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ABSTRACT  

   

Today, more and more substations are created and reconstructed to satisfy the 

growing electricity demands for both industry and residence. It is always a big concern 

that the designed substation must guarantee the safety of persons who are in the area of 

the substation. As a result, the safety metrics (touch voltage, step voltage and grounding 

resistance), which should be considered at worst case, are supposed to be under the 

allowable values.  

To improve the accuracy of calculating safety metrics, at first, it is necessary to 

have a relatively accurate soil model instead of uniform soil model. Hence, the two-layer 

soil model is employed in this thesis. The new approximate finite equations with soil 

parameters (upper-layer resistivity, lower-layer resistivity and upper-layer thickness) are 

used, which are developed based on traditional infinite expression. The weighted- 

least-squares regression with new bad data detection method (adaptive weighted 

function) is applied to fit the measurement data from the Wenner-method. At the end, a 

developed error analysis method is used to obtain the error (variance) of each parameter.  

Once the soil parameters are obtained, it is possible to use a developed complex 

images method to calculate the mutual (self) resistance, which is the induced voltage of a 

conductor/rod by unit current form another conductor/rod. The basis of the calculation is 

Green’s function between two point current sources, thus, it can be expanded to either the 
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functions between point and line current sources, or the functions between line and line 

current sources. 

Finally, the grounding system optimization is implemented with developed 

three-step optimization strategy using MATLAB solvers. The first step is using 

“fmincon” solver to optimize the cost function with differentiable constraint equations 

from IEEE standard. The result of the first step is set as the initial values to the second 

step, which is using “patternsearch” solver, thus, the non-differentiable and more accurate 

constraint calculation can be employed. The final step is a backup step using “ga” solver, 

which is more robust but lager time cost.        
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1 INTRODUCTION 

1.1 Overview  

According to the IEEE Guide for Safety in AC Substation Grounding, the two main 

design goals to be achieved by any substation ground system under both normal and fault 

conditions are:  

1. To provide means to dissipate electric currents into the earth without exceeding any 

operating and equipment limits  

2. To assure that a person in the vicinity of grounded facilities is not exposed to the danger 

of critical electric shock [1].  

In order to ensure the safety and well-being of personnel who may come close to 

conductive media, it is significant to do proper and practical analysis and calculations of 

substation grounding systems parameters. In other words, the primary purpose of creating 

ground systems is to avoid the injury of human beings during unbalanced fault conditions. 

However, the design metrics used in assessing the adequacy of grounding systems remain 

unchanged, which include touch voltage, step voltage and grounding resistance to the 

remote earth. Once these three parameters satisfy the safety requirements, the grounding 

system is considered adequate.  
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There are two methods to compute the grounding systems safety metrics, one is 

approximated calculation using experienced IEEE standard equations [1] and the other is 

accurate calculation using numerical computation.  

This kind of computations of safety metrics are based on some substation physical 

parameters, which are 1) the shape and size of the substation, 2) the soil model and 

characteristics, 3) the magnitude of the fault current. The author will focus on how to 

model soil structure and calculate soil parameters, because the other two parameters are 

easier obtained. 

Finally, it is necessary to consider the economical savings when designing and 

constructing a grounding system. Once the grounding systems safety metrics are lower 

than the safety allowable values, the cost of labor and components of the grounding system 

would better be reduced to the lower level. Therefore, an optimization problem is proposed 

and solved using the combination of a traditional method (Newton method) and heuristic 

methods (pattern search and genetic algorithms). 

1.2 Literature Review   

A two-layer soil model is accepted in the industry as an adequate representation of 

nonhomogeneous soil for grounding system design. Parameters of two-layer soil models 

are obtained from soil resistivity measurements at the proposed site of the grounding 

system. The measurements are most commonly made using the Wenner four-probe 
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method. Evaluation of two-layer soil model from the measured data is done either by 

graphical methods or by the newer computer based methods. Graphical methods require 

interpolation and judgment, especially when the actual soil is more complex than a real 

two-layer pattern. Computer based methods, however, give an optimal two-layer soil fit 

when the actual soil structure is complex. 

A. P. Meliopoulos [2] presented a method and a computer program for interpreting 

soil measurement data. The method employed a statistical estimation of soil parameters 

from four pin or three pin measurements. The analysis provided (1) the best estimate of soil 

parameters, (2) the error of the parameters versus confidence level, (3) a pictorial view of 

how well the estimated soil model fits the measurements, and (4) the specific 

measurements, which are not consistent (bad measurements). In it, the method of analyzing 

the error of the parameters versus confidence level is new and helpful for allowing the 

users to judge if the measurements and results can be used or more measurements are 

needed to obtain an acceptable soil model. 

Hans R. Seedher [3] developed finite-series expressions for the Wenner apparent 

resistivity for two-layer soil model instead of infinite series expression, which most 

researchers used. This method is more convenient to implement the least squares 

algorithm. The author is using this method to calculate soil parameters. However, the 

weakness of this method is it assumes the probes are point sources, while those used for 
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making the measurements have length and diameter. 

The grounding systems safety metrics, which contain step voltage, touch voltage and 

grounding resistance, are the most important criterion to check if the grounding system is 

adequate or not. Hence, the researchers have focused on how to get these metrics for more 

than half century. In the beginning, the method using approximate expressions were 

adopted by the industry and IEEE standard. However, this traditional method cannot fulfill 

the requirement of accuracy. The numerical computing method has been used since the 

1970s and related computer programs have been created.  

F. Dawalibi [4], [5] first proposed segmenting grounding conductors and rods in 

ground grid numerical simulations and then using the principle of superposition. In 

addition, two ways to compute potentials contributed by each segment were proposed. One 

is taking a segment as a point source leading to a series expression and another is taking a 

segment as a line source leading to an integral expressions. Dawalibi also was the first to 

show that multi-step analysis of interconnected grounding electrodes could be used to 

handle unbalanced current distribution. 

Robert J. Heppe [6] did some promising work on computing grounding resistances 

while considering the effects of variation of leakage current density caused by the 

proximity of parallel conductors, cross conductors, angled conductors, and end effects. In 
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addition, this method can also be used to calculate the surface voltages near grounding 

conductors, which means the touch and step voltages can be obtained.  

Y. L. Chow [7] proposed a new concept of complex images, which could be 

implemented to model grounding electrodes in layered soils. The image locations and 

amplitudes are determined by the Prony Method [8]. In addition, the author used an 

example, which proved that one real image, and four complex images are equivalent to one 

thousand conventional images in a four-layer soil model. 

Once the numerical calculation method is applied to calculate the safety metrics, it is 

not possible to use traditional optimization method, i.e. Newton method, because the 

numerical calculation procedure cannot form one or several continuous or differentiable 

equations. However, it is possible to use direct search method, i.e. pattern search method 

and heuristic search method, i.e. genetic algorithms.  

John Holland [9] introduced Genetic algorithms for the formal examination of the 

mechanisms of natural evolution, such as inheritance, mutation, selection, and crossover. 

Joakim Agnarsson [10] compared several optimization solvers from MATLAB 

Optimization Toolbox [11] and Global Optimization Toolbox [12], which including 

pattern search method and genetic algorithms. The author gave us not only the theory of 

these methods, but also the selection strategy among the optimization solvers developed 

in MATLAB. 

http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
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Maurício Caldora Costa [13] combined the response surface technique in the 

application of genetic algorithms in order to improve the speed of implementing genetic 

algorithms. The object is to minimize the number of conductors of grounding grids, 

guaranteeing the safety levels defined by the maximum touch potential. The author only 

considered the influence of the touch potential and involved in the unequally spaced 

grounding grids.  

1.3 Study Objective 

The aim of the thesis is to design grounding systems such that, in case of high fault 

currents, the acceptable levels of step and touch potentials are hedged below their 

maximum permissible levels and to investigate techniques, which are capable of reducing 

grounding resistances to the acceptable value (0.5 Ω).  

Before designing grounding systems, the two-layer soil model parameters (upper 

layer soil resistivity, lower layer soil resistivity and upper layer thickness) must be 

calculated. This will be accomplished using a least squares algorithm to do a nonlinear fit 

of the soil model to the measurement and then an error analysis will be conducted to get the 

error bound when confidence level is eighty percent.  

Finally, the design has to be made in a cost effective way. In other words, with the 

three grounding systems metrics (step voltage, touch voltage and grounding resistance) 



 7 

held under the permissible levels, it is important to minimize the cost of material and the 

labor. Hence, this is an optimization problem.  

All of these methods will be merged into one computer application. 

1.4 Thesis Organization  

In addition to the introduction and conclusion, there are three principal chapters 

covering, respectively, the analysis of the soil model, numerical calculations of grounding 

systems metrics and optimization methods.  

Chapter 2 presents how to create a two-layer soil model and compute soil 

parameters. 

Chapter 3 presents the procedure of calculating grounding systems metrics (step 

voltage, touch voltage and grounding resistance). 

Chapter 4 presents the optimization methods and the implementation of the computer 

program developed by the author in designing a specific grounding system.  

In Chapter 5, conclusions and the guidelines to conduct future research are provided. 
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2 SOIL RESISTIVITY MEASUREMENTS AND ANALYSIS 

This section presents the methodology by which the soil measurements are 

interpreted to define the parameters of a mathematical soil model. The soil model is 

illustrated in Fig. 2.1. The parameters of the model are: 

ρ1: upper layer soil resistivity (Ω m); 

ρ2: lower layer soil resistivity (Ω m); 

h: upper layer soil thickness (m). 

 

Upper-layer Soil
Resistivity: rho1

Lower-layer Soil
Resistivity: rho2

h

 

Fig. 2.1 Two-layer soil model 

2.1 Soil Resistivity Measurements 

Before the design of the grounding system begins, soil resistivity measurements need 

to be taken at the substation site [2]. The data of soil resistivity is the prerequisite of 

grounding systems metric calculation. Substations with a uniform soil model throughout 
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the entire area are rarely found. Usually, the results of measurements are the apparent soil 

resistivity (ρa). If it is available to know the soil geological structure, this is helpful to 

design the grounding systems. Generally, there are three structures for the soil, which are 

uniform soil, horizontal layered soil and vertical layered soil. The last two structures are 

shown as Fig. 2.2.  

Upper layer

Soil surface

Lower layer

Left layer

Soil surface

Right layer

 

Fig. 2.2 Two different structures of soil model 

Practically, two different measurement ways are used to obtain soil resistivity 

measurements: (1) three pin arrangement (driven rod method), and (2) four pin 

arrangement (Wenner and Schlumberger-Palmer method). 

(1) Three Pin Measurements (Driven Rod Method) 

Three pin measurements are obtained with the arrangement shown in Fig. 2.3. The 

voltage and current probes (ground electrodes) are driven into earth to a certain depth. The 

rod is driven to different depths. A measurement of the ratio V/A (resistance) is obtained for 

a given length of the rod in contact with the soil. Thus, a number of resistance values and 

rod lengths are generated.  
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Fig. 2.3 Arrangement for driven rod measurements 

The formula used to compute apparent resistivity is: 

 
1

8
ln

2





d

l

lR
a


  

 (2.1) 

where,  

V = voltage measurement (volts) from the voltmeter shown in Fig. 2.3; 

A = current measurement (amps) from the ampmeter shown in Fig. 2.3; 

R = V/A (Ω); 

l = rod driven depth (m);  

d = rod diameter (m). 

(2) Four Pin Measurements 

Four pin measurements are obtained with the arrangement shown in Fig. 2.4. Four 

identical ground probes are driven into the soil. The probes are located in a straight line and 

placed at a series of prescribed distance from each other. For the Wenner method, the 

distances between neighbor probes are equal. Electric current (A) is injected at the two 
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outer electrodes and the voltage (V) between the other two is measured. A resistance value 

is obtained with the ratio R=V/A. The separation (a) is arbitrarily but, for our work, was 

taken as prescribed by SRP. For every prescribed separation, a resistance value is 

computed. 

 

Fig. 2.4 Arrangement for Wenner measurements 

The formula used to compute apparent resistivity is: 

 
2222 4

2
1

4

ba

a

ba

a

aR
a










  
(2.2) 

where,  

V = voltage measurement (volts) from the voltmeter shown in Fig. 2.4; 

A = current measurement (amps) from the ampmeter shown in Fig. 2.4; 

R = V/A (Ω); 

a = separation (m);  

b = rod length (m). 

Commonly, the probes, which are used for the Wenner method, are small enough that 
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their lengths and diameters can be neglected. Therefore, b is assumed zero and the formula 

can be simplified as:  

 aRa  2  (2.3) 

2.2 Calculation of Apparent Soil Resistivity 

The potential distribution of point source in a horizontally layered soil model is 

developed using Green’s functions in Chapter 3. In this chapter, the author omits the 

derivation of formula (2.3). Therefore, the potential at a point P located at a horizontal 

distance a away from a point current source S, when both P and S lie on the surface of a two 

layer earth is [2],  

 















 



1
2

1

)/2(1
21

2 n

n

p

anh

k

a

I
V




 (2.4) 

where, 

ρ1 = upper layer resistivity (Ω m); 

ρ2 = lower layer resistivity (Ω m); 

h = upper layer thickness (m); 

k = reflection factor (ρ2 -ρ1)/ (ρ2 +ρ1); 

I = current flowing from the point source S (A). 

For a given soil model, ρ1, h and k are fixed. Hence, equation can be written as 

 )(aIFVp   (2.5) 
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where, 










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
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2
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n
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


. 

Based on Fig. 2.4, there are two current sources, which have the same magnitudes 

and different directions. When superposition is used, the potential difference between the 

inner two voltage probes is 

 
 )2()(2)2(2)(2

)()()2()()2()(

aFaFIaIFaIF

aFIaFIaIFaIFV
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 (2.6) 

Therefore, the formula of apparent resistivity is given as  
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As found before, the equation of apparent resistivity is an infinite series. With the 

help of [3], this infinite expression can be accurately approximated by a finite-series 

expression. 

When ρ2>ρ1, the finite-series expression for ρa is: 
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where, 

  )2/()1ln(1 hkkVb   ; 

3))/(ln( 121

x
xc  ; 
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)/ln(2 122  x ; 

x1=16.4133; 

x2=0.136074; 

x3=0.393468. 

When ρ2<ρ1, the finite expression for ρa is: 

  aabaab

a ee 2)2()(

212 2)(     (2.9) 

where, 

  hexbbb
hax

mm /)(
/

1
2

 ; 

5)/( 1243

x

m xxb  . 

x4=0.882645; 

x5=0.673191. 

Because the measured data is displayed as resistance instead of apparent resistivity 

based on SRP rules, the computed apparent resistance R is calculated by rearranging (2.3) 

 aR a  2/  (2.10) 

2.3 Estimation of Two Layer Soil Parameters 

Based on the measured data and the finite expressions, obtaining the two-layer soil 

model parameters can be seen as a nonlinear regression problem. In other words, the desire 

is to find the estimated parameters (ρ1, ρ2, h) of the above expressions which best fit the 

measured data points. In theory, either a least squares regression method or least absolute 
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deviation method can be used. In this work, the least squares regression method is used; 

therefore, the objective function to be minimized in the search process is formulated as 

  
2

1

2121 ),,(),,( 



n

i

miii hRRwhf   (2.11) 

where, 

n = number of measurement; 

Ri = measured apparent resistance for ith measurement (Ω); 

Rmi = computed apparent resistance for ith measurement using equations (2.8), (2.9) and 

(2.10) (Ω); 

wi = 1/(αRi). 

The weights wi are selected to be inversely proportional to the measurement errors 

for Ri which is assumed to be proportional to the value Ri. The variable α is the 

proportionality constant. It is an unconstrained nonlinear minimization problem. The 

classical state-estimation algorithm, based on estimation theory as suggested in [14] has 

been found to be quite convenient for the present development. The details of the 

mathematical basis for the algorithm are neglected, only a simple functional description 

is outlined here. It has been observed in [14] that rate of convergence increases 

substantially if measured and computed quantities in (2.11) are replaced by their 

logarithms. It is further observed that the parameter values should not change by more 
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than 50%, otherwise convergence can become problematic. These two observations have 

been applied in this thesis leading to the following iteration scheme. 
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k = iteration index. 
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i = number of measurements; 

j = number of soil parameters. 

In above definitions, p is the parameter vector. The initial values of ρ1 and ρ2 are 

determined by the apparent resistivities calculated using (2.3) when the two probes have 

their minimum and maximum spacings respectively. Besides, the initial value of h is 

arbitrarily set equal to 1 [3]. Hk is a (n x 3) matrix, W is a (n x n) diagonal matrix, η is the 

vector of errors, and k presents the iteration count. The algorithm (and the estimate) is 

independent of the constant α, which is useful in implementing error analysis. 

Based on [2], it is necessary to include an acceleration factor, a, into the original 
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equation (2.12) in order to insure the parameter values do not change by more than 50% 

in each iteration. Thus, the factor a should be tuned experimentally to obtain 

convergence. The final equation used for iteration is changed as:  

 WHWHHaPP T

kK

T

k

kk 11 )(    (2.13) 

2.4 Rejection of Bad Data 

The accuracy of soil resistivity measurements is always affected by: (1) human 

mistakes, (2) instrument inaccuracies and (3) the longitudinal variation in soil structure. 

Therefore, it is possible that some measured data with the same measurement conditions 

are more inconsistent that the others with the rest of the measurements. There measured 

data are referred to as “bad” data. 

Some especially “bad” data are easy to detect by inspection because of obvious 

differences when compared with other data. However, many bad data points eliminate 

them by hand. Fortunately, statistical techniques for “bad” data identification and 

rejection have been developed. The methodology of adaptive weight functions is used 

here. 

This technique is based on the computation of the expected standard deviation of a 

specific measurement. Specifically, the general model described in Section 2.3 computes 

for a given measurement Ri the following: (1) the expected value of the measurement  

and (2) the expected standard deviation of the measurement σRi. The value of σRi is 
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determined using following equation: 
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    (2.14) 

where m is the degree of freedom and it equals to n-3. Statistically, the measurement Ri is 

acceptable only when the difference |Ri - 


iR | is not greater than 3σRi. This is based on the 

assumption of a Gaussian distribution. Thus, if |Ri - 


iR | > 3σRi then the measurement Ri 

is probably a bad datum. In this case, the weight, w, in the optimization problem is 

assigned a small value. A small value of the weight, w, effectively minimizes the impact 

of ith measurement in the computation of the parameters. 

2.5 Estimation of Soil Parameter Errors 

The previous defined objective function is: 

 



n

i

iiwJ
1

22  (2.15) 

The difference, η, between the measured value and the computed value can be 

considered a random variable assuming that η is Gaussian distributed with zero mean and 

standard deviation proportional to the measurement value:  

 ii R   (2.16) 

where, 

α = scalar factor which is smaller than one. 
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Based on equation (2.10), the weights wi are selected to be the inverse of the 

standard deviation of the random error ηi. 

 
i

iw


1
  (2.17) 

Since the objective function is the sum of the squares of the normalized Gaussian 

random variables ηi, the objective function J is also a random variable, which is 

chi-square distributed. In addition, there are three parameters and n measurements (n 

random variables) in the model. Hence the variable J is chi-square distributed with m=n-3 

degrees of freedom.  

When parameters are selected as their best estimates (


1




2



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objective value J
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 (2.18) 

In other words, any other values of ρ1, ρ2, h will yield a larger value of J. However, 

this example is too perfect to be done in reality. Therefore, it is necessary to define a 

probability P1 when J is bigger than J*. 

Based on equation (2.16), the probability P1 depends on σi. Because σi is 

determined by α, the probability P1 is a function of α. If α is increased, the value of J
*
 is 

decreased. As a result, the probability P1 will increase. As the selected per unit error α 

increases, the probability P1 will also increase. Now the error of the measurements can be 
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transformed into error of the estimates. From the theory of least square estimation [2], the 

covariance matrix of the estimates is: 

 
0

212 )()( IWHHPCOV T   


 (2.19) 

Moreover, the standard deviation of each estimated parameter is the square root of 

the corresponding diagonal element of the covariance matrix. 

 )1,1(01
I    (2.20) 

 )2,2(02
I    (2.21) 

 )3,3(0Ih    (2.22) 

According to the equations (2.18), (2.19) and (2.20), the standard deviations of 

estimated parameters are linearly related to the proportionality factor α. Therefore, the 

probability P1 is also a function of any of the standard deviations
1

 , 
2

  and h . 

Thus, the probability P1 versus any of the standard deviations
1

 , 
2

  and h  can be 

plotted from previous equations. For example, the three curves shown in Fig. 2.5 reflect 

the three parameters’ error (variance) tendencies with respect to the confidence levels. 

Observe that the error of ρ1 is the smallest, while the error of h is the largest.  
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Fig. 2.5 Error of estimate versus confidence level 

As found in Fig. 2.5, there is a point cursor, whose coordinate is (0.80, 0.21). It 

means the error (variance) of h is 21% when the confidence level is 80%. In other words, 

the confidence interval of h at 80% confidence level is )21.021.0(


 hhhhh , 

where h is the true value and 


h  is the estimated value. However, for the rule of Salt 

River Project, the errors of all three parameters at 80% confidence level should be lower 

than 25%. Hence, the estimated parameters in this example are acceptable. If not, another 

set of Wenner measurements, must be taken. 

2.6 Description of Computer Program Modeling 

The methodology of calculating soil parameters and analyzing quality of the estimation is 

implemented using a computer program, which was created by the author. This program 

is developed and operated in MATLAB and uses a MATLAB GUI. The flowchart of this 

program is shown in 
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Fig. 2.6 Flowchart of the program analyzing soil model  

The input data are the resistance measurements (Ri) and the corresponding 

separation distances (a). In addition, the output results are the best estimates of 

parameters, the parameter errors at 80% confidence level and the plots of model fit versus 

measurements.  
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All the input, calculations and output procedures were programmed using 

MATLAB. The graphical user interface (GUI) of this program was similarly developed 

using MATLAB. The soil model editor window is shown in Fig. 2.7.  

 
Fig. 2.7 Soil model editor window 

Before entering the data into the program, an excel file with a certain format is 

needed. An example is shown in Fig. 2.8.  

 

Fig. 2.8 Soil model excel-formatted input example  
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After clicking the button of “Select Data File”, the user can see the window like 

Fig. 2.9 shown below. The excel files must be stored with the program in the same folder. 

Therefore, the user can select a desired file from this specific folder. 

 

Fig. 2.9 Select file 

Once an excel data is selected, the data is read in and the original window is 

updated as shown in Fig. 2.10. 

 

Fig. 2.10 Read data 
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There are two methods to reduce the affects of bad data. As indicated in steps 2a 

and 2b in Fig. 2.10, the first method is deleting bad data artificially while the other one is 

reducing weights of bad data automatically. If the bad data or the outliers are obviously 

different from the other normal measurements, the user will have a choice to delete the 

bad data by hand. Unfortunately, most bad data are cannot be identified through a cursory 

inspection. Consequently, the bad data will be automatically detected and its affect in the 

regression minimized by multiplying it by a small weight, which was described in 

Section 2.5. 

After clicking the button of “Build Two-layer Soil Model”, this command opens a 

new interface, which shows all the results and plots as shown in Fig. 2.11. 

 

Fig. 2.11 Results and figures  

All the calculated results are shown in Fig. 2.12, including:  

 The upper layer resistivity (Ω m);  
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 The lower layer resistivity (Ω m); 

 The upper layer thickness (ft.); 

 The error of the upper layer resistivity at 80% confidence level (p.u.); 

 The error of the lower layer resistivity at 80% confidence level (p.u.); 

 The error of the upper thickness at 80% confidence level (p.u.). 

Where the error (in %) is the absolute difference between the author’s result and 

WINIGS’s result divided by the WINIGS’s result. 

 
Fig. 2.12 Soil model results  

Depending on the calculated results, the program will warn the user if the results 

violate the design requirements. For example, a warning is shown as Fig. 2.13.  

 
Fig. 2.13 Warning example  

There are two figures shown on the bottom of the output window. An example for 

the plot of apparent resistance (ohms) versus separation (ft.) is shown as Fig. 2.14 . 

Another plot (Fig. 2.15 ) shows the logarithmic value of apparent resistance (ohms) 

versus the logarithmic value of separation (ft.). For most people it is easier to visually 

identify any bad data measurements from the log-log plot than from the linear-linear plot.   
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In the figures shown, all the discrete points represent the measured values and blue 

lines are drawn by using nonlinear least square theory described in previous sections.  

 

Fig. 2.14 Linear-linear plot for apparent resistance vs. separation  

 
Fig. 2.15 Log-log plot for apparent resistance vs. separation 

2.7 Case Study and Comparison with WINIGS Results 

WINIGS is an industry-wide accepted software application used to perform 

analysis and design of grounding systems. One aspect of the software is to build soil 

models from measured Wenner-method data. In this chapter, a comparison is made 
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between the results obtained by WINIGS and by our application. 

As shown below, Fig. 2.16 is the input window and Fig. 2.17 is the corresponding 

output window of WINIGS.  

 
Fig. 2.16 Input window of Wenner method field data 

 

Fig. 2.17 Output window of Wenner method soil parameters 
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The author used thirteen data cases received from SRP (Salt River Project) and 

compared the results of our applications with WINIGS. These results are shown below. 

Table 2.1The Comparison of Soil Parameters 

 Tenney Cell Tower AFGS Burton New Hunt 

 1 2 1 2 1 2 1 2 1 2 

ρ1 39.1 37.4 67.9 62.2 61.4 63.3 19.8 19.4 45.6 44.9 

ρ2 8.9 7.1 37.7 35.2 20.3 20.7 54.2 54.8 21.2 20.5 

h 80.3 89.7 11.1 17 10.3 9.1 41.1 41.8 44.1 45.4 

 Cheatham McPherson Shipley McMullin Clark 

 1 2 1 2 1 2 1 2 1 2 

ρ1 28 25.6 61.5 60.3 86.2 80.5 291.8 283.5 7.5 7.2 

ρ2 11.4 11.2 39.8 38 31.7 30.7 84.5 84.7 21.9 19.8 

h 43.9 45.8 45.5 51.8 14.7 16.1 15.2 13.8 5.8 5.2 

 Sinnott Dinosaur Marley 

 1 2 1 2 1 2 

ρ1 52.7 52.4 171.6 150.8 66.1 64.1 

ρ2 19.8 20.2 114.5 114.7 87.7 85.2 

h 34.5 33.8 5.6 4.4 7.8 8 

In the table shown above, the first row contains the names of each substation for 

which a soil model was build. The second row is a number indicating which method was 

used to calculate the soil parameters, where method “1” is indicates WINIGS, and “2” 

indicates our method. The next three rows list the values of 1, 2, and h using these 

methods. For example, soil parameters of “Sinnott” calculated by author’s method are 

very close to the WINIGS results and the errors are all lower than 2%. However, there are 

some larger differences between the results calculated by these two methods for “Tenney” 

where the largest error is about 20% in 2. There is no way to know which method is 

more accurate than another. One value of this method, as communicated to us by SRP 
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personnel, is that this alternative approach and result allows the substation engineer to 

have two results from different applications, on providing a check on the other. The 

engineer can then use both results in an advisory way, creating a design that is 

conservative for both soil models. The “percent error” in this discussion is defined as the 

absolute difference between the results of the two methods divided by the WINIGS result 

multiplied by 100. A detailed comparison between the results of these two methods shows 

that the number of cases in which each of the parameters differs by less than 10% is 

seven out of thirteen. Larger errors tend to occur on upper layer thickness (h), particularly 

where the upper layer thickness is small, a situation where, in many cases, the substation 

engineer may choose to use a single layer soil model.  

Based on section 2.5, it is possible to analyze the quality of the soil parameters 

estimates with some statistical methods. As described before, the error (confidence 

interval) at the 80% confidence level for each of soil parameters is used by SRP engineers 

as a figure of merit. Therefore, all the corresponding errors in percentage (with the base 

of the WINIGS’s results) for three soil parameters from these thirteen substations are 

listed in Table 2.2.  
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Table 2.2 Errors of Estimates at 80% Confidence Level 

Substation 

Name 

Error% at 80% 

CL* for ρ1 

Error% at 80% 

CL for ρ2 

Error% at 80% 

CL for h 

Tenney 4.17% 100% 34.46% 

Cell Town 4.19% 4.75% 20.19% 

AFGS 4.61% 2.99% 8.00% 

Burton 5.27% 7.21% 34.57% 

New Hunt 3.52% 11.62% 21.40% 

Cheatham 6.75% 24.00% 41.48% 

McPherson 2.60% 12.17% 37.71% 

Shipley 5.44% 5.74% 14.20% 

McMullin 6.45% 6.42% 13.31% 

Sinnott 35.51% 2.88% 66.30% 

Clark 1.81% 3.66% 6.51% 

Dinosaur 19.00% 4.60% 89.05% 

Marley 10.56% 1.04% 76.49% 

* “CL” is the abbreviation of “confidence level” shown in this table. 

If the error of any soil parameter is greater than 25% at 80% confidence level, both 

the measurement data and the result estimates for corresponding substation are rejected. 
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Otherwise, they are accepted. Using this rule, the acceptability of the models built above 

is indicated in Table 2.3. It can be seen in Table 2.3 that there are three more cases 

accepted using the author’s method than WINIGS. 

Table 2.3 The Comparison of Case Acceptance 

Substation Name 
Acceptance Situation 

of WINIGS 

Acceptance Situation 

of OPTIMGRID 

Tenney 
Reject Reject 

Cell Town 
Reject Accept 

AFGS 
Accept Accept 

Burton 
Reject Reject 

New Hunt 
Reject Accept 

Cheatham 
Reject Reject 

McPherson 
Reject Reject 

Shipley 
Reject Accept 

McMullin 
Reject Accept 

Sinnott 
Reject Reject 

Clark 
Accept Accept 

Dinosaur 
Reject Reject 

Marley 
Reject Reject 
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As mentioned before, there is no guarantee that one method is more accurate or 

reliable than another due to the different models used. One important benefit is that 

OPTIMGRID will bring a second reference value. It is expected that the substation 

engineer’s experience might consider both values when making design decisions. 
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3 ANALYSIS OF GROUNDING SYSTEM  

Presented in this section is the analysis of grounding system, including safety 

requirements of grounding system, the calculation of step voltage, touch voltage and 

grounding resistance (to remote earth) based on both a uniform soil model and a 

two-layer soil model.  

3.1 The Equivalent Circuit of Body Shock 

Effects of an electric current passing through the vital parts of a human body 

depend on the duration, magnitude and frequency of this current. Humans are very 

vulnerable to the effects of electric current at frequencies of 50 Hz and 60 Hz. Currents 

about 0.1 Amp can be lethal at these frequencies.  

In addition to frequency and amplitude, shock duration plays a role in lethality. 

Many researchers have proposed curve analysis and equations to determine the range of 

allowable current magnitude versus shock duration. In order to model equivalent circuit 

of a human body, it is necessary to approximate the human body as a resistance under the 

assumption of both direct current and 60 Hz current. It is usually the resistance between 

one hand and two feet like that shown in Fig. 3.1, or the resistance between one foot and 

another foot like that shown in Fig. 3.2 that is taken as the critical path and hence is 

modeled.  
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Fig. 3.1 Description of touch voltage 
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Fig. 3.2 Description of step voltage 

However, the value of body resistance is dependent on the many unpredictable 

factors that follow: 

(1) Skin condition: the human skin with water, sweat, conductive metal dust and skin 

breakdown. 

(2) Touch voltage (nonlinearity): the resistance decreases as the touch voltage increases. 

(3) Touch condition: the resistance decreases as either the touch area or the touch 

tightness increases. 
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(4) Magnitude and duration of shock current: the resistance decreases as either the 

magnitude or the duration of shock current increases. 

According to IEEE Std80-2000 [1], the value of body resistance is usually selected 

as 1000Ω. 

Once the body resistance (Rb) and the foot resistance (Rf) are determined, the 

equivalent circuit used to determine the shock current can be drawn as below. Fig. 3.3 

represents the equivalent circuit used in calculating both the touch and step voltage by 

using (3.2) and (3.3) for Rft, respectively. For the touch-voltage-equivalent circuit, the 

foot resistance is the parallel resistance of two feet and its value is Rft=Rf/2. For the 

step-voltage-equivalent circuit, the foot resistance is the series resistance of two feet and 

its value is Rft=2Rf.  

Veq

Rft

Rb

 
Fig. 3.3 Equivalent circuit of touch voltage 

For the purpose of circuit analysis, the human foot is usually represented as a 

conducting plate touching the surface of the earth. The food resistance (to remote earth) 

of the plate of radius b (m) on the surface of a homogeneous earth of resistivity ρ (Ω

·m) is given as [1]: 



 37 

 
b

R f
4


  (3.1) 

Traditionally, the foot is approximated as a circular plate with a radius of 0.08 m. 

With only slight approximation, equations for Rft can be obtained in numerical form and 

expressed in terms of ρ as follows [1].  

For the touch-voltage-equivalent circuit  
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
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And for the step-voltage-equivalent circuit 
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Once the touch and step voltage equivalent circuits are modeled, the electric current 

through the human body is computed as: 
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3.2 Grounding System Safety Assessment  

The electric body current provides the basis for safety assessment of grounding 

systems. Based on available experimental data, the IEEE Std80-2000 [1] suggests that 

electric body currents below Ib can be tolerated by average person. Thus according to this 

standard, the maximum allowable body current is: 

 amps
t

I
f

b

116.0
  (3.5) 

where, 
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t=the duration of the electric current in seconds. 

Through equivalent circuits and some approximations of Rb and Rft, the allowable 

touch and step potential can be calculated using equations (3.6), and (3.7), respectively. 

  
f

allowabletouch
t

E
116.0

5.11000_   (3.6) 

  
f

allowablestep
t

E
116.0

61000_   (3.7) 

where ρ is the earth resistivity, which means it is the surface material resistivity if the 

high resistivity surface material exists or it is the upper-layer soil resistivity in the two 

layer soil model or it is the uniform soil resistivity in the uniform soil model, and t is the 

shock duration.  

In order to satisfy with the safety requirements of grounding systems, the maximum 

touch and step potential should not exceed the allowable values calculated with above 

equations. Thus, when it is necessary to optimize total cost of grounding systems, the 

computed values of touch and step potential of each desired grounding grid need to be 

constrained under the allowable (safe) values. Otherwise, the unqualified design of 

grounding systems should be abandoned. 

3.3 Electromagnetic Analysis and Green’s Functions 

The key point for analyzing and optimizing grounding systems is how to calculate 

the grounding systems safety metrics (touch potential, step potential and grounding 
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resistance) of each specific grounding grid. Once the safety metrics are obtained, it is 

easy to compare them with allowable values. The author is using two methods, which are 

called the images method and the complex images method respectively, to do 

electromagnetic analysis and develop corresponding Green’s function, which can be 

regarded as the potential produced by a point current source with unit current. These two 

methods are correlated and both combine integrals of Green’s function solutions to 

Laplace’s Equation and superposition. For complex images method, the matrix pencil 

method is used individually. A more detailed description of these methods is provided 

later. 

Generally, the two-layer soil model is accurate enough to simulate the earth. In this 

chapter, all soil models are modeled as a two-layer conducting medium located below a 

non-conducting medium of air. The grounding grid is embedded in the conducting 

medium to help the fault current leak into the deeper earth. Since the fault current flowing 

into the grounding grid is always at low frequency (60 HZ), the author has neglected the 

transients such as those associated with lightening surges. Otherwise, the skin effect 

should be considered.  

In order to calculate the grounding system parameters more accurately, it is 

necessary to break the underground conductors and rods into small horizontal and vertical 

segments. The segments may be located in either the upper or lower conducting regions. 
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In addition, it is assumed that the fault current injected into the earth is the direct current 

without any calculations of inductance or capacitance and the voltage drop from one 

point of a grounding grid to any other point of same grid is negligible for simplicity of 

the model. 

Air 

Upper -layer soil 
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Lower -layer soil 
(σ1)

h

r

Z

Point current 
source
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Fig. 3.4 Cylindrical coordinate system for two-layer soil model 

The first step in the development of this method is to solve for the potential in the 

three regions generated by a point current source with unit current in the upper-layer soil 

shown in Fig. 3.4. This picture depicts the two-layer soil model, where σ2, σ1, h and d are 

conductivity of upper layer, lower layer, thickness of upper layer and depth of the point 

current source respectively. The cylindrical coordinate system should be employed in this 

problem with three variables, which are radius r, coordinate in z-axis z, and cylindrical 

angle φ. However, this is a symmetrical system, so the solution is independent of the 

cylindrical angle. In addition, it is noted that the origin is selected at the location of the 
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current source point.  

In the cylindrical system shown in Fig. 3.4, the general form of Green’s function 

can be expressed by [18] 
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where, 

J0 = Bessel function of first kind of order zero; 

G23 = Green’s function for the field point in the air; 

G22 = Green’s function for the field point in the upper-layer soil; 

G21 = Green’s function for the field point in the lower-layer soil; 

A1,2,3, B1,2,3 = arbitrary functions to be determined by employing the boundary conditions 

[17]. 

The derivation process for G22 and other Green’s functions can be found in [17]. As 

an example, the expression for G22 is given as: 
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where, 
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Based on Taylor Series, it is easy to obtain the equation shown below: 
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where, 1x . 

It is obvious that the absolute values of k21 and k32 are smaller than 1.0. In addition, 

e
-2λh 

is smaller than 1.0 as well, since λ and h are positive. When considering the uniform 

soil model, the value of h should not be zero as well, because it is possible to model 

uniform soil as two-layer soil with same values of upper and lower resistivity and any 

positive value of h. Therefore, the function of f (λ) can be Taylor decomposed as: 
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If the exponential series in (3.13) is substituted into (3.11), then the original 

exponential terms in (3.13) can be merged with the f (λ) in the exponential series (all 

exponential terms), and then Lipschitz integration [17] is used as shown: 
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It can be used to integrate each exponential term and perform the integral in (3.11) 

to have a new form as shown in (3.15) [17]. 
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Because k32 is always equal to -1.0, the above function can be reduced to: 
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where, 
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4 )1(2 zdhnrrn  . 

The above Green’s function is the result of transferring the origin from the point 

current source to the interface between the air and the upper-layer soil shown in Fig. 3.5. 
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Fig. 3.5 Modified cylindrical coordinate system for two-layer soil model 

 Based on the images method found in [18], the variable rn can be looked as the 

position of one specific image and k21
n+1

 is correspondingly the image magnitude as 

shown in Fig. 3.6. 

Fig. 3.6 shows an example of images method. In this example, the point current 

source is located in the upper-layer soil with the cylindrical coordinates of (r,z)=(0, d) 

and the thickness of upper-layer soil is h. The field point is located at the origin, so its 

coordinate is (0, 0). Based on equation (3.16), an infinity series of k21
n+1

/ rn must be 

summed. Hence, there should be infinity of images in Fig. 3.6. However, only the zero 

order (k21
0
) and first order (k21

1
) images are shown. 
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Fig. 3.6 Description of images in image method 

As for calculation of G21(r, z), the similar method will be used [17]: 
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where, 
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 22

4 2 zdnhrrn  . 

In addition to rn3 and rn4, the other r parameters are equal to the corresponding 

results of the G22(r, z) calculation.   

From the analysis shown above, the key point of the images method is the Taylor 

decomposition of f(λ) in order to obtain the specific image magnitude and position. 

However, the corresponding Green’s functions have the form of an infinite series. 
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Unavoidably, the series-truncation problem should be considered and this will cause 

difficulty in computing the Green’s function accurately. On the other hand, calculating 

the series requires a longer calculation time when more terms are used. 

3.4 Complex Image Method 

In order to overcome the shortcomings of the image method and improve the 

efficiency of Green’s functions calculation, the complex images method [15] has been 

developed to calculate the grounding systems parameters.  

The most significant improvement of complex images method is the 

implementation of finite series of f(λ) in place of the infinite Taylor series.  
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where, 

αn, βn = undetermined coefficients, which may be, and are usually, complex numbers; 

N = number of series. 

The matrix pencil method [16] is used to limit the number of terms and improve the 

calculation efficiency. 

It is necessary to choose M samples of this function (3.18) at intervals of λs, in other 

words, the sampled data ym are equally spaced. The next step is to find corresponding 
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coefficients α and β in order to fit the sampled data and thus, fit the function (3.18) as 

well as possible. Therefore, (3.18) can be written as 
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 (3.19) 

where, 

λ0 = initial point of the sample; 

λs = selected interval between two adjacent sampled data values; 

NneR n

nn ,,10 
 ; 

Nnez sn

n ,,1
 ; 

M = number of data samples. 

Based on [15], N is arbitrarily selected as 4. Next, define two matrices Y1 and Y2 

[16] and in them, the variables of y1 to yM-1 are defined by (3.19)  
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where L is arbitrarily selected to equal to 4 [16], and M is determined from several 

experiments (mentioned later). 
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The value of zn, shown in (3.19), is equal to the generalized eigenvalues of the 

matrix which is the product of the pseudo-inverse of [Y2], [Y2]
-1

, and [Y1] as shown in 

[16]. Hence, it is possible to use MATLAB’s “eig” function to get the values of zn shown 

as: 
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Once M and zn are determined, the value of Rn is easily obtained through solving the 

following matrix equation, which is a matrix representation of (3.19). 
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From (3.19), the values of αn and βn can be obtained by solving  
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where Rn and zn are obtained from (3.23) and (3.22). 

However, it is still necessary to determine the values of λ0, λs and M to calculate αn 

and βn from (3.24) and (3.25). In order to capture the behavior of f(λ) versus λ curve as 

much as possible and given that the range of λ is [0, +∞], the value of λ0 should be zero 

while the value of λmax (λmax= M*λs) would ideally be positive infinity, which is not 

possible.  

Therefore, it is necessary to find a suitable λmax. Because -1<k21<1, the starting and 
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ending values of f(λ) are calculated by substituting the appropriate limiting values of k21 

into (3.18) and the results are shown as: 
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Because f(λ)0 - f(λ)+∞=k21
2
/(1-k21), which is always greater than zero, it is concluded 

that f(λ)0 is always greater than f(λ)+∞. In other words, f(λ) should have an exponentially 

decaying curve from f(λ)0 to f(λ)+∞ and the degree of damping is determined by h as 

shown in (3.18). Therefore, the curve of f(λ) would have a time-constant, which equals 

1/(2h). Then, λs may be chosen as one tenth of the time-constant, which equals to 1/(20h).  

In order to capture the behavior of f(λ) it is necessary to select the sampling 

interval, λs, (as given above) and the sample range, λmax, appropriately. This means 

selecting λmax, so that most of the information contained the f(λ) is retained. This can be 

achieved if the sampling range encloses most of the dynamic (not steady state) behavior 

of f(λ). An appropriate range of λmax can be found using the following function, which is 

used to find an appropriate value of λmax at which f(λ) is within ( f(λ)0- f(λ)+) of f(λ)+, 

where  is chosen as a small number. 

            ffff 0  (3.27) 

Note that [f(λ)0 - f(λ)+∞] is the droop interval of the decaying function f(λ) and ε is 

arbitrarily selected as 0.001.  

In order to check the accuracy of the approximation for f(λ) versus λ curve, there 
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are four extreme cases to be considered and compared with the original curve. Based on 

(3.18), f(λ) is only influenced by the value of k21 and h. In addition, due to 5ft≤h≤100ft 

(from SRP rules) and -0.9≤k21≤0.9 (typically, but expansion of the range is undergoing 

further study), the four cases are described respectively in the following.  

 Case 1: 

Fig. 3.7 shows the original curve of f(λ) versus λ by (3.18) when k21=-0.9, h=100ft. 
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Fig. 3.7 f(λ) versus λ curve from the original function (k21=-0.9, h=100ft) 

Fig. 3.8 is the plot of the normalized absolute value of the error between the 

approximate and original f(λ)-versus-λ curves when k21=-0.9, h=100ft. The normalization 

base is f(λ)0 - f(λ)+∞=0.4263. The time-constant is 1/(2*100*0.3048)=0.0164, hence the 

test range of λ would be selected as 5 times 0.0164 (time-constant), which is 0.082 as 

shown in the x-axes in Fig. 3.8.   
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Fig. 3.8 Normalized absolute value of error between approximate and original f(λ) versus 

λ curve (k21=-0.9, h=100ft) 

As found from Fig. 3.8, the average value of the normalized errors (for case 1) is 

about 5.82e-4.  

 Case 2: 

Fig. 3.9 shows the original curve of f(λ) versus λ when k21=-0.9, h=5ft. 
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Fig. 3.9 f(λ) versus λ curve from the original function (k21=-0.9, h=5ft) 

Fig. 3.10 is the plot of the normalized absolute value of error between approximate 

and original f(λ) versus λ when k21=-0.9, h=5ft. The normalization base is f(λ)0 - 

f(λ)+∞=0.4263. The time-constant is 1/(2*5*0.3048)=0.3281, hence the test range of λ 

would be selected as 5 times 0.3281 (time-constant), which is 1.6404 as shown in the 
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x-axes in Fig. 3.10.  
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Fig. 3.10 Normalized absolute value of error between approximate and original f(λ) 

versus λ curve (k21=-0.9, h=5ft) 

As found from Fig. 3.10, the average value of the normalized errors (for case 2) is 

about 5.81e-4.  

 Case 3: 

Fig. 3.11 shows the original curve of f(λ) versus λ when k21=0.9, h=100ft. 
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Fig. 3.11 f(λ) versus λ curve from the original function (k21=0.9, h=100ft) 

Fig. 3.12 is the plot of the normalized absolute value of error between approximate 

and original f(λ) versus λ when k21=0.9, h=100ft. The normalization base is f(λ)0 - 

f(λ)+∞=8.1. The time-constant is 1/(2*100*0.3048)=0.0164, hence the test range of λ 
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would be selected as 5 times 0.0164 (time-constant), which is 0.082 as shown in the 

x-axes in Fig. 3.12.  
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Fig. 3.12 Normalized absolute value of error between approximate and original f(λ) 

versus λ curve (k21=0.9, h=100ft) 

As found from Fig. 3.12, the average value of the normalized errors (for case 3) is 

about 1.1e-3.  

 Case 4: 

Fig. 3.13 shows the original curve of f(λ) versus λ when k21=0.9, h=5ft. 
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Fig. 3.13 f(λ) versus λ curve from the original function (k21=0.9, h=5ft) 

Fig. 3.14 is the plot of the normalized absolute value of error between approximate 

and original f(λ) versus λ when k21=0.9, h=5ft. The normalization base is f(λ)0 - 
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f(λ)+∞=8.1. The time-constant is 1/(2*5*0.3048)=0.3281, hence the test range of λ would 

be selected as 5 times 0.3281 (time-constant), which is 1.6404 as shown in the x-axes in 

Fig. 3.14.  
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Fig. 3.14 Normalized absolute value of error between approximate and original f(λ) 

versus λ curve (k21=0.9, h=5ft) 

As found from Fig. 3.14, the average value of the normalized errors (for case 4) is 

about 1.1e-3. The results for these four extreme cases show that the errors between the 

approximate and original f(λ) versus λ curve are relatively small. Therefore, it is possible 

to use λs=1/(20h) (one tenth of time-constant) and λmax=k21+0.001*[k21
2
/(1-k21)] (based on 

(3.27)) to do the sampling of the original f(λ) versus λ curve. 

Finally, f(λ) can be decomposed into four exponential series and substituted in 

(3.11). By employing the Lipschitz integration (3.14), the new Green’s function for both 

source point and field point in the upper-layer is changed as [15]: 
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where, 
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The unified expression using complex images method for Green’s functions is 

written as 
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where, 

G = general abbreviation of G22, G21, G12 and G11; 

 22

nknk Hzrr  . 

The following Table 3.1 indicates different expressions of σi and Hnk that need to be 

substituted into (3.29) to get the corresponding equations with Green’s function 

abbreviations shown in the first column of the following table. The values of soil model 

parameters, σ1, σ2 and h, depth of point current source, d, are parameters that are 

determined by the site and grid burial depth and the calculated complex coefficients, βn , 

are obtained as described above. Equation (3.28) is an example of how to take the 

information found in the second row of Table 3.1 to form the specific Green’s function 
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G22. Then, all the expressions in the second row, from σ2 to -(2h-βn-d), are substituted, 

respectively, for σi to Hn4 in (3.29). As a result, it is possible to obtain the same equation 

as (3.28).  

Table 3.1 Parameters Used In Complex Image Equations 

G σi Hn1 Hn2 Hn3 Hn4 

G22 σ2 2h-βn+d 2h-βn-d -(2h-βn+d) -(2h-βn-d) 

G21 σ2 2h-βn+d 2h-βn-d -βn+d -βn-d 

G12 σ1 2h-βn+d -(2h-βn-d) -βn+d -βn-d 

G11 σ1 2h-βn+d -2h+βn+d Infinity Infinity 

It can be expanded to solve the complex images in multi-layered soil model and the 

specific steps are written as  

1) Write the general solutions of each layer’s voltage expression such as (3.9). 

2) Calculate the undetermined arbitrary functions based on boundary conditions to 

obtain the specific solutions. 

3) Use the matrix pencil method to decompose the non-exponential function into a 

finite number of exponential terms. 

4) Apply Lipschitz integration to the product of exponential function and Bessel’s 

function.  
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3.5 Comparison between Images Method and Complex Images Method 

Table 3.2 Complex Image Amplitudes and Locations 

σ1=0.1S/m          σ2=0.001S/m          h=8m 

n αn βn 

1 0.0228 - j0.0141 -12.6497+j21.0365 

2 0.0228 + j0.0141 -12.6497-j21.0365 

3 0.8635 -5.7287 

4 -1.4042 -0.7284 

σ1=0.01S/m          σ2=0.001S/m          h=4m 

n αn βn 

1 0.0232 - j0.0136 -7.3111 +j10.1381 

2 0.0232 + j0.0136 -7.3111 -j10.1381 

3 0.3927 -3.9844  

4 -0.8896 -0.0534 

The high accuracy and efficiency of the complex image method is because of the 

introduction of the imaginary part from image magnitude. In other words, the imaginary 

part brings some extra degrees of freedom. In order to illustrate the difference between 

the image method and complex image method, Table 3.2 and Table 3.3 present two 

examples of unit point current source in the two-layer soil model. The source point is 

located on the z-axis with cylindrical coordinate (shown in Fig 3.5) (r, z)=(0, 3 meters) 

and the field point is located on the surface with z=0. 
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Table 3.3 Potential at (r, 0) Produced by Unit Current Source 

σ1=0.1S/m          σ2=0.001S/m          h=8m 

r(m) True value(V) CImage(V) Image(V) n 

10 4.082994 4.081869 4.083002 681 

20 0.490605 0.490556 0.490742 1017 

50 0.033472 0.033466 0.033506 1481 

σ1=0.01S/m          σ2=0.001S/m          h=4m 

r(m) True value(V) CImage(V) Image(V) n 

10 2.111362 2.110794 2.111425 129 

20 0.828881 0.830276 0.828937 145 

50 0.319806 0.318608 0.319861 165 

Table 3.2 shows the values of αn and βn when f(λ) is decomposed into four 

exponential terms. Table 3.3 shows the voltage results of the images method and the 

complex images method for different values of r, where r is the horizontal distance from 

the source point. The voltage results of complex images method are calculated using the 

coefficients from Table 3.2. The variable n in Table 3.3 is the number of current source 

images when the images method is employed. As seen from Table 3.3, the value of n is 

always greater than one hundred, while the number of complex images is four. In general, 

for our problem, the runtime of the complex images method is much shorter than images 

method. For reference, the “true” value of voltage is taken as that value calculated with 

four thousand images using the image method. 
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3.6 Voltage Produced by Horizontal Lines of Current 

In this section, the Green's Function solutions (point current source solutions) are 

used to determine of the voltages produced in the three regions due to a horizontal 

one-dimensional-(line) source of current located in the upper-layer or the lower-layer. 

This problem is solved by using the rectangular components of the cylindrical system 

shown in Fig. 3.15. 

Air

Upper -layer soil

Lower -layer soil

h

Z

Y

X

(XA, YA, ZA)
Point Current Source IA

 

Fig. 3.15 Rectangular coordinate system 

First, the superposition theorem is employed to find the voltage in the three regions 

as a summation of the voltages due to a distribution of point currents, which are located 

on a horizontal line somewhere in the soil model. The line-source is assumed to be 

parallel to the x or y-axis with a length 2L1 with the center located at the rectangular 

coordinates (X1, Y1, Z1). Let the total current (I) be uniformly distributed along the length 

of the line, resulting in a current density of 
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(3.30) 

In other words, the line current source is divided into infinity-many point sources 

and it is easy to use integration instead of superposition. In addition, the Green’s 

functions derived before are based on cylindrical coordinate system. In this section, the 

parameter r and d in cylindrical coordinate system should be replaced by 

[(x-X1)
2
+(y-Y1)

2
]
0.5 

and -Z1 in rectangular coordinate system.
 
For example, the following 

expression represents the voltage, VX22(x, y, z), at a point in upper-layer soil due to a 

x-directed line of current in the same region.  

  


 




















11

11

4

1 4321

'

0021

22

111111

4

1

2
),,(

LX

LX

s

n nnnn

n dx
rrrrrrL

I
zyxVX 


 (3.31) 

where, 
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1
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1 2 ZhzYyxxr nsn   ; 

     21

2

1

2

2 2 ZhzYyxxr nsn   ; 

     21

2

1

2

3 2 ZhzYyxxr nsn   ; 

     21

2

1

2

4 2 ZhzYyxxr nsn   . 

Let us separate the long integral in (3.31) into six similar integrals, each associate 

with the terms 1/r0 to 1/rn4. There is a common form for these six integrals, which is 
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where, 

nnk hZH  21  

The evaluation of this integral is straightforward for all points (x,y,z) not collinear 

with the line current. For points collinear with the line current but not on the line current, 

y-Y1 should be zero. The evaluation of this integral for points on the line current will be 

presented later. In all cases, except for points on the line current, the evaluation of this 

integral is determined as: 

 ),,( 11 nkHzYyXxFP   (3.33) 

The F function is derived as [17]: 
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where, 

t = x-X1; 

u = y-Y1; 

v = z+Hnk. 

Substituting (3.33), (3.34) into (3.31), the voltage VX22(x, y, z) becomes: 
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(3.35) 

Similarly, the general voltage function VX(x, y, z) at point (x, y, z) due to a 

x-directed line current source is given as: 
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(3.36) 

where σi and Hnk both come from Table 3.1 due to different locations of field point and 

line current source. 

If the current source line is y-directed, the general expression is written as: 
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(3.37) 

Similarly, for the z-directed line current source, the general expression is written as: 
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This section is significant because the expressions presented here need to be 

implemented to calculate the earth surface potential of any specific position located on 

the earth surface above the grounding system.  

3.7 Calculation of Mutual and Self Resistance 

The equations for calculating the ground grid resistance to remote earth and 

touch/step potential are developed in terms of mutual and self resistance of conductors. In 

this section, the process for arriving at the equations describing these quantities is 

developed. 

The equations (3.36), (3.37), and (3.38) are used for calculating the voltage at a 

field point caused by a line current source, which are not directly applicable to the 

computation of mutual resistance. The definition of mutual resistance is the voltage 

induced on a second conductor by the current of another (first) conductor, then divided by 

inducing current on the first conductor. If the conductor whose induced voltage to be 

calculated is at a different location from the source, the potential on this conductor would 

vary along its length. However, this conductor is assumed lossless and the potentials 

along it should be uniform. Then, the voltage along the second conductor is the average 

of the potentials computed along its length.  

There are thirty-six different equations for the average voltage of the second 

conductor because the source conductor may be x-directed, y-directed or z-directed and 
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may be in either upper-layer soil or lower-layer soil. Simultaneously, the second 

conductor can also have different orientations and locations.  

The function F(t,u,v) can be taken as an integral of the potentials at a field point 

with respect to the points lying on the source conductor, while H(t,u,v), which is 

developed based on F(t,u,v), is the integral of potentials at points lying on the field 

conductor with respect to the source conductor. 

Therefore 
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where, 

L0= the half of length of field conductor; 

L1= the half of length of source conductor. 

Since 
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Expression (3.39) can be written as  
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Therefore, if there are two conductor segments with the same direction, it is 

necessary to use H(t,u,v), (3.41), to replace the F(t,u,v) in (3.36), (3.37) and (3.38), to 

obtain (3.42), (3.43) and (3.44). 

Undoubtedly, both F(t,u,v) and H(t,u,v) depend on the Green’s functions, which is 

the fundamental analytical model calculating the potential of the field point with respect 

to the point source.  

As a result, the equations for parallel configurations are similar as (3.36) (3.37) and 

(3.38). In addition to the change from F functions to H functions, another difference is 

the additional coefficient of 1/2L0 and it is because of the assumption mentioned before 

that the voltage of the perfect conductor is the average of the potentials calculated by 

dividing the length of field conductor (2 L0).  

Thus, the following equations (3.42), (3.43) and (3.44) illustrate the average 

potential of field conductor in each direction caused by the parallel source conductor. If 

there are two conductors with the same orientation (e.g., parallel with the z-axis), this 

kind of configuration is called parallel configuration. On the other hand, if the two 

conductors are in oriented at an angle, they must be perpendicular (assuming the 

traditional ways in which the grounding grid is constructed) and their configuration is 

called the perpendicular configuration. The notation that will be used here is: if two 

conductors are both x-directed, they are in the parallel configuration and it is herein 
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called the X-X configuration. Using this nomenclature, the voltage results for the other 

configurations are shown below. 

For the X-X configuration, the general voltage equation is   
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(3.42) 

For Y-Y configuration, the voltage equation is  
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For Z-Z configuration, the voltage equation is 
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where σi and Hnk both come from Table 3.1 due to different locations of field conductor 

and line current source, and the value of I is the magnitude of current flowing in the line 

current source. 

When the two conductors are not parallel, the integration is different from the 

previous forms. Hence, O functions are developed instead of the F functions. 
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Based on [17], there is a mathematical transformation shown as: 
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Then, (3.46) can be substituted into (3.45) and the resultant function of O(t,u,v) is 

given as: 
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(3.47) 

As in the parallel configuration, it is desired to express the average voltage 

equations for the perpendicular configurations in terms of O functions. 

The terminology “X-Y configuration” means line current source is x-directed and 

current field line is y-directed, and this is the same rule for the rest of other 

configurations. The general equation for X-Y configuration is 
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(3.48) 

For Y-X configuration, the general equation is  
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(3.49) 

For X-Z configuration, the general equation is  
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(3.50) 

For Z-X configuration, the general equation is  
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For Y-Z configuration, the general equation is  
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For Z-Y configuration, the general equation is  
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(3.53) 

The mutual resistance and self-resistance should be derived using the voltage 

equations (3.42) to (3.44) and (3.48) to (3.53) developed earlier. The mutual resistance is 

the voltage induced in the field conductor by unit current from the source conductor. The 

process for calculating self-resistance is a special case of the process for calculating 

mutual resistance. This special case is introduced in the following.  

The line of current may be replaced with a conducting cylinder of length 2L and 

diameter 2a as shown in Fig 3.16. Assume a total current I is leaving the surface of the 

cylinder and is uniformly distributed over its surface area. From [17], to evaluate the 

average self-potential for an x-directed or y-directed conducting cylinder, the voltage 

equation developed for the two parallel lines located in the same soil layer are used and 

evaluated at 

 aZzYyXx  111 00  (3.54) 

where, 

(X1, Y1, Z1) = the coordinate of the center of the cylinder; 

(x, y, z) = the coordinate of any point on the surface of the cylinder. 
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Fig. 3.16 Cylindrical x-directed conductor model for calculation of self-resistance 

If the cylinder is z-directed, (3.54) needs to change to  

 00 111  ZzYyaXx  (3.55) 

Or  

 00 111  ZzaYyXx  (3.56) 

In other words, it is possible to model self-resistance of a cylindrical conductor as a 

mutual resistance between two line conductors, one of which is located at the center of 

the cylinder and the other of which is located at outer surface of the cylinder respectively. 

3.8 Matrix Method  

As derived in the previous section, it is possible to obtain the mutual resistance rjk 

(j≠k) between segment j and segment k, where segment k is the line current source with 
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source current ik and segment j is the field segment shown as following.  

Upper -layer soil

Lower -layer soil

Z
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ik

 A (xA,yA,zA) 

 B (xB,yB,zB) 

 

Fig. 3.17 Two earth embedded conductor segments of length 2L0 and L1 

If j is equal to k, it is self-resistance rjj, which can be calculated also. The voltage vj 

of each segment j could be calculated as: 

 njvir
n

k

jkjk ,3,2,1
1




 (3.57) 

Rewriting the summation (3.57) in matrix format and using name of Voltage 

Distribution Factor matrix (VDF) to define the matrix containing the mutual and self 

resistances gives: 

 VIVDF ]][[  (3.58) 

where, 
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It will be assumed herein that all of the segments are at the same voltage, v. This is 

usually acceptable at 60Hz frequency because the resistance and inductance of the wires 

are small compared to resistance between the segments and the earth. 

In addition, the current source is modeled to simulate the fault current injected into 

the earth when fault occurs in a substation. Therefore, the sum of source currents from all 

segments should be equal to the fault current, which is also the current flowing from the 

current source. 

Thus, 

 F

n

k

k Ii 
1  

(3.59) 

where, 

IF = fault current. 

Hence, (3.58) can be written as: 

 bAX   (3.60) 

where, 
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Since matrix A and vector b are known, the unknown vector X can be found. As a 

result, one can obtain the values of each segment source current (i) and ground potential 

rise (v). Taking Fig. 3.17 as an example, it is assumed that this grounding system only has 

conductor segment j and segment k. The segment source currents (ij, ik), segment lengths 

(2L1, 2L0) and the surface point A’s coordinate (xA, yA, zA) can be substituted in (3.36), 

(3.37) and (3.38) to get the values of potential at point A on earth surface, then it is 

necessary to sum them up to get the total earth potential at A (EA) induced by both 

segment j and k. Finally, the touch voltage at point A is  

 Atouch EGPRE   (3.61) 

where, GPR is the grounding potential rise, which equals to v in (3.60). 



 75 

For the step voltage calculation, it is assumed that one person’s two feet contact the 

earth at point A and B. Hence, it is necessary to use the same method discussed above to 

calculate the earth potential at B (EB), and then the step voltage is:  

 ABstep EEE   (3.62) 

3.9 Results Compared with WINIGS  

With the equations derived before, it is possible to calculate the self-resistance, 

mutual resistance and the earth surface potential caused by each conducting segment. 

The scenario depicted in Fig. 3.18 is used to verify the self-resistance of a 

horizontal conductor with length l and verify the surface potential at the field point 

(shown) with perpendicular projected distance w from middle of the horizontal conductor.  

W

L

Field Point

Horizontal Conductor

 

Fig. 3.18 Horizontal conductor and field point 

The application developed based on the above equations was given the name 

OPTIMGRID.  

Table 3.4 and Table 3.5 shown below contain metrics that can be used to compare 

both the OPTIMGRID and WINIGS results. 

The soil parameters ρ1, ρ2 and h are upper layer resistivity, lower layer and upper 
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layer thickness respectively. The variable d is the depth of the conductor under the 

surface. In this example, the horizontal conductor is selected as copper with diameter of 

0.528 ft. 

Table 3.4 Comparison of Self-resistance and Surface Potential  

ρ1=ρ2=100 Ω m, d=0.5 m, l=8 m, dia=0.528 ft 

 WINIGS OPTIMGRID 

Self resistance (Ω) 17.09 17.12 

Surface potential at w=4m (V) 3446 3456 

Surface potential at w=8m (V) 1904 1906 

ρ1=100 Ω m, ρ2=10 Ω m, h=5 m, d=0.5 m, l=8 m, dia=0.528 ft 

 WINIGS OPTIMGRID 

Self resistance (Ω) 15.59 15.62 

Surface potential at w=4m (V) 2012 2021 

Surface potential at w=8m (V) 678 679 

The scenario depicted in Fig. 3.19 is used to verify the mutual resistance of two 

parallel conductors with length l from the square grid and the surface potential at the field 

point with perpendicular projected distance w from the bottom horizontal conductor.  
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Fig. 3.19 Square grid and field point 

Table 3.5 shown below is similar to the previous table of used to validate 

self-resistance with the same interpretation.  

Table 3.5 Comparison of Mutual Resistance and Surface Potential  

ρ1=ρ2=100 Ω m, d=1.5 ft, l=8 ft, dia=0.528 ft 

 WINIGS OPTIMGRID 

Mutual resistance (Ω) 5.95 5.93 

Surface potential at w=2m (V) 11244 11261 

Surface potential at w=4m (V) 10893 10908 

ρ1=100 Ω m, ρ2=10 Ω m, h=5 m, d=1.5 ft, l=8 ft, dia=0.528 ft 

 WINIGS OPTIMGRID 

Mutual resistance (Ω) 4.11 4.09 

Surface potential at w=2 ft. (V) 9366 9381 

Surface potential at w=4 ft. (V) 9010 9023 

In order to verify the accuracy of the author’s model applied to calculating the 

grounding systems safety metrics (touch voltage, step voltage, grounding resistance), the 
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author has run 54 cases using different two-layer soil models. There are four influential 

factors, which are the combination of resistivity, thickness of upper layer soil, size of the 

substation and mesh size in the grounding grid. For the combination of soil resistivity, 

there are two choices: (1) ρ1=100 Ω m, ρ2=10Ω m and (2) ρ1=10Ω m, ρ2=100Ω m. For 

the thickness of upper layer soil, there are three choices: (1) h=5 ft, (2) h=20 ft and (3) 

h=100 ft. For the substation size, there are three choices: (1) 50ft by 50ft, (2) 200ft by 

200ft and (3) 600ft by 600ft. For the mesh size, there are also three choices: (1) 50ft by 

50ft, (2) 25ft by 25ft and (3) 10ft by 10ft. The author has simulated every combination of 

these parameters as laid out here. 

It is possible to model the fault current injected into one specific grounding grid in 

WINIGS as shown in Fig. 3.20. The source is the single-phase current source with 

magnitude of 1kA and phase angle of 0 degree. Hence, there is 1kA fault current injected 

into the grounding system.  

Source

Source Ground

Resistor

Grounding System

Ia = 1.000 kA / 180.00 Deg Ia = 1.000 kA / 0.00 Deg

GRSYSSOURCE

 

Fig. 3.20 WINIGS single line fault diagram 
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Fig. 3.21 is the grounding system diagram seen from z-direction. The red-arrow 

line is the path along which it is desired to know the touch voltage and step voltage. 

1

1

2

2

3

3

4

4

5

5

6

6

A A

B B

C C

D D

E E

F F

Advanced Grounding Concepts / WinIGS

August 22, 2002 IGS_AGUIDE_CH01A

Example Grounding System
Scale (feet)

0' 10' 20' 30'

1GRSYS_N
MAIN-GND

X

Y
Grid Spacing: 100.0 ft

Model A

 
Fig. 3.21 WINIGS grounding system diagram 

Fig. 3.22 shows the touch voltage plot along the red arrow line shown in Fig. 3.21. 

The worst (largest) touch voltage typically occurs near the center of the corner mesh. 

Therefore, the touch potential at the center of the corner mesh is arbitrarily chosen as the 

worst touch potential to be compared with the allowable value in OPTIMGRID.  
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Curve #4
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WinIGS - Form: GRD_RP05 - Copyright © A. P. Meliopoulos 1998-2013
 

Fig. 3.22 WINIGS touch voltage profile  
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Fig. 3.23 shows the step voltage plot along the red arrow line shown in Fig. 3.21. 

The worst (largest) step voltage typically occurs off the corner in a direction parallel to a 

line, which bisects the corner angle. 
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Fig. 3.23 WINIGS step voltage profile 

In order to compare the results from the author’s method and from WINIGS 

method explicitly, this thesis applies following equation (3.63) for detecting the 

deviations between these two methods.  

 %100
_

__





WINIGSmesh

OPTIMGRIDmeshWINIGSmesh

E
E

EE
error

mesh
 (3.63) 

where WINIGS and OPTIMGRID represent the value of worst touch potential (Emesh) 

coming from WINIGS method and OPTIMGRID method respectively for the scenario 

depicted in Fig. 3.24. 
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Fig. 3.24 Error of Emesh between two methods 

Based on (3.64), WINIGS and OPTIMGRID represent the value of worst step 

potential (Estep) coming from WINIGS method and OPTIMGRID method respectively for 

Fig. 3.25. 

 %100
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
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 (3.64) 

 
Fig. 3.25 Error of Estep between two methods 
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Based on (3.65), WINIGS and OPTIMGRID represent the value of grounding 

resistance (Rg) coming from WINIGS method and OPTIMGRID method respectively for 

Fig. 3.25. 

 %100
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


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WINIGSg

OPTIMGRIDgWINIGSg

R
R

RR
error

g
 (3.65) 

 

Fig. 3.26 Error of Rg between two methods 

The three figures, Fig. 3.24 to Fig. 3.26, show that the difference of the calculated 

grounding resistance between OPTIMGRID and WINIGS is very small and the 

differences are lower than 0.4% for the example chosen The differences of worst touch 

voltage and worst step voltage are less than 3%, which means the OPTIMGRID results 

are close to the WINIGS results for this example. 
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4 GROUNDING SYSTEM OPTIMIZATION 

Presented in this chapter is a novel optimization strategy used in minimizing labor 

and material cost for substations with rectangular geometries. The key requirement for an 

optimization method capable of grounding-system optimization is that it must be able to 

deal with the discontinuous and non-differentiable constraints. The author will apply a 

new three-step optimization process combining a traditional optimization method with a 

heuristic probabilistic optimization method, comprised of a pattern search method and 

genetic algorithms.  

While the equations of Chapter 3 are used to determine acceptability of the ground 

grid design, the optimization procedure that uses these equations is enhanced if it has a 

good starting point. A convenient way of getting a good starting point is to begin with 

(approximate) IEEE equations [1] for ground grid design. Since these equations are 

continuous and differentiable, efficient and robust optimization methods can be used to 

find an approximate optimum, which can then be used as a starting point for the 

second-step optimization procedure (describe below) which uses the equation of Chapter 

3. In all, the optimization process is a three-step procedure. A description of the first step 

follows immediately.  
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4.1 Step 1: Use of IEEE Standard Equations for Optimization 

The first step in the three-step procedure for designing an optimal ground gird is to 

use approximate relationships, given by the IEEE standards, that are continuous and 

differentiable, relationships to which traditional robust optimization techniques can be 

applied. The result of this optimization procedure will be the initial estimate to be used in 

the second step of the optimization process. 

In ground grid design, the mesh voltage is traditionally treated as the worst-case 

touch voltage on the earth surface above a grounding system and its value is obtained 

from following equation (4.1): 

 
M

gim

m
L

IKK
E


    (4.1) 

where, 

ρ = equivalent uniform soil resistivity (Ω m);  

Km = geometrical factor [1]; 

Ki = corrective factor [1]; 

Ig = maximum fault current through the grounding system (A) [1]; 

LM = effective grounding systems conductors and rods length (m) [1].  

The detailed expressions and calculation process of ρ, Km, Ki, Ig and LM are 

described and explained in [1]. While some of these parameters are exogenous 

parameters, i.e., Ig and ρ, the other parameters are functions of conductor spacing (D) in 



 85 

meters, depth of grounding grid (Dep) in meters, conductor diameter (diac) in meters, 

length (a) and width (b) of the substation in meters, number of rods (nr), rod length (lr) in 

meters, rod diameter (diar), fault current (If) in amps, and fault current division factor 

(Df). Among them, only D and nr are the variables needed to minimize the objective as all 

other parameters either are determined by these variables or are either cite specific and 

endogenous or are specified by the sponsor of this research as company requirements.  

Similarly, the predicted step voltage values for any given grid design are obtained 

from following equation [1]: 

 
s
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
  (4.2) 

where, 

Ks = geometrical factor in calculating step voltage [1]; 

LS = effective grounding systems conductors and rods length (m) in calculating step 

voltage [1]. 

The final grounding systems parameter to be considered is the grounding resistance 

to remote earth (Rg), which is given as: 
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where, 

LT = total length (m) of all the grounding conductors and rods [1];  
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Dep = depth (m) of the grounding system under the earth surface; 

A = area (m
2
) of the substation. 

The purpose of above development is to present the differentiable constraint 

equations, i.e., (4.1), (4.2) and (4.3). Enforcing these constraints and using the 

approximate safety metrics provided by the IEEE equations, a traditional optimization 

procedure can be used so that minimization of value of the objective function, defined in 

section 4.4, can be achieved. 

Traditional optimization of this problem is achieved by using the “fmincon” solver 

in the MATLAB Optimization Toolbox [11] as well as “GlobalSearch” function in 

MATLAB Global Optimization Toolbox [12] to model this constrained nonlinear 

minimization problem. With the help of the “GlobalSearch” function, the “fmincon” 

solver can be made more efficient and made be less dependent on the initial values. The 

details about the combination of “GlobalSearch” and “fmincon” can be found in [12].  

4.2 Step 2: Use of Pattern Search Method for Optimization 

With the initial values obtained from the first step, the MATLAB solver called 

“patternsearch (PS)” has been used for the second-step of the optimization process. PS is 

a member of the family of direct search methods. A direct search algorithm searches a set 

of points around the current point, looking for one where the value of the objective 

function is lower than the value at the current point. The most significant advantage of 



 87 

the direct search methods is that they do not require that the objective function and 

constraint functions be differentiable or continuous. Therefore, the more accurate 

non-differentiable and discontinuous constraints described in Chapter 3 can be applied in 

this second step. The objective function to be used in this step is referenced in section 

4.4. 

However, the disadvantage of direct search method and heuristic method (like 

genetic algorithms discussed later) is the computation time expense. These methods are 

unlike gradient-based methods, which the user can implement without knowing a 

direction to search for lower objective values. Instead, PS needs to test multiple points 

near the current point, just like a “mesh” around this point. The MATLAB 

“patternsearch” solver forms the “mesh” by: 

 Generating a set of vectors {di} by multiplying each pattern vector vi by a scalar 

Δ
m
, which is called the mesh size. Content and generation of these vectors will be 

introduced with a numerical example presented later.  

 Adding the {di} to the present point, which is the point with the best objective 

function value found at the previous step [11]. 

In OPTIMGRID, the variables (described in detail in section 4.4) to be optimized 

are spacing between two conductors (D) and the method of rod placement (mr). Hence, it 

is necessary to generate two-dimension-coordinate oriented pattern search algorithm. For 
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example, assume the present point has coordinates [2.6, 3.2] and its present mesh size 

(Δ
m
) equals 4.0. In addition, the pattern vectors are set as:  

v1= [1, 0]; v2= [0, 1]; v3= [-1, 0]; v4= [0, -1]. 

The vectors {di} are obtained as: 

d1= 4.0*[1, 0] = [4.0, 0]; 

d2= 4.0*[0, 1] = [0, 4.0]; 

d3= 4.0*[-1, 0] = [-4.0, 0]; 

d4= 4.0*[0, -1] = [0, -4.0]; 

The algorithm adds {di} to the present point to obtain the following mesh. 

[2.6, 3.2]+ [4.0, 0] = [6.6, 3.2] 

[2.6, 3.2]+ [0, 4.0] = [2.6, 7.2] 

[2.6, 3.2]+ [-4.0, 0] = [-1.4, 3.2] 

[2.6, 3.2]+ [0, -4.0]= [2.6, -0.8] 

If one of the four new points has the smallest objective among these five points, the 

new point will be set as the present point at the next iteration with a new mesh. However, 

if none of the new points has an objective function with a smallest value, the mesh size 

(Δ
m
) will be reduced. This mesh size reduction is continued until either a smaller value is 

found or the minimum size of Δ
m
 is reached. In OPTIMGRID, the initial mesh size (Δ

m
) 

is set as 8.0. In addition, MATLAB’s implementation of the pattern search algorithm 
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gives users the option of changing the mesh size scaling parameters, which is used to 

reduce the mesh size or expand the mesh size automatically. A large initial mesh size (Δ
m
) 

increases the range of mr, options, however, as the mesh size is reduced, the range of mr 

options consider may decrease; this is a limitation that may or may not effect the outcome 

of the optimization procedure. Removing this uncertainty is a task of the student 

following up with this research. The variable mr is an integer but once Δ
m
 is applied, the 

mr value, in general will be a real number; therefore, a real-to-integer conversion is used 

to round off the number to an integer. It is important in the process that mr varies so that 

the rounding off process does not constrain Δ
m
 to always remain unchanged. A larger 

mesh size decreases the probability that mr would remain unchanged. For example, if mr = 

3 and Δ
m
 = 1.2, then after application of the mesh operator and real-to-integer conversion, 

two new points with mr = 2 and mr = 3 are generated.  

PS selects its direction (i.e., pattern vector that produces the “present point”) based 

on a user-specified polling method, which means the user is “questioning” and “picking” 

the right points and “mesh” based on a chosen method. For OPTIMGRID, the polling 

method selected is the MATLAB default selection, which is called “GPS Positive Basis 

2N”. In the method’s name, “GPS” is the abbreviation of general patterns search method 

and “2N” means there are 2N pattern vectors, where N is the number of the independent 

variables. The details of how to choose the polling method are described in [12]. The 
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previous example with the present point [2.6, 3.2] uses this default polling method. In this 

example, there are two independent variables, so the points are presented in 

two-dimension coordinates. In addition, the number of pattern vectors is accordingly four. 

A conceptual description of the PS algorithm is presented in the flowchart shown in Fig. 

4.1. 

Initialization

Poll step

Parameter update

Solution

Iteration=iteration+1

Meets stopping criterion

N

Y

 

Fig. 4.1 Flowchart of pattern search method 

In this figure, the stopping criteria in OPTIMGRID include:  

 Reaches the maximum number of iteration (200)  

 Reaches the minimum mesh size (1e-6)  

 Meets the minimum objective change (1e-6)  
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4.3 Step 3: Use of Genetic Algorithms for Optimization 

The genetic algorithm is the third (optional) step in the optimization procedure as 

well as the backup step. This step is used if the pattern search approach does not yield the 

optimal design. The constraints (voltage equations) in Chapter 3 are used in this step, the 

same as those used in the pattern search method. Genetic algorithms have improved 

robustness when compared with pattern search methods, but they also are 

computationally expensive.  

The genetic algorithm was first introduced by John Holland for the formal 

examination of the mechanisms of natural adaptation [9], but since then, it has become a 

search technique used in computing to find globally optimum or approximate solutions to 

optimization problems. As a global search heuristic technique, it is used in problems 

where techniques using traditional algorithms are incapable of obtaining satisfactory 

solutions.  

The genetic algorithm is a particular class of evolutionary algorithms that use 

techniques inspired by evolutionary biology such as inheritance, evaluation, selection and 

reproduction.  

Conceptually, this technique may be described as follow. As a first step, an 

individual is produced randomly. The process is repeated until the number of the 

individuals in the population equals the desired population size, which is selected based 
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on experience and is limited by computation resources. Each individual is presented by a 

set of binary numbers (i.e., 1’s and 0’s), each analogous to a biological “chromosome”. In 

the following example, there are three variables in the optimization problem, each 

corresponding to a different artificial chromosome. Therefore, the initial individual “s” is 

made up of a three-elements set with each element, which is an artificial chromosome 

with binary number chosen randomly. Each member of the set represents one variable 

with ten “binary genes” one-bit long:  

s = 1110110101—0110111101—1010101101. 

It is convenient in the genetic algorithm, to represent “s” using the equivalent 

decimal where each binary sequence is treated as a positive binary integer.   

The next step is the evaluation step. In this step, a fitness function is defined and it 

is calculated (evaluated) every individual. According to the value of fitness function 

(objective function,) all the individuals will be ranked based on their fitness values. The 

larger the fitness value is, the more likely the corresponding individual will be selected. 

These selected individuals will be considered as “Parents”.  

The “Parents” reproduction using a two-step process: crossover and mutation. 

Crossover combines two individuals, or parents, to form two new individuals, or children, 

for the next generation. In the following “one-point” crossover example, the first set of 
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individuals is “s1” and “s2”. After the crossover process, offspring are created, which are 

“s3” and “s4”. The symbol “|” is the crossover separation point.  

Before applying crossover,  

s1=1001010001, s2=11|10110101. 

After applying crossover,  

s3=10|10110101, s4=11|01010001. 

In this example, s1 and s2 are chosen randomly from a larger set of individuals. The 

probability of crossover in application of OPTIMGRID is 0.8. 

Mutation is the phenomena, where a random "0" becomes “1” or a “1” becomes 

“0” in an individual "chromosome". The mutation is applied to all bits (genes) with a 

very low probability of mutation, set to 0.05 in OPTIMGRID. After the above steps are 

carried out a new generation with a new population has been generated. In the following 

“one-point” mutation example, the original set of individual is “s1” and “s2”. After 

crossover and mutation, another new set of individuals “s3” and “s4” has been produced. 

The number between the two symbols “|” (presented in the next example) is the one 

“gene” which is assume to be the only one selected to be mutated from “1” to “0” or from 

“0” to “1”. In this example, only one bit was selected, but each bit has the same 

probability of being selected and the number of bits selected cannot be known a priori. 

Before applying mutation, 
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s1=11101|1|0101, s2=1111|0|10101. 

After applying mutation, 

s1=11101|0|0101, s2=1111|1|10101. 

After repeated reproduction, a global or "near-global" optimum can be reached. The 

termination criterion is achieved if either the mean value of fitness function Fg calculated 

using all individuals in the population is no longer improved by the process of 

reproduction or the iteration index, Ng, is equal to the defined maximum number of 

iteration Nmax. The general flowchart of the genetic algorithm is shown below in Fig. 4.2.  



 95 

Begin

Iteration number i=1

Initial population

Evaluation

Selection

Crossover

Mutation

Fg ≤ Limited value

Increase iteration index

No

Ng ≥  Nmax

End

Yes

No

Yes

 

Fig. 4.2 General Flowchart of Genetic Algorithms 
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4.4 Optimization Problem Based on SRP Design Rules 

Formulation of the optimization problem is informed by the grounding systems 

design rules of Salt River Project (SRP). These rules are incorporated as assumptions in 

the grounding systems optimization process. There are five design rules described below: 

(1) Grounding grid size and mesh resolution requirements:  

 The maximum substation dimensions are 1000 ft. by 1000 ft. 

 The shape of meshes making up a grounding grid should be square. 

 The maximum acceptable mesh size is 50 ft. by 50 ft. 

 The minimum acceptable mesh size is 8.2 ft. by 8.2 ft. 

(2) Tolerable voltage calculation rules 

 The standard body weight in calculating step and touch tolerable voltage should 

be 50 kg (110 lb) [1]. This body weight leads to the coefficient “0.116” in (3.6) 

and (3.7) [1].  

 The separation distance between feet for step potential calculation should be 1 

meter, which is used in calculating the maximum voltage difference. 

 The standard radius of a foot should be 0.08 meter. This value is used to calculate 

the resistance of the human body model, which, in turn is used to calculate the 

amount of current flowing through the body for any give voltage between feet and 

hand or between foot and foot. 
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 The fault duration (tf) is used to calculate the tolerable voltages in (3.6) and (3.7) 

and is determined by the voltage class of a substation. The values are given as: 

Table 4.1 Relationship between Voltage Class and Fault duration 

Voltage class (kV) Time (s) 

>250 0.25 

200 to 250 0.50 

22 to 200 0.58 

<22 1.10 

(3) Grounding grid design rules: 

 Grid conductor size should be 4/0 AWG, 7 strand copper (0.522'' diameter) for all 

new installations. 

 The standard depth of the grounding system should be 1.5 ft. below finished 

grade. It does not include any surface material used to obtain a decreased touch 

and step potential. 

 The grounding grid should be designed for the maximum fault level expected for 

the life of the station. 

 In this model, uniform potential distribution (no potential difference along 

grounding conductors) and uniform mesh size are applied. 

 It also ignores the influence of mutual inductance and capacitance. 
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(4) Grounding rod design rules 

 Grounding rods are always placed at each outside corner of the grounding grid. 

 When additional grounding rods are used, they should be evenly spaced along the 

outer grid perimeter, not less than one-rod length apart. 

 In this model, interior rods and surge arrestor loops are not considered.  

 When a uniform soil model is used, the rod length should be 10 ft. long. 

 When a two-layer soil model is used, if the top layer’s thickness is less than 10 ft., 

the rod length shall be 20 ft. long. 

 When a two-layer soil model is used, if the top layer’s thickness is larger than 10 

ft. and smaller than 30 ft., the rod length shall be 30 ft. 

 When a two-layer soil model is used, if the top layer’s thickness is larger than 30 

ft., the rod length should be 10 ft.   

(5) Cost data 

 The cost of mesh conductor (4/0 copper, 7 strand, soft drawn) and ground rod 

(cop_clad, 1 strand) is $3.77/ft. (Ccond). 

 The cost of exothermic welds is $19.25 each (Cexoth). 

 The cost of labor to trench, install cable, and backfill is $4.00/ft including 

equipment (Ctrench). 

 The cost of labor to drive rods up to 10 ft. is $10/ft. (Cdrive). 
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 The cost of labor to drill, insert, and backfill rods 11 ft. to 40 ft. is $32/ft. 

 The cost of labor to make exothermic connections from cable to cable or cable to 

rod is $40 each (Cconnect). 

From the equation and rules shown above, it is possible to specify the optimization 

problem completely. In addition, it is noted that the units of all lengths, depths and 

diameters is change from feet to meters in calculation process.  

Generally, the optimization variables would be conductor spacing (D) in meters, 

depth of grounding grid (Dep) in meters, conductor diameter (diac) in meters, number of 

rods (nr), each rod length (lr) in meters and rod diameter (diar) in meters. However, the 

parameters Dep, diac and diar are required to be 0.4572 meters (1.5 ft), 0.0134 meters 

(0.528 ft) and 0.016 meters (0.628 ft) respectively, and the rod length is fixed as one of 

three discrete values of 3.048 meters (10 ft), 6.096 meters (20 ft) and 9.144 meters (30 ft) 

based on the thickness of the upper-layer soil. As a result, only D and nr are the free 

variables in the objective function, which is the total cost of the grounding systems. 

Using the cost variable defined above, the objective function should be: 
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rrrod nlL   (m); 
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a = substation length (m); 

b = substation width (m).  

    The constraints are derived from above rules shown as: 

 .50.2.8 ftDft   (4.5) 

 allowabletouchm EE _  (4.6) 

 allowablesteps EE _  (4.7) 

  5.0gR  (4.8) 

At first, it is necessary to divide each horizontal conductors and vertical rods into 

suitable number of segments. The word “suitable” means the segmentation must lead to 

accurate results while the program execution time (efficiency) must be less than 40 mins 

for most applications. In theory, the more refined the model, i.e., smaller segments, the 

more accurate the results. However, the more refined the model, the longer the runtime. 

Runtime increases with finer segmentation because the size of the matrix in equation 

(3.60) is proportional to number of segments. Hence, some compromises must be made 

between these two aspects. In OPTIMGRID, the number of segments is decided based on 

the value of D and number of meshes. Segment length is selected by trading off accuracy 



 101 

and runtime. The runtime will get longer as the number of meshes is increased. In other 

words, if the number of meshes is relatively small, it is necessary to make the segment 

length smaller in order to achieve more accuracy, however, if the number of meshes is 

larger, to keep the runtime shorter, segment length is increased, sacrificing accuracy. 

(This may be a flaw in the present approach, because it is necessary to make the accuracy 

acceptable, even if there is a larger model of grounding system; hence testing is being 

conducted to determine if the segment-size rules used by the program are acceptable.). 

The following table shows the rule for selecting segment length of horizontal grounding 

grid based on both the spacing D and the number of meshes Nm:  

Table 4.2 Rules for Selecting Segment Length 

 D≤10 10<D≤20 20<D≤50 D>50 

Nm≤30 D D/3 D/5 D/7 

30<Nm≤40 D D/3 D/5 D/5 

40<Nm≤50 D D/3 D/3 D/3 

Nm>50 D D D D 

For the grounding rods, the rule of subdividing them is:  
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 If the rod does not penetrate to the lower-layer soil, the rod will be subdivided 

into five segments with equal length. 

 If the rod does penetrate to the lower-layer soil, the rod will be subdivided into 

five segments with two equal-length segments in the upper layer and three 

equal-length segments in the lower layer. 

Once the segment strategy is set, the midpoint coordinate of each segment in the 

coordinate system must be determined, where the origin is arbitrarily set at the left 

bottom corner point as shown in Fig. 4.3. 

Y(ft.)

(0,0) X(ft.)

seg

D

Grounding 
grid

20 40

40

20

1 2 3 4

 
Fig. 4.3 2-by-2 Grounding Grid with X-Y Coordinate System 

Fig. 4.3 depicts a 2-by-2 grounding grid without any grounding rods. The distance 

between two parallel conductors (D) is 20 ft. The segment length is arbitrarily selected as 

10 ft. (used in the continuing example) shown in Fig. 4.3. In other words, each conductor 

with length of D would be separated into two equal-length parts. In order to store all 

segment midpoint coordinates, segment lengths and segment orientations, it is necessary 

for OPTIMGRID to number all the segments such as the conductor on the X-axis shown 
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in Fig. 4.3, where the segment number is from “1” to “4”. For segment “1”, its midpoint 

coordinate on the X-Y plane is (X,Y)=(5, 0). If the grounding grid is located under the 

earth surface with depth of 1.5 ft., the completed coordinate of segment “1” should be 

(X,Y,Z)=(5, 0, -1.5), because the X-Y plane is coplanar with the earth’s surface. 

Finally, the method in Chapter 3 is used with such process: 

 Calculate all the self and mutual resistances like r11 and r12, etc.; 

 Implement matrix method to get the values of all the segment leakage currents, which 

are i1 and i2 for the first two segments; 

 Substitute the current value, segment midpoint coordinate and the field point 

coordinate into variables I, (X1, Y1, Z1) and (x, y, z) respectively in equations (3.38), 

(3.39) and (3.40) in order to obtain the field point potential due to each segment;  

 Sum up all the potentials produced by every segment to get the earth potential of 

specific field point, and calculate worst touch and step voltages. 

As mentioned before, it is only possible to get the values of worst touch and step 

voltage when each segment coordinate is determined including segments of grounding 

rods, which means it is necessary to know not only the number of rods, but also the 

coordinates of the rods. As a result, the coordinates of the rods should be variables as 

well. It is difficult to model the coordinates of rods in this optimization problem using the 

approach described above; hence the number of ground rods is characterized in this 
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method by scenario number, which is defined by grounding rod placement number, mr 

that becomes the second variable (the first variable is D) instead of the number of rods nr. 

The variable mr is the combination of nr and the variable coordinate of each rod. In other 

words, if mr is determined, both the number of rods and the coordinate of each rod are 

determined. However, the variable mr despite being an integer is a real number in the 

optimization procedure. Before using mr to calculate the constraints and the objective it is 

necessary to perform real-number-to-integer conversion, by rounding all numbers up 

(down) that are greater than or equal to (less than) X.5 to X+1 (X.) For example, if the 

“patternsearch” solver generates mr = 1.8, it will be treated as an integer of 2 for selecting 

the ground rod placement pattern. In the algorithm, the next step could generate a value 

of mr = 1.6 and while D remains unchanged, which would not be the same point in the 

design space. Part of the work going forward will be to determine whether this can occur 

and how to mitigate this situation if it is indeed a problem with selecting an appropriate 

value of m
. The detailed relationship between the placement scenario, mr, nr and ground 

rod placement is shown in Table 4.3.  
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Table 4.3 Description of mr 

scenario (mr) 

Num. of rods 

(nr) 

Top view description (One 

black solid point is one rod) 

scenario 1 (mr=1) 4 

 

scenario 2 (mr=2) 8 

 

scenario 3 (mr=3) 12 

 

⁞ ⁞ ⁞ 

scenario n (mr=n) 4*n 
n-1

 

The general rule is that scenario n means (n-1) rods are distributed uniformly on 

each side length of the area (rectangular). Because the minimum length of a rod should be 

10 ft. and the maximum size of a substation should be 1000 ft. by 1000 ft., the value of 

mr will be in the range 1 to 100. 

Therefore, the new objective function should be changed to: 

 

)()(

)()(

),(min

exothrexothconnect

roddriverodcondtrenchcond

r

nnCC

LCCLCC

mDf



  (4.9) 

where, 
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rr mn 4 ; 
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a = substation length (m); 

b = substation width (m).  

4.5 Program Structure 

The flowchart of the OPTIMGRID program is shown in Fig. 4.4. First, it is 

necessary to obtain the substation initial design data used as input data into this program. 

The initial data should include: 

 Substation shape and dimensions (If the shape of a substation is rectangular, the 

dimensions contain length and width.) 

 Maximum fault current and division factor. The division factor is the ratio of the 

current flowing into the grounding system divided by the maximum fault current. 

 Fault duration time. The fault duration time is related to the voltage class of a 

substation and the detail relationship is shown in section 4.4.  

 Soil model and parameters which are obtained from the Wenner method described in 

details in Chapter 2  
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 Resistivity and depth of the surface material. (If there is no high resistivity surface 

material, the depth of surface material is treated as zero.) 

With the initial data, it is necessary to calculate the tolerable (allowable) touch and 

step voltages from (3.6) and (3.7) respectively, which are used as the upper bounds for 

the computed touch and step voltages like shown in (4.6) and (4.7). 

As stated earlier, the optimization process is a three-step procedure, in the first step, 

an approximate optimum is reached using the IEEE standard equations introduced in 

section 4.1. This IEEE standard provides substation engineers with 3 expressions, (4.1), 

(4.2) and (4.3), which are the approximate formulas to calculate the grounding systems 

parameters. However, the biggest advantage of these equations is they are continuous and 

differentiable. In other words, it is possible to use the conventional continuous 

optimization method like gradient descent methods. Although the optimization result is 

likely not as accurate as possible (though likely conservative) due to the approximations 

used in the derivations of equations of [1], the result should not be too far the globally 

optimal solution. Therefore, optimization using these equations with traditional and 

robust optimization techniques provides a good initial estimate of the optimal solution for 

the next stage in the optimization. For this first step, the objective function (4.9) remains 

unchanged and the Em, Es and Rg inequality constraints, (4.6), (4.7) and (4.8) are imposed 

using the IEEE equations, (4.1), (4.2) and (4.3), to calculate the values of Em, Es, and Rg, 
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instead of the methods described in Chapter 3., For this first step in the three step 

optimization process, the MATLAB tool functions “fmincon” and “GlobalSearch” need 

be used to find this initial estimate of the optimal solution. 

In the second step of the optimization procedure, the optimal solution from IEEE 

equations (first step) is used as an initial estimate for MATLAB’s “patternsearch” solver. 

This will not only improve the efficiency of pattern search procedure, but also reduce the 

probability of ending with the local optimal solution if which is more likely to happen if a 

poor initial estimate is used. 

After the pattern search procedure is exhausted, it is necessary to perform the 

perturbation test to determine whether the point obtained is a local optimum or an 

optimum at all. For example, Fig. 4.3 shows a 2-by-2 grounding grid with no ground 

rods. It is assumed that this grid resolution is obtained after running pattern search. If this 

is the globally optimal solution, the constraints (4.6), (4.7) and (4.8) will not be satisfied 

when making the grid resolution coarser. In other words, if it is possible to increase D 

until the grid resolution gets coarser (changed from 2-by-2 to 1-by-1 in this example) and 

the objective function is reduced while the constraints are still satisfied, the optimal 

solution at (D, mr)=(20, 0) is not a global optimal solution and the result is suboptimal. 

Conversely, if the constraints are violated by making such a change, it is at least plausible 

that the result is locally (and possibly globally) optimal. 
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If the optimal result after running pattern search is (D, mr) = (20, 1) in the example 

cited, it is necessary not only to verify the plausibility of the solution being optimal by 

changing (D, mr) = (20, 1) to (40, 1), which means making the grid resolution coarser. In 

addition, one must also verify the plausibility of the solution being optimal by changing 

(20, 1) to (20, 0), which means deleting four rods. In addition to making the grid coarser, 

deleting rods is another way of making the objective function smaller, a change that 

would violate the constraints if the solution were optimal. 

After completing the perturbation test and finding that the solution is not optimal, 

as the third step in the optimization procedure is implemented the genetic algorithm. The 

genetic algorithm used here takes more execution time than the pattern search; that is 

why the pattern search is the second step in the optimization procedure. Use of the 

genetic algorithm is the final step in the optimization process.  
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Fig. 4.4 Flowchart of the new grounding systems optimization strategy 
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4.6 Case Study 

Fig. 4.5, shows the top view of the Ealy Substation, which is SRP’s 69KV 

distribution substation.   

 
Fig. 4.5 Top view of Ealy substation with the old SRP design 

This substation has been in existence for twenty years. Fig. 4.5 is the original 

design drawing of this substation, including grounding systems and surface equipment. In 

the following example, we compare the safety metric calculated using OPTIMGRID with 

those calculated for the same design using WINIGS. 

As a test of OPTIMGRID, a redesign of the Ealy ground grid is investigated. The 

necessary input data for this redesign includes: 
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 Maximum fault current in 69KV System (If) = 7100 A; 

 Current division factor for flow path of the fault (Df) = 0.53; 

 Maximum fault current through the grounding system (Ig=If*Df) = 3780 A;  

 System voltage where highest ground potential rise occurs (Vs)= 69 KV; 

 Fault duration (tf) = 0.58 s; 

 Resistivity of upper-layer soil (ρ1) = 87.7 Ω m; 

 Resistivity of lower-layer soil (ρ2) = 57.6 Ω m; 

 Thickness of upper-layer soil (h) = 34.8 ft; 

 Resistivity of High Resistivity Surface Material (ρs) = 500 Ω m; 

 Depth of High Resistivity Surface Material (ds) = 6 inches; 

 Diameter of grounding rod (diar) = 0.628 inches; 

 Length of grounding rod (lr) = 10 ft; 

 Diameter of horizontal conductor (diac)= 0.528 inches; 

 Grounding grid length = (a) 270 ft; 

 Grounding grid width = (b) 300 ft; 

 Depth of the grounding grid below the earth surface (Dep) = 1.5 ft. 

While most of this data is preprogrammed in OPTIMGRID based on SRP’s current 

practices, the data listed here is required in commercial applications, such as WINIGS. 
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The OPTIMGRID application is limited in capability in comparison with WINIGS and 

assumes the use of SRP’s current practices. 

Recall that, among all these input data, some are specific to each substation, like 

grounding grid length and width, while some are fixed based on SRP rules like diameter 

of the grounding conductor and rods.  

Table 4.4 presents the result running the OPTIMGRID program, breaking down the 

runtime required for each step in the optimization procedure separately. However, the 

part of program, which executes the genetic algorithm, was taken out and run 

independently with the same input data, because the third step is a backup step and it was 

not needed for this case.  

Table 4.4 Comparison of the Results Among All Optimization Methods 

Method D (m) mr Cost ($) Emesh (V) Estep (V) Rg (Ω) Runtime 

OPTIMGRID 6.76 1 $73,962 243 183.3 0.353 72 mins 

FMINCON 8.47 1 $58,637 245.3 175.5 0.396 2.04 s 

PS 6.76 1 $73,962 243 183.3 0.353 71.3 min 

GA (run 

independently) 

6.71 1 $73,962 244.3 186.2 0.355 646 mins 

Etouch_allowable = 247 V, Estep_allowable = 532 V 
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In Table 4.4, the row FMINCON gives results for the conventional optimization 

method using the MATLAB “GlobalSearch” function and the MATLAB “fmincon” 

solver. PS is the pattern search method using MATLAB “patternsearch” solver and its 

initial values are obtained from FMINCON. GA is the genetic algorithm using the 

MATLAB “ga” solver, which for this example has stopped because the objectives change 

(function-change tolerance) is smaller than the stopping criteria (1e-6).  

It can be concluded from Table 4.4 that: 

 When the grid is rectangular, the meshes cannot be made exactly square since the 

length and the width of the grid, in general, cannot both be evenly divided by the 

same number. Therefore, it is necessary to make some approximations. In the case of 

Ealy, the mesh dimensions are taken as 6.76 m (22 ft.) on a side for D. For the actual 

geometry of Ealy, when the length (270 ft.) and the width (300 ft.) are divided by D 

and the answers are 12.27 and 13.64 increments respectively. To be conservative, the 

program proposes and does its calculation of a grid with number of meshes on a side 

equal to 12 by 13 with D equaling to 22 ft. It is this model that is used when 

evaluating the constraint equations and when comparing these results with allowable 

values. In the end, it is necessary to make another approximation that makes the grid 

resolution finer, thus the final report will recommend that the grid resolution should 

be 13 by14 meshes and each mesh length and width are 270/13, 300/14 respectively. 
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While this resolution is fortuitously acceptable for the Ealy design (discussed below), 

such cannot be guaranteed for all design. Presently, there is no way to guarantee that 

the grid designed by the program is safe. This real-to-integer conversion problem is 

one that was discovered too late in this phase of the work to corrected, but is being 

corrected by another student who is continuing this effort.  

 OPTIMGRID did not execute the third step in the optimization procedure, the genetic 

algorithms solver in MATLAB, because the result after running PS passed the 

perturbation tests. As evidence that the GA was not run is that the difference in the 

runtime between OPTIMGRID (total execution time) and PS is less than one minute; 

this extra execution time was used for finding the initial guess using FMINCON and 

the perturbation tests and preparation of the final output results. 

 Although the cost after running the first optimization step is the minimum, it is with a 

result of using the approximate equations of [1] when calculating grounding systems 

safety metrics (Emesh, Estep, Rg). Once more accurate calculations are performed, those 

involving the equation of Chapter 3, the safety constraints are not satisfied. However, 

the values (D,mr)=(8.47, 1) obtained from FMINCON are useful as initial estimated 

for the PS algorithm. The results from FMINCON are not far from the results 

obtained after executing the second optimization step, PS, which is (D,mr)= (6.76, 1). 

Finally, a comment about runtime: Obviously, the conventional optimization method 
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using the IEEE equations is much faster than the other methods (second and third 

optimization steps.) In addition, the pattern search method is also much faster than 

genetic algorithm and the optimal designs determined by both of these are almost 

equal. In our experience, the pattern search step often obtains the same results as the 

GA. However, the genetic algorithm is included as a backup method in the event that 

the pattern search method fails to yield an optimum. 

In order to check the accuracy of the OPTIMGRID’s solution, the author also 

applied WINIGS to see whether the safety requirements are satisfied or not for this 

particular case. 

Fig. 4.6 shows the top view of the grounding systems design obtained from 

OPTIMGRID for the Ealy Substation. The arrow line presents the measuring path and its 

direction. 
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Fig. 4.6 WINIGS grounding system diagram of the designed case 

Fig. 4.7 is obtained using WINIGS with the touch-voltage curve corresponding to 

the arrow line shown in the previous figure. The horizontal line in Fig. 4.7 is the 

allowable touch voltage. From this figure, the worst touch voltage is very close to the 

allowable value without exceeding it, which means this design satisfies all safety metrics.  
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Fig. 4.7 Touch voltage plot of the design case 

Similarly, Fig. 4.8 is the corresponding step voltage plot obtained using WINIGS 

with the allowable step voltage line. Obviously, the worst step voltage calculated with 

WINIGS is far lower the allowable value. This means that the binding constraint is the 

touch potential, as it is in most designs. 
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Fig. 4.8 Step voltage plot of the design case  



 119 

Finally, Fig. 4.9 is the report of the grounding resistance with respect to remote 

earth. The WINIGS reported grounding resistance, 0.3553 Ω, is essentially the same as 

the OPTIMGRID’s result (0.353 Ω) shown below.  

 Ground System Resistance Report Close

Study Case Title:
Grounding System:

MAIN-GND GRSYS_N 0.3553 1342.97 3780.00

Rp = 0.3553 Earth Current: 3780.00

Fault Current: 0.00

Split Factor: N/A

Isolated Grounding System Example
Example Grounding System

Node Name
(Ohms)

Voltage CurrentResistance*
(Volts) (Amperes)

Group Name

Driving Point

Equivalent Circuit Shunt Branch
* Resistance Definition: 

View Full Matrix

View Equivalent Ckt

Program WinIGS - Form GRD_RP01
 

Fig. 4.9 Grounding system resistance report 

In conclusion, the OPTIMGRID-recommended design of the Ealy Substation 

matches closely that obtained from WINIGS and it is believed that it is a reliable 

application for ensuring the safety of personnel in substations due to ground faults. The 

total cost for constructing this new grounding system recommended by OPTIMGRID is $ 

74k, based on the cost numbers provide by SRP. 
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5 CONCLUSIONS AND FUTRUE WORKS 

5.1 Conclusions 

In this thesis, there are three main parts, including analysis and development of a 

soil model application, calculation of grounding system safety metrics and optimization 

of grounding systems. These three parts are not separated from each other. They are all 

parts of a process need to design a grounding system for a substation. The general 

flowchart describing the completed substation grounding systems design is shown in Fig. 

5.1. 

Apply Wenner method to do 
field measurement

Use OPTIMGRID/WINIGS to 
obtain the soil parameters

Implement OPTIMGRID to find the optimal 
design (grid resolution and rods placement)

Check the final design’s safety 
with WINIGS/field tests

Construct the grounding system

 

Fig. 5.1 Flowchart of the grounding system design 
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A summary of this work and major conclusions are drawn follow. 

 The four-probe measurement method (Wenner method) is applied in this thesis. 

An application to distill a two-layer soil model from Wenner-method 

measurements was develop and tested against the only existing industry package 

that builds such models. The tests show reasonable correspondence between the 

two methods. While there is no way to know which method is more accurate, 

though every effort has been mad to ensure that the application developed here is 

accurate, at minimum this package gives the substation engineer both a sanity 

check on the results from the WINIGS results and allows mutual verification. The 

two series of data, apparent resistances as well as corresponding separations, are 

compiled in an Excel document, which is the input data to the OPTIMGRID’s 

Soil Model Application. Using a finite-series approximation to the traditional 

infinity series apparent resistivity equation allows the three-parameter soil model 

(ρ1, ρ2, h) to be calculated efficiently. These parameters are calculated using 

Newton’s method applied to a nonlinear least square regression, whose objective 

is to find the best (three) soil parameters that best fit the measure data to a 

theoretical curve based on those parameters. Finally, an improved Chi-square test 

is proposed to obtain the confidence interval (error) at 80% confidence level for 

each soil parameter. It is a practical way to check the quality of the parameters 
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estimation. 

 In order to make persons in the substation safe, the grounding systems safety 

metrics (Emesh, Estep, Rg) need be lower than the allowable values. Due to different 

grounding systems, it is necessary to calculate the safety metrics for each case. In 

other words, the safety metrics vary as the design of grounding system is 

changing. As a result, it is very important to calculate these metrics accurately and 

they are the left-hand-side of the constraint equations in optimizations. 

 To obtain accurate electric field calculations, it was found necessary to subdivide 

the ground-grid conductors and ground-rods into smaller segments and calculate 

the self-resistance of each segment and mutual resistance between every pair of 

these smaller segments. Using this approach, it was found to be possible to find 

accurate self- and mutual-resistances from the Voltage Distribution Factor (VDF) 

matrix. With the matrix method, the segment leakage currents and the grounding 

resistance can be calculated accurately. In this approach, the Green’s functions are 

improved to calculate the field point potential due to any line current source, 

allowing the earth potential at any point can be computed as well as the touch 

voltage and the step voltage accurately.  

 The complex images method was employed instead of the conventional images 

method. The author developed all the complex-images equations for calculating 
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self- and mutual-resistances in all traditional conductor orientations. With the help 

of complex images method, the computation efficiency has been improved 

significantly. 

 Three optimization methods are used to optimize (minimize cost of) the 

grounding system and they are all included in the OPTIMGRID. The first one 

using “fmincon” and “GlobalSearch” is applied to provide the valuable initial 

guess to the second method “patternsearch”. The “patternsearch” solver is the 

main solver for optimization process, while the third method, the genetic 

algorithm, is a backup method with the largest “runtime cost” among these three 

methods but has a higher degree of reliability than the pattern search algorithm. 

The application of optimization to ground grid design and, in particular, these 

three optimization methods and their combination, it the first know approach to 

ground-grid optimization. 

 For simplicity and practicality, the author makes some assumptions based on SRP 

rules. Therefore, the variables only contain the spacing between two adjacent 

conductors (D) and the mode of grounding rods placement (mr). From the actual 

cost data by SRP, the objective function, which is the total cost, is developed with 

the two variables. 

 The author has used SRP’s Ealy Substation as an example to run OPTIMGRID in 
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designing an economical grounding system of this substation. With the input data 

from SRP, it is possible to get the result through the new software. The results 

from the three-optimization approaches are compared. The comparison for these 

examples supports the conjecture that the pattern search approach is the best 

choice as a compromise between another two methods based on the need of 

accuracy and efficiency. 

5.2 Future Works 

 The optimization function for OPTIMGRID is limited to square and rectangular 

shape of substation. However, triangular, L-shape and T-shape substations do 

occur. Hence, the program will need to be further developed to include these 

geometries. 

 The unequally spaced grounding grid would be more economical. However, it 

will bring more complexity to the optimization problem, because it is necessary to 

define more variables in the objective function and constraints.  

 The study of how to place grounding rods is meaningful. In the existing model, 

the rods are only placed around the outside perimeter of a substation. There is no 

evidence that the interior rods are not economical or useful. As a result, several 

experiments might be done with different rod locations in order to draw some 

general conclusions. 
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 It is always helpful to learn more about optimization theory to determine whether 

better optimization methods exist that fit this problem and test more optimization 

solvers could yield improvement in reliability and execution time. In this way, 

methods more efficient than pattern search and genetic algorithms may be found. 

The long runtime is the biggest challenge for it. 

 There has already been a developed user interface for Soil Model Application. It 

is necessary to create a completed user interface for the total OPTIMGRID 

software and a user’s manual.   
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