionary or other language standard, in 

the case of the reference transcript.  A future goal for the program is the capability of the 

rule-creation module to accept audio files as input in addition to written transcriptions. 

The rule-set creation module is written in Java, which enables it to run on almost 

every computer platform that is currently available, as well as being possible to port to 

Android-enabled smartphones and tablets. 

3.1.2  Phones and phone representation. In this paradigm, phones are always 

viewed as a collection of features, never as a single, inseparable entity. These features are 

represented in three different ways: the full representation consisting of place of 

articulation, manner of articulation, voicing and/or rounding; all partial representations of 

these features; and a consonant/vowel distinction.  These multiple representations for the 

same phone change are to ensure that Shibboleth captures what causes a change in a 

speaker’s phonetic output in a given instance.  For example, final stop (or obstruent) 

devoicing is a common quality of native German speakers speaking American English.  

This devoicing is not a characteristic of American English when spoken by native 

speakers, so it should register as a characteristic that deviates from standard American 
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English.  However, previous research (Brockhaus, 1995) indicates that word-final voiced 

stops trigger the devoicing.  It is not possible to determine from limited data if the trigger 

for this occurrence of negative transfer is the word position, the manner of articulation, 

the place of articulation, the voicing, or some combination of these factors.  As many of 

the feature changes that comprise a foreign accent are not supported by the extensive 

research that this particular change does, all combinations of possible feature changes are 

collected by Shibboleth and ultimately compared to pinpoint what constitutes a change, 

and what features of the phone and surrounding environments trigger that change.  This 

combinatorial data is necessary to discover what a change actually involves.  Without 

instances of multiple native German speaker devoicing all word-final voiced stops ([b], 

[d], and [g]) after a wide combination of pre-environments when speaking American 

English, it would be uncertain that “devoicing word-final stops” is the change, and not, 

instead, some more restrictive version of it, such as “devoicing all word-final voiced 

velar stops preceded by an [ɑ],” as could arise if the only sample was an example of one 

person changing the pronunciation of [fɹɑg] to [fɹɔk]. 

The types of features that are collected for consonants include place of 

articulation, manner of articulation, and voicing.  The types of features that are collected 

for vowels include openness, centralness, and roundedness.  The specific features used 

for both types are enumerated in Figure 1.  A representation of the phone [ɛ] is shown in 

Figure 2. 

 

 

   



  12 

Place of 

articulation 

Manner of 

articulation 

Voicing Open Central Roundedness 

Bilabial Stop Unvoiced Close Back Unrounded 

Labiopalatal Tap Voiced Semi-close Near-back Rounded 

Labiovelar Affricate  Close-mid Central  

Labiodental Fricative  Mid Near-front  

Dental Nasal  Open-mid Front  

Alveolar Trill  Semi-open   

Alveolo-palatal Approximant  Open   

Palato-alveolar      

Retroflex      

Palatal      

Velar      

Uvular      

Glottal      

Pharyngeal      

 

Figure 1. Articulatory features collected for consonant and vowel representation in 

Shibboleth. 

 
Vowel Feature 1 (Openness) Vowel Feature 2 (Centralness) Vowel Feature 3 (Roundedness) 

Open-mid Front Unrounded 

 

Figure 2. Specific articulatory features collected for [ɛ]. 

 

Glides are encoded as consonants rather than as vowels in this algorithm.   

Affricates are recognized as one phone, while diphthongs are treated as two independent 

phones.  This inconsistency is due both to the lack of Unicode characters for diphthongs, 

as well as the difficulty of representing diphthongs within the feature constraints of the 

other phones.  While affricates can be represented, more or less, by a single place and 

manner of articulation, diphthongs represent a transition between two positions.  Since 

there is no satisfactory way to appropriately encode the phenomenon of transition within 

a single phone using the current Shibboleth framework, I opt for the two-phone 

representation of diphthongs. 

There is a similar issue with transcribers’ representations of long vowels in the 

data used for this study that I, by necessity, treat differently.  Over the years that the 
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transcripts have been created, the standard used by the GMU linguistics department for 

long vowels has changed.  The result of this was that some transcripts represented long 

vowels with the [ː] symbol (Unicode number 02D0), some transcripts represented them 

with the [:] symbol (Unicode number 003A), and some doubled the vowel itself.  I chose 

to assume that all doubled vowels were, in fact, long vowels, and these three forms were 

interpreted as long vowels in Shibboleth.  However, there was another complication in 

describing vowel length.  Not all transcribers consistently chose to describe vowel 

duration.  While vowel length is easy to implement in Shibboleth, I chose not to 

implement it at this time, given the irregularity and inconsistency of the transcriptions in 

this regard.  I chose to ignore this feature which might have resulted in irregular analyses 

and representations and perhaps produced erroneous results. 

Shibboleth, as mentioned, can perform comparisons between broad transcriptions 

of speech.  By this, I mean that all phones that can be encoded in IPA are included in the 

speech comparison, but all diacritical markings and suprasegmental features that may 

have been included in the transcription are removed before the comparison takes place.  

This is due to further inconsistency in the transcriptions.  Without a very high level of 

transcription regularity, mathematical comparison of the probability of a diacritic 

occurring, not occurring, or changing cannot be done.   

In addition to the obvious drawback of not retaining as informative a description 

of the utterance, in some cases, this also has the drawback of being biased toward L1s 

whose phonemic inventories do not contain any diacritical markings in the phonemes, 

such as English.  Languages such as Hindi, that have a phonemic differentiation between 

aspirated and unaspirated stops, affricates, and taps, would not serve as accurately as 
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reference languages due to this limitation.  While it is not a structural limitation of the 

program (code related to removing diacritical markings can be taken out easily), it makes 

sense in the short term to retain this constraint, as the data at my disposal uses English as 

the reference language.   

In the long term, I am working toward automatic transcription from a spoken 

utterance, which should produce transcriptions that are regular across speakers with no 

human transcriber needed.  This will also enable analysis of vowel length changes 

between speakers and contain the diacritical markings necessary to represent phonemic 

inventories of languages where diacritics represent a phonemic distinction.     

3.1.3  Phone change and rule representation. The core of every rule is the 

phone change. Without a phone change, there will be no rule created (hence why it is 

impossible to capture positive transfer from an L1 or recognize over-differentiation of 

phonemes – I cannot tell why a speaker does not make a phonetic change in a specific 

instance, only that they did not).  Shibboleth makes no distinction between phonemes and 

allophones for a language, so even a native speaker of a language using a different 

allophone than what is encoded as the “standard” will trigger rule formation.   

The rules that Shibboleth creates to describe phonetic changes are based on the 

format A->B/C_D, where A is the input, B is the output, C is the preceding environment, 

D is the succeeding environment, and the underscore represents the positioning of the 

input and eventual output (Chomsky and Halle, 1968).  Each of the variables may 

correspond to one of the three types of representations mentioned previously: every 

distinctive feature of a phone, some of the phone’s distinctive features, or simply the 

consonant/vowel distinction. 
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 The program creates the rules by comparing each phone a speaker utters to the 

phone that occurs at the same location in the reference sample.  Each time these phones 

do not match, it will create rules from each possible feature combination, or feature set of 

the phone, that could have caused that change, in addition to all feature sets of the 

phone’s environment that could be triggering the change.  Shown in Figure 3 are 

examples of some of the possible changes if an /ɛ/ changes to /ɪ/, as in “pen” [pɛn] 

becoming “pin” [pɪn].  The full set of changes is not shown. 

ɛ  ɪ 

open-mid front unrounded → semi-close near-front unrounded 

open-mid null null → semi-close null null 

null front unrounded → semi-close null null 

open-mid front null → null near-front null 

null null unrounded → null near-front unrounded 

null front null → semi-close null unrounded 

 

Figure 3. Subset of possible feature sets to describe the /ɛ/ and /ɪ/ merger in Southern 

American English. 

    

Even though creating combinatorial representations of every phone change is 

necessary, this leads to a large number of possible inputs and outputs for every phone 

change.  For example, when considering the common merger of /ɛ/ and /ɪ/ (Labov, Ash, 

& Boberg, 2006) in Southern American English, as demonstrated by an average native 

Southern American English speaker who changes the pronunciation of [pɛn] to [pɪn], 62 

combinations of the feature sets of the inputs and outputs would be created  in Shibboleth 

(Appendix B).   

Theoretically, the largest possible number of proposed combinations of the input 

and output feature sets created by a phone change would be 64, though this many 

combinations are rare.  Since there are three different feature slots for both the input and 

output and all of the combinations within a mathematical set are determined by 2
n
, there 
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are eight possibilities, 2
3
, of feature sets that can occur as the input and eight, 2

3
, 

possibilities of feature sets that can occur as the output.  All further combinatorial results 

in this thesis are derived similarly.  Multiplying the possible inputs by the possible 

outputs according to the rule of product produces 64 possible combinations of feature 

sets.  However, the combinations V->V and C->C will not occur because those are not 

changes.  The other possibility, V->C, occurs extremely infrequently because Shibboleth 

usually does not align vowels with consonants.  It generally considers the probability of a 

vowel deletion followed by a consonant insertion (two separate changes) more likely than 

a vowel in the reference sample aligning with a consonant in a speaker’s input sample.  

The same is true for the combination C->V.  In describing the change [ɛ]->[ ɪ], the two 

changes not seen are V->V and V->C. 

Whenever the null feature is used in the feature set on the left-hand side of the 

equation, it denotes that that particular feature of the phone may be unnecessary to trigger 

the change.  For example, the change (bilabial, null, voiced)->(bilabial, stop, unvoiced) 

says that a voiced bilabial phone, regardless of manner of articulation, changes to a 

unvoiced bilabial stop.  Whenever the null feature is used in the feature set on the right-

hand side of the equation, it means that this feature was not changed due to the feature set 

described on the left-hand side of the equation.  For example, the change (bilabial, stop, 

voiced)->(null, stop, unvoiced), says that a voiced bilabial stop will change to a unvoiced 

stop, which may or may not be bilabial, and that the place of articulation does not depend 

on the input of a voiced bilabial stop.  

Even though Shibboleth creates 62 proposed changes to accurately express what 

could be happening when [ɛ]->[ɪ] in Southern American English, it is not suggested that 



  17 

all 62 proposed changes are correct.  In fact, these changes are mutually exclusive, and 

only one should be correct.  However, until Shibboleth determines which change to 

assign the highest likelihood to, likely through the input of more data from more 

occurrences of this phone change, these 62 changes simultaneously exist as inputs and 

outputs in the rule-set for Southern American English. 

3.1.4  Pre- and post-environment.  Although locating a phone change is the 

most important step in creating a rule, taking note of the phones that constitute the 

environment of that change is nearly as crucial.  In an earlier example, stop devoicing 

occurs specifically in the word final position for some native speakers of German 

speaking American English.  This devoicing does not occur everywhere a stop occurs in 

speech.  In this case, the post-environment of the phone change rule would be #, to 

denote word-final position. 

The pre- and post-environments on either side of a phonetic change are very 

similar in that they can possess similar feature sets as the feature sets of the input phone 

and output phone, with two added types.  In addition to a full feature representation, 

partial feature representations, and a consonant/vowel distinction for each environment, 

environments can also contain the symbol ‘#,’ to denote the word-initial or word-final 

position, and the symbol NULL.  NULL has two uses.  The more common use indicates 

that the segment so marked is unimportant to the change.  This NULL is not quite 

functionally equivalent to every feature of a phone being represented by null.  Rather, it 

means that the presence or absence of a particular phone, feature, or word boundary in 

that position simply does not matter.  To return to the previous example, native German 

speakers devoicing word-final stops are triggered by the presence of a voiced stop in 
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word-final position.  The pre-environment to the voiced stop is irrelevant for this rule, or 

NULL.   

The second way NULL is used is when a phone is inserted and it is preceded or 

followed by another change, insertion, or deletion.  In this case, the phone change is 

taking place prior to an environment which did not previously exist.  Since, 

computationally, the non-existence of a phone means that that phone did not trigger the 

change, it still follows the main use of NULL discussed previously, to denote that the 

phone change is not dependent on that particular environment.  This does not happen 

frequently in the data.  Phone changes are much more common than phone insertions, and 

phone insertions preceded immediately by another phone change are not common.  The 

average number of rules that create or use a new environment in the rule-sets for the 

language classification experiment and the language family classification experiment is 

roughly 10%, though this number varies by native language or language family.   

It should be noted that phone changes and insertions can be anticipated by the 

speaker, changing a prior phone by assimilation (Bloomfield, 1984).  Due to 

computational limitations, however, Shibboleth assumes that something that is inserted or 

deleted later does not affect earlier distant phonetic changes.  In addition, without 

knowing what the speaker’s L1 is, it is impossible to follow the series of interlanguage 

changes that may have taken place, even if Shibboleth did not operate along a strictly 

sequential paradigm of change.  Since Shibboleth’s goal is to ascertain what a speaker’s 

native language or dialect is from an unidentified accent, I cannot simultaneously use the 

native language or dialect in judgments about which rules should be used.  Thus, 
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assigning an order to the process of rule creation is necessary, leading to this rare use of 

NULL. 

After the pre- and post-environments, the input and output have been considered, 

for the sound change we have been looking at thus far, namely the [pɛn]->[pɪn] change, 

the rule appears as in Figure 4.  The twelve features (an-ln) correspond to the twelve 

vectors used by the support vector machines (SVMs) discussed in section 3.2.3 in the 

speaker comparison module. 

Input (ɛ)  Output (ɪ) 

Feature 1 d1 Feature 2 e1 Feature 3 f1  Feature 1 g1 Feature 2 h1 Feature 3 i1 

open-mid front unrounded → semi-close near-front unrounded 

 

Pre-environment (p)  Post-environment (n) 

Feature 1 a1 Feature 2 b1 Feature 3 c1  Feature 1 j1 Feature 2 k1 Feature 3 l1 

stop bilabial unvoiced  nasal alveolar voiced 

 

Figure 4. Twelve features (an-ln) in the feature sets corresponding to twelve SVM 

vectors. 

 

 Including the pre- and post-environments of a phone change creates an even 

larger number of feature set combinations to consider.  While the number of 

combinations of inputs and outputs is maximally 64, this must be multiplied by the 

number of feature set combinations of both environments, which is calculated using the 

combinatorial process previously discussed.  The minimum number of environments is 

four, as outlined by the process in section 3.1.3.  This occurs when the phone change has 

no surrounding environment besides # and NULL.  Each environment can have a 

maximum of eight feature sets based on phone features, then an additional option for 

NULL, which creates up to nine feature sets for each environment of the phone change, 

for a combined 81 options between the pre- and post-environments.    Multiplying the 

maximum combinations of phone changes, 64, by the maximum number of options for 
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the environment, 81, gives the maximum number of rules that can be created based on 

one phone change, i.e. 5,184 rules.  While having the maximum number of rules for a 

phone change may be unusual, even very normal changes, such as [pɛn]->[pɪn], can 

easily have almost as many.  In this particular case, 62 change possibilities for [ɛ]->[ɪ] 

multiplied by 81 possible environment descriptions for [p] and [n] results in 5,022 rules.  

Ideally, Shibboleth would be able to determine, given enough data, which one of those 

5,022 most accurately describes the phonetic rule that takes place, [ɛ] changing to [ɪ] in 

front of the nasal stops.  Since every NNS of a language will likely make more than one 

phone change in an utterance of any length, the total number of resulting rules would 

easily be too large for a human researcher to create and study without some measure of 

automated analysis.  

 3.1.5  Frequency of change. Shibboleth stores four types of frequency 

information on each rule: the number of times a specific change in a specific environment 

was made by all speakers in a group, the number of times each individual speaker of a 

group made the change in that environment, how many times it was possible for the 

group to have collectively made the change in that environment, and how many times the 

environment and input for the change occurred in the reference text.  Examples of this 

can be seen in columns P through Q and T through Z in Appendix C. 

These four measures are necessary to measure how frequently a particular rule is 

used by a group of speakers, and to measure if the rule usage is regular across the group 

or confined to a small number of group members. 

3.1.6  Process of rule and rule-set creation. The process of generating a rule-set 

that can be used in the Shibboleth speaker comparison module can be broken down into 
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three phases: before, during, and after rule creation.  Before the program is run and to 

begin generating a rule-set, the user must input the transcript of a standard native 

speaker’s accent in an L1, or the reference transcript, and transcripts of NNSs from the 

same L2 speaking the L1, or the speaker transcripts.  Next, both automatic and computer-

aided human pre-processing must be done on the transcripts.  Finally, it is widely known 

that alignment is one of the more difficult tasks.  Shibboleth performs it by using a 

modified version of the ALINE algorithm (Kondrak, 2000), followed by further user 

editing of any necessary transcripts.  During rule-set creation, Shibboleth notes each 

phone change, new rules are created for new changes, incremented for previously seen 

changes, and the frequency statistics are updated.  After rule-set creation for a speaker or 

group of speakers, Shibboleth gives the user information about the more unique phone 

changes discovered in the data, including insertions, deletions and rare cases of vowels 

changing to consonants or vice versa.  At this point, the user can make any necessary 

edits to the transcripts and rerun the module.   Finally, after the user is satisfied that the 

output correctly reflects the phone changes that occurred between reference and speaker 

transcripts, the rules must be sorted by frequency before they are input into the speaker 

comparison module.   

3.1.6.1  Reference transcript. Since Shibboleth works by comparisons to a 

baseline, some baseline standard version of a native speaker’s pronunciation of their 

language must be input.  As the data source used in this study, the GMU Speech Accent 

Archive is currently focused on comparisons to American English, and the reference 

transcript contains phrases in American English.  For the purposes of this investigation, 

the Northern American English accent as defined by Labov et al. (2006) is the 
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representative accent for a native American English speaker. This accent is common 

throughout the northern area of the United States in New York (excepting New York 

City), Michigan, Wisconsin, northern Illinois, Iowa, Minnesota, North Dakota, Vermont, 

Connecticut, western Massachusetts, and St. Louis.  This dialect was chosen for two 

reasons: practicality and lack of markedness.  The Northern American English dialect is 

one of the least marked of the American English dialects, with the most unmarked accent 

belonging to the Western American English dialect.  However, most American 

dictionaries and standardized pronunciation guides base their pronunciation upon the 

Northern American English accent, with Midland and Southern pronunciations as marked 

secondary and tertiary options.  Because of this, I created a reference transcript for a 

phrase where the standard speaker is speaking the Northern American English dialect as 

characterized by the Random House pronunciations, given on Dictionary.com (2013) as 

the standard.  Since most major world languages as well as many less common languages 

have a dictionary that includes standardized pronunciations, this method of creating a 

reference sample can remain consistent when I need to create reference transcripts for 

languages and dialects other than American English.   

It is possible to automate the creation of a reference transcript using standardized 

reference materials. This means that eventually automatic reference creation will be part 

of the solution to entering extemporaneous speech into Shibboleth for training and 

testing.  The capability to collect informal speech would allow many more phone 

combinations that naturally occur to be captured more easily for study.  Obtaining casual 

utterances also would create the ability to ascertain the accent of L2 speakers in very 
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close to real-time without the necessity for reading fluency in the L2 or requiring a 

specific utterance for testing the speaker. 

In cases where the dictionary definition gives alternate pronunciations, generally 

the first, most common, pronunciation is used.  However, in cases where two alternate 

pronunciations are given for the stressed and unstressed forms of the word (e.g. the – [ði], 

[ðə] ), the form recommended by the dictionary for the situation is chosen.   

The reference transcript for American English is created using this method.  It is 

shown along with the elicitation paragraph used in this study in Figure 5.  This transcript 

is stored as a string of IPA text in an RTF file.  This requires the use of a Unicode font 

that contains IPA characters (the preferred method), or an RTF editor with the ability to 

enter Unicode encoding for the IPA characters.  For this study, I used the Doulos SIL font 

(SIL International, 2010) in Microsoft Word 2010.  

Please call Stella, ask her to bring these things with her from the store: six spoons of fresh snow peas, five 

thick slabs of blue cheese, and maybe a snack for her brother Bob. We also need a small plastic snake and a 

big toy frog for the kids. She can scoop these things into three red bags and we will go meet her 

Wednesday at the train station. 

 

[pliz kɔl stɛlə æsk həɹ tə bɹɪŋ ðiz θɪŋz wɪθ həɹ fɹəm ðə stɔɹ sɪks spunz əv fɹɛʃ snoʊ piz faɪv θɪk slæbz əv blu 

ʧiz ənd meɪbi ə snæk fəɹ həɹ bɹʌðəɹ bɑb wi ɔlsoʊ nid ə smɔl plæstɪk sneɪk ənd ə bɪɡ tɔɪ fɹɑɡ fəɹ ðə kɪdz ʃi 

kən skup ðiz θɪŋz ɪntə θɹi ɹɛd bæɡz ənd wi wɪl ɡoʊ mit həɹ wɛnzdeɪ æt ðə tɹeɪn steɪʃən] 

 

Figure 5. Elicitation paragraph used in Speech Accent Archive data collection, followed 

by the IPA reference transcript for this text in Northern American English dialect. 

 

While it is convenient and quick to compile a transcript of how a phrase would be 

pronounced by the hypothetical standard native speaker of a language, this method of 

creating a reference transcript word by word using a dictionary or other formal 

standardized material has the drawback of generating a transcript with artificially precise 

lexical segmentation where it would not necessarily occur in speech.  An example of this 

will be shown when discussing word alignment.  
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Another factor to keep in mind when creating a reference transcript is that even 

though most languages have a number of common associated dialects, there is usually 

only one standard form of the language.  However, pluricentric languages, such as 

English, French, Spanish, Portuguese, and Serbo-Croatian have no single standard form 

(Clyne, 1992). Rather, there are two or more standard forms, usually following 

geopolitical or cultural boundaries. With English, for example, there can be a clear 

distinction made between standard American English, British English, South African 

English, and the English of the Oceanic region.  There are, of course, several dialects that 

diverge from these standards within each geographic region.  For pluricentric languages, 

there will never be only one reference transcript, but, instead, there will be separate 

reference transcripts for each major variety that the Shibboleth user wishes to test as an 

L2. 

3.1.6.2  Speaker transcripts. The transcripts input for building classification rule-

sets (training transcripts), the transcripts input for testing unknown speakers to determine 

their native language or dialect (testing transcripts), and the reference transcript as 

identified above are identical in format.  Speaker transcripts (any transcript which comes 

from a speaker and not a standardized source) are also stored as a string of IPA text in 

individual RTF files, one for each utterance.  The utterance in the training transcripts and 

the testing transcript should both match the utterance from a reference transcript.  As the 

language classification experiment and the language family classification experiment 

were conducted on transcripts from the GMU Speech Accent Archive, all data was 

compared to the same reference transcript, shown in Figure 5.  Though the training and 

testing transcripts must match a reference transcript (otherwise there is no direct 
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comparison possible), it is not theoretically necessary that there be only one reference 

transcript used.  Currently, however, Shibboleth can only use one reference transcript per 

rule set.  If the training transcript phrases are all as short as the one used for the Speech 

Accent Archive, it is ideal to have additional phrases spoken and additional matching 

reference transcripts created; consequently, later work on Shibboleth will entail adding 

the capability of using different reference transcripts per rule-set.  The process of 

transcribing the speaker transcripts for the Speech Accent Archive was described in more 

detail in section 2.3. 

3.1.6.3  Pre-processing transcripts. Reference and speaker transcripts must be 

standardized via pre-processing before they can be used for the sake of speech 

comparison or classification.  Preparing the transcripts for analysis is a step that is easily 

overlooked when considering the process of locating differences in accent and creating 

possible phonetic rules to describe accents, but it can also be a very difficult step to 

automate.  Currently, part of the pre-processing necessary for Shibboleth input has been 

automated, but there are some critical elements that still require a human. 

The automatic pre-processing of transcripts by Shibboleth includes removing 

unnecessary white space, removing diacritical markings, converting Unicode encoding 

into the appropriate Unicode to represent IPA characters, standardizing vowel length, 

removing any unnecessary text and markup added by an outside transcript editor, creating 

a transcript editor for the human portion of pre-processing, and creating an array of every 

possible feature combination of the phones that exists in the reference text.   

Shibboleth reads in data from the RTF file using the built-in Java class 

RTFEditorKit.  This class removes unnecessary markup and state information added by 
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outside editors.  This data was not purposely added by the user.  Many word processing 

programs, such as Microsoft Word, have markup information, state information, and 

metadata included invisibly in every document even if the file is saved as an RTF file.  

This sort of information is not unique to Microsoft Word and is not pertinent to the RTF 

text, so it is automatically removed.  The first step Shibboleth does after receiving the 

RTF text from the RTFEditorKit is to clean up the file itself.  This includes replacing all 

Unicode encoding that does not correspond to IPA characters but looks like it might to a 

human transcriber, such as the Cyrillic form of ӕ, with the Unicode number of 04D4, as 

opposed to the Latin form used by IPA, æ, with a Unicode number of 00E6.  Cleaning up 

the file also includes removing white space (extra spaces, tabs, line breaks, and non-break 

spaces) or text outside of the ‘[’ and ‘]’ symbols that usually denote a complete transcript 

in the Speech Accent Archive.  If the string is missing these characters, the beginning of 

the string of input text is considered to be the beginning of the transcript and the end of 

the string is considered to be the end of the transcript.  The resulting string of text that 

represents the transcript should have no outstanding formatting issues and should be 

made up of Unicode encoding that corresponds to IPA characters.  Further changes will 

create a more regular character format which will correct for some of the irregularities 

caused by human transcribers.   

The next step is for Shibboleth to combine all appropriate adjacent characters that 

have been encoded as separate phones into their corresponding phones, namely affricates, 

as discussed in 3.1.2.   This is closely followed by the previously mentioned encoding of 

all long vowels, no matter the representation, as a single vowel of identical 

representational length.  Finally, all Unicode encoding that corresponds to diacritical 
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markings is removed.  Rarely, there are some Unicode characters that have been entered 

by a human transcriber that are not recognizable as a common accidental substitute for 

any IPA character, such as the symbol ©.  Shibboleth gives an error message to the user 

so that he or she knows there are potentially faulty characters in the transcription. 

The last step of pre-processing is for Shibboleth to create an array of all of the 

possible combinations of features of the phones in the reference text, both as 

environments and as phones that could be changed.  This array can be used during 

processing of a speaker transcript to aid in the frequency calculations for phone changes.  

For example, a speaker may change [pɛn]->[pɪn], but without Shibboleth retaining 

knowledge of the features in the entire reference text, it is hard to know if that is 

significant.  The speaker may make the change 100% of the time that [ɛ] appears in the 

appropriate environment in the reference text, indicating it is a part of the speaker’s 

accent, or the speaker may only do it once out of 20 possible instances, indicating it was 

perhaps a minor disfluency or transcriber’s error.  The array created in this step keeps 

track of all of the possible instances, leading to the frequency statistics found in 

Appendix C.  

All other pre-processing will need to be done by a human, preferably one who 

also has access to the audio recording upon which the transcript is based.  To aid the 

human with this processing, Shibboleth has a built-in editor to visually compare 

alignment and IPA characters, change the transcript with an onscreen IPA keyboard, and 

automatically save and reload the edited transcripts. 

The most common problem requiring human pre-processing is that of speech 

disfluency which produces stammering, word deletion, word substitution, or word 
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insertion during speech production, which is then expressed in the transcript.  Most of the 

non-fluent speech does not hinder comprehension and would likely be overlooked by a 

human listener, but since we are not using an automatic word alignment algorithm, this 

causes difficulty with aligning speaker transcripts with the reference transcript.  I found 

that about 20% of speakers in the tested languages in the Speech Accent Archive, 

including native American English speakers, have some disfluency in their speech 

sample.  Further, removing duplicated words and incorrect contractions from speech is 

relatively simple for a human user of Shibboleth, but it is a difficult issue to automate.  

While the program can tell when a speaker transcript is the incorrect length in 

comparison to a reference transcript or when a phone has changed from a vowel to a 

consonant (a sign of an alignment issue, due to the rarity of the occurrence), the current 

version cannot correct the issue.  Instead, Shibboleth displays the reference transcript and 

the speaker transcript in a table in the GUI, which will give the human user an easy visual 

aid to see where the alignment problems may lie.  An example of mis-aligned data due to 

disfluency is shown in Figure 6. 

 
 

Figure 6. Mis-aligned data due to disfluency shown in Shibboleth GUI. 

 

When a word is completely missing, the human processing the data adds a hyphen 

to the location of the missing word in the speaker text before running a comparison.  

When the speaker has repeated a phrase, word, or stuttered at the beginning of a word, 
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the last utterance is used and all previous versions are deleted.  Sometimes the speaker 

will create a contraction from two adjoining words (usually contracting “we will” [wi 

wɪl] to “we’ll” [wil] in the Speech Accent Archive).  In this instance, the contraction is 

deleted and the two missing words are treated as deleted.  Similarly, sometimes a speaker 

will conjoin two words that, in “perfect” speech, would be separate.  This happens 

frequently in the sample with “need a” [nid ə] becoming “needa” [nidə].  In these 

instances, the human processing the data must make a judgment call on listening to the 

speech if the human transcriber was representing a standard speech pattern more 

accurately than the standardized reference. In this case the human Shibboleth user will 

separate the two sets of phonemes into their corresponding morphemes (e.g. “needa” 

[nidə] will get separated into “need a” [nid ə] for processing), or if the human transcriber 

was representing a feature of the non-standard speech (e.g. “we’ll” [wil] should not be 

matched to “will” [wɪl]).  In this case, the human Shibboleth user will keep the phonemes 

together as one “word” for Shibboleth to process, and add a hyphen to represent the 

deleted word following or preceding the conjoined word, whichever is deemed closer to 

creating rules that represent the actual phonological change.  Occasionally, the speaker 

apologizes for their disfluency during the utterance, and this is also deleted from the 

transcript.  An example of the earlier mis-aligned text in Figure 6 is shown after human 

processing in Figure 7. 
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Figure 7. Correctly aligned text shown in Shibboleth GUI. 

 

Frequently, examining alignment issues is all of the human pre-processing 

needed.  Once in a while, the automatic pre-processing will return a character error when 

a Unicode character has been used in the transcript that does not correspond to any IPA 

character or even any character that is commonly mistaken for an IPA character.  In these 

cases, the user needs to determine whether or not he or she can tell from context which 

IPA character was intended and, if no option seems plausible, delete the offending word 

(it is not possible to delete a single phone and properly process the word at this time). 

 3.1.6.4  Phone alignment. Shibboleth contains a modified implementation of an 

early version of the ALINE algorithm (Kondrak, 2000).  This implementation was 

modified based upon an implementation of ALINE that was used within the STAT 

program at GMU (Kunath & Weinberger, 2009). 

 ALINE is an algorithm that was originally created for identifying corresponding 

segments of related phone sequences for cognate identification.  It contains a function for 

comparing the difference between a pair of phones, based on a numerical value assigned 

to a feature and the salience of that feature, and assigns similarity or difference scores to 

phone pairs.  Kondrak (2000) uses multivalued features to describe features along a 

continuum (i.e. a dental phone would receive a value of 0.9, which is significantly closer 

to the bilabial value of 1.0 than it is to the glottal value of 0.1, since the place of 
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articulation for the bilabial and dental phones are physically closer in the oral cavity than 

the place of articulation for the bilabial and the glottal phones), and a salience value to 

describe how important that type of feature is to the matching algorithm.  For example, 

manner and place of articulation have very high salience ratings, of 50 and 40, 

respectively, while aspiration and length have much lower salience ratings of five and 

one.  This means that manner of articulation will rate much higher than length when 

matching phones.  Matching is done by finding the optimal score for an input based on 

the algorithm in Figure 8.   

 algorithm Alignment  

input: phonetic sequences x and y  

output: alignment of x and y  

define S(i,j) = −∞ when i < 0 or j < 0  

 

for i ← 0 to |x| do  

S(i, 0) ← 0  

for j ← 0 to |y| do  

s(0, j) ← 0  

for i ← 1 to |x| do  

for j ← 1 to |y| do  

S(i, j) ← max(  

S(i- 1, j) + σskip(xi),  

S(i, j−1) + σskip (yj), 

S(i−l, j−1) + σsub (xi,yj),  

S(i−1, j−2) + σexp (xi, yj- lyj ),  

S(i−2, j−1) + σexp (xi-lxi,yj), 0)  

T ← (1 - ɛ) x maxi,j S(i,j)  

 

for i ← 1 to |x| do  

for j ← 1 to |y| do  

if S(i, j) > T then  

Retrieve(i, j, 0) 

 

Figure 8. ALINE algorithm for finding the optimal score for an input word. 

 

Since ALINE was initially created for considering pairs of words based on a word 

list and comparing phones inside of these words, it only has the ability to match phones 

within words.  ALINE cannot match words within utterances.  Kunath and Weinberger’s 

2009 version of ALINE made minor changes to Kondrak’s algorithm, some of which 
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Shibboleth uses, and some of which were reverted back to Kondrak’s original algorithm.  

Shibboleth’s version of the algorithm also contains edits to the methods for comparing 

two vowels, two consonants, and a mixed vowel/consonant pair.  Other minor changes to 

the algorithm include feature values which were added and phones which were omitted 

by Kondrak (2000) and Kunath and Weinberger (2009).  The feature values and salience 

ratings are shown in Figures 9 and 10, respectively. 
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Feature name Phonological term Numerical value 

Place   

 bilabial 1.0 

 labiodental 0.95 

 dental 0.9 

 labiopalatal 0.86 

 alveolar 0.85 

 labiovelar 0.82 

 retroflex 0.8 

 palato-alveolar 0.75 

 alveolo-palatal 0.73 

 palatal 0.7 

 velar 0.6 

 uvular 0.5 

 pharyngeal 0.3 

 glottal 0.1 

Manner   

 stop 1.0 

 nasal 0.95 

 affricate 0.9 

 fricative 0.8 

 approximant 0.6 

 tap 0.55 

 trill 0.5 

Height   

 close 1.0 

 semi-close 0.8 

 close-mid 0.65 

 mid 0.5 

 open-mid 0.35 

 semi-open 0.2 

 open 0.0 

Back   

 front 1.0 

 near-front 0.85 

 central 0.5 

 near-back 0.15 

 back 0.0 

 

Figure 9. ALINE values for articulatory distinctive features. 
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Feature Name Salience Setting 

Syllabic 5 

Voice 10 

Lateral 10 

High 5 

Manner 50 

Long 1 

Place 40 

Nasal 10 

Aspirated 5 

Back 5 

Retroflex 10 

Round 5 

 

Figure 10. ALINE salience values for articulatory distinctive feature categories. 

  

3.1.6.5  Change recognition and rule creation. Once Shibboleth has a reference 

transcript and a speaker transcript aligned and pre-processed, it begins the phone by 

phone comparison of the transcripts.  It first pulls up the pair of words in the first position 

of the alignment and compares the Unicode characters of the first phones in these words.  

If these characters match, it does nothing else, and moves on to comparing the second 

phones in the first word.  Similarly, if the initial phone value in the speaker transcript is  

‘-,’ indicating an omitted word, Shibboleth moves to the next word.   

When Shibboleth finds a pair of phones whose characters do not match, or a 

Unicode character it recognizes as an insertion from the phone alignment, it converts the 

Unicode characters, as well as the characters on either side, the pre- and post-

environments, into feature sets.   The feature sets contain all of the combinations of 

features possible for each one of the six characters (the original phone pair with the 

change, plus both of their environments), based upon the four features used to describe 

vowels (openness, centralness, roundness, and vowel) and the four features used to 

describe consonants (place and manner of articulation, voiced, and consonant).  There 
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will be nine feature sets found for each environment that is a phone, two feature sets 

found for each environment that is word final or word initial position, and eight feature 

sets for each phone involved as input or output, as seen by the rows in Figure 11.  The 

input for an insertion will have only one feature set, NULL, as will the output for a 

deletion.  As previously mentioned, all other uses of the feature set NULL refer to the 

feature set in that location being irrelevant to the phonetic change.  The types of features 

making up the feature sets are described in Figure 11. 

Environment of Change 

Phone 

Consonant Vowel 

Place of artic. Manner of artic. Voiced Openness Centralness Roundedness 

Place of artic. Manner of artic. - Openness Centralness - 

Place of artic. - Voiced Openness - Roundedness 

- Manner of artic. Voiced - Centralness Roundedness 

Place of artic. - - Openness - - 

- Manner of artic. - - Centralness - 

- - Voiced - - Roundedness 

C - - V - - 

NULL - - NULL - - 

 

Word final/initial 

# - -    

NULL - -    

 

Input/Output Phone 

Consonant Vowel 

Place of artic. Manner of artic. Voiced Openness Centralness Roundedness 

Place of artic. Manner of artic. - Openness Centralness - 

Place of artic. - Voiced Openness - Roundedness 

- Manner of artic. Voiced - Centralness Roundedness 

Place of artic. - - Openness - - 

- Manner of artic. - - Centralness - 

- - Voiced - - Roundedness 

C - - V - - 

 

Figure 11. Types of features within the feature set for input phones, output phones, and 

their pre- and post-environments. 

 

This means that for every word-internal phone change or insertion, there are 52 feature 

sets generated; for every change or insertion in word-initial or word-final position, there 

are 38 feature sets generated; and for every change of a phone that is a full morpheme, 
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there are 24 feature sets generated.  These are the sums of the input phone’s feature sets 

plus its pre-environment and post-environment feature sets and the output phone’s feature 

sets plus its pre-environment and post-environment feature sets.  The feature sets for each 

Unicode character have been created independently of the information in the other feature 

sets, so these numbers will remain consistent, regardless of which IPA phone changes, or 

the feature similarity of this phone with the output phone. 

 Next, these feature sets that have been created are refined into rules.  Rules are 

generated by combining four feature sets: the pre-environment of the input phone, the 

post-environment of the output phone, the input phone, and the output phone.  Within the 

rules created, any rule having identical inputs and outputs is deleted.  For example, by 

combining all feature sets, regardless of their contents, the input and output could both 

have a feature set containing only ‘V,’ for vowel.  When the ‘V’s’ are compiled into a 

rule, this compilation would create a rule containing no change, hence, it would be 

deleted.  Similarly, the closer the input and output phones are, the more feature sets they 

would have in common.  Just as Shibboleth does not need a rule that says V->V, it does 

not need a rule that says unrounded->unrounded. 

 However, this method of creating phonetic rules leads to some rules that are valid 

within Shibboleth, but not a common representation in phonology. Due to the program 

generating all of the feature sets and creating a complete set of combinations, there will 

be rules created that read, for example, (front, null, unrounded)->V/_#.  Obviously, there 

is no common interpretation for that rule that makes sense.  However, in reality, when an 

L2 contains a phone that was not in the L1 for a group of L1 speakers, they may all try to 

produce this phone in different ways, such as with the unfamiliar front, unrounded vowel 
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in the example.  The speakers that are unsuccessful in producing the front, unrounded 

vowel will likely produce vowels, but their outputs may vary.  In Shibboleth, the 

interpretation would be “in the word-final position, an unrounded, front vowel is changed 

into a different vowel.”  (In this case, the feature value “null” means that the feature of 

“height” is immaterial to the change.)  Since a rule cannot be created with the same 

phone as input and output, the interpretation of the output is always as an implied 

difference from the input.  This does not apply to the situation mentioned earlier of 

unrounded->unrounded.  The feature that differentiates this change will appear in one of 

the other feature set combinations, such as (front, null, unrounded)->(near-front, null, 

unrounded) or (close-mid, null, unrounded)->(near-close, null, unrounded).  “Vowel” and 

“consonant,” on the other hand, are categories that stand apart from the other feature 

combinations. 

 Once these new rules have been created, they are compared to a rule-set for the 

speaker containing all previously created rules.  If a rule does not already exist in this 

rule-set, it is added to the rule-set, the value for the number of occurrences of this rule is 

set at one, and the input, pre-environment, and post-environment are matched against the 

phones from the reference transcript processing to determine how many times this change 

had the potential of occurring within this specific utterance. 

 If a rule does match against an existing rule in the rule-set, the number of 

occurrences of the rule is incremented by one and no further change is made to the rule-

set.  An example of the earlier rule from Figure 4 in the rule-set, along with the 

corresponding frequency information, is shown in Figure 12. 
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Input (ɛ)  Output (ɪ) 

Feature 1 d1 Feature 2 e1 Feature 3 f1  Feature 1 g1 Feature 2 h1 Feature 3 i1 

open-mid front unrounded → semi-close near-front unrounded 

 

Pre-environment (p)  Post-environment (n) 

Feature 1 a1 Feature 2 b1 Feature 3 c1  Feature 1 j1 Feature 2 k1 Feature 3 l1 

stop bilabial unvoiced  nasal alveolar voiced 

 

Number of 

occurrences 

Number possible Number possible in 

passage 

Occurrences for 

speaker 

4 5 1 1 

 

Figure 12. Feature set with frequency information for the rule [ɛ]->[ɪ]/[p_n]. 

  

In the case where a phone was inserted, changed, or deleted directly after an 

inserted, changed, or deleted phone in the rule-set, it is difficult to represent the statistics 

for the corresponding environment.  Even making the assumption that changes occur 

strictly linearly in time (which is not true, as stated earlier when referencing such 

phonological phenomena as assimilation), there is still the problem of how to count the 

frequency of the change.  For example, if a phone, B, is changed from phone A between 

two existing phones, C and D, both of which did not change, it is easy to count how many 

times the feature sets of CAD occurred in the reference to get a number of how many 

times it was possible to change A in the environment C and D.   

However, if the same phone, A, is changed into phone B after a deletion of phone 

C, what should the statistics for the environment of A be?  Should it be phone previous to 

C or the word boundary that replaced C, which I will refer to as E, or should it be C?  

Neither option seems ideal.  If one chooses to use the environments of E and D, it is 

possible EAD may not even exist in the reference transcript.  If one chooses to treat the 

pre-environment of A as being the original C, even after it is deleted, and counts the 

occurrences of CAD, that is not taking into account the fact that at the time A changed 

into B, C did not exist and likely shouldn’t have as much influence on A as those 



  39 

situations where C remains unchanged.  Neither option seems likely to represent the 

appropriate frequency of the change. 

Since there is no satisfactory way to calculate the likelihood of an insertion, 

change, or deletion following an insertion, change, or deletion, the rules referencing these 

situations are created, but they are stored with default frequency values of -11111 in the 

rule-set.  Since their frequencies are, thus, less than zero, these rules are not frequently 

used for speaker classification.  Presently, this does not have that much impact on the 

classifications, as two changes in a row are rare in all of the data used so far, but 

effectively deleting these rules from the classification process is far from an elegant 

solution.  

If a speaker is a native speaker of an unknown language, dialect, or language 

family that the Shibboleth user wishes to classify by comparing him or her to existing 

rule-sets, this is the last step of the Shibboleth rule-set creation module for this speaker.  

The user can save the rule-set and pre-process it for input to the speaker comparison 

module at this point. 

If the speaker is going to be included in a classification rule-set, the last step is to 

add this speaker’s rule-set to the rule-set for the entire language family, language or 

dialect.  This is done by one last loop, which compares all of the rules in the rule-set to 

the existing larger classification rule-set, adding rules when they did not previously exist, 

and incrementing those rules that did exist, similar to the speaker’s rule-set creation 

process.  However, for a rule-set containing more than one speaker, Shibboleth also keeps 

track of which speaker exhibits each rule in the rule-set, as well as how frequently the 

rule occurs per speaker.  This is a future safeguard against one speaker exhibiting a rule 
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very strongly overriding several other L1 speakers of an L2 who do not exhibit the rule at 

all.  In those cases, the rule should not be considered indicative of that particular L1. 

 3.1.6.6  Output of module and further processing. There are four different types 

of output from the rule-set creation module: 1) problems or irregularities during 

processing shown as a list of errors displayed in a pop-up window from the Shibboleth 

GUI; 2) normal processing information, including a list of all phones and words aligned 

and all rules created; 3) data output given to the user as a CSV file of the rules for input 

to the speaker comparison module; and 4) command line information, which shows the 

basic file input and output information from a command window. 

 A pop-up window in the Shibboleth GUI displays all unusual alignments, words 

and phones skipped, and the location of the words or phones in the input.  An example of 

this output is shown in Figure 13. 

 
 

Figure 13. Shibboleth GUI pop-up window showing unusual alignments. 
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The list of every phone alignment matched during Shibboleth’s run for every speaker in 

the group is shown in the Shibboleth GUI output window.  These are displayed as phones 

and not as a collection of features, as they are once they have been converted into feature 

sets for inclusion in rule-sets.  An example of this phone output is in Figure 14.  The rules 

that have been created are also displayed in the Shibboleth GUI.  This feature is useful 

for debugging individual phones or morphemes before they are saved in a CSV file or 

added to a group.  The rules displayed in the GUI do not show the frequency statistics for 

the rules in rule-sets containing more than one speaker.  The GUI only displays each rule 

with the frequency statistics for an individual speaker’s rules as Shibboleth loops through 

the individual speakers.  An example of rules in the Shibboleth GUI, including rules after 

a speaker’s transcript was processed, are shown in Figure 15. 

 

Figure 14. Phone alignment in Shibboleth GUI output window. 
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Figure 15. Feature sets shown in Shibboleth GUI output window. 

 

The CSV file a user can create with the data from the Shibboleth program being 

run on two or more transcripts is the most complete collection of the output.  This is the 

only place to see the frequency statistics for rules in rule-sets containing more than one 

speaker.  It is easily sortable by feature value or frequency, and is already formatted for 

the speaker comparison module with minimal pre-processing.  An example displaying 

rule-set columns for multiple Swedish speakers is shown in Appendix C. 

3.2  Speaker Comparison Module.   

The function of the speaker comparison module is to use descriptions of the 

accents of NNSs of a language or dialect, captured as rule-sets, to classify the languages 

or dialects of speakers whose L1 is unknown.  Comparisons can be run at the dialect, 

language, or language family level, if the L1 exists as a robust rule-set.  In the current 

version of the speaker comparison module, classification is run by training SVMs on 

rule-sets of a NNS speaking an L2 whose first language is already known.  This will 
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determine which rules seem most indicative of the characterization of the accent of that 

L1 in that L2.  Unknown speakers can then be tested by the speaker comparison module 

to compare the rules the unknown speaker demonstrates to those from a variety of trained 

L1 rule-sets.  The rule-set the speaker seems to match with the most closely is predicted 

to be the unknown speaker’s L1.   

3.2.1  Different types of rule-sets for classification.  Even though the format of 

all rule-sets obtained from the rule-set creation module is identical, there are some 

underlying differences between the rule-sets for dialects, languages, and language 

families. 

3.2.1.1  Language rule-sets. The rule-sets for monocentric languages are the least 

marked of the rule-sets:  there is one rule-set for each L1 (currently created from one 

reference transcript); the reference transcript for the L2 was created from a standardized 

source, such as dictionary pronunciations; and the speakers within the rule-set are 

classified by self-description as being native speakers of the language, often with 

corresponding birthplace information.  Examples of these types of rule-sets include 

Italian, Polish, and Dutch. 

Rule-sets for pluricentric languages are very similar, but, as previously noted in 

3.1.6.1, these types of languages will have one rule-set for each standard form.  

Currently, for the pluricentric language of French, there will never be a case where a 

speaker of an unknown L1 is classified as a “native French speaker.” Rather, the result 

will be either “native Parisian French speaker” or “native Canadian French speaker.”  

This format had two motivations.  The first motivation for treating languages without a 

standard form as unique accents is that without a much larger number of training speakers 
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somewhat equally distributed between the different standard forms of the language, the 

support-vector machines will rate the rules of the form with the greater number of 

speakers as being more indicative of the language. This is regardless of which variety 

those speakers spoke.  The second motivation is that from a language classification point 

of view, each main form of a pluricentric language has an accent that is considered 

“standard,” thus indicating a need for a different rule-set to describe the accent in that 

dialect standard.  This differs from dialects in that, for monocentric languages, there will 

be one dialect that is considered the least marked and most standard for the language. 

3.2.1.2  Language family rule-sets. Language family rule-sets contain rules for 

multiple languages within the same family or branch.  Due to the amount of data the 

Speech Accent Archive contains for languages from the Indo-European family, the 

current experiments were done on three different branches of the Indo-European family: 

Germanic, Romance, and Slavic.  A language family rule-set will contain a rule-set made 

up of the most frequently occurring rules of multiple standard languages within these 

branches.  When a pluricentric language is used in a language family, all varieties of the 

language are used. 

Language family rule-sets are very similar to language rule-sets, except they are 

currently limited in size due to computer memory limitations.  On tests on computers 

with less than 2 GB of RAM, it was necessary to limit each language family rule-set to 

between 100 and 150 speakers total (a number far below the ideal) so that the rule-set 

creation module would not fail to finish running due to lack of memory.  A single 

language rule-set, however, has not yet reached the limit of speakers it can contain by 

using the data in the Speech Accent Archive, as the highest number of speakers of any 
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language other than English in the Archive is 100, for native Spanish speakers.  However, 

even if the Speech Accent Archive contained more data, Shibboleth could generate rules 

for more speakers on the same hardware for a single language rule-set than it would be 

able to for a language family rule-set.  This is because single language rule-sets have 

more instances of incremented rules rather than new rules.  Incrementing takes less 

memory than creating and comparing all of the new rules generated by each language in 

the language family rule-set.  Due to this limitation, running the rule-set creation module 

will eventually have to be done on more powerful hardware, with the results being 

returned to personal computers and mobile devices.  Because of the current limitation on 

memory, the current number of speakers of an individual language within a language 

family consisting of n languages is no more than 100/n. 

3.2.1.3  Dialect rule-sets. Dialect rule-sets are also similar to language rule-sets, 

but the speakers for these rule-sets are chosen in a slightly different way.  Speakers for 

language rule-sets can be chosen based upon the individual’s birthplace and self-reported 

L1.  This provides rough, but seemingly accurate, information.  However, it is much 

harder for an individual to self-report on his or her own major dialect area or for a 

researcher to assign a dialect area based on a scant amount of personal data and a short 

utterance.  This is due to four main reasons:   

1) The major dialect areas for a particular language or language variety may not 

have been studied and defined, or if they have been defined, these boundaries may 

be widely contested or not exact.   

2) It is much more likely that an individual will move between geographical dialect 

areas over the course of his or her life than it is that they will move to another 
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geographical area with a different standard language, making birthplace 

information and self-reported speech much more accurate for languages than for 

dialects.   

3) Without a detailed personal history of an individual who does move between 

dialect areas (something that the Speech Accent Archive does not give), along 

with a trained sociolinguist and abundant speech samples, it is difficult to assign 

the individual to a specific dialect for inclusion in a rule-set. 

4) It is possible the individual has acquired characteristics of several dialects in his 

or her speech, to the extent that it is simply not possible to isolate the speaker into 

a single dialect. 

Because of these issues, determining a way to choose speakers for dialect rule-sets in 

such a way that I could test them using Shibboleth was problematic.  It was not possible 

to classify dialects using the basic personal information in the Speech Accent Archive.  

Instead, three native English-speaking individuals from three different dialect regions, 

listened to all American English samples that were going to be used in the American 

English dialect rule-sets and assigned them to one of five major American English dialect 

groups.  While this method is certainly somewhat subjective and prone to error, in the 

absence of speakers who have lived their entire lives in the same geographic location 

with exposure to the same dialect, there should be a human assessment element when 

classifying speakers into dialects to create rule-sets for that dialect.   

 3.2.2  Training and testing data. Before the speaker comparison module can 

train SVMs on language, family, or dialect rule-sets or test unknown speakers against the 

trained SVMs, every speaker’s transcript must be processed through the rule-set creation 
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module.  Speakers who are used for training SVMs are processed sequentially, going 

through the full process described in section 3.1.6.5, with the results being saved in the 

same CSV file as a training rule-set.  Speakers who are being used to test Shibboleth’s 

classification proficiency are processed individually, with Shibboleth stopping before the 

last loop of the rule-set creation module cycle (the step where the rules of multiple 

speakers are assembled together), and saved as a rule-set consisting of a single speaker.   

For both types of rule-set, the last processing step between the rule-set creation 

module and the speaker comparison module is sorting the rules in each set by frequency, 

so that the higher frequency rules are at the beginning of the file and the lower frequency 

rules are at the end.  This enables the Java library used in the speaker classification 

module, libsvm-3.16, to use only the higher frequency rules, since libsvm-3.16 pulls the 

data for analysis from the beginning of the file until the user specifies a stopping point 

(Chang & Lin, 2011).  This is done easily in the spreadsheet by dividing the number of 

times a rule occurred in the rule-set by the number of times the input and environment 

appeared in the reference transcript, assigning the result as the frequency, and sorting the 

spreadsheet with the highest frequency rules appearing first and the lower frequency rules 

appearing later.  Generally, the frequency will be a number between 0 and 1, inclusive, 

but in cases where an environment was created and this environment was the same as an 

existing environment in the reference transcript, the frequency could be higher than 1.  

This is due to the number of times the change actually occurred being higher than the 

number of times the environment and input occurred originally.  Currently, the 

distribution of rule frequency for individual speakers in a group is not used in the 

calculation for frequency of a rule.  In the next implementation of Shibboleth, rules that 
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have a higher median value will factor more highly than rules with the same overall 

frequency but a lower median value.  This will promote rules that have occurred across 

more speakers over rules that are unique to one or a few speakers, even if the mean 

frequency is the same.  Sorting by frequency is done for all training and testing rule-sets.  

Currently, the user completes this step by sorting the CSV file in a spreadsheet 

application, such as Excel 2010, but it is an easy process that can be automated and 

included in the rule-set creation module.  Once the rule-sets are sorted, the new CSV files 

can be input into the speaker comparison module. 

3.2.3  Support vector machine algorithm. The basic SVM (Vapnik & Lerner, 

1963) takes as input a set of data as vectors, and separates this data into two classes by 

finding the line which has the largest distance to the nearest vector of either class while 

separating the classes.  This separation is done by a maximum-margin hyperplane (shown 

in Appendix D).  

The separation can be visualized as a line separating two sets of points, where the 

line is as far from all of the points simultaneously as possible, as shown in Figure 16. 
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Figure 16. Maximum-margin hyperplane. Line A1 does not correctly separate the data, 

line A2 separates the data, but not with the maximum margin, and line A3 separates the 

data with the maximum margin of separation between the classes.  Line A3 is the 

maximum-margin hyperplane. 

 

An expansion of the original algorithm for maximum-margin hyperplanes is to 

use kernels instead of a dot product equation to create a nonlinear classifier from the 

original algorithm (Boser, Guyon, & Vapnik, 1992).  The equation for the nonlinear 

SVM classifier is shown in Appendix D.  This allows the feature space to be transformed 

into n dimensions, enabling a hyperplane to linearly separate data in the new space while 

remaining non-linear in the original input space.  Shibboleth uses a Gaussian radial basis 

kernel (shown in Appendix D).   

An example of using three dimensional vectors to create the hyperplane between 

two classes is shown in Figure 17.  The number of dimensions that is used to separate n-

dimensional data is n-1. 
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Figure 17. Demonstration of hyperplane separation in three dimensions. Top left: Vectors 

that cannot be separated by a plane in two-dimensional space. Top right: The same 

vectors rotated 45°.  Bottom left: The same vectors now rotated 90° from top left, 

showing that a separation is possible in three-dimensional space. Bottom right: The 

vectors separated by the maximum-margin hyperplane in three-dimensions. 

 

 The SVM is by its very nature designed for two-class problems.  For multi-class 

problems, an approach must be chosen to allow vectors to be classified into more than 

two classes.  Two common strategies are the winner-takes-all approach and the max-wins 

approach.  Currently, Shibboleth uses the Java library libsvm-3.16 to classify the rule-sets 

from unknown speakers’ transcripts with the hyperplanes created by the support vectors 

in the trained model.  The winner-takes-all approach is the strategy implemented by 

libsvm-3.16.  This strategy finds the best overall set of hyperplanes to separate all of the 

pairs of classes at the same time. 

Another strategy is the max-wins strategy, where each classifier model assigns a 

vector to one of two classes in the two-class pairwise comparison, and increments a 

“winning” vote each time a class is assigned.  The class with the most winning votes at 

the end of classification determines to which class the vector is ultimately assigned.  This 
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is the strategy used for unknown speaker classification in Shibboleth.  The reasons for 

this choice that diverges from libsvm-3.16 will be expanded upon in section 3.2.4.3. 

The rationale for using SVM classification comes from the unique requirements 

of the task.  While the rule-set creation module builds rule-sets containing thousands of 

rules to use in classification, there are simultaneously a dearth of speakers to use for 

training data, and a lack of repetition of many phonemes within the reference sample in 

the Speech Accent Archive.  Any algorithm that requires a large (hundreds or thousands) 

group of speakers to use as training data is not feasible (Reynolds, 2008).  Neural 

network algorithms give multiple solutions for local minima, which is not a desired 

attribute, since classifying each speaker of unknown origin to a single L1 is the ideal 

solution in Shibboleth. Neural networks also require more data than the Speech Accent 

Archive contains.  SVMs provide the ability to use all of the rules created for 

classification, while still retaining a measure of robustness given the small number of 

speakers in the training data (Meyer, Leisch, & Hornik, 2003). 

3.2.4  Support vector machine classification procedure. Between the rule-set 

creation module and the speaker comparison module, there are a few parameters for the 

user to input.  

 Before the module is run, it needs to be told how many of the 12 features, as 

shown in Figure 4, the SVM should use in its analysis, whether the rule-set being input is 

a training or a test rule-set, which rule-sets are being compared (in the case of training), 

whether only rules of certain frequencies should be included in the analysis, and whether 

only a certain number of rules should be compared.  The ability to input these preferences 

will eventually be added to the Shibboleth GUI.  Currently, the user changes them in the 



  52 

source code of the file before each run.  All experiments in this thesis use all 12 features.  

The rule-sets being compared and the number of rules included in the analysis change 

according to what experiment is being run.  The frequency of the rules is currently set to 

include frequencies between 0 and 2.01 in the analysis.  (Without the inclusion of 2.01, 

Shibboleth would not include rules that had frequencies of 2.) 

For the rules to be in the correct format to operate as vectors in the SVM, they are 

translated from rules containing features such as “alveolar” and “voiced” to scaled 

twelve-dimensional vectors in an automated pre-processing procedure.  The first step of 

this procedure is assigning twelve columns that contain feature information (i.e. the three 

columns which contain features of the input phone, the three columns which contain 

features of the output phone, the three columns that contain features of the pre-

environment, and the three columns that contain features of the post-environment) to the 

dimensions 1 through 12, as shown in Figure 4.  Next, the module converts all features 

into numerical values from 0 to 20 according to Figure 18, which it then assigns to their 

corresponding numbered dimension, as shown in Figure 19.  In the example shown in 

Figure 19, for example, 1:19 would be the input value for the distinctive feature “stop.”  

The values are sorted by general similarity of consonant and vowel features and place of 

articulation.  (Another practical option would be to sort the values by place of articulation 

without regard for consonant and vowel differences.)  The combination of dimension 

labels and feature values comprises one “vector.”  For a rule-set that is going to be used 

to train the SVM, each vector also contains an initial numerical label to specify which 

rule-set the vector is from (e.g. the initial identifier for a vector from the German training 

rule-set may be “1” and the identifier for Italian may be “2”).  These numbers are created 
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arbitrarily, but must remain consistent across models.  This file of rules represented as 

vectors can now be processed by the libsvm-3.16 Java library. 

Numerical Value Feature 1 Feature 2 Feature 3 

0 NULL null null 

1 null - - 

2 - back unrounded 

3 # near-back rounded 

4 C central unvoiced 

5 V near-front voiced 

6 close front  

7 semi-close bilabial  

8 close-mid labio-palatal  

9 mid labiovelar  

10 open-mid labiodental  

11 semi-open dental  

12 open alveolar  

13 approximant alveolo-palatal  

14 trill palato-alveolar  

15 nasal retroflex  

16 fricative palatal  

17 affricate velar  

18 tap uvular  

19 stop glottal  

20  pharyngeal  

 

Figure 18. Numeric assignment chart for feature values in the support vectors. 

 
 

1 1:19 2:0 3:5 4:0 5:1 6:1 7:13 8:12 9:5 10:3 11:1 12:1 

 

Figure 19. Example vector for the rule 0->(stop, null, voiced)/(approximant, alveolar, 

voiced)_#. 

 

Using a method, svm-scale, within the libsvm-3.16 library, the user inputs the 

preference to scale the data.  Scaling the data will convert the values assigned to the 

dimensions into a proportional value between 0 and 1.  Scaled data tends to give more 

accurate results, though the SVM can be run on the vectors without scaling them.  All 

data used in experiments for this thesis have been scaled. 

Finally, if the SVM is being used to train a model, the user inputs into the svm-

train method in the libsvm-3.16 library the preferences for the cost value, the kernel type 
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used, and any parameters specific to that kernel.  For these experiments, I use a radial 

basis function for the kernel, with a cost value of 32, and a gamma value of 0.5.  These 

are average values for these parameters. 

3.2.4.1  Output of SVM Training. Once the user has run the SVM to train two or 

more rule-sets, the speaker classification module outputs a model file (viewable as text) 

containing all of the vectors that created the best separation between the rule-sets.  Since 

the vectors on the margins of this hyperplane, as seen in Figure 20, border the separation 

between the rule-sets drawn by the hyperplane, they are, in this case, also the vectors 

most likely to belong to multiple rule-sets and to be weak indicators of unique rules for 

the accents in question.   

 

Figure 20. Support vectors lying on the margins of the hyperplane.  
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Future work will look at two different methods of altering the libsvm-3.16 output 

to give higher importance to rules that seem more strongly indicative of the language in 

question.  The first alteration to the current method will discard these “border” rules in 

the models from the rule-sets which they were trained on, and the system will retrain on 

the new rule-sets to get a new model, with, presumably, greater separation between the 

rule-sets in question.  This is shown in Figure 21. 

 
Figure 21. New margins to the hyperplane once the original support vectors were 

discarded. 

 

This retraining is the easiest alteration to implement.  A more difficult alteration is 

to use a distance function to give rules higher weights the further they are from the rules 

that are used as support vectors in the trained models.  This would not result in the border 

rules being discarded entirely, but it would give each rule or vector a higher value the 

more distant they are from the hyperplane.   Those values would then be more indicative 
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of a particular L2, rather than what occurs in the current system, where all rules are 

weighted equally.  A visualization of this technique is shown in Figure 22. 

 
Figure 22. Vectors on either side of a hyperplane with sizes (weights) corresponding to 

the distance from the hyperplane. 

 

The current model file created by libsvm-3.16 containing all of the support 

vectors for the combination of rule-sets from training can be saved and used indefinitely, 

until the user wishes to change the training parameters or add or subtract rules to the rule-

set.  This is useful from a practical perspective, as testing unknown speakers to see which 

rule-set they most likely fall into is generally a matter of a few minutes of computation, 

but many models can take hours, days, or weeks to train.  The training time increases 

exponentially for every rule-set added or for roughly every 20,000 rules added to an 

individual rule-set. 
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3.2.4.2  Output of SVM testing. The procedure for pre-processing a rule-set from 

a testing transcript to be compared against the model files is the same as the procedure for 

pre-processing rule-sets to be used in creating the model files, with one difference.  For 

data that will be used to test classification, the vectors created for the input based on the 

rules in the rule-set are no longer labeled with the initial numerical rule-set identifier, 

since the numerical identifier will not be known for speakers of unknown origin.   

After the rule-set has been converted into a file usable by libsvm-3.16 and scaled 

accordingly, the user can run the method svm-predict on the rule-set file and whichever 

previously-trained model to which he or she wishes to compare the rule-set file.  The 

output from svm-predict is a list of the numerical rule-set classifications of every vector 

within the testing rule-set according to where the SVM classifies them using the 

boundaries created by the support vectors in the model file.  The classification of an 

unknown speaker is based upon where a majority of its rules fall in the 12-dimensional 

space within and across any pertinent model files and the rule-sets within them.  Each run 

of svm-predict is considered a “test.”  One test, depending upon the type of test, may not 

be enough to classify a test rule-set correctly against the available rule-sets.  This does 

not necessarily mean that the test result is incorrect, but it may mean that unless it is part 

of a series of tests, the results are meaningless.  This occurs frequently in the pairwise 

comparisons discussed later.   

Currently, the output of the svm-predict method is the output of the speaker 

comparison module, and, hence, the Shibboleth program.  However, the text file that is 

output with the classification of each vector for a specific test is not easily readable and 

does not quickly feed in to further testing.  Future implementations of Shibboleth will 
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give the user the ability to see the classification of a user within each model file at a 

glance and enable the user to compare a speaker’s classification across model files. 

3.2.4.3  Pairwise and k-way classification. SVMs naturally create a separation 

between two classes of objects, or a pairwise separation.  When libsvm-3.16 is separating 

more than two classes of objects, it begins by doing the pairwise separation for all classes 

and finding the vectors that create the hyperplanes to delineate the classes.  After this 

initial separation, it does parameter comparison to find the best hyperplanes for the 

overall k-way comparison, even if that hyperplane is not the best for a specific pairwise 

separation.  When the likely best hyperplanes have been located, all pairwise 

comparisons are automatically run again.  If the accuracy goes down significantly, 

libsvm-3.16 corrects to slightly different parameters to eventually find the vectors that 

create the hyperplanes that maximize the overall percentage of objects separated 

correctly.  This means that while both a manual pairwise separation done by the user and 

the automated k-way separation done by libsvm-3.16 both begin with the same pairwise 

separation, the k-way separation proceeds through several iterations to find the best 

hyperplanes, leading to anywhere from a two- to eight-fold increase in time spent training 

the SVM.   

In a hypothetical world where training model files with as many rule-sets as 

desired and testing against this model took no perceptible amount of time, it would be 

ideal to create a complete model consisting of rule-sets of all of the world’s languages as 

L1s.  Any time a new rule-set was created or an old one was updated, a new, complete 

model would be created immediately.  However, in reality, the memory required and the 
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time it would take makes this method highly infeasible for the average personal 

computer. 

Instead, decomposing the process of training and testing to the underlying 

pairwise, or two-way, comparisons provides trained models and language classifications 

in a more tractable amount of time.  At this time, each model and test is run or created 

individually by the user, but future updates to Shibboleth will train a complete series of 

pairwise comparison models automatically, as well as enable the user to test an unknown 

speaker against every model in a specified set without further input.  Decomposing every 

k-way comparison into a series of pairwise comparisons creates k(k-1)/2 model files and 

between (k-1) and k(k-1)/2 tests for every speaker of unknown origin.  However, it takes 

less time to train the set of models than to create a single k-way comparison model for 

any k greater than two, because of the previously mentioned iterations.  It takes an equal 

to slightly greater amount of time to run a single test.  In this case, “slightly greater” 

refers to a difference of seconds to minutes, whereas the time saved on training the 

models has been shown to be on the order of several hours to days in experiments 

conducted on training up to seven rule-sets at a time.  In addition, it is faster to 

incorporate changes in a rule-set or add new rule-sets, because pairwise models only need 

to be created or re-created to compare each individual rule-set to the new rule-set.  In the 

previously mentioned experiment, it was so unwieldy to create a model of a seven-way 

comparison between rule-sets (over a week), that adding an eighth rule-set to the 

comparison model, at the cost of re-running the entire model, would likely take multiple 

weeks on the average home computer.  This assumes the computer doesn’t run out of 

memory before the model is completed.  In contrast, adding an eighth rule-set to 
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complete a set of pairwise models, would involve creating seven more (k-1) pairwise 

models that would run at roughly 30 minutes to two hours apiece.  Similarly, if one of the 

existing rule-sets needed to be expanded or otherwise altered, only the pairwise models 

that included that rule-set, (k-1) models, would be re-created.  If the user did not wish to 

include a rule-set in a comparison, effectively “deleting” the rule-set for the time, no new 

model would have to be created.  The user would simply run the classification without 

including models that contain the unwanted rule-set.  In a model that does a k-way 

comparison between rule-sets in one model, a new model would have to be created for 

deletions as well as additions or alterations. 

The drawback of solely creating pairwise models is that the extra refinements 

libsvm-3.16 runs to create demarcations between the k rule-sets (where k is larger than 

two) after the initial internal pairwise comparison is lost.  This means that while the 

training process may be many times faster and more tractable, it may not be quite as 

accurate. This is shown in Chapter 5, Language Family Classification Experiment.  

Currently, it also requires much more input on the part of the user, since each pairwise 

model is created separately, rather than in an automated process.  In the same way, each 

time a speaker of unknown origin is tested against a set of models, the user must still run 

each test individually and keep track of the results. 

For example, when classifying a speaker of unknown origin against a three-way 

comparison model of English, German, and Italian as L1s, if 50% of the vectors are 

classified as Italian, 25% as German, and 25% as English, the origin of the speaker is 

presumed to be Italian.  (As mentioned previously, the vectors all currently have a weight 

of one, without regard for the distance of the vector from the boundary between classes.)  



  61 

Italian as an L1 in this case is ascertained by training the SVM on one model, running 

one test, and having the result output.  However, if the same speaker was classified 

against pairwise comparison models, three models would be trained and two or three 

tests, depending on the results, would be run.  The models created would be files of the 

support vectors between English and German as L1s, German and Italian, and English 

and Italian.  If any two of these were used for classification and the output was the same, 

i.e. over 50% of the vectors were classified as Italian after the latter two models were 

used in classification, the speaker would be classified as Italian without needing to use 

the third model for classification.  Not only does the user have to create the three models 

individually, he or she must also run the two tests and take note of the results.  Until this 

part of the process is automated, more user error can occur here than in the k-way single 

model creation and language testing process. 

3.2.4.4  Classification using pairwise models.  For the experiments in this work, 

pairwise comparisons were used unless noted otherwise, for the reasons stated 

previously.  This required a standardized method of running the tests and interpreting the 

results.   

The first step to testing a rule-set against a series of pairwise models in an 

efficient, accurate way is to choose a classification (e.g. Italian, Greek, Germanic 

language family, Southern American English) and test the rule-set against every pairwise 

comparison that includes this classification.  It doesn’t matter which classification is 

initially chosen.  This will be (k-1) tests, or pairwise tests against (k-1) models.  The 

result of this comparison will be the number of vectors that matches against each 

classification in the model.  The training rule-set that matches against the larger number 
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of vectors (or rules) in the testing rule-set determines the classification of that single test.  

The exact percentages of match are not considered in classification.  In the unlikely event 

that the testing rule-set matches the same number of vectors in both training rule-sets, the 

outcome of the test is considered to be both rule-sets, for the unknown speaker falls 

equally into both training rule-sets.  The outcome of all (k-1) tests determines whether or 

not the rule-set needs to be tested against more models.  If the test rule-set matches the 

initial classification chosen in all (k-1) tests, no further tests need to be run, because no 

other classification can achieve a majority classification over (k-1).  (For example, if the 

initial classification chosen is Italian and the test rule-set was classified as Italian in every 

pairwise model that included Italian as an option, no further tests need to be run on that 

rule-set.) 

If most, but not all, of the (k-1) tests come out to be the initial classification, the 

next set of pairwise models to compare the test rule-set against would be all of those 

containing the classification with which the test rule-set has the second-highest match.  

To continue with a variation on the previous example, if the test rule-set was classified as 

Italian in six out of nine tests, German in one out of the nine tests, and Swedish in one out 

of the nine tests, the next set of tests against the pairwise models could be tests against all 

of the (k-2) models that contain German as a possible classification, or against those that 

contain Swedish as a possible classification.  For this example, I will choose to run the 

next set of tests on German.  If the test rule-set does not have the majority of the rules 

classified as German in at least six out of the eight tests, the test rule-set is still classified 

as Italian, and the seven models remaining that contain Swedish should be run next.  If 

the test rule-set is classified as German in seven out of the eight tests, German is 
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considered the classification of the test rule-set and no further tests should be run.  If the 

test rule-set is classified as German in exactly six out of the eight tests for that particular 

classification, the new classification ties with Italian for the highest likelihood of it being 

the speaker’s L1 (adding the six new classifications as German from the second set of 

tests and the single German classification from the first set of tests is equal to the seven 

classifications as Italian from the first set of tests).  Barring one of the tests from the 

second set being classified as Swedish, no further tests need to be run.   

In the event that during the second round of tests the test that compared German 

and Swedish classified the unknown speaker as Swedish, the third set of comparisons 

must be run on every model that contains Swedish, unless the other seven tests during the 

second round classified the speaker as German, because there would still be a possibility 

of eight or more of the nine possible comparisons including Swedish to classify as 

Swedish. 

   The tests should proceed through every pairwise model of the next highest 

classification until it can be ascertained either that one rule-set holds the majority 

classifications with the test rule-set, or there is a tie between classifying the unknown 

speaker into two or more rule-sets.  In the case of equal classification into three or more 

rule-sets, the accent of the speaker is termed “inconclusive.”  

 3.2.4.5  Output, certainty, and vector issues.  Using the previously discussed 

classification method, every vector in an individual unknown speaker’s transcript will be 

classified as a member of one of the classes in a model.  No vector is ever classified as 

belonging to two or more classes.  This will lead to output for a speaker in a percentage 

format, where x% of the vectors will belong to class 1 in a pairwise model and 100-x% 
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will belong to class 2.  While it may be tempting to assign higher certainty to testing 

output where a speaker has a much higher percentage belonging to one class, this is not 

always accurate.  It is reasonable to assume that a speaker who scores very strongly (over 

60% in multiple tests) in the same language repeatedly across pairwise tests that the 

language is the speaker’s L1 with higher certainty than a speaker who scores only slightly 

over 50% in a language in the same tests.  However, that is just a rule of thumb.    In 

reality, the composition of the data that the models for that language were trained on can 

skew the results, leading to no overall measure of certainty.  At this time, a speaker is 

classified as either a likely L1 speaker of one language, an L1 speaker of a language 

differing from the L2 but not discernible between two strong candidates, or an L1 speaker 

differing from the L2 but of inconclusive L1, with no additional certainty measures.   

While it is obvious that an unknown speaker may vary in degree of accentedness 

affecting classification, overall classification is affected more by the composition of the 

data used to train the model for the language, dialect, or language family.  The principal 

culprits of poor or weak classification due to the model fall into four categories:  1) there 

are not many speakers contributing to the training rule-set, 2) the speakers contributing to 

the training rule-set vary in accent strength, 3) the L2 in question does not differ 

significantly in phonemic inventory from the L1 reference sample, and 4) the vectors in 

the L2 rule-set being trained have significant overlap with the vectors of another L2 rule-

set. 

 The first issue is the easiest issue to solve, in theory.  More speakers in the 

training rule-set lead to more rules and more incrementation of existing rules, thus, a 
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higher percentage of high probability rules and a higher chance of locating unique rules 

for classification.   

However, the first issue is strongly related to the second issue.  Namely, will a 

higher quantity of speakers actually improve the training model in and of itself, or does 

the degree of accentedness of speakers used in the training model affect the accuracy of 

classification more than the number of speakers?  It may be that those speakers that 

display a higher degree of accentedness in the L2 lead to a more robust model for that L1.  

Conversely, it may be that speakers with a low degree of accentedness lead to rules that 

are more representative for a larger number of unknown speakers of that L1, and thus 

better overall classification.  If an L1 is only classified by the most marked speakers in an 

L2, it may be that the training model will not pick up speakers with lesser degrees of 

accentedness.  Since measures of accentedness were not part of this work, the underlying 

assumption here is that the largest number of speakers usable for a training model would 

average out the more accented speakers with the less accented speakers, giving a general 

model of the accent from a particular L1. 

 The third issue, that of similar existing phonemic inventories, is something that 

cannot be solved in the current version of the program, or even by using the suggested 

future modifications.  It is likely that when the L2 has a very similar phonemic inventory 

to the L1, classification will be less accurate than when the inventories hold different 

phonemes.  However, it is not an inherently unsolvable problem.  Using the same 

theoretical underpinnings in Shibboleth, a similar program could create feature sets that 

are then used to classify unknown speakers against trained models using SVMs.  

However, the feature sets will no longer be made up of, or at least not solely made up of, 
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broad articulatory features.  They would have to contain either more specific articulatory 

features, such as the diacritics that Shibboleth removes, acoustic features, or both. 

 The last issue, overlapping vectors between training models, is an issue that is not 

solved in the current implementation of Shibboleth, but is one that would likely be 

somewhat ameliorated by the previously mentioned future modifications to classification.  

Removing the support vectors themselves would almost certainly remove some of the 

rules that overlap between models and L1s, leaving a higher percentage of vectors that 

fall squarely into one class or the other.  The other suggested modification, calculating 

distance from the support vector, would also give higher weights to vectors that have a 

higher likelihood of only belonging to one class and lower weights to vectors that are 

more likely identical across classes. 
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CHAPTER 4 

LANGUAGE CLASSIFICATION EXPERIMENT 

The Shibboleth program was evaluated by means of two experiments:  a language 

classification experiment and a language family classification experiment.  The language 

classification experiment sought to measure whether Shibboleth satisfies the main goal of 

classifying speakers of several unknown L1s speaking a second language into the correct 

L1 classes.  This classification should be done at a rate better than chance to be 

considered successful.  Previous research has shown that many factors can affect the 

strength of accentedness in second language speakers to various extents (Flege et al., 

1995; Flege et al., 1997; Piske et al., 2001; Flege et al., 1999; Long, 1990).  Shibboleth 

should perform better on speakers with a greater degree of accentedness, by the obvious 

corollary that speakers with no foreign accent will be indistinguishable from native 

speakers.  Some factors, however, I consider more likely to affect Shibboleth’s 

performance.  The factors considered most likely to affect the accuracy of the results are 

age of onset and years spent living in a primarily English-speaking country.  Some 

factors, such as age and method of instruction, are considered less likely to affect the 

accuracy of the results.  Other important factors on which the Speech Accent Archive 

does not provide data include frequency of L2 use and self-reported degree of 

accentedness.   

4.1  Participants 

The pool of participants for this experiment is all of those from the Speech Accent 

Archive for whom transcripts were uploaded at the time of the experiment.  Within the 

Archive, there are a vast number of languages represented, but many of the languages 
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contain fewer than 10 speakers.  Several have just one or two speakers represented.  

While the limitations of Shibboleth have yet to be exhaustively determined, having at 

least 10 speakers in a training set and four to be used in the unknown speaker test set (14 

total transcripts) was the absolute minimum for a language to be used in this experiment.  

Ten speakers was the minimum number of languages I hypothesized Shibboleth would 

need to create a rule-set for the characterization of a foreign accent or dialect in a 

language.  In the case of pluricentric languages, at least one standard dialect needed to 

have at least 14 speakers’ transcripts available in the archive for the language to be 

represented in the experiment.  This limitation reduced the number of languages from the 

Archive that were able to be used in this experiment to 18, including the native English 

speakers.  Of these, the six languages I chose to use for L1s were Northern American 

English, Standard German, Italian, Japanese, Latin American Spanish, and Russian. 

 Each one of the six groups was divided by a randomizer spreadsheet function into 

75% training data and 25% testing data.  There were 125 total speakers’ transcripts used 

in this experiment, with 101 of the speakers’ transcripts being placed in a training pool 

and 27 transcripts placed in the testing pool.  To ensure an equal number of participants 

from each L1 were tested, if a language had more than four transcripts in the testing pool, 

the additional transcripts were removed, leading to 24 transcripts in the testing pool.  The 

transcripts removed were determined by the same randomizer function used to assign 

transcripts to either the training or the testing pool.  The characteristics of each training 

group are shown in Table 1.  The information about years spent in an English-speaking 

country gathered from the Speech Accent Archive was rounded to the nearest year, or up 

to one year if the individual had lived in an English-speaking country for one to five 
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months.  The individuals self-reported their status as a native speaker.  For pluricentric 

languages, the speakers were placed in a dialect group by what they identified as their 

hometown or region.  Once an individual’s transcript was selected to be used in testing 

Shibboleth, they were placed in the testing group as an L1 speaker of an unknown L1.  

The characteristics of this group of unknown speakers related to their age of English 

onset, number of years speaking English, and number of years living in a primarily 

English-speaking country are shown in the last row of Table 1.  Age and sex information 

for both groups is shown in Table 2.   

Table 1 

English Background Data for Speakers Used in Language Classification Experiment 

 

Age of English onset  Number of years spoken 

 Years in English-

speaking country 

Training 

L1 

M Mdn s  M Mdn s  M Mdn s 

  English 0 0 0  39 39 17  39 39 17 

  German 11 11 1  19 14 13  4 1 8 

  Italian 13 14 5  21 17 10  7 4 10 

  Japanese 12 12 1  17 13 9  3 2 3 

  Russian 18 15 12  19 16 12  8 6 7 

  Spanish 15 15 5  15 13 13  5 2 6 

 

Testing 

L1 

           

  

Unknown  

10 11 6  19 18 10  8 4 11 

Note. The specific dialects of each L1 used are described in the text above. 
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Table 2 

Age and Sex Information for Speakers Used in Language Classification Experiment 

 Age  Sex 

L1 Min Max M Mdn s  F M 

English 18 67 39 39 17  4 15 

German 19 53 30 23 14  6 4 

Italian 18 55 35 32 13  3 13 

Japanese 20 49 29 26 9  6 4 

Russian 23 66 37 34 13  8 11 

Spanish 17 80 29 26 14  10 17 

         

Unknown  18 46 29 29 9  13 11 

 

The smallest training groups were German and Japanese, each with 10 speakers.  

The largest was Latin American Spanish, with 27 speakers.  The native English speaking 

and Russian groups each had 19 members and the Italian training group had 16.  Not all 

of the speakers had lived in an English-speaking country at the time of data collection, 

but they had all studied or spoken English for at least a year, with the mean number of 

years past age of onset for the training groups ranging from 15 to 21 for those speaking 

English as an L2, and 39 for native English speakers.  

Fifty of the speakers were female and 75 were male.  The youngest speaker was 

17 years old and the oldest was 80, both of which were in the training group of Latin 

American Spanish speakers.  The lowest mean age was 29 for both the Spanish and 

Japanese training groups and highest for the native Northern American English speakers, 

at 39.  Through the randomization, the group of speakers to be tested ended up with a 

higher percentage of female speakers than most of the training groups, and a relatively 

young overall age, matching the mean age of the youngest training group with a similar 

sample standard deviation and younger minimum and maximum ages.  These slight 

variations in demographics from the training groups were not expected to affect the 



  71 

results of the experiment, as age and sex were not expected to have a noticeable 

correlation with the results of Shibboleth testing.   

All participants in this experiment had transcripts collected in the Speech Accent 

Archive.  The Speech Accent Archive has collected data from 1998 to the present by 

varying methods, including unmonitored recording of participants reading a passage into 

a tape recorder, participants being approached by friends and classmates to be recorded 

using tape recorders, smartphones, and other recording devices, and participants online 

sending in speech recordings from their home, work, and school computers.  Though the 

methods varied, all participants read the same elicitation paragraph written in English, 

shown in Figure 5, in a relatively quiet background, with the file eventually being 

converted into the QuickTime (MOV) file type.  Each sample averaged 27 seconds long.  

Using these methods, the Archive has many participants who self-selected for their 

willingness to have their speech recorded, had access to a computer with an internet 

connection and audio-recording capability, and/or attended GMU.  This experiment 

assumes that the speakers are reading the written passage using the natural accent they 

would use in this setting.   

The transcribers of the data were graduate students at GMU who were in an 

advanced phonology class with at least one previous semester of phonological 

transcription.  Each transcription was done by two students and Dr. Weinberger, with 

disagreements handled by group discussion until a transcription could be agreed upon.  

Each student did three to four transcriptions over a semester, and, in the latter years of the 

project, used programs such as Praat (Boersma & Weenink, 2013) for assistance. 
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4.2  Procedure 

 Evaluation of Shibboleth in this experiment involved training 15 sets of pairwise 

models using the transcripts of the speakers assigned to the training groups.  These 

models were trained using the common parameters of cost at 32 and gamma at 0.5.  They 

were each trained on the top 50,000 frequency rules in their rule-sets.  The unknown 

speakers were tested against the pairwise rule-sets using the method mentioned in section 

3.2.4.4.  For the unknown speakers, all rules in their rule-sets were used for classification, 

regardless of the frequency of the rule.  Data for both the training rule-sets and the testing 

rule-sets were scaled.  For the purposes of this experiment, an unknown speaker could 

only be correctly or incorrectly identified.  If a speaker’s classification was tied between 

an incorrect L1 and the correct L1, it was considered incorrect. 

4.3  Results 

 Shibboleth proved successful at identifying the L1 of 42%, or 10 out of 24 of the 

unknown speakers, when the system had been trained on six different L1s.  Identifying 

speakers by chance would have had a 17% success rate, or four out of the 24 unknown 

speakers.  This result is significant, χ
2
(1, N=24) =10.800, p=.0010.  The assignments for 

each unknown speaker are listed in Figure 23, with the full results of the pairwise tests 

shown in Appendix E.  The results are graphed by L1 in Figure 24. 
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Unknown Speaker Number Correct classification Actual classification 

1 German Inconclusive 

2 German Italian 

3 German German 

4 German German 

5 English English 

6 English English 

7 English English 

8 English English 

9 Italian Italian 

10 Italian Italian 

11 Italian Russian 

12 Italian Italian 

13 Japanese Inconclusive 

14 Japanese Inconclusive 

15 Japanese Italian 

16 Japanese Inconclusive 

17 Spanish Inconclusive 

18 Spanish Inconclusive 

19 Spanish Inconclusive 

20 Spanish Inconclusive 

21 Russian Russian 

22 Russian Inconclusive 

23 Russian Italian 

24 Russian Italian 

 

Figure 23. Classification results for unknown speakers in language classification 

experiment. 
 

 
 

Figure 24. Results for language classification experiment graphed by L1. 
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It is evident from these results that some factor of the combination of L1 and L2 

led to more successful classification for some L1s than others.  For example, even though 

the training rule-set for the Latin American Spanish group was created with more than 

twice as many speakers as the training rule-set for the German group, the unknown 

speakers whose first language was German were classified correctly 50% of the time, 

while not one of the Latin American Spanish speakers was identified.  Shibboleth was 

able to distinguish native and non-native English speakers with 100% accuracy. 

 When the native English test speakers are removed from the calculations, it 

becomes clear that every non-native test speaker who was correctly classified had an age 

of onset later than 11 years, as hypothesized.  Contrary to what I hypothesized, greater 

time spent living in an English-speaking country did not have an effect on classification 

results.  A slightly high percentage of males were identified correctly, but not a high 

enough percentage to be significant.  There was no correlation between number of years 

English was spoken by the participant and correct classification.  Correct and incorrect 

classification for the unknown speakers by sex, age of onset, number of years that 

English was spoken, and years spent in a primarily English-speaking country are shown 

in Figures 25, 26, 27, and 28, respectively. 
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Figure 25. Results of classification in language classification experiment graphed 

according to sex. 

 

 
 

Figure 26. Results of classification in language classification experiment graphed 

according to age of onset. 

 

 

 
 

Figure 27. Results of classification in language classification experiment graphed 

according to number of years English was spoken. 
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Figure 28. Results of classification in language classification experiment graphed 

according to years spent in an English-speaking country. 

 

In addition to demographic comparisons, I gathered statistics on the training rule-

sets to compare size and weight of the training rule-sets with correct classification of the 

test speakers.  No correlation between number of rules in the transcript used for testing or 

weight of rules in the training rule-set was found, as shown in Table 3. 

Table 3 

Statistics from Training and Testing Language Rule-Sets 

 German English Italian Japanese Spanish Russian 

Average weight of top 

50K rules 

.52 .35 .48 .45 .51 .54 

Average number of rules 

in testing transcript 

75,790 35,806 91,009 72,749 80,341 90,206 

Number of speakers in 

training data 

10 19 16 10 27 19 

Accuracy of testing 50% 100% 75% 0% 0% 25% 

 

The lack of correlation between higher average numbers of rules in the testing transcript 

and accuracy of testing or higher average weight of the rules in the training data and 

accuracy of testing may stem from a similar confounding factor.  When the accent of an 

L1 in an L2 does not contain many unique phonetic changes, but, instead, contains many 

subtle phonetic changes that are common to many L1s, this L1 is very difficult to 

uniquely identify.  Some evidence that this was a problem shows in the precision and 
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recall figures calculated from the individual pairwise tests conducted, as shown in Table 

4. 

Table 4 

Precision and Recall for Pairwise Classifications 

L1 

Precision Recall F1-score 

Overall 

Accuracy 

German .667 .800 .727 .500 

English .741 1.000 .851 1.000 

Italian .594 .950 .731 .750 

Japanese .667 .300 .414 .000 

Spanish .333 .050 .087 .000 

Russian .625 .750 .681 .250 

 

While the F1-score and recall measures trend with the overall accuracy percentages, the 

trend is not replicated in the precision measurement.  Japanese has one of the highest 

precision values, but one of the lowest accuracy values, and Italian has one of the highest 

accuracy values, but one of the lowest precision values.  This is due to Italian having the 

highest number of false positives reported and Japanese having almost no false positives 

found from the pairwise comparisons.  A large number of false positives in the pairwise 

comparison tests are an indicator that an L1 has a large number of rules that are not 

unique to that L1.  This will lead to high recall for that language, but low precision, since 

the support vector machine will erroneously classify too many native speakers of other 

L1s into the class. 
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CHAPTER 5 

LANGUAGE FAMILY CLASSIFICATION EXPERIMENT 

The language family classification experiment measured Shibboleth’s ability to 

classify speakers of unknown L1 into the correct language family class, even if the L1 is 

not represented in the training data for the language family.  This classification should be 

done at a rate better than chance for it to be considered successful.  As with the language 

family experiment, I hypothesized that age of onset and years living in a primarily 

English-speaking country would be factors most likely to affect correct classification.  I 

also hypothesized that languages that had more near relatives in the training data would 

also positively affect classification. 

5.1  Participants 

 The pool of participants for this experiment is all of the individuals that had a 

transcript uploaded to the Speech Accent Archive at the time the experiment was 

conducted.  Similar to the language classification experiment, I did not include a 

language in the training data unless it had at least 10 transcripts in the Archive.  I did not 

include a language family in the training data unless at least three languages from that 

family had at least 10 transcripts in the Archive.  In addition, the language family needed 

to have at least two languages in the Archive distinct from the three languages used for 

training transcripts to comprise the testing pool, for a total of five languages.  Only three 

major language families in the Archive met these criteria:  Germanic, Romance, and 

Slavic.  The languages used for training the language family classification models were 

English, German, and Dutch; Italian, French, and Spanish; and Serbian, Polish, and 
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Russian, respectively.  The languages used for the testing pool were Afrikaans, Swedish, 

Romanian, Portuguese, Bulgarian, and Ukrainian. 

 No speakers who had previously been used as unknown speakers in the testing 

pool for the language classification experiment were used in the training data.  As with 

the language classification experiment, 75% of the transcripts for each training language 

were chosen using a spreadsheet randomizer function.  In addition, the transcripts chosen 

for the training pool consisted of every standard dialect in the pluricentric languages.  

Unlike the language classification experiment, the testing pool was not 25% of each 

language chosen for testing.  Since some of the languages chosen for testing had such a 

low number of speakers that 25% would have been an insufficient number for multiple 

tests, 3 speakers for each one of these languages were chosen by the randomizer function 

and placed in the testing pool.   

 This resulted in 193 transcripts being used in this experiment, with 175 speakers’ 

transcripts in the training pool and 18 speakers’ transcripts in the testing pool.  The 

characteristics of each training group are shown in Table 5.  The information about years 

spent in an English-speaking country gathered from the Speech Accent Archive was 

rounded to the nearest year, or up to 1 year if the individual had lived in an English-

speaking country for one to five months.  The individuals self-reported their status as a 

native speaker.  The characteristics of the group of speakers whose native language 

family is unknown are shown in the last row of Table 5.  Age and sex information for the 

training and testing groups is shown in Table 6. 
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Table 5 

English Background Data for Speakers Used in Language Family Classification 

Experiment 

 
 

Age of English onset  

Number of years 

spoken  

Years in English-

speaking country 

Training L1 

Family M Mdn S  M Mdn s  M Mdn s 

  Germanic 5 0 6  32 27 17  22 19 22 

  Germanic w/o    

  English 
11 11 2  25 23 14  5 1 7 

  Romance 13 12 7  21 17 15  8 3 11 

  Slavic 16 14 10  17 15 11  5 2 6 

            

Testing L1            

  Unknown 10 10 4  24 21 13  7 5 9 

 

Table 6 

 

Age and Sex Information for Speakers Used in Language Family Classification 

Experiment 

 
 Age  Sex 

L1 Family Min Max M Mdn S  F M 

Germanic 18 73 37 33 16  24 37 

Romance 17 80 35 31 17  25 43 

Slavic 20 66 33 30 11  22 24 

         

Unknown  18 56 32 29 12  6 12 

 

The smallest training group was Slavic, with 46 speakers.  Germanic and 

Romance were very close in number, at 61 and 68 speakers, respectively.  Not all of the 

speakers had lived in an English-speaking country at the time of data collection, but they 

had all studied or spoken English for at least a year, with the mean number of years past 

age of onset for the training groups ranging from 17 for Slavic to 32 for Germanic.  

(Without the inclusion of native English speakers in Germanic, the mean number of years 

past age of onset was 25.) 
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Seventy-seven of the speakers were female and 116 were male.  The youngest speaker 

was 17 and the oldest was 80, both of which were in the training group for the Romance 

language family.  All of the training groups and the testing group had similar mean ages, 

from 29 for the testing group to 33 for the Germanic language family training group.  All 

groups had fewer female speakers than male speakers. 

 All participants in this experiment also had transcripts collected in the Speech 

Accent Archive.  The collection and transcription techniques used for these transcripts 

were the same as those described in section 4.1. 

5.2  Procedure 

 Evaluation of Shibboleth in this experiment involved two different techniques:  

training 3 sets of pairwise models and training one three-way model.  The former is the 

Shibboleth training procedure described in section 3.2.4.4.  The second technique is the 

“ideal” scenario mentioned in section 3.2.4.3.  In this instance, the number of training 

groups was low enough that it was feasible to use a three-way model to demonstrate the 

slight difference in outcome between this model and the normal pairwise models.  All 

models were trained using a cost parameter of 32 and a gamma value of 0.5.  The models 

were trained on the top 50,000 frequency rules in their rule-sets.  For the unknown 

speakers, all rules in their rule-sets were used for classification.  Data for the training and 

testing rule-sets was scaled.  Similar to the language classification experiment, an 

unknown speaker could only be correct or incorrectly identified.  Using the three pairwise 

models, it was not possible to get a tie between two model classifications. 
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5.3  Results 

 Using the typical pairwise model method, Shibboleth proved successful at 

identifying the language family of 33%, or six out of the 18 unknown speakers, when the 

system had been trained on three different language families.  None of the language 

families contained the actual language of the unknown speaker.  This is the same result 

that identifying speakers by chance would give.  Using the alternate three-way 

comparison, Shibboleth proved successful at identifying the language family of 44%, or 

eight out of the 18 unknown speakers.  Though this is an improvement, it is still not 

statistically significant χ
2
(1, N=18) =1.000, p=.3173.  The assignments for each unknown 

speaker using both methods are shown in Figure 29, with the full results of the pairwise 

tests shown in Appendix F.  The results are graphed by L1 language family in Figure 30. 

Unknown 

Speaker Number 

L1 Correct 

classification 

Classification by 

pairwise model 

Classification by 

three-way model 

1 Swedish Germanic Inconclusive Romance 

2 Swedish Germanic Germanic Germanic 

3 Swedish Germanic Germanic Germanic 

4 Afrikaans Germanic Inconclusive Germanic 

5 Afrikaans Germanic Inconclusive Germanic 

6 Afrikaans Germanic Inconclusive Romance 

7 Romanian Romance Romance Romance 

8 Romanian Romance Romance Romance 

9 Romanian Romance Romance Romance 

10 Portuguese Romance Romance Romance 

11 Portuguese Romance Inconclusive Germanic 

12 Portuguese Romance Inconclusive Germanic 

13 Bulgarian Slavic Inconclusive Romance 

14 Bulgarian Slavic Inconclusive Romance 

15 Bulgarian Slavic Inconclusive Romance 

16 Ukrainian Slavic Inconclusive Romance 

17 Ukrainian Slavic Inconclusive Romance 

18 Ukrainian Slavic Inconclusive Germanic 

 

Figure 29. Classification results for unknown speakers in language family classification 

experiment. 
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Figure 30. Results for language family classification experiment graphed by L1 language 

family. 

 

The slight improvement in classification accuracy between pairwise and three-

way classification shows in the improved accuracy of the unknown speakers from the 

Germanic language family.  In fact, as evidenced in Appendix F, the two previously 

misidentified Afrikaans speakers went from failing both pairwise tests to being correctly 

classified by the three-way classification. 

From this, it is clear that Slavic is consistently misidentified, or identified as 

inconclusive, similar to Spanish and Japanese in the earlier experiment.  This was an 

unexpected result, as it was hypothesized the Russian speakers’ transcripts in the training 

rule-set would aid in identifying the unknown speakers with an L1 of Ukrainian.  

Conversely, the most easily identified speakers in the testing pool by both methods were 

native Romanian speakers, the language with arguably the least close relatives in any 
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Romance family, Romanian had no such close relative.  These results show that having 
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languages from branches of a language family in the training group more closely related 

to the L1s of unknown speakers is not an indicator of more likely correct language family 

classification.  However, as shown in Figure 31, the majority of the speakers that were 

classified into the correct language family had an age of onset later than 11 years, as 

hypothesized and as shown in the language classification experiment.  

Correct and incorrect classification for the unknown speakers by age of onset, sex, 

number of years that English was spoken and years spent in a primarily English-speaking 

country are shown in Figures 31, 32, 33, and 34, respectively. 

 
 

Figure 31. Results of classification in language family classification experiment graphed 

according to age of onset. 
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Figure 32. Results of classification in language family classification experiment graphed 

according to sex. 

 

 

 
 

Figure 33. Results of classification in language family classification experiment graphed 

according to years English was spoken. 

 

0

1

2

3

4

5

6

7

8

9

Female Male

N
u

m
b

er
 o

f 
sp

ea
k

er
s 

Sex 

Pairwise Correct

Pairwise Incorrect

Three-way Correct

Three-way Incorrect

0

1

2

3

4

5

6

7

N
u

m
b

er
 o

f 
sp

ea
k

er
s 

Years of English spoken  

Pairwise Correct

Pairwise Incorrect

Three-way Correct

Three-way Incorrect



  86 

 
 

Figure 34. Results of classification in language family classification experiment graphed 

according to years spent in an English-speaking country. 

 

The statistics that compare the size and weight of the training rule-sets are shown 

in Table 7.  As with the language classification experiment, no correlation was found 

between the number of rules in the transcript used for testing or weight of rules in the 

training rule-set. 

Table 7 

Statistics from Training and Testing Language Family Rule-Sets 

 Germanic Romance Slavic 

Average weight of top 50K 

rules 

.36 .46 .53 

Average number of rules in 

testing transcript 

68,898 101,595 89,525 

Number of speakers in training 

data 

61 68 46 

 

Accuracy of pairwise testing 33% 67% 0% 

Accuracy of three-way testing 67% 67% 0% 

 

In these statistics, a trend can be seen between a higher number of speakers in the training 

data and higher accuracy of classification.  Since there were only three language families 

represented in this experiment, this apparent trend may also be coincidence, given the 

difference from the language classification experiment.  The language family 
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classification experiment likely also suffered from the issue of having rule-sets with too 

many common phonetic changes that occurred in the language classification experiment.  

The precision and recall figures shown in Table 8 support this theory. 

Table 8 

Precision and Recall for Pairwise and Three-way Classification 

Language Family – 

Pairwise Precision Recall F1-score 

Overall 

Accuracy 

  Germanic .571 .333 .421 .333 

  Romance .500 .833 .625 .667 

  Slavic .556 .417 .476 .000 

     

Language Family – 

Three-way 

    

  Germanic .571 .667 .615 .667 

  Romance .363 .667 .470 .667 

  Slavic .000 .000 .000 .000 

 

The F1-scores and recall measure do not trend with the overall accuracy 

percentages for the pairwise comparisons, but there is some trending with the overall 

accuracy for the three-way comparison.  Overall, the relatively low precision scores 

across both the pairwise and the three-way comparisons show the constant 

misclassification in the language family classification experiment.  Slavic was not 

correctly or incorrectly identified once in the three-way experiment, showing that Slavic 

is likely a language family that contains many phonetic rules common to other language 

families.  When the three-way model had to create the separation between those rules 

belonging to other language families, most of the vectors were placed in the classes for 

the other language families.  This led to the 0% accuracy rating in both the pairwise and 

three-way comparison, even though it is much more clearly reflected in the precision and 

recall scores for the three-way comparison.  Conversely, the Romance family had low 

precision scores in both comparisons, not due to lack of true positive identification, but 
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because of an overabundance of false positive identification.  This latter factor regarding 

the preponderance of false positives in the Romance data provides compelling evidence 

that many of the support vectors for Romance were vectors that appeared in multiple 

language families.  
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CHAPTER 6 

DISCUSSION, CONCLUSIONS, AND FUTURE WORK 

6.1  Summary 

In this thesis I have described a computer program, Shibboleth, which will 

automatically identify the native language, dialect, or language family of a speaker from 

the foreign accent they exhibit in a second language.  This description was followed by 

two experiments I conducted to evaluate the ability of the system to classify speakers 

accurately.  One experiment sought to classify speakers of an unknown L1 into his or her 

L1 when Shibboleth had been previously trained on rule-sets in the L1.  Six L1s were 

used for this experiment.  The second experiment sought to classify speakers of an 

unknown L1 into his or her native language family, when Shibboleth had been previously 

trained on rule-sets in the language family, excluding the speaker’s specific L1.  Nine L1s 

across three language families were used in the training data for this experiment.  For 

both experiments, I hypothesized that Shibboleth would be able to classify the unknown 

speakers at a rate better than chance, with the two factors most heavily influencing 

correct classification being age of onset of the L2 (English), and the number of years the 

speaker had spent in an English-speaking country. 

 The results of the first experiment, language classification, demonstrated a 42% 

correct classification rate for 24 speakers of unknown L1, when Shibboleth had been 

trained on 101 total language samples at roughly 27 seconds apiece (45 minutes of 

training data).  This result is significantly better than chance, χ
2
(1, N=24) =10.800, 

p=.0010, and comparable or better than related work in the field (Angkititrakul & 

Hansen, 2006; Choueiter, Zweig, & Nguyen, 2008).  However, classification was uneven 
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across L1s, with 100% correct classification of native speakers of English, and 0% 

correct classification for Spanish and Japanese speakers.  The factor that most heavily 

influenced correct classification for this experiment did appear to be age of onset, as I 

hypothesized.  However, the number of years a speaker had spent in an English-speaking 

country had no clear effect on classification. 

 The second experiment, language family classification, was not as successful, 

resulting in 33% correct classification for pairwise comparisons and a 44% correct 

classification rate for a three-way comparison.  Neither result is significantly better than 

chance χ
2
(1, N=18) =1.000, p=.3173.  For this experiment, Shibboleth was trained using 

175 language samples in nine languages across three language families.  Each sample 

was around 27 seconds, for 79 minutes of training data.  With the results of the second 

experiment approximately equal to chance, neither predictive factor could be shown to 

have a distinct effect on classification. 

6.2  Discussion and Challenges 

 From these experiments, it appears that Shibboleth shows promise for language 

classification.  While the classification rate is not yet high enough to rely on Shibboleth 

as a source of certain L1 classification from L2 speakers, it is comparable in correct 

comparison rate to similar software, with the larger pool of L1s causing a greater positive 

deviation from chance.  In addition, the amount of data per speaker in the training group 

is less than the amount of data required by related tools.   

The experiment most closely related work to the Shibboleth work presented here 

was that done by Angkititrakul and Hansen (2006).  In this work, a hidden Markov model 

classification system using phone-based acoustic models aligned to text classified 



  91 

unknown speakers into one of four L1s at an accuracy level of 47% at the word level, 

using 107 minutes of training data from a pool of 64 speakers.  Similar to Shibboleth, this 

system performed best when identifying the accent of native American English speakers 

speaking English.  The ability of accent classification systems to correctly classify 

American English (or whatever the L2 of the experiment happens to be) stems from the 

lack of rules arising in the interlanguage for native speakers.  Adult native American 

English speakers speaking American English do not have an interlanguage with rules that 

reflects interference or developmental processes from another language, so there are 

many fewer rules describing the accent of a native speaker, and these rules are much 

more uniform than those of L2 speakers. 

Another high accuracy system was a 23-way automatic accent classification task 

conducted by Choueiter, Zweig, and Nguyen (2008), who obtained a 32% accuracy rate 

using a combination of heteroscedastic linear discriminant analysis and maximum mutual 

information.  However, not only did this task use many times more data than Shibboleth 

(a corpus consisting of 27.25 hours of data), purely acoustic data was used.  No phonetic 

rules were found using this method. 

While Shibboleth proved successful in the language classification experiment for 

the scope of this experiment, it did not succeed in language family classification.  This 

could stem from several issues.  It is possible that the underlying hypothesis that a 

language family can be determined for a speaker of unknown origin, even if the system 

has no data on the specific L1, is simply not true.  Data on human experiments or other 

systems that perform this particular task is not readily available.  Another option is that 

specific language families can be identified from related languages, but that this is not an 
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ability that applies to all language families or branches.  The last option is that this 

undertaking is possible, but is currently not being completed successfully by Shibboleth.   

 Assuming this latter option is true, the difficulty with this type of classification 

can have many causes.  First among them is lack of data.  It is possible that to locate 

interlanguage phonological characteristics for an entire language family comprising 

dozens of languages requires data from many more languages within the family, and 

possibly more data per language, than I used to train Shibboleth for the language family 

classification experiment.  Another option is that language family rule-sets have more 

non-unique rules than individual language rule-sets.  This would require a technique 

giving greater separation between the classes to be used, such as the technique discussed 

in section 3.2.4.1, deleting the initial set of support vectors and widening the margin from 

the hyperplanes.  A third option is that more features, such as length, stress, or frequency 

needs to be used in computing the feature vectors.  To accomplish this, Shibboleth would 

require more detailed transcriptions or data directly from acoustic input. 

 A hybrid solution would be to use Shibboleth to classify languages into language 

families when there are already rules from the L1 in the language family rule-set.  It is 

possible that with rules from other languages in the language family, fewer speakers for a 

specific L1 would need to be used.  This solution would draw upon Shibboleth’s existing 

capability at classifying speakers into their native language, as well as adding flexibility 

in the number of speakers for the L1 required in the training rule-set. 

 A challenge that arose in both the language classification experiment and the 

language family classification experiment was the preponderance of rules common to 

multiple classes.  When a large number of rules were common to multiple classes, 
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Shibboleth had difficulty classifying these and other similar phonetic rules into a specific 

class.  Since a rule can belong to the interlanguages of native speakers of multiple L1s 

but can only be classified into one L1 by Shibboleth, it is likely that there is no way to 

create accurate hyperplanes between these rules.  Not only would this lead to common 

misclassification of these rules, it would lead to misclassification of similar rules.  This 

problem is obvious in the language family pairwise experiment, when every language 

family had precision scores influenced by several incorrect positive classifications from 

other language families, as well as in the three-way language family experiment, where 

the precision scores fell even further.  This indicates that when a three-way separation is 

forced, the clustering of the common rules largely within one class hurts the overall 

precision.   

For the language classification experiment, the precision scores were, on average, 

higher, but there were still issues with classification due to overlapping rules.  For 

example, the precision of the classification of Russian speakers was average for this 

experiment and the recall value was .75, or 15 out of 20 of the pairwise tests, but the 

accuracy was only 25%.  Appendix E shows that in the individual Russian pairwise tests, 

it was an overriding classification from Italian that kept 50% of the Russian speakers 

from being correctly classified.  In fact, of the speakers that were classified incorrectly as 

speakers of another L1 (rather than being classified as inconclusive), four out of five 

were incorrectly classified as Italian.  This is a strong indication that the Italian rule-set 

shares many rules with other rule-sets, and that many of these common rules have been 

classified by Shibboleth as Italian.  It is likely that if the rules creating the margin of the 

hyperplane were removed for this experiment, each language would be left with more 
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unique rules.  While this does not necessarily guarantee improved accuracy in 

classification of unknown speakers, it is likely that the misclassification of speakers 

across languages as having an L1 of Italian would go down. 

6.3  Contribution and Future Work 

 Shibboleth proved successful in its main aim of identifying speakers of unknown 

L1s at a rate better than chance.  This capability can be refined for higher accuracy and 

expanded across speakers of L1s not yet tested.  In addition, Shibboleth successfully 

creates rule-sets of possible phonetic rules in the interlanguage of speakers from any L1 

speaking English.  This rule-set can be used to explore the interlanguages of L1 speakers 

by observing the frequency of expected interference and revealing unexpected high 

frequency rules.  (Unexpected low frequency rules are likely individual speakers’ 

disfluencies and unlikely to lead to major insights.)  High frequency rules that do not 

stem from transfer can be examined for understanding common developmental processes 

in learning a specific L2 from an L1.   

 Future expansions to Shibboleth fall into one of three categories:  improving 

accuracy, improving usability, and improving the subject pool.  As discussed, removing 

the rules creating the support vectors from the margins should create greater separation 

between the classes.  This rule deletion may have to be iterated multiple times, if there 

are many rules clustered very close to the margin.  This should lead to an improvement in 

accuracy in language classification and perhaps in language family classification. 

 Since Shibboleth currently operates over transcripts of speaker utterances, the 

next major improvement will be the ability to operate over a transcript automatically 

generated from acoustic data.  This will speed data collection enormously.  Automatically 
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generated transcripts will not be as accurate, but many of the smaller inaccuracies should 

be balanced out by the larger amount of speaker data this will provide. 

 This leads to the third improvement, collection of utterances from more NNS of 

English.  These speakers will come from both the testable L1s in the Speech Accent 

Archive (Weinberger, 2013) as well as L1s and dialects that are currently not testable in 

the Archive due to lack of data.  In addition, more informal speech containing different 

phonetic combinations will be obtained. 

 With these improvements, I expect to obtain greater accent classification accuracy 

for speakers of unknown languages and language families as well as dialect classification 

capabilities. 
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APPENDIX A  

KEY TERMS 
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age of onset – the age at which a non-native speaker begins instruction in a second 

language 

 

cost – a parameter in support vector machines that controls the trade-off between 

allowing training errors and forcing rigid margins (Sherrod, 2013). 

 

dot product equation – an algebraic equation that takes two equal-length sequences of 

numbers and returns a single number. 

 

feature vector – see vector 

 

gamma – a parameter in support vector machines that defines how far the influence of a 

single training example reaches, with lower values being farther away (Sherrod, 

2013). 

 

gigabyte (GB) - 1024
3
 bytes, a unit of digital information storage.

  

 

hyperplane – a subspace of one dimension less than its ambient space. 

 

interference – see negative transfer 

 

kernel function – functions that provide a way to map data as though it were projected 

into a higher dimensional space, by operating on it in its original space (Boser, 

Guyon, & Vapnik, 1992).  

 

k-way comparison – the process of comparing entities in groups of size   to judge which 

of each entity is preferred (David, 1988). 

 

first language – see native language  

 

second language – see non-native language 

 

marked – a phenomenon A in some language is more marked relative to some other 

phenomenon B if, cross-linguistically, the presence of A in a language necessarily 

implies the presence of B, but the presence of B does not necessarily imply the 

presence of A (Eckman, 1981). 

 

method – a collection of programming statements that are grouped together to perform 

an operation (“Java – Methods,” 2013). 

 

monocentric language – a language with one standard dialect or form (Clyne, 1992). 

 

n-dimensional – a space or object that requires coordinates in at least   dimensions to 

specify any point within it (i.e. a line has a dimension of one, because it requires 

only one coordinate to specify a point on it). 
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native language (L1) – the language a person has learned from birth (Bloomfield, 1984). 

  

native speaker (NS) – a person who was born and immersed in a language during youth, 

in a family where the adults shared a similar language experience as the child 

(Love & Ansaldo, 2010). 

 

negative transfer – the imposition of the native language on the structure of the target 

language, impeding acquisition (Macken & Ferguson, 1981). 

 

non-native language (L2) –  any language learned after a native language (Richards & 

Schmidt, 2002). 

 

non-native speaker (NNS) – an individual who is not a native speaker of a language. 

 

pairwise comparison – any process of comparing entities in pairs to judge which of each 

entity is preferred (David, 1988). 

 

pluricentric language – a language with several standard dialects (Clyne, 1992). 

 

positive transfer – the imposition of the native language on the structure of the target 

language, enhancing learning (Macken & Ferguson, 1981). 

 

random-access memory (RAM) – a form of computer data storage. 

 

support vector – a linear combination of      feature vectors that are associated with  

      Vectors on the margin of a hyperplane (Theodoridis & Koutroumbas, 

2009). 

 

support vector machine (SVM) – supervised learning models with associated learning 

algorithms that analyze data and recognize patterns, used for classification and 

regression analysis (Cortes & Vapnik, 1995). 

 

vector – a representation of the measurements used for classification uniquely identifying 

a single pattern or object (Theodoridis & Koutroumbas, 2009). 
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APPENDIX B  

FEATURE SET COMBINATIONS CREATED BY [ɛ]→[ɪ] 
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Input 1 Input 2 Input 3  Output 1 Output 2 Output 3 

V     → semi-close near-front unrounded 

V     → null near-front unrounded 

V     → semi-close null unrounded 

V     → semi-close near-front null 

V     → semi-close null null 

V     → null near-front null 

V     → null null unrounded 

null front unrounded → semi-close near-front unrounded 

null front unrounded → null near-front unrounded 

null front unrounded → semi-close null unrounded 

null front unrounded → semi-close near-front null 

null front unrounded → semi-close null null 

null front unrounded → null near-front null 

null front unrounded → null null unrounded 

null front unrounded → V     

null front null → semi-close near-front unrounded 

null front null → null near-front unrounded 

null front null → semi-close null unrounded 

null front null → semi-close near-front null 

null front null → semi-close null null 

null front null → null near-front null 

null front null → null null unrounded 

null front null → V     

null null unrounded → semi-close near-front unrounded 

null null unrounded → null near-front unrounded 

null null unrounded → semi-close null unrounded 

null null unrounded → semi-close near-front null 

null null unrounded → semi-close null null 

null null unrounded → null near-front null 

null null unrounded → V     

open-mid null unrounded → semi-close near-front unrounded 

open-mid null unrounded → null near-front unrounded 

open-mid null unrounded → semi-close null unrounded 

open-mid null unrounded → semi-close near-front null 

open-mid null unrounded → semi-close null null 

open-mid null unrounded → null near-front null 

open-mid null unrounded → null null unrounded 

open-mid null unrounded → V     

open-mid null null → semi-close near-front unrounded 

open-mid null null → null near-front unrounded 

open-mid null null → semi-close null unrounded 

open-mid null null → semi-close near-front null 

open-mid null null → semi-close null null 

open-mid null null → null near-front null 

open-mid null null → null null unrounded 

open-mid null null → V     

open-mid front unrounded → semi-close near-front unrounded 

open-mid front unrounded → null near-front unrounded 

open-mid front unrounded → semi-close null unrounded 

open-mid front unrounded → semi-close near-front null 

open-mid front unrounded → semi-close null null 

open-mid front unrounded → null near-front null 

open-mid front unrounded → null null unrounded 

open-mid front unrounded → V     
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open-mid front null → semi-close near-front unrounded 

open-mid front null → null near-front unrounded 

open-mid front null → semi-close null unrounded 

open-mid front null → semi-close near-front null 

open-mid front null → semi-close null null 

open-mid front null → null near-front null 

open-mid front null → null null unrounded 

open-mid front null → V     
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APPENDIX C  

RULE-SET INCLUDING FREQUENCY INFORMATION 

[CONSULT ATTACHED FILES] 
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APPENDIX D  

SUPPORT VECTOR MACHINE EQUATIONS 
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(1) Maximum-margin hyperplane 
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Where   ,    , 2,…., N are points on the decision hyperplane,   is a constant,   

denotes transposition, λ is a Lagrange multiplier, and   is the mapping between the 

original input space and a higher dimensional space that is defined in the lower 

dimensional space.  

 

(2) Nonlinear support vector machine classifier 
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Where ωi,    , 2,….,   are classes;   ,    , 2,….,   are points on the decision 

hyperplane,    is the number of support vectors, λ is a Lagrange multiplier,  (    ) is 

any symmetric, continuous function, and   is the mapping between the original input 

space and a higher dimensional space that is defined in the lower dimensional space. 

 

(3) Radial basis function 
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Where   ,    , 2,….,   are points on the decision hyperplane and γ is a free parameter 

that can be altered for more accurate classification. 
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APPENDIX E  

TEST RESULTS FOR LANGUAGE CLASSIFICATION 

[CONSULT ATTACHED FILES] 
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APPENDIX F  

TEST RESULTS FOR LANGUAGE FAMILY CLASSIFICATION 

[CONSULT ATTACHED FILES]



 

 


