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ABSTRACT 
 

 Advances in software and applications continue to demand advances in memory. 

The ideal memory would be non-volatile and have maximal capacity, speed, retention 

time, endurance, and radiation hardness while also having minimal physical size, energy 

usage, and cost. The programmable metallization cell (PMC) is an emerging memory 

technology that is likely to surpass flash memory in all the listed ideal memory 

characteristics. A comprehensive physics-based model is needed to fully understand 

PMC operation and aid in design optimization. 

 With the intent of advancing the PMC modeling effort, this thesis presents two 

simulation models for the PMC. The first model is a finite element model based on 

Silvaco Atlas finite element analysis software. Limitations of the software are identified 

that make this model inconsistent with the operating mechanism of the PMC. 

 The second model is a physics-based numerical model developed for the PMC. 

This model is successful in matching data measured from a chalcogenide glass PMC 

designed and manufactured at ASU. Matched operating characteristics observable in the 

current and resistance vs. voltage data include the OFF/ON resistances and write/erase 

and electrodeposition voltage thresholds. Multilevel programming is also explained and 

demonstrated with the numerical model. The numerical model has already proven useful 

by revealing some information presented about the operation and characteristics of the 

PMC.  
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1. INTRODUCTION 

1.1. Motivation for New Memory Technology 

 Today, the most popular type of non-volatile memory (NVM) is flash memory. 

For example, NAND-flash is commonly used in memory cards, USB flash drives, and 

solid-state drives. Advances in software and applications continue to demand advances in 

memory. The ideal memory would be non-volatile and have maximal capacity, speed, 

retention time, endurance, and radiation hardness while also having minimal physical 

size, energy usage, and cost. Most computers still use volatile main memory such as 

dynamic random-access memory (DRAM), because it operates at a much higher speed 

[1]. One of the primary drawbacks of DRAM is that it must be refreshed constantly, 

taking significant power, or the system state is lost. Computers and their sub-systems 

should be turned off to save energy when not in use; however, people tend to leave them 

on to avoid long booting times in which the operating system is loaded from slower 

NVM into the faster DRAM. NVM of comparable speed and endurance could 

supplement or eliminate DRAM and have the benefits of instant-on/off systems 

capability and greatly reduced energy usage. Each NVM cell could remain off while not 

being written or read whether the rest of the system is off or on. In an effort to shrink the 

gap between slow storage and fast RAM, flash memory technology has been greatly 

improved since its debut in 1984 as summarized in Table I with data from [2-4]. 

Nonetheless, it has not caught up to the speed or endurance of DRAM and maintaining 

endurance and reliability is an ever increasing challenge with technology scaling [5]. 

Furthermore, it is expected that down-scaling of metal-oxide-semiconductor (MOS) 

transistor-based memory, including DRAM and flash, will halt at a feature size of about 
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5-7 nm by year 2020-2025 due to a breakdown of the MOS operating physics [5]. There i 

a growing interest in alternative memory technologies with the goal to surpass the 

limitations of transistor memory [6-8] and offer other application opportunities such as 

stochastic neuromorphic auditory and visual cognitive processing applications [9]. 

 

Table I:  Flash memory of 1984 versus 2013 

Year Capacity (bits) Density (bits/mm2) Write Speed (bits/s) 

1984 2.56×103 7.74×103 1.00×102 

2013 9.01×1013 9.41×108 3.35×1010 

 

1.2. Meet the PMC 

 One emerging research platform technology is the programmable metallization 

cell (PMC), which is useful for applications in memory and beyond, such as self-healing 

interconnects for flexible electronics [10], programmable threshold logic [11], 

neuromorphic computing [9], micro-electromechanical systems [12], microfluidics [13] 

and optics [14]. The PMC has been called many names based on its application including 

conductive-bridging (CB) cell, conductive-bridging random-access memory (CBRAM), 

resistive random-access memory (RRAM/ReRAM), memristor, electrochemical 

metallization (ECM) cell (EMC), redox memory, solid-electrolyte memory, nano-ionic 

memory, and Nanobridge. As the names suggest, the cell changes its resistance by 

constructing and destructing a conducting bridge between two electrodes via 

electrochemical reduction-oxidation (redox) reactions and ionic transport. The PMC is a 

two-terminal switch with a high-resistance in the non-bridge off-state (OFF) and low-
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resistance in the bridged on-state (ON). The bridge can be repeatedly constructed and 

destructed and is adequately stable in both states without static power dissipation, as with 

most NVM technologies. CBRAM is a commercially available PMC-based NVM that 

combines key features of flash and DRAM including small size (< 20 nm, Fig. 1), non-

volatility (10 years at 70°C, Fig. 2), high endurance (> 106 cycles, Fig. 3), multilevel 

programmability (Fig. 4) [15], fast random access speed (< 50 ns) [16], and very low 

energy usage as compared to Flash in Table II [17]. 

 

 
Fig. 1: Maintained switching ratio vs. cathode size demonstrates good PMC scalability 
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Fig. 2: Persistent on-state resistance at elevated temperatures demonstrates good PMC 

state retnetion time 

 

 
Fig. 3: Maintained switching ratio vs. cycle demonstrates good PMC endurance 
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Fig. 4: On-state resistance vs. programming current demonstrates PMC multilevel 

programmability 

 

Table II:  Flash versus PMC energy usage 

Technology Program Energy (J) Erase Energy (J) 

Flash cell 5E-09 1.0E-08 

PMC 3.4E-12 2.40E-13 

 

 While various PMC designs demonstrate favorable performance trends that 

suggest greater potential for widespread adoption, a comprehensive physics-based model 

has yet to be developed as noted in the latest International Technology Roadmap for 

Semiconductors report [5]. Such a model is needed to better understand PMC operation 

and aid in design optimization for better performance. The insight provided by that model 

would also allow the development of an accurate compact model for circuit simulation, 

which is necessary for efficient large scale circuit design with PMC devices. This thesis 

presents two simulation models for the PMC to advance the modeling effort. Chapter 2 

provides material and device theory applicable to the PMC as well as some electrical data 
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and imagery of various filament types. Chapter 3 presents a novel approach to simulating 

the PMC in commercial finite element device simulation software. Chapter 4 presents a 

physics-based numerical model developed for the PMC with great success. 
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2. PMC THEORY 

2.1. Structure and Materials of the PMC 

 The PMC typically has a three-layer structure of metal-insulator/electrolyte-metal 

(MIM/MEM), though designs with more layers do exist [8, 18]. An electrochemically 

active metal (e.g., Ag or Cu) is used for the anode while the cathode is relatively inert 

(e.g., Pt or W). Note that W forms compounds with Se, which is used in some 

electrolytes. The solid-electrolyte is an ion conductor and sometimes an electron insulator 

[19]. Many chemical compounds have been used as the solid-electrolyte, although they 

are mostly oxides or chalcogenides. A non-exhaustive summary of reported combinations 

of electrode and insulator/electrolyte materials is given in Table III [8]. Some materials 

used, such as GexSy and GexSey, start as insulators without mobile ions and become ionic 

or mixed (ionic and electronic) conductors containing mobile ions by a thermal, 

chemical, or photochemical doping process during fabrication or by an electrical forming 

process after fabrication [19]. Density functional calculations of Ag in Ge2Se3 have 

shown that isolated, interstitial Ag will auto-ionize by donating an electron to the 

conduction band, which enables the ionized Ag atom to transport in the presence of an 

electric field. This behavior is likely common in narrow-gap materials and insulators with 

large numbers of acceptor defect states in the gap [20]. 
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Table III:  Reported PMC material combinations 

Anode metal Ag Cu 

Electrolyte Cathode metal 

GexSy W W 

GexSey W, Pt, Ni W 

Ge-Te TiW TaN 

GST Mo 
 

As–S Au 
 

ZnxCd1−xS Pt 
 

Cu2S 
 

Pt, Ti 

Ta2O5 
 

Pt, Ru 

SiO2 Co W, Pt, Ir 

WO3 W W 

TiO2 Pt 
 

ZrO2 Au 
 

GdOx 
 

W 

 

2.2. Basic Operation of the PMC 

 The PMC exhibits bipolar operation meaning that it is switched ON (i.e., “set” or 

“programmed”) and OFF (i.e., “reset” or “erased”) with opposite polarities. The cell is 

programmed by applying sufficient positive voltage on the anode, which creates an 

electric field across the cell and causes the anode to oxidize at its interface with the 

middle, ion conducting layer. The cations are driven through the solid-electrolyte by drift 

and diffusion to the cathode where they meet an electron and reduce. The 

electrodeposition builds a dendritic structure that serves as a conductive filament between 

the cathode and anode, i.e., metallizing the cell. The filament can be broken with 

application of sufficient negative voltage on the anode and this cycle is repeatable. 
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 The on-state resistance can vary by orders of magnitude depending on the 

robustness of the bridge, which depends on the programming compliance current limit 

[21]. A higher programming current creates a more robust bridge, which makes the 

resistance smaller. The PMC is typically tested by setting a current limit and sweeping 

the voltage to a value greater than the OFF/ON switching threshold voltage for the 

particular PMC. The bridge will form at this threshold voltage and continue to increase 

its girth which decreases the resistance until the voltage falls below the threshold for 

electrodeposition (Vfwd). Because the compliance current limit, Icomp, and Vfwd, are fixed, 

the set resistance will be 

  𝑅𝑠𝑒𝑡 = 𝑉𝑓𝑤𝑑/𝐼𝑐𝑜𝑚𝑝  (1) 

according to Ohm’s law. There may be some slight variance in Vfwd due to random 

variations in fabrication. The resistance can be measured without switching its state by 

applying a small positive voltage on the anode and measuring the current. 

 The electrical input for a standard test of a real PMC is a double DC voltage 

sweep from -1V to 1V and back to -1V using a semiconductor parameter analyzer. The 

DC sweep is actually a specified amount of time spent at discrete voltage steps such as 1 

ms at 1 mV increments from 0 to 1V. This measurement is actually quasi-DC or 

transient. The frequency of a DC signal is 0 Hz, which means that it never changes. In the 

provided example, the voltage is changing every millisecond. The voltage sweep rate, 

and even DC, can affect the behavior of the PMC, because it depends on the history of 

charge flow. In simulation, DC sweeps are truly DC since it is just a calculation. 
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Consequently, PMCs should not typically be simulated with DC sweeps. Rather, a 

transient voltage ramp simulating a real quasi-DC sweep is more appropriate. 

 

2.3. Electrical Data 

 Current versus voltage (I-V) and resistance versus voltage (R-V) data recorded 

from an Arizona State University (ASU) ChG PMC is plotted in Figs. 10-12. The data 

come from two successive measurements of a single device recorded by an Agilent 

4156C Precision Semiconductor Parameter Analyzer. The test performed is a double DC 

voltage sweep from -0.5V to 0.5V and back to -0.5V with 5 mV steps at a rate of 1 V/s 

and a compliance current limit of 50 µA. The PMC is initially OFF, switched to ON and 

then returned to OFF. The write and erase threshold voltages for this device are 

approximately 150 mV and -60 mV, respectively. The OFF resistances are 59.5 MΩ and 

36.6 MΩ at 10 mV for the first and second tests, respectively. The ON resistances are 

37.3 kΩ and 26.2 kΩ at 10 mV for the first and second tests, respectively. The first and 

second OFF/ON resistance ratios are 1.60E3 and 1.40E3, respectively. Note that when 

the current is at the 50 µA limit the displayed voltage continues along the set DC sweep, 

but the actual voltage is reduced. The R-V data in Fig. 7 is calculated with the displayed 

voltage and is therefore erroneous where the current is limited. 
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Fig. 5:  ASU PMC I-V characteristic on a linear y-scale 

  

 

Fig. 6:  ASU PMC I-V characteristic on a logarithmic y-scale 

  

-1E-6

0E+0

1E-6

2E-6

3E-6

4E-6

5E-6

-0.20 -0.10 0.00 0.10 0.20

C
ur

re
nt

 (A
) 

Anode Voltage (V) 

Test 1

Test 2

1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

-0.20 -0.10 0.00 0.10 0.20

C
ur

re
nt

 (A
) 

Anode Voltage (V) 

Test 1

Test 2



  

12 

 

Fig. 7:  ASU PMC R-V characteristic on a logarithmic y-scale 

 

2.4. Electrode Current 

 In the on-state, current is primarily due to electron flux through the metallic 

filament. Current in the off-state is mostly charge transfer caused by oxidation and 

reduction of the active metal at the electrodes.  Charge transfer refers to the active metal 

ions transferring from the electrodes into the electrolyte or vice versa. For example, an 

Ag atom on an electrode can become a cation by oxidation and then transfer into the 

electrolyte over an energy barrier. The current density of the charge transfer can be 

described by the Butler-Volmer equation [22, 23]: 

  𝑗𝐵𝑉 = 𝑗0 �𝑒𝑥𝑝 �
𝛼𝑧𝑒𝜂
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��  (2) 

where j0 is the exchange current density, α is the transfer coefficient, ze is the ion charge, 

η is the electrochemical overpotential, and kT is the thermal energy. Equation (2) applies 
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first and second terms of (2) are the anodic and cathodic currents, respectively. Anodic 

partial current is the flow of positive charge into the electrolyte from the electrode 

whereas cathodic current flows in the opposite direction. In equilibrium, the anodic and 

cathodic currents cancel, and the magnitude of each is the exchange current. 

 

 
Fig. 8: Butler-Volmer electrode current versus overpotential. The anodic and cathodic 

components are shown as ja(η) and jc(η), respectively. The total electrode current is 
symmetric because the transfer coefficient α was set to 0.5 for demonstration. 

 

2.5. Ion Transport 

 Ions in the electrolyte need to transport and reduce at the cathode in order to build 

the conductive filament. Transport of the ions is driven by electric field and thermally 

activated ion hopping between adjacent sites which is described by the model of Mott and 

Gurney [24, 25]. The ionic hoping current density as a function of electric field in the 

case of a symmetric energy barrier Wa is given by [22, 25, 26]: 

  𝑗ℎ𝑜𝑝 = 2𝑧𝑒𝑐𝑎𝑓(−𝑊𝑎
𝑘𝑇

)sinh (𝐸∙𝑧𝑒∙𝑎
2𝑘𝑇

)  (3) 



  

14 

where c is the concentration of mobile ions with charge ze, a is the hoping distance, f is 

the attempt-to-escape frequency, Wa is the activation energy, E is the electric field, and 

kT is the thermal energy. 

 

2.6. Filament Structure 

 The first known report of a PMC was published in 1976 with the title “Polarity-

dependent memory switching and behavior of Ag dendrite in Ag-photodoped amorphous 

As2S3 films” [27]. In addition to characterizing a vertical three-layer PMC, they also 

fabricate and test a coplanar PMC for the purpose of visually observing the switching 

phenomena. They observed the forming of the Ag filament through a microscope. A 

photomicrograph just after the filament bridged the electrodes and the device abruptly 

switched to low-resistance is shown in Fig. 9 from [27].  It clearly shows that the filament 

is dendritic; that is, the filament branches like a tree, especially at the top (Ag side) where 

the electrolyte was partially photodoped. The photodoped region contains a high 

concentration of Ag unlike the non-photodoped region. The non-photodoped region 

yields a sampling dendrite; i.e., a medium amount of branching, or sampling of the 

surroundings, as dominant growth continues in a single selective direction. The 

photodoped region yields more of a space-filling dendrite; i.e., a high amount of 

branching that fills the space. The distance between the electrodes is not mentioned, but it 

is likely on the order of micrometers or larger, which is much larger than the common 

nanometer range thickness of PMCs today. The PMC was then switched OFF with a 

reverse bias, but no change in the filament was observable by visual inspection. 
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Fig. 9: Micrograph of Ag dendrite in coplanar Ag/As2S3/Au PMC 

 

 A study published in 2007 provides scanning electron microscope (SEM) images 

of a coplanar Ag/H2O/Au PMC [28]. The gap between the electrodes is 3 µm, and a drop 

of deionized water fills the gap to serve as the ionic transport medium. This structure 

yields greater space-filling dendrites as shown in Fig. 10 from [28]. The image resolution 

was not high enough to resolve the fine structure at the point of contact with the anode, 

but the authors believe that only one “nano-twig” at the top of the dendrite connects to 

the Ag electrode. An electrostatic potential simulation of the “nano-twig” reveals that the 

potential-drop and field is greatest at the narrowest part of the filament as shown in Fig. 

11 from [28]; thus, this is the point of dissolution when the PMC is switched OFF. No 

images are provided after switching OFF, and thus it may be safe to assume that the 

remaining vast majority of the dendrite did not dissolve. 
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Fig. 10: SEM images of space-filling dendrite in coplanar Ag/H2O/Pt PMCs after 

applying one volt to the Ag electrode for (a) two seconds and (b) four seconds 

 

 
Fig. 11: Electrostatic potential simulation of dendrite tip while switching OFF: (a) Sketch 

of dendrite and anode. (b) Tip of dendrite in higher magnification, representing the 
situation just before dissolution. After applying -200 mV on the anode, the blue 

equipotential lines are 10 mV from each other. The black cones represent the electrical 
field and direction of Ag+ ion drift. (c) The dendrite retreats due its dissolution. As soon 

as the electrical contact is severed, the field distribution changes and accelerates 
dissolution of the dendrite tip. 

 

 A study published in 2010 provides SEM images of a coplanar Ag/TiO2/Pt PMC 

shown here in Fig. 12 [29]. The gap between the electrodes is less than 700 nm. Although 

the electrode gap is much smaller than the previous examples, the threshold voltage for 

switching on is much larger; presumably, this is due to the different insulator/electrolyte 

material properties. The forming switch is established when the filament is created for the 

first time. The SEM image provided in Fig. 12(a) was taken after the forming switch. 

This image and additional transmission electron microscopy (TEM) images show that 
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filament had broken up into non-connecting Ag spheres with an average diameter of 

about 8 nm. It is deduced that the filament was continuous upon bridging and then 

separated into spheres based on the I-V measurements provided in Fig. 12(b) in which the 

second voltage sweep begins within one second after the forming switch. If the filament 

had remained as it was upon forming, then the PMC would be ON from the beginning of 

the second sweep. Instead, the PMC switched OFF on its own and then switched ON 

again at a lower voltage during the second sweep. Rayleigh instability is the given reason 

why the nano-filament separated into spheres. Although an image of the filament in the 

supposed continuous state is not provided, it would seem that no significant branching 

occurred. This type of filament is a selective dendrite. 

 

 
Fig. 12: SEM image of coplanar Ag/TiO2/Pt PMC after first on-switch, and 

corresponding current-voltage measurement of the first and second on-switch 

 

 The preceding three examples of PMC Ag filaments show that not all filaments 

are created equal. The first PMC (Fig. 9) has a sampling dendrite in the non-photodoped 

(insulator) region and more of a space-filling dendrite in the photodoped (electrolyte) 

region. This dendrite is largest at the anode. The second PMC (Fig. 10) has space-filling 

dendrites in a liquid insulator (H2O) that are smallest at the anode. The third PMC (Fig. 
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12) has a selective dendrite in a solid insulator (TiO2). The different dimensions and 

materials between the three coplanar PMCs must cause different filament forming 

kinetics. This presents a challenge in making a comprehensive PMC simulator that can 

emulate an assortment of materials over a wide range of dimensions. At this point, it may 

be helpful to selectively reduce the PMC design and study space to a narrower range of 

materials and size. For example, thinner electrolytes might produce dendrites that are 

more selective, which could simplify the modeling. 
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3. FINITE ELEMENT MODEL 

3.1. Finite Element Method 

 Simulating semiconductor devices based on fundamental physics involves solving 

charge carrier statistics and carrier transport differential equations including the 

continuity, drift-diffusion, and Poisson equations. A device is represented by a boundary 

value problem in which the behavior of charge carriers in the domain are governed by the 

aforementioned differential equations with additional restraints called boundary 

conditions around each of the material’s boundaries. Electrical inputs, such as voltage 

and current, comprise some of the boundary conditions. A simulation of the device is a 

solution to the coupled differential equations that also satisfies the boundary conditions. 

The finite element method (FEM) is a numerical technique in mathematics for solving 

boundary value problems which divides the domain into many smaller domains called 

finite elements. Using many simple element equations for the finite elements allows for 

approximation of the more complex equation over the whole domain.  

 Atlas is a commercial semiconductor device simulation framework from Silvaco 

that utilizes FEM. This finite element analysis (FEA) software provides Device 

Technology CAD (Device TCAD), which enables device technology engineers to 

simulate the electrical, thermal, and optical behavior of semiconductor devices. The 

process of simulating a semiconductor device in Atlas basically consists of defining the 

structure, finite element mesh, materials and properties, behavior models, electrical 

inputs, and then the simulation runs while the materials and mesh remain fixed in 

position. 
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3.2. Finite Element Model Implementation 

 Finite element simulations are performed with Silvaco Atlas on a two-

dimensional structure representative of a three layer PMC. Fig. 13 shows the structure 

with the anode, electrolyte and cathode layers from top to bottom. The ChG film 

electrolyte is modeled as a wide bandgap semiconductor. Table IV reports the material 

constants used for the electrolyte and electrodes, which were extracted from data reported 

in [30] and obtained from density functional theory (DFT) calculations [31]. 

 

 
Fig. 13:  Two dimensional FE simulation structure 
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Table IV:  Material constants used in Atlas simulation 

ChG bandgap 2.5 eV 

ChG relative permittivity 5.0 

ChG affinity 3.45 eV 

Anode work function 4.6 eV 

Cathode work function 4.2 eV 

 

 Atlas solves standard carrier statistics and transport equations for semiconductors. 

Additional models are utilized to simultaneously perform ion transport and reaction 

calculations on the structure. Continuity equations for the model are expressed 

analytically as 

  
𝑑𝑁𝐴𝑔+

𝑑𝑡
= −�∇𝐹𝐴𝑔+� − �𝑅𝐴𝑔+� + �𝐺𝐴𝑔+�  (4) 

  𝑑𝑁𝐴𝑔
𝑑𝑡

= −∇𝐹𝐴𝑔 − 𝑅𝐴𝑔 + 𝐺𝐴𝑔  (5) 

  𝑑𝑛
𝑑𝑡

= −∇𝐹𝑛 − 𝑅𝑛 − 𝐺𝑛 (6) 

where NAg
+, NAg, and n are the concentrations of Ag+, neutralized Ag, and electrons, 

respectively. The flux for each charged species, i.e., parameter FX in equations (4-6), are 

obtained from the drift-diffusion equations 

  𝐹𝐴𝑔+ = −�𝐷𝐴𝑔+� �
𝑞𝛻𝛹
𝑘𝑇

+ 𝛻𝑁𝐴𝑔+� (7) 

  𝐹𝐴𝑔 = −𝐷𝐴𝑔𝛻𝑁𝐴𝑔 (8) 

  𝐹𝑛 = −𝐷𝑛 �−
𝑞𝛻𝛹
𝑘𝑇

+ 𝛻𝑛� (9) 
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where DAg
+, DAg, and Dn are the diffusion constants for Ag+, neutralized Ag, and 

electrons, respectively, and Ψ is the potential within the simulated electrolyte. The Ag+ 

diffusion constant is estimated from first principles calculations using the diffusivity 

approximation 

  𝐷 = 𝑎2𝑓𝑒𝑥𝑝 �−𝑊𝐴
𝑘𝑇

� (10) 

where a is the average hopping distance of the particle, f is the attempt to escape 

frequency, and WA is the activation energy for hopping. EA comes directly from atomistic 

calculations using the nudged elastic band method [32]. Preliminary investigations of 

interstitial Ag+ in a crystalline model of Ge2Se3 indicates activation energies greater than 

2.5 eV within the layer while transport along the layer surfaces has much lower activation 

energy of approximately 0.5 eV. The attempt-to-escape frequency is taken from 

vibrational calculations showing approximately 5x10-11 s-1. The hopping distance is 

approximately 7 Å. Plugged into (10), these predict a diffusivity of about 1.0x10-11 cm2/s 

at room temperature. The recombination and generation terms in equations (4-6) capture 

the kinetics of the forward and reverse chemical reactions expressed as 

  𝐴𝑔+ + 𝑒− ↔ 𝐴𝑔 (11) 

The forward and reverse reactions are described by (12) and (13), respectively. 

  𝑅𝐴𝑔+ = 𝑅𝑛 = 𝐺𝐴𝑔 = 𝑘𝐹𝑤𝑑𝑒𝑥𝑝 �
−𝑊𝐴𝐹𝑤𝑑

𝑘𝑇
� �𝑁𝐴𝑔+�(𝑛) (12) 

  𝐺𝐴𝑔+ = 𝐺𝑛 = 𝑅𝐴𝑔 = 𝑘𝑅𝑒𝑣𝑒𝑥𝑝 �
−𝑊𝐴𝑅𝑒𝑣

𝑘𝑇
� �𝑁𝐴𝑔� (13) 
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The forward and reverse reaction rate coefficients, kFwd and kRev, and forward and reverse 

activation energies, WAFwd and WARev, are also estimated using the first principles, DFT 

calculations. 

 

3.3. Generic Ion Model Explained 

 Atlas allows for doping profiles of species to be defined for the generic ion 

transport and reaction models where the species are neutral and charged particles that can 

react with each other and free carriers. For a PMC, a neutral species (sp0) could represent 

Ag, and a +1 charged species (sp1) could represent Ag+. To serve as the source of Ag+, 

the structure is initially doped with sp1. A built-in electric field due to the electrode work 

function difference forces sp1 toward the anode in equilibrium. Initial equilibrium yields 

a highly sloped sp1 doping profile within the electrolyte with greatest concentration next 

to the anode as shown in Fig. 14 [31]. 
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Fig. 14:  Distribution of Ag+ in equilibrium along vertical center cutline 

 

 Upon applying a voltage greater than the write threshold voltage to the anode, sp1 

begins to transport toward the cathode. The required process from there is to have sp1 

meet an electron at the cathode to recombine with and form sp0, representative of neutral 

Ag. Subsequent sp1 should then be able to recombine upon reaching the newly formed 

sp0. That process should repeat thereby forming a bridge of sp0 from the cathode back to 

the anode. 

 Unfortunately, the species cannot behave as required to simulate PMC operation. 

The species can only transport, react with other species and free carriers, and simply exist 

as arbitrary neutral or charged dimensionless particles. The species exist in concentration 

rather than as individual particles that fill discrete spaces and the species cannot react 

with the device materials. Therefore, the species are not capable of forming any type of 

phase, conductive or not, which is required for the filament. 
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 There is another problem even if the species could form regions of greater 

conductance. The long-rage disorder in ChG solid-electrolyte provides fast transport 

channels for Ag+ [22]. Those channels would determine the possible routes of Ag+ and, 

consequently, possible shapes of the filaments. Atlas cannot simulate those channels for 

the species to navigate and fill. Unlike Ag in nano-voids, the species move unrestricted in 

location, and their concentration gradients are relatively gradual. 

 Atlas performs some computational physics that need to be applied to the PMC 

such as standard carrier statistics and carrier transport; however, its generic ion transport 

and reaction model currently has shortfalls making it incapable of simulating a PMC. 

Atlas is not made to simulate electrochemical devices, such as the PMC, in which metal 

is rearranged. No FEA software has been reportedly developed for a PMC as of yet. 

 

3.4. Generic Ion Model Workaround 

 A workaround was devised to address the non-conductance of sp0, which is the 

neutral species representing neutral Ag in the electrolyte. First, a bit more explanation of 

the simulation in Atlas is necessary. Atlas has a transient solution mode which is used to 

simulate the quasi-DC measurement as discussed in Chapter 2.2. Like the quasi-DC 

measurement, a transient simulation is a series of small voltage steps over time. The 

transient setup is defined by the initial and ending voltage, total ramp time, and a 

maximum time step between voltage steps. A solution is calculated at each voltage-time 

step. The voltage increment between solutions is not explicitly defined. The time step 

(and voltage step) may be dynamically reduced if the solution does not converge with the 

maximum step. If the generic ion model could produce a conductive filament, then 



  

26 

simulation of the PMC switching on would consist of a single voltage-time sweep. 

Because sp0 is not conductive, a workaround is necessary to add something conductive in 

place of sp0 as it occurs. The conductance of the filament is important even before the 

electrodes are bridged, because as the filament shrinks the distance between the 

electrodes the electric field increases even with a constant voltage applied. In turn, the 

growth rate and selectivity of the dendrite are expected to increase. 

 The idea of the workaround is to split the single transient simulation into many 

transient simulations. Then, n-type dopants (donors), serving as the conductive material, 

can be added to match the doping profile of sp0. The result is that a bridge of donors is 

grown across the electrolyte. While this is not equivalent to the precise nature of neutral 

Ag in the film, the conversion does effectively reduce the resistance across the film as 

sp0 grows with increasing anode voltage. Inserting metal instead of donors would seem 

like a better option, but that is not an option in Atlas. All metal is simulated as ideal 

metal, which means it has no resistance. While that could possibly work during vertical 

filament growth, the simulation would prematurely cease upon bridging. Only one 

electrode would exist at that time, and Atlas requires two or more electrodes. There are 

several pieces required for this multipart simulation including, an initial input deck, a 

running input deck, a Python script to generate doping profiles from the output structure 

files, an AWK script to update the running deck, and another Python script to bring these 

pieces together for an automated multipart simulation. Appendix A describes the 

multipart simulation in greater detail and provides the codes. 
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3.5. Simulation Results 

 The finite element model multipart transient simulation is performed by 

increasing the voltage on the anode in 0.1V increments up to 0.9V while the cathode is 

fixed at 0V. The voltage ramps up in 1 µs and is held at each increment for 10 µs. The 

sp1 (Ag+) concentration at voltages of 0V, 0.2V, 0.4V, 0.6V, and 0.8V along the vertical, 

center cutline are plotted in Fig. 15 [31]. The ions drift away from the anode with 

increasing voltage and begin to accumulate at the cathode interface between 0.2 and 

0.4V. An additional simulation ramping down the voltage to 0V shows that the ions 

return to their equilibrium distribution within 100 µs. It should be noted that the transport 

times are highly dependent on the diffusion constants in equations (7–9). Refinements on 

the first principles calculations and parametric extraction from experimental data may 

lead to adjustments of the diffusivity values [31]. 
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Fig. 15:  Ag+ distribution with increasing anode voltage and cathode fixed at 0V 

 

 The evolution of sp0 and donor (neutral Ag) concentration versus anode voltage is 

plotted in Fig. 16 [31]. The figure shows a significant rise in the concentration and 

evidence of species accumulation at the cathode interface for voltages above 0.4V. Note 

that the concentrations are uniform across the width of the structure instead of forming a 

thin dendrite. As explained in Chapter 3.3, the FEA software is not able to accurately 

model the dendritic bridging mechanism. 
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Fig. 16:  Ag distribution with increasing anode voltage and cathode fixed at 0V 

 

 Fig. 17 plots the resistance versus anode voltage during the simulated voltage 

sweep [31]. The resistance before programming is greater than 1 GΩ. The resistance 

exhibits an exponential decrease during the voltage sweep up to 0.4V. Above 0.4V, the 

change in resistance becomes linear and reaches approximately 300 kΩ at 0.9V. Further 

simulation reveals that this low resistance level is maintained when the anode is returned 

to 0V. Although the resistance does decrease orders of magnitude, comparison with the 

measured R-V data in Fig. 7 reveals the difference in bridging kinetics. The ASU PMC 

has a discontinuous change in resistance while the finite element model has a continuous 

change in resistance. A discontinuous change in resistance indicates a low resistance 

filament forming through a high resistance film. The large, discontinuous step in 

resistance occurs when the filament connects or disconnects the anode and cathode. A 
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continuous change in resistance indicates that the film is changing from anode to cathode 

all together; i.e. there is no filament growing from one electrode to the other. 

 

 
Fig. 17:  R-V characteristic of finite element model 

 

 Fig. 18 plots the anode I-V as the anode voltage increases from 0V to 0.9V and 

then returns to 0V [31].  The I-V response of the structure shows that the simulation 

models the hysteresis characteristic of resistive NVM. These results show that during the 

upward “write” sweep, the resistance changes from a high to low state (i.e., low to high 

current), and when the anode is returned to 0V the low resistance state is saved. Unlike 

the measured I-V data in Fig. 5, there is no current limit in the finite element model. Even 

with limited current, the finite element model’s I-V characteristic would remain 

inconsistent with that of the ASU PMC due to the aforementioned difference in bridging 

kinetics. The current would not discontinuously jump up to the current limit. The 
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resistance upon entering current limiting would remain approximately constant, and the 

current would come down from the limit at about the same point it entered. 

 

 
Fig. 18:  I-V characteristic of finite element model 

 

 The simulation results of the finite element model with generic ion transport and 

reactions in conjunction with the workaround and standard carrier statistics and transport 

equations are shown to effectively model some type of resistance change NVM, but the 

model is vastly inconsistent with the switching behavior of the ASU ChG PMC.  
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4. NUMERICAL MODEL 

4.1. Numerical Method 

 A physics-based numerical model has been developed specifically for the PMC. A 

numerical model is required to simulate with arbitrary voltage inputs because the PMC 

has a complex hysteresis. Development of this model began as a reproduction of the 

model described in [26] and was then significantly improved upon. The model is written 

in m-code for Octave or MATLAB and uses a time-stepping procedure with analytical 

equations to obtain the model’s behavior over time. The Mott and Gurney ionic hopping 

current (3) is assumed to be the rate limiting process in the PMC. Therefore, the Butler-

Volmer charge transfer equation is not incorporated, but it could be if found necessary. 

All of the ionic flux is assumed to reduce on the filament, which is modeled as a cylinder 

with adjustable height and radius. The filament height is adjusted each time step in 

proportion to the ions accumulated during the step and the concentration of neutralized 

ions in the filament. The radius can change once the filament has connected the anode 

and cathode. The operating mechanism of the PMC model is visualized in Fig. 19. The 

filament height and radius along with material properties are used to calculate the non-

ohmic resistance of the cell at each time step. A single equation is used to calculate the 

resistance independent of OFF/ON state. Current limiting is implemented in the model to 

simulate standard testing as with the Agilent 4156C.  The numerical routine checks for 

errors within each time step, such as the current compliance or filament overgrowth, and 

dynamically adjusts the time step for precise and quick solutions. 
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Fig. 19:  Operating mechanism of PMC model 

 

4.2. Structure and Resistance Model 

 The resistance model calculates the total resistance of the PMC given the 

dimensions and material properties of the cell and filament. The simulation structure is 

modeled after an ASU PMC that is a cylindrical cell with a diameter of 5 µm and a ChG 

electrolyte thickness of 60 nm. The height and radius of the filament are variables during 

the simulation. As can be seen in the I-V data in Figs. 10–11, the PMC has a diode 

characteristic in the OFF and ON states. The electrolyte and filament are modeled as 

separate diodes in parallel. The resistances of the diodes are calculated using the 

Shockley ideal diode equation with quality factor and added series resistance. The 

electrolyte series resistance is given by 

  𝑅𝑠𝑒 = 𝜌𝑒 ∙ 𝐿/(𝜋 ∙ (𝑟𝑐𝑒𝑙𝑙2 − 𝑟2)) (14) 

where ρe is the resistivity of the electrolyte, L is the electrolyte thickness, rcell is the radius 

of the PMC, and r is the radius of the filament. The series resistance of the filament (15) 
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is calculated as two resistors in series – the resistance of the neutralized ion portion of the 

filament and the resistance of the electrolyte in the cylindrical space remaining between 

the filament and the anode. 

  𝑅𝑠𝑓 = (𝜌𝑓 ∙ ℎ + 𝜌𝑒 ∙ (𝐿 − ℎ))/(𝜋 ∙ 𝑟2) (15) 

where ρf is the resistivity of the filament and h is the height of the filament. The 

resistances of the electrolyte and filament diodes are given by (16) and (17), respectively, 

where V is the applied anode voltage. An insignificant value, 10-16, is added to the diode 

current to avoid a division by zero error. 

  𝑅𝑓 = 𝑉 ∙ �𝐼𝑠𝑓 ∙ �exp � 𝑉
𝑛𝑓𝑘𝑇

� − 1� + 10−16�
−1

+ 𝑅𝑠𝑓 (16) 

  𝑅𝑒 = 𝑉 ∙ �𝐼𝑠𝑒 ∙ �exp � 𝑉
𝑛𝑒𝑘𝑇

� − 1� + 10−16�
−1

+ 𝑅𝑠𝑒 (17) 

The total resistance of the PMC (18) is the parallel combination of (16) and (17). 

  𝑅 = �𝑅𝑓−1 + 𝑅𝑒−1�
−1

 (18) 

Table V summarizes the parameter values used in these equations. The filament material 

is assumed to be Ag2Se for which the resistivity was extracted from [33]. The other 

values besides the dimensions where chosen to approximately fit (18) with the data in 

Fig. 6. 

 
  



  

35 

Table V: Parameters for structure and resistance 

Parameter Value Unit Description 

ρf 7.0E-4 Ω·cm Filament resistivity 

ρe 8.0E4 Ω·cm Electrolyte resistivity 

L 6.0E-6 cm Electrolyte thickness 

rcell 2.5E-4 cm Cell radius 

Isf 1.8E-6 A Reverse saturation current 

Ise 1.4E-9 A Reverse saturation current 

nf 1 none Diode quality factor 

ne 2 none Diode quality factor 

 

4.3. Filament Growth 

 The filament grows and dissolves according to the flux of Ag+ (jhop) given by (3) 

and the concentration of Ag in the filament. However, polarity dependent activation 

energy is used in (3) to account for the asymmetric OFF/ON switching voltages seen in 

Chapter 2.3. An asymmetric energy barrier is suggested in [34] as a possible cause for 

this behavior. The electric field used in (3) is given by (19). 

  𝐸 = 𝑉/(𝐿 + ℎ ∙ (𝜌𝑓/𝜌𝑒 − 1))  (19) 

The temperature of the cell, used in (3), (16) and (17), is given by [35] as 

  𝑇 = 𝑇0  +  𝑉2𝑅𝑡ℎ/𝑅 (20) 

where T0 is the equilibrium temperature, V is the applied anode voltage, Rth is the 

equivalent thermal resistance and R is the total cell resistance. The concentration of Ag in 

the Ag2Se filament is given by 
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  𝑁𝐴𝑔 = 2𝑁𝐴 ∙ 𝜌𝐴𝑔2𝑆𝑒/𝑚𝐴𝑔2𝑆𝑒 (21) 

where NA is the Avogadro constant, and 𝜌𝐴𝑔2𝑆𝑒 and 𝑚𝐴𝑔2𝑆𝑒 are the density and molar 

mass of Ag2Se, respectively. When the PMC is non-bridged, the growth velocity of the 

cylindrical filament height is given by 

  𝑣ℎ = 𝑗ℎ𝑜𝑝/(𝑧𝑞𝑁𝐴𝑔) (22) 

 When the PMC is bridged, the electric field in (3) is replaced by the applied anode 

voltage multiplied by a fitting parameter, because there is no longer a gap between the 

electrodes with which to calculate electric field. An electric field must still exist in order 

to grow and dissolve the filament radius. Similar to (3), the ionic hopping current density 

for the on-state is 

  𝑗ℎ𝑜𝑝_𝑜𝑛 = 2𝑧𝑒𝑐𝑎𝑓(−𝑊𝑎
𝑘𝑇

)sinh (𝑉∙𝛽∙𝑧𝑒∙𝑎
2𝑘𝑇

)  (23) 

where β is the electric field fitting parameter with units of cm-1. In the on-state, the 

filament radius after a time step, dt, is given by 

  𝑟𝑛+1 = 𝑟𝑛�
𝑑𝑡∙𝑗ℎ𝑜𝑝_𝑜𝑛

�𝐿𝑧𝑞𝑁𝐴𝑔�
+ 1 (24) 

where rn+1 is the radius after dt, and rn is the radius before dt. The model assumes an 

initial radius of 2 nm. Once the filament bridges, the radius quickly grows until the 

resistance is reduced to where the current becomes limited and the voltage drops below 

the threshold for electrodeposition. A larger current limit allows the resistance to drop 

lower since the threshold for electrodeposition is fixed. This is why the ON resistance 
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varies inversely with the compliance current limit. While the Butler-Volmer equation (2) 

is actually responsible for electrodeposition and electrodissolution, the model implements 

those thresholds in a much simpler and direct way. The ionic hoping current is only 

allowed when the applied voltage is above the set electrodeposition threshold (Vfwd) or 

below the set electrodissolution threshold (Vrev). Implementation of (2) into the numerical 

model should be preferred in the future. 

 The parameters used in the filament growth equations (3), (19–24) and the 

electro-deposition/dissolution thresholds are reported in Table VI. 

 

Table VI:  Parameters for filament growth 

Parameter Value Unit Description 

k 8.617E-5 eV/K Boltzmann constant 

ze 1.602E-19 C Charge per ion 

2zecaf 5.379E3 A/cm2 Mott-Gurney lumped coefficient 

a 6E-8 cm Effective hopping distance 

Wa_fwd 0.310 eV Forward hopping activation energy 

Wa_rev 0.206 eV Reverse hopping activation energy 

T0 295 K Equilibrium temperature 

Rth 1.0E5 K/W Thermal resistance 

NA 6.022E23 mol-1 Avogadro constant 

ρAg2Se 8.216 g/cm3 Ag2Se density 

mAg2Se 294.7 g/mol Ag2Se molar mass 

NAg 3.358E22 cm-3 Ag concentration in filament 

β 0.6 cm-1 E-field fitting parameter 

Vfwd 0.1 V Electrodeposition threshold 

Vrev -0.05 V Electrodissolution threshold 
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4.4. Compliance Current Implementation 

  Compliance current is the maximum allowable electrical current to a device 

under test. The Agilent 4156C has a compliance current setting to limit the current 

supplied to the device under test. A PMC is usually tested with compliance current to 

prevent overheating and to set different values of resistance. That same type of current 

limiting is needed in the numerical model so the same tests can be simulated. 

 Current is limited by reducing the applied voltage. In the numerical model, the 

voltage is constant during each time step. The model performs compliance checks and 

adjustments at the beginning and end of each time step. If the current exceeds compliance 

at the beginning of the step, then the reduced voltage is calculated to yield compliance by 

  𝑉 = 𝐼𝑐𝑜𝑚𝑝 ∙ 𝑅 ∙ 𝑠𝑔𝑛(𝑉𝑖𝑛) (25) 

where Icomp is the compliance current and Vin is the unadjusted input voltage used to get 

the sign of the voltage. The filament can grow during the time step thereby decreasing the 

resistance and possibly causing the current to exceed the limit by the end of the step. 

Therefore, the current cannot be maintained exactly at the limit. A tolerance of 1% of the 

compliance current is allowed in the model. If the current exceeds compliance plus 

tolerance at the end of the step, then the time step, dt, is halved until the current remains 

in compliance at the end of the step. 
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4.5. Simulation Results 

 The simulated input, Fig. 20, is a triangle wave function that performs the double 

voltage sweep starting at 0V with a ramp rate of ±1 V/s with a maximum time step of 2 

ms. Vin is the user-defined input function and V is the compliance adjusted function. 

 

Fig. 20:  Simulated piecewise linear function voltage input 

 

 The I-V characteristic is plotted alone on a linear y-scale in Fig. 21 and overlaid 

on the ASU PMC data plot of Fig. 5 in Fig. 22. These plots show an excellent match 

between the model and entire data curve. Notice that the curve has a kink in the 

programming switch as is sometimes observed in measured data. The first jump in the 

current occurs when a filament bridges the electrodes, but the resistance is not small 

enough to maximize the current. From there, the girth of the filament increases until the 

resistance drops enough to maximize the current. Once the current is limited, the voltage 

will drop below the minimum for electrodeposition and the filament will cease growth. 
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Fig. 21:  Numerical model I-V characteristic on a linear y-scale 

 

 

Fig. 22:  Linear I-V numerical model data overlaid on ASU PMC data 

 

 The I-V characteristic is plotted alone on a logarithmic y-scale in Fig. 23 and 

overlaid on the ASU PMC data plot of Fig. 6 in Fig. 24. These plots show an excellent 

match of the current at orders of magnitude. 
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Fig. 23:  Numerical model I-V characteristic on a logarithmic y-scale 

 

 

Fig. 24:  Logarithmic I-V numerical model data overlaid on ASU PMC data 

 

 The R-V characteristic is plotted alone in Fig. 25 and overlaid on the ASU PMC 

data plot of Fig. 7 in Fig. 26. These plots show a very good match of the resistance at all 
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levels. The “unadjusted” resistance shown in Fig. 25 is the resistance calculated with the 

unadjusted input voltage as is done with measured data. The model is able to show the 

real R-V characteristic even where the current is limited.   

 

 

Fig. 25:  Numerical model R-V characteristic 

 

 

Fig. 26:  R-V numerical model data overlaid on ASU PMC data 
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 Table VII provides a quantitative comparison of key I-V characteristics between 

the ASU PMC Test 2 data and the numerical model. The percentage errors are fairly 

small, and they could be further reduced with better parameter fitting. The parameters of 

the numerical model were quickly adjusted for an approximate match by visual 

comparison of the plotted I-V data on a logarithmic scale. However, PMCs are currently 

not precision devices. These values vary between PMC devices of the same design and 

even between measurements of a single device. Therefore, fitting the model near exactly 

with data from a single measurement may be of little importance. 

 

Table VII:  Quantitative comparison of ASU PMC and Numerical Model 

 
ROFF (Ω) 
@ 10 mV 

RON (Ω) 
@ 10 mV 

Vwrite (mV) Verase (mV) 

ASU PMC Test 2 3.664E+07 2.622E+04 150.0 -60.00 

Numerical Model 3.530E+07 2.975E+04 148.3 -60.10 

Percent Error -3.657 13.46 -1.13 0.17 

 

 A parametric simulation was also performed where only the compliance current 

limit was varied. Fig. 27 plots the I-V curves with compliance currents of 1 µA, 5 µA and 

10 µA. Fig. 28 plots the corresponding R-V curves. These results demonstrate the 

multilevel programmability of the numerical model. A greater compliance current allows 

the filament radius to increase more and the resistance to decrease more until the 

minimum electrodeposition voltage divided by the resistance equals the greater 

compliance current. Notice that all three curves drop out of the limited current regime at 
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0.1V, because that is the electrodeposition threshold which determines the set resistance 

according to (1). The results also show that larger filaments require more negative 

voltage-time to dissolve. 

 

 

Fig. 27:  I-V simulation with parametric compliance current 
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Fig. 28:  R-V simulation with parametric compliance current 

 

 The simulation results of the physics-based numerical model are shown to 

effectively model the ASU PMC. The numerical model offers greater insight into the 

parameters and operation of the PMC. The possible effects of varied parameters and 

equations are easily observable. Several of the parameters were fit to the data for these 

results; however, the model can be refined with more measured and calculated 

parameters instead of fitted parameters to see how the model holds up. Comparison of the 

model with different PMC tests can be performed to further adjust and validate the 

model. A future improvement would be to add the Butler-Voltage charge transfer 

equation. 
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5. CONCLUSION 

 This thesis has presented the modeling efforts and results of a novel finite element 

model and a numerical model. The FEA software used for the finite element model 

turned out to be incapable of modeling filament formation in the PMC. Specifically, the 

generic ion transport and reaction models were not developed with the ability to model 

the conductive filament growth. The workaround devised to convert the non-conducting 

neutral species into donors was able to achieve a resistance change NVM characteristic; 

however, the operating mechanism remained vastly inconsistent with a PMC. The 

reasons why the finite element model does not work have been reported. 

 A physics-based numerical model has been successfully implemented and tested 

with great results. The simulation results show an outstanding match in all aspects of the 

I-V and R-V characteristics of a ChG-based ASU PMC. This model has the ability to 

simulate multilevel programming, various input waveforms and quick parametric sweeps, 

which provide the observer with a greater insight into the detailed operation of the PMC. 

For example, the model may be used to predict pulsed mode and low- or high-

temperature operation. With further refinements of the material properties and possibly 

additional physics such as the Butler-Volmer charge transfer equation, the model could 

become further validated and predict the characteristics of modified PMC designs. At that 

point, the model could aid in designing optimized PMCs or provide the insight for 

developing application specific compact models.  
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APPENDIX A 

FINITE ELEMENT MULTIPART SIMULATION 
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 This is a description of the workaround for the Atlas generic ion model. This 

workaround splits a standard transient simulation into multiple parts so that the neutral 

species can be copied into donors between parts. An input deck is a file with a list of 

commands giving Atlas the problem to solve. Normally, a single input deck is all that is 

required to run a simulation. The key functions of the initial input deck, Fig. 29, are to 

define the initial PMC structure, the initial sp1 doping profile, and begin the simulation 

with the equilibrium solution. This input deck saves the resulting structure file, which is a 

solution of the structure with 0V applied. This solution redistributes the ionic species into 

an equilibrium state. 

 The running input deck, Fig. 30, is used to continue the simulation for each of the 

remaining simulation parts after the first. The deck loads the structure saved from the 

initial input deck. Three doping files, generated by a Python script (Figs. 31–33) with the 

previous solution structure, are used to dope the current structure with sp0, sp1, and 

donors matching the profile of sp0. The final difference in the running input deck is the 

solve statement. Instead of solving with 0V applied, a short transient voltage ramp from 

the previous to next voltage is simulated. First, the structure is solved at the previous 

voltage while freezing the species so they cannot move. This provides the starting point 

for the voltage sweep. Lastly, the voltage ramps up to the next value. 

 A Python script, Figs. 31–33, generates new doping profiles before and between 

each execution of the running input deck. This script reads the output structure from the 

previous simulation. The doping concentrations of sp0 and sp1 are recorded at every 

coordinate in the structure. Then, the script writes three separate .lib files written in C that 

provide the doping profiles of sp0, sp1 and donors for the next simulation part. Atlas has 
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a C-interpreter that reads the .lib files to set the doping concentrations at every coordinate 

in the structure. 

 An AWK script, Fig. 34, is also used to update the running input deck with the 

new voltage between simulations for the voltage ramp to continue. The running input 

deck utilizes variables for the previous and next voltage. The AWK script is supplied 

with the variable values and executed by an automating Python script. 

 The automating Python script, Fig. 35, automates the execution of this complex 

multipart simulation. The user provides this script with the final voltage of the ramp and 

the number of steps to divide it into. Then, the script executes the initial input deck. Next, 

the script enters a loop which begins with setting the previous and next voltages. Then, 

the AWK script is supplied with those values and executed to update the running input 

deck. Then, the doping Python script is executed to generate the three .lib files. The last 

piece of the loop is the execution of the running input deck. The multipart simulation is 

complete when this loop completes its iterations. The input decks save solution structures 

at each part. The results are viewed by opening those structures in Silvaco TonyPlot. 
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Fig. 29:  Initial input deck for Atlas simulation 
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Fig. 30:  Running input deck for Atlas simulation 
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Fig. 31:  Python script  to generate doping profile files (1/3) 
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Fig. 32:  Python script  to generate doping profile files (2/3) 
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Fig. 33:  Python script  to generate doping profile files (3/3) 

 

 
Fig. 34:  Awk script to update the running deck 

 



  

59 

 
Fig. 35:  Python script to automate multipart simulation 
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