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ABSTRACT

Surface plasmon resonance (SPR) has emerged as a popular technique for elucidating
subtle signals from biological events in a label-free, high throughput environment. The efficacy
of conventional SPR sensors, whose signals are mass-sensitive, diminishes rapidly with the size
of the observed target molecules. The following work advances the current SPR sensor paradigm
for the purpose of small molecule detection. The detection limits of two orthogonal components
of SPR measurement are targeted: speed and sensitivity. In the context of this report, speed
refers to the dynamic range of measured kinetic rate constants, while sensitivity refers to the
target molecule mass limitation of conventional SPR measurement.

A simple device for high-speed microfluidic delivery of liquid samples to a sensor
surface is presented to address the temporal limitations of conventional SPR measurement. The
time scale of buffer/sample switching is on the order of milliseconds, thereby minimizing the
opportunity for sample plug dispersion. The high rates of mass transport to and from the central
microfluidic sensing region allow for SPR-based kinetic analysis of binding events with
dissociation rate constants (kq) up to 130 s™'. The required sample volume is only 1 uL, allowing
for minimal sample consumption during high-speed kinetic binding measurement.

Charge-based detection of small molecules is demonstrated by plasmonic-based
electrochemical impedance microscopy (P-EIM). The dependence of surface plasmon resonance
(SPR) on surface charge density is used to detect small molecules (60-120 Da) printed on a
dextran-modified sensor surface. The SPR response to an applied ac potential is a function of
the surface charge density. This optical signal is comprised of a dc and an ac component, and is

measured with high spatial resolution. The amplitude and phase of local surface impedance is



provided by the ac component. The phase signal of the small molecules is a function of their
charge status, which is manipulated by the pH of a solution. This technique is used to detect and
distinguish small molecules based on their charge status, thereby circumventing the mass

limitation (~100 Da) of conventional SPR measurement.
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1. STATE OF THE ART
1.1 Introduction

The interactions between small molecules and biological macro-molecules constitute one
of the most important components of biological networks. Communication between cells,
expression of genes, and the entire immune system are dependent on a massively parallel
network of binding interactions of proteins and small molecules. The development of drug
candidates and the identification of biomarkers for clinical diagnosis rely on rigorous,
quantitative measurements of binding events between small molecules and their biological
receptors. Methods for elucidating these types of binding reactions are paramount for
understanding of one the most fundamental mechanisms of biology.

The term ‘small molecule’ is ambiguous. In the context of this report, it refers to
molecules with a molecular weight of less than 1000 g/mol (or Daltons). The average mass of a
human protein is on the order of a few tens of kDa, but can be larger or smaller by several orders
of magnitude [1]. Note that the small molecules defined above are on average an order of
magnitude smaller than a typical human protein. Drugs and therapeutic agents are two examples
of widely studied small molecules.

This chapter analyzes the current status of research and technology associated with the
measurement of small molecule binding interactions with larger biomolecules.  These
biomolecules include, but are not limited to, peptides, enzymes, antibodies, DNA, RNA, and
aptamers. The basic theory governing bi-molecular reactions is introduced. The type of binding
interactions analyzed will be limited to non-covalent binding.

Chapter 2 introduces the theory of surface plasmons. The chapter progresses from a

theoretical description of surface plasmon behavior (more in Appendix A) to methodologies for
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their excitation. Chapter 3 presents the useful application of these phenomena in the form of
SPR-based biosensors. The focus of chapter 3 is on the practical issues and optimization
strategies relevant to the use of SPR in scientific research.

Chapter 4 introduces the four-port microfluidic cell and its use for high speed SPR kinetic
measurement. The time resolution (as defined by the rate of sample delivery and removal) of
this device is 100 times faster than any previously reported related technique.

The theory and application of Plasmonic-based Electrochemical Impedance Microscopy
(P-EIM) is detailed in Chapter 5. P-EIM is used to detect the presence of molecules based on
their charge. The presence of molecules with a molecular weight of 60 Da is detected by P-EIM,
improving the lower mass detection limit of 95 Da as reported in the literature.

1.2 Bi-Molecular Reaction Kinetics

Before the specific mechanisms of various kinetic measurements are discussed, it is
useful to consider what happens to signal ‘central’ molecule that takes part in a reaction.
Following the methodology of Schilstra and Martin [2], species (e.g. small molecules, peptides,
enzymes, etc.) will be indicated with capital letters (X, Y) and specific instances of a species (e.g.
a small molecule, a peptide) with lower case (x,y). The number of instances or items of a
particle species in an enclose compartment will be written as n subscripted with the species name
(ng,ny). Square brackets around the species name indicate concentration ([X],[Y]). The

number of items expressed in moles per unit volume:

1= M

Here V is the volume of the container and N, is Avogadro’s number, 6.023 x 10> items per

mole.



If the central molecule is a reactant of type X in the bimolecular reaction X + Y — Z, the
molecules must be able to find each other for the reaction to occur. The frequency with which
type Y molecules collide with small molecule xis proportional to the concentration ofY.
Additionally, the frequency is a function of the temperature and viscosity of the surrounding
medium. Once the two molecules come into contact with each other, their respective
orientations must be correct to result in a binding event. We will make an assumption (which
may not always be valid) that the factors affecting the orientation and therefore the number of
successful binding events is kept constant.

Now consider the bimolecular reaction between 1000 items of the same species as the
central molecule. The probability that any one of these molecules with undergo a successful
collision/reaction with a molecule from group Yis 1000 times greater, provided that the
molecules do not hinder or inhibit each other. We may conclude that the rate at which the
reactant molecules are consumed is proportional to the number of items in one species and the
concentration of the other:

dn dn ngn 2
O A (Y] = ke, XY 2)
dt dt N,V
The first two terms represent the rates at which X and Y items disappear from the medium,
respectively. If time is measured in seconds, and volume in liters, the dimensions of the

expressions are s and the dimension of the proportionality factor k; is M™'s™. Dividing both

sides by NAV gives the reaction rate expression in terms of concentrations:

dix]  d[y] _ 3)




Reactions of this form are known as second order reactions, with k as a second-order rate
constant, because the total power to which the concentrations of all reactant species are raise is 2
([Rx]* - [Ry]* = [Reactants]?).

After the small molecule has spent some time bound with a member of species Y, it will
either dissociate (in a reversible reaction) or remain bound indefinitely (in an irreversible
reaction). The rate at which the complex Z dissociates is considered a first order reaction

because it is a function of only concentration:

dny d[Z] 4)
———=kn; > ———=k,|Z
dt 2147 dt 2[ ]

The unit of the proportionality factor k,, or first order rate constant, is s”. First-order

reaction rates are independent of the volume of the compartment in which the reaction takes

place.

1.3 Measurement Techniques

Traditionally, it has been difficult to measure the binding affinities of small molecules.
For most transducers, the signal is proportional to either the mass or concentration of the
reactants. The diminutive size of small molecules presents an immediate obstacle in their
detection. Many biologically relevant small molecules are only available at low concentrations,
further exacerbating the difficulties associated with small signal detection. Several techniques
that were previously limited to measurements in the domain of large-scale targets have been
improved to measure small molecules, for example, Mass Spectrometry and Enzyme-Linked
Immunoassays. Other techniques such as Fluorescence Correlation Spectroscopy and Forster

Resonance Energy Transfer have been developed to address limitations in sensitivity of other



techniques. Emerging nanotechnologies like quantum dots and nanowires demonstrate novel but
still immature small molecule affinity assays. Among the techniques discussed, Isothermal
Titration Calorimetry and Surface Plasmon Resonance represent two of the most information-
rich measurement techniques, particularly with respect to thermodynamic and kinetic
information.

1.3.1 Mass Spectrometry

The vast field of mass spectrometry (MS) is widely used to study the non-covalent
complexes formed between small molecules and biomolecules. The variety of techniques, and
most notably, the combination of chromatography and mass spectrometry, promotes a varied and
flexible approach to studying bimolecular interactions. Affinity techniques employing MS
identify compounds based on the ratio of mass to charge and provide a label-free method of
characterizing new chemical entities that interact with the target biomolecule [3]. Mass
spectrometry-based methods may directly or indirectly characterize bound complexes formed
between small molecules and their receptors.

Mass spectrometry is used to identify the binding components by measuring the mass to
charge ratio of the sample. Bound complexes formed (preferably) in solution are treated such
that they enter the gas phase with bound excess charge(s). A mass analyzer then sorts the ions
with electromagnetic fields according to their mass. Ions passing by or hitting the detector
surface either induce or charge or generate a current, respectively. The number of ions involved
in measurements is sufficiently small that the signal is often amplified by an electron multiplier.

Under appropriate experimental conditions, MS is used to directly analyze the complexes

formed under native conditions. The three primary methods to determine the affinity
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constant K, in gas-phase measurements that reflect those in solution are (1) raising the
temperature of the analyte solution and using MS to determine the percentage of intact
complexes [4-5], (2) competition-based experiments to measure the stability of the bound
complex [6, 7] and (3) titration of a small molecule with its binding partner [8, 9]. It is important
not to disrupt the non-covalently bound complexes and to ensure the mass spectra accurately
represents the solution-phase chemistry. Electrospray ionization [10] (ESI) MS and matrix-
assisted laser desorption/ionization [11, 12] (MALDI) MS are the two most commonly used
direct characterization methods.

Most MALDI applications rely on solid organic matrices for the ionization of the sample
[13]. These crystalline matrices are often responsible for significant background noise and may
complicate analysis of low molecular weight compounds [14]. Therefore careful sample
preparation and design of experiment is necessary. MALDI-MS has consistently demonstrated
reliable measurement of small molecules from 100 Da to 1.5 million Da [13].

Electrospray ionization MS methods are widely used to characterize the affinities of
small molecules to biomolecules [15]. In addition to direct detection of solution-phase
complexes, ESI-MS can be combined with ion activation techniques such as tandem MS, to
probe the composition and topology of the complexes [16, 17]. Despite the widespread use of
ESI-MS, the mass spectra may not accurately reflect solution composition of the complex and
false positives from non-specific adsorption between solution components are difficult to remove
[18]. That being said, many researchers have pursued rigorous, repeatable experiments utilizing

the soft-ionization technique of ESI to measure small molecule interactions with great success.



In contrast to direct measurement, indirect methods must prepare and separate the
complexes prior to analysis by biochemical and chromatographic methods. In this methodology,
mass spectrometry is used to identify and characterize the small molecules independently of their
binding partner. The bound complexes are often exposed to denaturing solutions to induce
dissociation. This method measures the molar ratio (average loading) of the two components
and not the binding stoichiometry (distribution) between the two [19].

There are numerous reports of affinity-based assay formats that have been directly
coupled with MS, creating highly sensitive and specialized detection platforms. Affinity-
selection [20], pulsed-ultrafiltration [21] (PUF-MS), and frontal affinity chromatography [22]
(FAC-MS) have proven successful in identifying novel small molecule/receptor interactions. A

number of examples are presented in Table 1.



Table 1. MS-based methods for use in small molecule/receptor detection

Potential
Method Target Receptors Principle
Frontal-affinity Immobilized ina Pumped Compounds in dynamic equilibrium with

chromatography-MS

Pulse ultrafiltration-
MS

Affinity size

exclusion-MS

Ultrafiltration-MS

Affinity capillary
electrophoresis-MS

Surface plasmon

resonance-MS

Affinity capture-MS

Noncovalent affinity

column

Mixed with
multiple
compounds in
solution

Mixed with
multiple
compound in
solution
Mixed with
multiple
compounds in
solution

In
electrophoretic
buffer
Coupled to
optical surface

Immobilized on
beads

In gas phase

through column

Mixed with
target in
solution

Mixed with
target in
solution

Mixed with
target in
solution

In running
buffer for CE

Flow across
sensor surface

Incubated with
immobilized
target

Mixed with one
or multiple
targets

immobilized target. Unbound and weakly
bound compounds elute earlier than
bound. Mass-specific detection identifies
compounds

Target mixed with potential ligands is
placed over ultrafiltration membrane;
when pressure is applied, ligands showing
affinity for the protein are selectively
concentrated; later, they are identified by
MS

Rapid molecular exclusion fractionation is
a spin column separates target-ligand
complexes from unbound compounds;
MS identifies binders

Target mixed with ligands and subjected
to centrifugal ultrafiltration; binding
compounds separated from non-binders
are washed to waste; ligands bound to
target are eluted by acidification and
detected by MS

Changes in mobility upon binding
indicate bound ligands in electrophoretic
buffer; MS identifies the binding partner
Changes in surface refractive index
indicate presence of binding partner for an
immobilized target; MS identifies the
binding partner

Bead-bound target mixes with potential
ligands; unbound ligands removed by
washing; bound ligands eluted and
identified by ES-MS/MS

Direct mass-analysis of target-ligand
mixture, complex of a ligand with one or
multiple targets is identified directly from
its mass using very soft ionization from
volatile buffer



Independent of the different hardware configurations, all affinity selection-mass
spectrometry (AS-MS) based platforms follow a basic experimental procedure which includes
the following steps [23]: (1) the small molecule is mixed with a pool of potential ligands, (2) the
resultant small molecule/receptor complex is separated from the non-binding mixture
components, and (3) the receptors specific to the small molecule query are identified by MS.
Bound components are characterized by their molecule weights or collision-induced
fragmentation patterns and are directly identified, thereby decreasing the number of false
positive binding receptors and reducing non-specific adsorption [24]. Depending on the specific
platform, the small molecule/receptor can either be viewed directly in the spectrometer or
detected as a perturbation or abnormality in the unbound receptor behavior. The latter detection
method is considered more biologically relevant. MS direct detection is done in the gas phase,
while the secondary measurement is often measured as elution from a column, which is done in
the liquid phase.

Pulsed ultrafiltration-mass spectrometry (PUF-MS) has been developed for the selection,
identification, and characterization of low molecular-weight compounds that interact with
enzymes, proteins, and other macromolecules. This technique utilizes the disparity of size
between the unbound small molecules and the bound small molecule/receptor complex. A
macromolecular receptor is immobilized in the ultrafiltration cell, which is made of a material
that impedes non-specific adsorption of the small molecule analytes (e.g. PEEK). The analytes
flow into the cell and selectively bind to the immobilized receptor. An ultrafiltration membrane
is chosen such that it is only permeable to unbound small molecules. Bound ligands are eluted

from the chamber by destabilizing the small molecule/receptor complex with an organic solvent
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or pH change. The eluate (small molecules) is then analyzed by either on-line MS or
characterized by a High Performance Liquid Chromatography column, and analyzed with LC-
MS or tandem LC-MS/MS [25]. As the small molecule alternatively associates and dissociates
from the receptor, its elution from the cell is slowed (relative to a control cell without
immobilized receptors). From this measurement, the affinity of the small molecules for the
immobilized receptor can be quantitatively measured [26].

The frontal affinity chromatography method extracts binding constants from the effect of
small molecule concentration on the frontal retention time [27]. Similar to PUF-MS, the receptor
is immobilized in a column and a mixture of small molecules is pumped through the column. A
mass spectrometer is attached in series to the column and measures the concentration of small
molecules passing as they elute. Compounds that have an affinity to the receptor will experience
a delay in elution related to how long (i.e. how strongly) they bind to the immobilized receptor.
This method, first developed by Kasai et al. [28], differentiates itself from PUF-MS by its ability
to detect binding events in a concentration independent fashion. It is possible to detect binding
events at concentrations well below their K values [29]. Additionally, this method is equally
viable for measuring both soluble and membrane-bound receptors. The column can be prepared
and reused with very low capacities (less than 2 pmol of binding sites) and can measure
low K, values (~ 2 nM) [30].

Proponents of affinity capillary electrophoresis laud the technique’s speed of assay,
minimal sample volume required, free solution-based measurements, and low cost. Normal
sample consumption is on the order of a few nanoliters, and minimum sample volume is a few

tens of microliters, making ACE-MS competitive with techniques such as gel filtration
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chromatography, dialysis, classical gel electrophoresis, calorimetry, and surface plasmon
resonance [31]. The receptor is exposed to potential binding candidates and changes in its
electrophoretic mobility are used to determine the affinity of the receptor/small molecule binding
event. The amount of free and bound receptors (or small molecule) need not be known [32].
Using laser-induced fluorescence, binding interactions of labeled target or ligand can be detected
at very low concentrations (nM to pM) [33].

The simplicity of rapid size-exclusion chromatography coupled with MS (SEC-MS) is
appealing; the receptor is neither trapped nor immobilized, and the small molecule/receptor
complex is separated from unbound small molecules on the basis of size. As the unbound
receptors and small molecules are excluded, the bound receptor/small molecules are no longer in
equilibrium. The bound complex will begin to dissociate immediately, so speed in analysis is
imperative in this type of measurement [34]. SEC-MS [35], along with FAC-MS [36], are
capable of achieving high-throughput assay measurements by screen thousands of compounds in
the same assay and identifying active compounds by using mass-selectivity. Successful high-
throughput screening can help narrow the focus from millions of possible interacting pairs to tens
or hundreds.

Mass spectrometry is a very powerful tool used for the characterization of small molecule
binding. The mass resolution of MS is unparalleled; modern instruments can easily distinguish
ions differing by only a single atomic mass unit. There are many different MS instrument
configurations, which is indicative of its usefulness and versatility. Kinetic measurements with

MS are currently limited to measuring the equilibrium binding affinity Kj,.
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1.3.2 Enzyme-Linked Immunosorbent Assay

The enzyme immunoassay [37] (EIA) and enzyme-linked immunosorbent assay [38]
(ELISA) were simultaneously developed independently of each other in 1971, with both
techniques based on the principles of immunoassays with an enzyme as the reporter label. Their
forerunner, radioimmunoassay [39] (RIA) was developed by Berson and Yallow a decade
earlier; Yallow was later awarded the Nobel Prize for Medicine for the technique. The impact
this technology has had is incredible in scope; there have been more than 100,000 research
articles published that are related to these three techniques.

In a typical ELISA assay, an analyte is immobilized to a primary biomolecule
immobilized in a well on a polystyrene plate. The secondary biomolecule, linked with an
enzyme, is then attached to the bound complex. Unbound material is then easily washed away.
Enzyme-related activity is then measured after incubation with an enzyme substrate. The most
commonly used enzymes are horseradish peroxidase and alkaline phosphatase. The choice of
substrate depends on the desired sensitivity and signal detection instrumentation (fluorometer,
spectrophotometer, etc.).

Immunoassays rely on either competitive or immunometric detection. The goal of
immunoassays is to measure a specific binding reaction. Therefore a signal must be generated
that reflects the extent of the binding. Competitive-binding assays (CBA) produce a signal that
is proportional to the number of unbound target biomolecules. Immunometric assays, on the
other hand, measure the amount of bound analyte/biomolecule complex.

In competitive-binding assays, a label is usually placed on the analyte to be measured.

As described by Bock [40], a fixed concentration of labeled analyte reagent and a fixed (and

13



comparably low) concentration of the biomolecule reagent are combined with the variable
concentration of unlabeled analyte in the sample. As the concentration of unlabeled analyte in
the sample increases, the amount of label that will bind to the biomolecule decreases. The
original RIA was a CBA using insulin labeled with the gamma-emitter diode [39]. There are
numerous types of labels employed today to measure small molecule binding events. The
presence of a label is another primary classification of immunoassays.

ELISA has emerged as a common immunoassay, and it’s most common variation, the
sandwich assay, demonstrates clearly the principles of the immunometric assay. In a sandwich
assay, the analyte to be detected is sandwiched between its primary target (biomolecule) and its
presence is detected by secondary biomolecule, which could be radio labeled (RIA) or linked to
an enzyme (ELISA), which is used to report the analyte’s presence. The analyte to be detected
must be free to bind to two receptors: its primary target and a secondary label. The simultaneous
binding of two biomolecules to the analyte is an extremely specific process. That is, the
possibility of non-specific interactions is lowered by requiring the analyte to bind to two
partners. Additionally, because signaling is often coupled to a catalytic (enzymatic) signaling
mechanism, ELISA can routinely detect sub-nanomolar [41] targets, and has demonstrated utility
in the picomolar [42] concentration range. The measured equilibrium dissociation
constant K, between the analyte and primary target can be estimated by the strength of the
secondary label’s signal.

Direct detection in ELISA is not widely used. This method uses a labeled primary target
that interacts directly with the analyte. The analyte or target biomolecule may be immobilized

on the sensor surface. Labeling the primary target can significantly alter its binding affinity,
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especially if the label is as large as an enzyme. Additionally, this method has limited signal

amplification.
Subslrale>
Substrate> L&
Substrate (...z
( g Secondary
1;_) antibody
conjugate
Primary Prima
ry
antibody antibody
conjugate Capture
antibody
Direct Assay Indirect Assay Capture Assay

“Sandwich”
Figure 1. ELISA formats. The antigen (e.g. small molecule) of interest is immobilized to the
assay plate or an immobilized antibody (e.g. receptor). Detection of the antibody is performed

either directly or indirectly. [From Thermo Scientific at http://www.piercenet.com]

There are several obstacles for ELISA-based small molecule affinity analysis. First,
ELISA is a single analyte detection method. During a typical ELISA assays, one type of protein
is detected per well. Second, the analyte concentration range is limited to approximately two
orders of magnitude, limited by the signal to noise ratio and tendency of the fluorophores to
photobleach. Finally, the requirement of two biomolecules to the analyte is nontrivial. Small
molecules may be unable to simultaneously bind to more than one biomolecule due to steric
hindrances. On the other hand, many proteins can bind two or more antibodies at a time. For
this reason, ELISA is primarily used to measure proteins binding to a primary antibody, which is

detected by the subsequent binding of a fluorophore-labeled secondary antibody.
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aptamer; binding is confirmed by a change in faradaic current. From reference [43].

While ELISA in its original form may be poorly suited for direct detection of low
molecular weight small molecules, the sandwich assay principle has inspired novel detection
platforms. One such technique uses short DNA or RNA sequences, called aptamers [44, 45], to
specifically bind small molecule targets. A single aptamers, split into two fragments, will tend to
bind to stay dissociated. If the aptamer binds the small molecule with high affinity, the presence
of the small molecule will drive the equilibrium towards the association of the intact
aptamers/small molecule complex. Fabrication of the novel sequences is relatively easy and they
demonstrate a wide range of selectivity and affinities [46]. In principle, aptamers are superior to
antibodies for use in bioanalysis; aptamers demonstrate superior stability against biodegradation
and denaturation in addition to providing a useful response against non-immunogenic molecules.
However, since their introduction 20 years ago, the number of targets for which multiple, distinct

aptamers have been fabricated is small [47].
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1.3.3 Nanomaterials

Nanomaterial-based protein and small molecule biodiagnostic screening has
demonstrated excellent potential as an assay format. Nanoscale detection systems have
significant advantages over traditional assay formats with regards to sensitivity and selectivity.
Many of the same techniques used for novel, nanoscale detection of the presence (diagnostic
screening) of small molecules can be used to determine their stoichiometry (binding affinities) as
well. However, this technology is not nearly as well established as MS or ELISA, and is not yet
ready for widespread use. Much of the research in this field is still in the ‘proof of concept’
stage and requires significant optimization and critical analysis before it enjoys mainstream
success. The eagerness to measure events on the nanoscale is evidenced by the variety of
detection methods that have been reported in the last 20 years. The sensitivity of nanomaterial-
based assays has inspired many novel detection systems.

Protein and small molecule nanomaterial-based assays are primarily divided into two
major categories: optical detection of nanoparticles (NP) and electrical detection with nanowires
(NW) or nanotubes. The optical signal from NPs can be altered by specific interactions between
nanoparticle-bound biomolecules and small molecule targets. The same type of interactions can
generate an electrical signal in NWs.

For the last two decades, the gold standard in the field of protein diagnostics has been
ELISA, which relies upon fluorophore labeling [48]. ELISA is a robust, sensitive (~pM
detection limit) technique that is relatively easy and cheap to implement in a laboratory or
clinical setting. Nanomaterial-based assays must compete directly with the limitations of ELISA

to be considered a viable assay format. The molecular fluorophores employed in ELISA suffer
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from shortcomings such as photobleaching, broad absorption and emission characteristics, and
relatively expensive equipment to detect their presence in an assay. The physical properties of
nanoparticles are more flexible than those of molecular fluorophores; the specific emissive,
absorptive, and light-scattering properties of metallic nanoparticles and quantum dots can be
systematically varied base upon their fabrication method [49-51]. Nanowires and nanotubes can
be tailored in an analogous manner; their specific composition can be controlled to produce
measurable changes in conductance in response to small molecule binding [52].
1.3.3a Nanowires

Nanowire-based sensors are designed to either measure changes in conductance between
two contacts or as field-effect transistors (FETs). In the first variation, the adsorption of small
molecules onto the surface of a nanowire can cause a significant change in the wire’s resistance.
On a large scale, the resistance of a metallic wire is dominated by lattice scattering and is mostly
insensitive to chemisorption. When the scale of the wire reduces to the nanometer scale of the
mean free path of the electrons, the conductance mechanism becomes ballistic and is sensitive to
changes in the conduction electron density its surface. The conductance change in a NW is
proportional to the strength of the binding between the wire and the small molecule. Nanowires
used as conductometric sensors have successfully been used to measure the presence and of test
gases [53]. In the FET-based measurements, the binding of biomolecules changes the threshold
voltage and generates measurable changes in the conductance of the device. FET-based sensors
have demonstrated direct, label-free, real time measurements of small molecule [54] and protein

binding [52, 55].
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In the NW FET, the threshold voltage, which creates a conducting path between a source
and drain, is modified by the addition of biomolecules on a gate electrode. The laboratory of
Lieber [56] has published several experiments demonstrating the utility of this detection
principle on the nano-scale. Small molecule binding to biomolecules has already been reported:
the dissociation constant of ATP binding to Abl kinase and kinetic information of its small
molecule-inhibitors were directly measured [57] by monitoring real-time changes in device
conductance.

The advantage of nanoscale detection introduces an interesting new set of experimental
considerations, some of which we do not yet fully understand. The most notorious of which is
the discrepancy between the theoretical and reported detection times. Theoretically, the time
scale of diffusive transport of sub-picomolar concentrations in nanoscale sensors requires
binding measurements to last hours or days [58]. More sophisticated convection-reaction-
diffusion theory predicts that binding events will last for tens of minutes, but to be spaced several
days apart [59]. However, femtomolar detection levels are common in nanowire experiments
(Lieber and Stern independently) and the reported measurement times last only a few minutes.
This disparity suggests there must either be something accelerating the binding or our
understanding of the physics of this small scale is still incomplete. Kinetic information
extrapolated from nanowires must therefore be examined critically. The small quantity of
molecules used, the sensitivity, and the possibility of making very large integrated arrays make

nanowire-based kinetic measurements potentially very useful.
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1.3.3b Nanoparticles

For quantitative biosensing, such as affinity measurements, nanoparticles are conjugated
with small molecule- (or more usually peptide-) specific recognition molecules (biomolecules)
such as antibodies, DNA probe molecules, biotin/streptavidin, or enzymes. The success of
fluorescence-based spectrometry for protein and gene detection today can be accredited to five
fundamental attributes [60]: (1) each label can potentially provide 107-108 photons per second
which allows for fast signal acquisition; (2) multicolor dyes can be used for multiplexed assays;
(3) single molecule detection is a common focus of current research, demonstrating high
sensitivity; (4) the luminescent signal is localized (unlike some enzyme-linked amplification
schemes; (5) the labeling process can be straightforward provided that functional groups are
available on the label target. Three major detection approaches are Fluorescence Correlation
Spectroscopy (FCS), Fluorescence (or Forster) Resonance Energy Transfer (FRET), and
Localized Surface Plasmon Resonance (LSPR). All three techniques can measure binding
affinities.

Fluorescent Correlation Spectroscopy measures fluctuations in photon count rate as low
concentrations of molecules and/or complexes (~nM) diffuse through an extremely small
observation volume (~fL). Confocal microscopy and two-photon optical techniques are most
often used to define small observation volumes and avalanche photodiode detectors measure the
intensity fluctuations of the fluorescent signal [61]. There are several fluorescent labeling
strategies, but all rely on a change in signal as a result of a change in the diffusion (i.e. mass) of
the bi-molecular complex. A molecule labeled with a molecule fluorophore or nanoparticle has a

characteristic diffusion through a particular medium under standard conditions. If the small
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molecule binds to a large biomolecule, such as a peptide or enzyme, the diffusion time through
the detection volume will change. FCS is one of the few techniques that can directly measure
binding rate constants (e.g. k4[s"']), not just the affinity (K, [M]) of bi-molecular interactions.

The effect of labeling on the diffusion of the targets can be problematic in FCS. The
addition of a small molecule may not change the diffusion of a massive binding partner. There
have been very few FCS reports of small molecule binding events due to the difficulties
associated with labeling small molecules. Molecular fluorophores and small molecules have
comparable molecular weights (~100s of Da). It is obvious that characteristic diffusion of a
small molecule would be compromised upon labeling. It is also reasonable to assume that such a
label will affect its binding characteristics. The limitation that biomolecules are labeled in
standard FCS measurements is currently being addressed by Inverse-FCS and Inverse Cross-
correlation FCS, which instead labels the surrounding medium with fluorophores and measures
the transient dips in signal intensity due to displacement of the medium by diffusion small
molecules/complexes [62]. For the time being, FCS measurements are generally not useful for
small molecule kinetic studies.

Many Forster resonance energy transfer (FRET) assays for protein quantification have
been developed for use with gold nanoparticles (AuNP) and quantum dots (QD). In a basic
FRET measurement, a donor molecule is excited by radiative energy of a particular wavelength,
which it then transfers (typically over long distances of 1-10 nm) to an acceptor molecule. The
acceptor molecular may then quench the signal from the donor molecule or re-emit the radiative
energy at a longer wavelength. Ideally, the fluorescence of the acceptor molecule (in

Fluorescence-RET) is contingent upon a donor molecule nonradiatively donating its energy. In
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reality, direct acceptor excitation, photobleaching, and spectral crosstalk can lead to misleading
or false signals. The use of gold nanoparticles and quantum dots has helped to mitigate these

effects and have successfully been used in the measurement of small molecule binding affinities.
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Figure 3. AuNP-FRET experiment methodology. From reference [64].

Gold nanoparticles are most often employed as acceptor materials in FRET-based
biosensors due to their high molar extinction coefficient [63]. Wang et al. [64] used AuNPs
linked to an aptamer to quench fluorescence from a dyed DNA label. In the presence of

thrombin protein, the dyed single-strand DNA (ssDNA) dissociated in manner proportional to
22



the affinity of the protein to the aptamer/gold nanoparticle target. The kinetic affinity was
determined by the amount of unquenched fluorescence from the displaced DNA label.

Several variations of this experimental setup were investigated in the same paper. In the
second approach, the AuNP were linked to the ssDNA, and the aptamer target was labeled with
the donor molecule. The quenched AuNP/ssDNA/aptamer complex dissociated in the presence
of thrombin and the measured fluorescence was used to directly detect the presence of bound
aptamer/thrombin. Finally, the aptamer linked to the AuNP and was once again labeled. The
binding of thrombin induced a change in conformation in the aptamer, releasing it from the
AuNP, and the fluorescence was unquenched. The three difference labeling techniques
generated three different kinetic affinities, demonstrating the non-trivial impact of labeling on
kinetics.

Quantum dots are commonly used as donor molecules in FRET-based assays [65, 66].
The emission wavelength of quantum dots is tunable via controlling the particle diameter size.
QDs have a large Stokes shift, so that the difference in absorption and emission wavelength is
very large. Using QDs as donor molecules in a FRET experiment, Medintz et al. [68] quantified
the binding affinity of small molecule maltose to maltose binding protein (MBP), which was
attached to QDs. The fluorescence of the QDs was initially extinguished by attaching the
quencher QSY9 to the MBP/QD complex. The addition of maltose competed for binding sites
with the quencher and the amount of bound maltose with the MBP/QD was quantified by the

resulting fluorescence of the bound complexes.
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reference [68]

In general, there are two strategies to achieve high sensitivity: target-based amplification
and signal-based amplification. In target-based amplification (e.g. Polymerase chain reaction) a
generation of more targets or target surrogates is elicited by a recognition event. Current PCR
techniques can reliably detect the presence of only a few copies of a nucleic acid sequence [67].
Conversely, in signal-based amplification a catalytic entity is often used to increase the indicator
from a single binding event [68]. Mirkin et al. developed a method for signal-based
amplification of small molecule binding to IgG1 and IgE based on the aggregation of AuNPs
[69]. Small molecules biotin and dinitrophenyl (DNP) were tagged with oligonucleotides that
were complementary to oligonucleotides coating the surface of the AuNPs, creating a

nanoparticle complex that had an affinity for a target biomolecule (either IgG1 or IgE). When
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the proteins were introduced to the small molecule/AuNP complexes, the aggregation of
complexes induces a colorimetric change and the melting signature of the aggregates identifies
which of the two proteins had bound. This technique is limited only to detecting the presence of
a bound complex (and for all practical purposes, an irreversible binding) but demonstrates the
potential for measuring very small quantities of the target molecules. Mirkin is credited with
developing a bio-barcode assay (BCA) based on the amplification of an AuNP signal that has
demonstrated zeptomolar sensitivity [70] to DNA binding and attomolar sensitivity to protein
binding [71]. This approach may be applicable to measuring small molecule binding in the
future.

Plasmonic nanosensors combine the localized sensitivity of nanoparticles with the
established technique of surface plasmon resonance; the most common configuration relies on
optical changes in thin gold films [72]. In this design, a localized electromagnetic field is created
on the sensor surface, which resonates with the free electrons of the nanoparticles, resulting in an
extremely intense and highly confined electromagnetic field. For example, a single 80 nm silver
nanosphere scatters 445 nm light with a scattering cross section of 3 x 10 pm?, a million times
greater than the fluorescence cross section of a fluorescein molecule [73]. Plasmonic
nanoparticles are generally 500,000 times more luminous than fluorophores [74].

There are two types of sensors based on the localized SPR (LSPR): aggregation sensors
and refractive index sensors. The first sensor type relies on the drastic color change from NP
aggregation due to near-field electromagnetic coupling; the resonance peak of two NP’s red
shifts as the distance between the two particles decreased below the particle diameter. If two NP

were functionalized with complementary biomolecules, the interaction between the molecules
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will induce the aggregation of the NP, which can be detected by the color change. The second
sensor type relies on change in the local refractive index around the metal nanostructures. The
size and shape of NPs can be varied to optimize the signal for a particular experiment, as their
characteristic properties are a function of their geometry and composition.

Optical spectroscopy is currently the simplest method to detect LSPR on metal
nanostructures.  Extinction measurements are used to characterize large number of
nanostructures such as nanoparticle colloids. Scattering measurements are used for low density
nanostructures, often characterizing single nano-objects as single nanoparticles are visible using
dark field microscopy. Extinction spectroscopy measurements tend to have a higher signal-to-
noise ratio [75] but the spectroscopy approach is chosen based on the specific measurement to

take place.
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Figure 5. Representative data from a LSPR kinetic experiment. From reference [75]

Proof of principle experiments using localized SPR (LSPR) have been demonstrated for a
variety of nano-structures, including triangular silver particles [76], gold nanodisks [75],
nanoshells [77], nanorings [78], nanocrescents [79], and nanoholes [80] in thin films.

Aggregation-based assays focus on the detection of low concentrations of target biomolecules
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(e.g. small molecules [81, 82] , proteins [83, 84] and enzymes [85]) rather than real-time kinetic
measurements. The binding stoichiometry K can be measured in the former, but not to a high
degree of accuracy. Biosensing based on refractive index LSPR shifts are more suitable to
kinetic rate (k,;) measurements, as their similarity to traditional film-based SPR measurements
ensures their compatibility with established microfluidic platforms and assay protocols.

Small molecule affinity measurements based on localized changes in the refractive
surrounding nanoparticles has been demonstrated as a proof-of-principle [86, 87].
The ICsq value, or the concentration that inhibits the curve by 50% from when no analyte is
present, was determined at nanomolar concentration levels of stanozolol (a commonly abused
anabolic agent with a molecular weight of 328 Da). Nanoparticle colloids were immobilized on a
glass surface and were monitored via dark field spectroscopy. As the sensitivity of the system is
dependent on the geometry and composition of the nanostructures, nanorods have been used to
measure antibody/protein binding at picomolar concentrations.

The field of Raman spectroscopy has enjoyed an unexpected boon from the LSPR modes
of nanoparticles in the form of a significant increase in sensitivity. The net electric field E,,,;
around a dielectric particle is a combination of the applied field E, and the induced dipole field
from the particle. For a polarizable spherical particle with a radius r,,, and a dielectric

constant &;, in a medium ¢, the field gain G for the particle is [88]:

Enec(w) ., @) —& < Tm )3 (5)

Glw) = Ey(w) e(w) +2e \r+n,

Traditionally, the intense elastic scattering of Rayleigh light dominates the weaklier

inelastic Raman scattering. Complex and expensive detection platforms are used to mitigate this
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disparity. With the addition of metallic nanoparticles, both the excitation and the scattered fields
of Raman spectroscopy are enhanced; surface enhanced Raman spectroscopy (SERS) routinely
report signals 10'2-10'* times greater than signals from non-surface-enhanced experiments [89].
Small molecule [90] interactions and protein microarrays [91] have been reported with
femtomolar concentration levels, although single molecule detection has been demonstrated by
SERS [92, 93]. It is worthwhile to pursue such high levels of sensitivity. However, this
technology requires substantial optimization and characterization before it can be routinely used
to determine small molecule affinities.

Proponents of the nano-variety of SPR argue that it enjoys a simple detection setup and a
reduced cost of analysis. The ‘simplification’ of this technique refers only to the lack of prism,
which is necessary in the ubiquitous Kretschmann configuration in conventional SPR. The so-
called reduced cost anticipates a dramatic decrease in the current fabrication expense, as it is still
significant compared to evaporating or sputtering thin metal films. Furthermore, the instability
of metal nanostructures towards changes in environmental conditions is still being addressed to
provide more reliable and robust surfaces for LSPR measurements [94].

There are three major obstacles barring the widespread acceptance and adoption of
nanoparticle-based assays [95]. The first concerns the reproducibility of nanoparticle
production. Many properties of a nanoparticle depend directly on their size. Consistency and
uniformity of nanoparticle size is mandatory for quantitative analysis of small
molecule/biomolecule interactions.  Second, the number of biomolecules attached per
nanoparticle cannot yet be controlled. Multiple biomolecules can usually be attached to an

individual nanoparticle. This ambiguity allows too much uncertainty for rigorous quantitative
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kinetic measurement. Finally, and perhaps most importantly, biomolecules have demonstrated
loss of activity upon conjugation to nanoparticles. This is a major point of contention in the
debate between label and label-free bioanalysis. Even the smallest 2 nanometer ZnS
nanoparticle has a mass on the order of tens of kilodaltons. Labeling a small molecule target
biomolecule effectively doubles the mass, to say nothing of the molecular interaction forces, of
the complex being measured. Even if the smallest label can be attached to the target
biomolecule, the toxicity and biocompatibility of quantum dot labels is a source of the current
controversy surrounding this technique.

1.3.4 Isothermal Titration Calorimetry

Isothermal Titration Calorimetry (ITC) is a powerful tool for characterizing small
molecule binding events. ITC experiments provide a unique probe of thermodynamic
information that can be used to quantify the binding stoichiometry, affinity, and enthalpy/entropy
change. In other words, the information from ITC experiments can measure not only the
magnitude of a binding, but which fundamental forces drive the interaction. ITC does not
require the labeling of either binding partner, and the measurements are done exclusively in
solution.

Isothermal titration calorimeters are first and foremost thermodynamic instruments
designed to measure enthalpy changes in physical or chemical reactions. ITC employs
thermocoupled sample and reference cells that routinely measure nanojoule heats of reaction
[96]. The sample cell contains a biomolecular target for a small molecule. The small molecule
is injected into the sample chamber at different concentrations, and the heat generated or

absorbed during the binding is monitored. This corresponds to the change in enthalpy (AH) for

29



the interaction. The enthalpy change of a reaction can be determined one of two ways; it can be
directly measured using calorimetry or indirectly by the van’t Hoff method. Differential
scanning calorimetry (DSC) and ITC are currently the only methods that directly
measure AH [97]. The amount of heat evolved on addition of a small molecule to its binding
partner in a 1:1 binding stoichiometry is:

_ VoAH[M].K,[L] (6)
(1 +K,[LD
where V; is the volume of the cell, AH is the enthalpy of binding per mole of ligand, [M]; is the

total macromolar concentration including bound and free fractions, K, is the binding constant,
and [L] is the free ligand (small molecule) concentration [98]. The direct measurement of AH in
ITC includes effects from dilution heat, binding heat, the energy required for desolvation and the
energy change after protein rearrangement [99]. Therefore enthalpy obtained from ITC must be
scrupulously analyzed and it is prudent to consider it an ‘apparent enthalpy’ while the
contributions of its various components are separated and understood. ITC is therefore a very
useful tool for complete thermodynamic characterization of small molecule interactions.

The stoichiometry and association constant (K,) is determined by titration. From the
association constant the change in Gibbs free energy (AG) is then calculated, and subsequently
the change in entropy (AS). The heat capacity (AC,) can be determined by performing the
experiments at several different temperatures. This wealth of information provides a
comprehensive characterization of bi-molecular interaction. ITC is considered the gold standard
of kinetic measurement techniques as many new applications are validated by direct comparison

with ITC reported findings.
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Figure 6. Thermodynamic profile of the binding of a series of small molecule inhibitors to HIV
protease. The inhibitors were designed to optimize the enthalpic contribution to the binding

energy. {REF Nature Protocols}

There are hundreds of reported small molecule-binding ITC experiments. The Journal of
Molecular Recognition has published several reviews that summarize and highlight some of the
important work in this field [100, 101]. Additionally, the Biotechnology Journal [97] and
Methods in Enzymology [102] have recently published reviews as well.

While calorimetry is one of the foremost techniques for characterizing bi-molecular
interactions, ITC typically requires 10-1000 pg of the binding partners. Concentration
requirements and data quality are a primary consideration for ITC experiments, as concentrations
of the reagents must be matched to both the affinity and the enthalpy change [103]. The
concentration of reactants is increased to compensate for small changes in reaction enthalpy.
However, there is a requisite range of concentrations that must be measured to ensure good
accuracy in kinetic measurements. This problem is exemplified when measuring weak affinities

and low available of reactants, such as T cell receptors binding to major histocompatibility
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complex proteins. The precise determination of binding affinity is very difficult below the
nanomolar level [104]. Displacement titration, a new mode of ITC has been developed in recent
years to determine affinities down to the picomolar range [105]. Additionally, the ITC is a very
low-throughput method. Current instruments boast a throughput of 75 binding experiments per
day [106], which cannot be considered as ‘high-throughput.” ITC is best used as a post-
screening analysis step, in which the affinity of a small molecule to a target can be quantified and

optimized based its thermodynamic profile (Figure 6).
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2. SURFACE PLASMON RESONANCE
2.1 Introduction

The SPR phenomenon may be considered an energy matching condition between free
electrons (e.g. a metallic sensor surface) and incident electromagnetic radiation (e.g. light
coupled through a prism to the sensor surface). Researchers have used the SPR phenomena to
investigate various physical properties of ultra-thing organic films [107], evaluate conducting
polymers [108], detect pathogens in food and water [109], and discover novel pharmaceutical
drugs [110]. The accumulation of surface-bound mass, particularly at high densities, will change
the local refractive index condition and generate a measurable SPR signal. Accordingly, a major
application of SPR sensors includes the measurement of binding affinities between small
molecules and surface-bound receptors. Neither the small molecules nor the ligands require
labels. Another advantage of SPR is the ability to monitor binding events in real-time; providing

valuable kinetic information that many other techniques cannot measure.

2.2 Theory of Surface Plasmons

Informed by physical theories and mathematical models, a scientist approaches each
experiment with an expectation of the outcome. However, formulas are often accurate to only a
first approximation; the more general the model the more ideal the experimental system must be.
Researchers rely on empirical coefficients, calibration constants, and physical equivalents to
modify formulas for the nitty-gritty of practical application. Additionally, the list of assumptions
and approximations used to make a model applicable can become alarmingly long. It is

necessary to rigorously examine these assumptions to ensure proper employment of the theory.
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Maxwell’s equations form one of the most common models used to describe the behavior
of electromagnetic radiation. Manipulating the angle of incidence of electromagnetic radiation
on the boundary of two (semi-infinite) media bounded by a planar boundary of infinite extent
(Figure 7) can generate phenomena described by familiar terms such as Snell’s Law and the
Brewster Angle. More unfamiliar EM behavior, such as surface plasmons, can also be

understood through Maxwell’s theory.

2.2.1 Dispersion Relation of Surface Plasmons
Consider an electromagnetic plane wave incident on the boundary described above. At
any instant in time this wave can be described by the instantaneous electric £ and magnetic H

fields in each medium, respectively.
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Figure 7. Definition of axis system and constitutive parameters
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The amplitudes of the electric and magnetic fields are represented by E and H, respectively. The

angular frequency is o, k is the wave vector, and j = V—1. The fields described by equations

(7ab) and (8ab) must satisfy Maxwell’s equations:

0H
VX(S:—ML'—HE (9)

0&
VXH = —f§;+0€E+ e— (10)
ot
V- D=¢V-E=gq,, (11)
V-B=uv-H = qgpm, (12)

For these expressions to be valid, it is assumed that the field vectors are single-valued, bounded,
continuous (including their derivatives) functions of position and time. The boundary conditions
are required to describe any variations of the field vectors at the interface of the two media. The
boundary conditions for finite conductivity media in the absence of charges include:
ax(E&,—&)=0 (13)

AX(H, — F,) =0 (14)
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Applying Maxwell’s equations and the boundary conditions to the expressions for the electric
and magnetic fields yield the dispersion relation for the planar interface between two semi-

infinite media:

& €1
The wave vectors in the x- and z-directions are related by:
From equations (11) and (12) the wave vector k, is continuous across the interface. The

wave vectors in the X and Z directions can be rewritten as a function of the constitutive

parameters and angular frequency of the incident electromagnetic radiation:

PR T (17)
¥ et g

=2 __& (18)
e g

Now let us assume that medium 2 is air (&, = 1), the angular frequency w is real, and
medium 1 is a metal such as Au or Ag with a complex permittivity (&; = & +¢&;') . The
expressions for the field vectors become imaginary or complex. The wave vector in the x-

direction can be written as k,, = k; + k;/ where

= w | && (19)
Yo et
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The free valence electrons of a metallic solid can be viewed as an electron “gas” that
permeates the crystal lattice of the metal. The dielectric function of the electron gas depends
strongly on the applied frequency of modulation. The long wavelength dielectric response of an
electron gas is obtained from the equation of motion of a free electron in an electric field. For
frequencies of modulation less than the plasma frequency of the metal, the permittivity of the

metal can be written as:

w? 1)
gw)=1 —w—z

2

5 = ne?/gym where n is the bulk electron density,

The plasma frequency is defined as w
and e and m are the charge and resting mass of an electron, respectively. The dispersion relation

for the surface plasmon can be rewritten as:

(22)
w2, = —wé + c%k!? — _w;} + ctk!*
sp — 2 x 4 x

The dispersion relation of a surface plasmon is plotted in Figure 8. It is important to
recognize that electromagnetic radiation travelling in an arbitrary direction in medium 2
(k, = +/e;w/c) cannot simultaneously provide the correct wave vector and angular frequency to
excite a surface plasmon. Furthermore, surface plasmons cannot spontaneously transform into

light.
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Figure 8. The dispersion relation for non-radiative surface plasmons at the interface of Au and
air (solid line). The surface plasmon never intersects the light line (dashed line) and therefore

cannot transform into light. At short wavelengths, the surface-plasmon dispersion curve

approaches asymptotically the non-retarded surface plasmon frequency (wg, = wy,/ V2).

2.3 Properties of Surface Plasmons
2.3.1 Propagation Length
Metals and certain doped semiconductors (g; < 0 and || > &,) allow for a real kjto

propagate at the interface of the two media. The length of propagation is determined by
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imaginary part of the wave vector in the x-direction given by equation (20); the length L after

which the intensity of the SP decreases to 1/e is given by:

1 (23)

L =
2k

2.3.2 Spatial Extension
The imaginary wave vectors given by (12) describe a wave tightly bound the interface
between mediums one and two. The skin depths into mediums 1 and 2 are given by:

‘

A lgg+ e
— > z>0
1 2m &5 (24)
zZ= %] orz =X
z A e+ &
— ) z<0
2m | &

A wave that propagates at the interface and decays exponentially in directions normal to
that interface is known as an ‘evanescent wave.” There is no real power transferred from

medium 1 across the boundary.
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Figure 9. As &; approaches —¢,, the group and phase velocities go to zero, the wave vector ky

goes to infinity, and the wavelength of the surface plasmon approaches zero.

The surface
plasmon resembles localized fluctuations of the electron plasma.

2.4 Excitation of Surface Plasmons

Surface plasmons on a thin metallic film can be directly excited by the transfer of
momentum from incident electrons to the electrons of the solid. Incident electrons are scattered

by the film, and depending on the angle of the scattered electron, the momentum of the incident
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electron matches the dispersion relation of the surface plasmon. Electrons have been used to

study the physics of SP at large (k, > w,/c) values.

Photons can be used to excited surface plasmons as well. It is not possible to directly
excite surface plasmons on a thin surface with photons. At a given photon energy (hw), the
incident wavevector (hw/c) must be increased by Ak,. Two popular methods used to supply the

requisite Ak, are the grating coupling and Attenuated Total Reflection (ATR).

2.4.1 Grating Coupler
Light incident on a plasma surface with a grating constant @, at an angle 8 will have a

wavevector component parallel to the surface of the form:

w 21 2
kxz?singin?, n=012.. (23)

The dispersion relation given by equation (15), is thus satisfied

, (26)
W | W | g&
k, =—sin0 + Ak, = — |——
c c.&+e

The resonance condition can be observed as a minimum of reflected light. The height of
the amplitude grating determines the magnitude of this minimum. Surface plasmons excited in
this manner may release their energy in the form of the re-radiation of light via the coupling

method of the grating.

2.4.2 ATR Coupler
The Attenuated Total Reflection coupling method is currently the most common

technique for the excitation of surface plasmons in SPR-based applications. ATR methods use a
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prism to couple the evanescent wave to the surface plasmon energy condition on a metallic

surface. An example ATR configuration is shown in Figure 10.

AN 4

Mo, &

10, Em(®)

Ho, &

Figure 10. The excitation of surface plasmons via the Kretschmann coupling method.

As incident light (k = w/c) passes through a medium with &; > 1(e.g. quartz prism) its
momentum increases to ,/€;hw/c and its projection on the surface of the film becomes:

)
k, = = g4 Sin6 (27)

With this increase in Ak,, the light line in Figure 11 can match the dispersion relation of

the surface plasmon on the interface between the metal and air.
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Figure 11. Dispersion relation of surface plasmons in the ATR coupling method. The
intersection of the two solid lines represents the excitation of a surface plasmon using the angle

of incidence to satisfy the wavevector mismatch.

It is possible to match the dispersion relation of equation 15 by manipulating the angle of
incidence to achieve surface plasmon resonance:

(28)

0, = sin~?!
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This is angle is known as the resonance angle and corresponds to a minimum in the
intensity of reflected light.

Two popular ATR coupling methods were developed by Otto and Kretschmann,
respectively. The Otto configuration [111] introduces a dielectric layer between the prism and
the metallic surface, while the Kretschmann configuration [112] places the metallic film directly
on the prism surface. The gap thickness in the Otto configuration determines the strength of the
energy coupling. A typical dielectric thickness of 0.5 m is used on an Au film illuminated with
632.8nm light [113]. The Kretschmann configuration is most often preferred over the Otto
configuration and is pictured in Figure 10. (Unless explicitly stated, any model SPR platform
discussed in the follow text may be assumed to be in the Kretschmann configuration.)

Other methods for exciting surface plasmons include optical fibers and alternating layers
of dielectric around a metallic core. EM radiation traveling through a gold-coated optical fiber
can excite surface plasmons on the fiber’s surface, allowing for a probe to be used at a distance
from the light source and detector [114]. Long range surface plasmon resonance (LRSPR)
detectors have a metallic layer sandwiched between two identical dielectric layers [115]. The
reflected illumination intensity changes dramatically as a function of illumination angle in

LRSPR detectors, but this increased sensitivity comes at the cost of reduced spatial resolution.
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3. SPR BIOSENSORS
3.1 Introduction

Surface plasmon resonance (SPR) is a prevalent label-free biosensor technology routinely
exercised in bio-affinity studies [116], clinical diagnostics [110], and environmental analysis
[117]. Perhaps one of its biggest advantages over related techniques is its sophisticated

characterization of bimolecular reaction kinetics.

3.2 Materials & Methods

The most popular SPR biosensor is based on the Kretschmann configuration (Figure 10).
The sensor surface is comprised of a thin metal film (~45nm of gold) on the top face of a prism.
In flow-base assays, the gold film represents one of the boundaries of a microfluidic channel,
which is used to deliver sample to the surface (and quickly remove it after dissociation). An
LED or laser diode illuminates the film through the prism. At a particular angle of incidence, the
electromagnetic radiation from the light source couples with the free electrons on the film
surface, resulting in a decrease in reflected light, usually measured by a CCD camera or
photodiode. Changes in the refractive index on the sensor surface (e.g. binding of an analyte
from solution) change the coupling condition and the resonance angle. Most commercial SPR

systems illuminate the sensor surface a fixed angle and measure changes in signal intensity.

3.2.1 Sensitivity

The optimization of an SPR optical biosensor is informed by the desired measurement
functionalities; tradeoffs between various characteristics of the instrumentation, such as spatial
resolution v. surface sensitivity, may limit the possible measurements available to a particular

SPR platform configuration. Chinowsky et al. identify four major attributes of an SPR biosensor
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available for optimization [118]: (1) refractive index resolution, (2) spatial resolution, (3)
refractive index range, and (4) mechanical and optical simplicity. The proposed experiment will
dictate the relative importance of these parameters. In general, maximizing the signal to noise

ratio (SNR) is the first step in designing an SPR system.

3.2.2 Signal to Noise Ratio in SPR Imaging
The signal in an SPR imaging system is the change in measured light intensity (as a
function of changing refractive index located within the surface-bound evanescent wave). The

signal S from an SPR imager may be written as:

d(IXR) dR (29)
An = IX— XAn
dn dn

where [ is the illumination intensity (units of photoelectrons), An is the change in refractive

index, and dR/dn is the derivative of reflectivity with respect to surface refractive index.
Sources of noise include reset noise, output amplifier noise, dark current noise, and photo
response non-uniformity [119]. Statistical fluctuations in the number of photons incident on the
imaging detector is known as shot noise. This fundamental limit on noise performance in light
detection systems tends to dominate in bright imaging systems and can be written as:

o = VIXR (30)

We can express the signal to noise ratio (SNR) as:

dR An €1y

For small changes in R, this equation reduces to:

dR
SNR =Ix — (32)
dan
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Given our assumptions, the SNR is improved by increasing the illumination intensity and

increasing the change in reflectivity with respect to changing refractive index.

3.2.3 Camera Noise Analysis

Increasing illumination intensity may require changes to the light detector. For example,
the saturating limit of the number of photoelectrons could be increased. Increasing the pixel size
or the image acquisition rate will increase this limit.

There are several characteristics to consider when evaluating an image detecting system
for use in SPR imaging. The relative importance of the number and size of pixels, frame rate,
uniformity and dark current, and cost must be considered when designing an SPR platform.
CCD cameras balance these components and are a popular image detector choice. The
performance of a CCD camera may be limited by temporal or spatial noise sources. The relative

levels of signal noise for two cameras are plotted in Figure 12.
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Figure 12. Noise analysis for two cameras at (a) high illumination intensities, and (b) low
illumination intensities. Relative noise is defined as the mean pixel value divided by the
standard deviation of all pixels values. Generally, the noise is inversely proportional to the
number of pixels in the detection area and number of images collected. Each camera was

exposed to the same light source and captured images at 30 frames per second.

3.2.4 Reflected Light Intensity
Optimizing the reflected light component of the SPR signal may be achieved through

careful manipulation of the materials and geometry of the SPR platform. Three interrelated

48



variables to balance are light source wavelength, Au sensor thickness, and illumination angle.
Unless otherwise stated, the parameters for the following Winspall simulations [120] are: 42 nm
Au film thickness, BK7 ‘half cylinder’ prism, 632.8 nm p-polarized light.

The wavelength of the light source is selected first when building an SPR detector. The
slope of the reflectance as a function of angle of incidence in a Kretschmann configuration is
maximized at longer wavelengths of light (Figure 13). For small changes in refractive index,

dn = d@o.

49



Reflected Intensity v. lllumination Angle, Select Wavelengths

1.0 4

0.8 4
>
‘» 0.6
S =550 nm
= i ——632nm
E 0.4 - — 770 Nm
5 — 850 Nm
= ]
[}
(0

0.2 4

0.0 -

) l ) l L} | L} | 1
50 60 70 80 90

Figure 13. Reflected light intensity as a function of illumination angle for several frequencies of
incident light. The SPR “dip” profile narrows as the wavelength of light increases,
corresponding to a larger change in intensity for small changes in resonance angle (or dn). The
surface plasmon propagation length and penetration depth into the bulk also increase according
to wavelength; this decreases spatial resolution and reduces the relative contribution of the

sensor surface to the total SPR signal.
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The appropriate thickness of the Au sensor chip is determined by the wavelength of the
light source. The Au chip is fabricated in a clean room environment and is consumed at the
conclusion of each experiment. A typical thickness of an Au film is 40-50 nm.

For fixed-angle SPR experiments, the selection of an appropriate angle is required; the
angle of incidence (illumination angle) may be varied to optimize the change in signal. This
final signal is a function of sensitivity (light intensity from dR/d0) and its amplification from

camera gain. This relationship is plotted in Figure 14.
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Figure 14. The selection of the angle of illumination for fixed-angle measurements is informed
by the magnitude of response at each angle. The reflectance is plotted in black and the absolute
magnitude of its derivative is plotted in red. The sensitivity of the SPR response may also be
influenced by the amount of gain or amplification available at a particular angle of incidence
(blue line). The amplification is assumed to be 80% of the camera saturation value and is plotted
as 0.8/R. [inset] The maximum response angle corresponds to the maximum of the product of

the slope and amplification (purple line).
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Generally, the collected light intensity is amplified to no more than 80% of a CCD
camera’s saturation level to preserve signal quality. The sensitivity drives the bulk of the SPR
response and is shown for a fixed angle measurement of Bovine Serum Albumin collecting on a

sensor surface in Figure 15.

10 = Reflected Intensity v. Angle of lllumination
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Figure 15. SPR response due to surface-bound Bovine Serum Albumin. At a fixed angle of
observation, the reflected light intensity changes due to the presence of a monolayer of

immobilized protein with a different refractive index than the bare Au.
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3.2.5 Mass Sensitivity

The sensitivity of the SPR signal to the local environment of the sensor surface is
primarily used to measure interactions between two binding partners. Stenberg et al. have
quantified the correlation between surface concentration of protein on the biospecific active
surface and SPR response with radiolabeled proteins [121]. In a typical Biacore SPR instrument
(which represented 87% of the reported SPR instruments in 2005) [122], a 122 mDeg shift in
resonance angle corresponds to a mass density change of 1 ng/mm?. Biacore instruments often
measure the SPR signal in response units (RU). 1 mDeg is equal to 8.2 RU (and varies slightly
according to SPR configuration details). Current commercially available SPR platforms can
achieve 0.1 mDeg sensitivity, which corresponds to a mass sensitivity of ~1pg/mm’. The mass
sensitivity can be dramatically improved by imaging the SPR sensor surface; the laboratory of
NJ Tao has SPR microscopy platforms with reported mass sensitivities of 0.2 fg/mm*. The high
spatial resolution reduces the inherent spatial averaging in reported Biacore mass sensitivities.
Some research groups quantify the mass sensitivity of their instruments by reporting the mass of
the smallest they can detect; David Myszka has published several papers characterizing the
interaction between Carbonic Anhydrase II with many small molecules (95-500 Da) [123].

Changing the refractive indices of the prism and materials used, using silver instead of
gold, and using different frequencies of light all change the sensitivity of the SPR detection

platform.

3.2.6 Surface Chemistry
The surface chemistry of the sensor surface is a pivotal variable for SPR assays. A

variety of molecular structures in the form of linkers, blockers, and conductors have been
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developed to work with gold, which is the most commonly employed sensor surface. The
conventional SPR signal does not discriminate between different molecules adsorbing on its
surface; it is only sensitive to changes in mass density. Therefore, the sensor surface must be
well characterized before it can be used to generate high quality data.

Preventing nonspecific adsorption of analytes to the sensor surface is a primary goal of
manipulating the sensor surface chemistry. If a molecule binds to the sensor, it should only bind
to its partner, ensuring the measured kinetics are representative of the bimolecular binding. This
can be achieved by immobilizing a monolayer of polyethylene glycol, which blocks adsorption
to the gold by presenting a hydrophilic screen to wayward analytes in solution. A small fraction
of the PEG molecules can be terminated with COOH or NH, groups that may be used in amine
coupling. Dextran, a polysaccharide of many glucose molecules, is another popular surface
chemistry. It too forms a monolayer on the surface, but extends much further from the surface
(typically ~100nm) and has multiple locations on each strand to immobilize a ligand. When two
molecules interact in solution, the orientation of binding sites and frequency of collision will
affect the reaction rate. Immobilization of a binding partner to a dextran polymer will
imperfectly simulate the reaction conditions found in solution-based measurements [124]. The
observed rate constants in this system will generally be lower than those measured in solution-

based interrogations. To this end, it is important to maintain constant viscosity in the matrix.

3.2.7 SPR Kinetic Theory
Surface plasmon resonance (SPR) is routinely used in bio-affinity studies [125], clinical
diagnostics [126], and environmental analysis [12]. SPR can be used to monitor molecular

binding events, as its real-time output facilitates kinetic binding measurement (i.e. association
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and dissociation rate constants) in high-throughput environments (e.g. imaging [127],
microarrays [128]). The need for detailed kinetic binding and thermodynamic information in
modern drug discovery has established SPR as a prominent label-free technology for fragment-
based drug discovery and small molecule binding analysis [129].

The kinetic binding information measured by SPR is crucial component for relating the
structure of biological molecules to their function. Designing high quality experiments is
difficult and the data must be evaluated with a skeptical eye. Myszka describes the limitations of
post-experiment kinetic analysis; explaining a good fit to the binding data does not ensure that
the binding reaction model is correct [130]. Appropriate experimental variables such as flow
rate, surface density, and contact time may be manipulated to validate the choice of a particular
reaction model. Additionally, interactions should be studied with each reactant independently
immobilized on the sensor surface to block the experiment artifacts associated with
immobilization, the equilibrium constant calculated from the measured rate constants should be
compared to an experimental measurement of Kp, and the same reaction should be measured
with solution-based [131] interaction technologies [132] for a comprehensive evaluation of
kinetic data.

SPR based biosensors can be used to measure the kinetics of the reversible binding of an
analyte of species A from solution to a binding site of species B immobilized on the sensor
surface. The binding stoichiometry that we will consider is defined as a 1:1 interaction model.
It is analogous to the Langmuir adsorption model, with three basic assumptions: (1) the

adsorption cannot proceed beyond monolayer coverage, (2) all sites are equivalent and the
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surface is uniform, and (3) the ability of a molecule to adsorb to a given site is independent of the
degree of occupation of neighboring sites [133].

These assumptions are reasonable and can be verified for many different binding events.
Information about the molecular architecture is used to verify the existence of a single binding
site, for example. Studies using various microscopy techniques, such as Atomic Force [134] or
Electron Diffraction [135], have independently verified the uniformity of binding sites and
monolayer coverage for a multitude of surface chemistries. Additionally, intermediate layers of
PEG or Dextran have been developed to prevent non-specific adsorption onto the sensor surface.
Experimental protocols to tailor specific surface chemistries are widely available. Proper
spacing between ligands or binding sites will obviate concerns about steric hindrances.

Our final assumption is that the analyte has a sufficiently high mass transport from the
bulk to the sensor surface such that it does not limit the rate of binding. Reducing or eliminating
the effects of mass transport is primarily achieved by increasing the flow rate in flow-based
experiments and reducing the number of binding sites on the sensor surface. This assumption is
validated after the experiment by plotting the SPR signal as a function of time, and will be
addressed later.

For a bimolecular interaction between analyte A and ligand B yielding the complex C, the
dynamic equilibrium is given by:

A+B¢ (33)
C P A+B (34)
where the forward and reverse reaction rates are represented by the association rate

constant k, and the dissociation rate constant k,, respectively. Based on our assumptions above,
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k, and k, represent the second- and first-order reaction rates. The association process is
described by:

WO @1 - kaleo) 9

As the analyte binds with the immobilized ligand, the number of binding sites disappears

according to:

[B(£)] = —[C(O)] + [Bo] (36a)
The number of analytes decreases in a similar manner.

[A(D)] = —[C(®)] + [A,] (36b)
The concentration of complexes a function of time can be rewritten as

d|C
O = kalc@P? + kaT40] + 3D a

— [CO1ka([Ao] + [BoD) + ka)

In flow-based SPR assay, the analyte is continuously replenished during the injection
phase. Therefore, there is significantly more analyte in solution than ligand binding partners on
the sensor surface (A, > By -~ Ag > C). This is a fair assumption; the continuous flow of
injection provides a steady amount of analyte in solution as the analyte on the surface is

depleted. The rate of formation of the complex becomes:

d[ff)] = kq[Alo[Blo — [C(®)1(ka[Alo + Kky) (38)

At t=0 the number of complexes C must equal zero. The growth and decay in the number
of complexes follows an exponential curve. Any deviation from this characteristic shape
suggests that the binding is not a 1:1 stoichiometry or that the reaction suffers from mass

transport limitations.
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kalAlo[Blo e ~t(kalAlo+ka) (39)
cOl =Ty = )
Dissociation
kalAlolBlo ., (40)
CO1= G 11, + ko)

The shift in the SPR resonance angle is proportional to the amount of bound mass, with a
typical mass sensitivity factor [136] of 120 mDeg per 100 ng/cm”. As was shown in Figure 15,
the changing resonance condition due to accumulation of surface-bound mass will generate a
change in reflected light intensity. Therefore, by monitoring the percentage change of intensity at
a fixed angle, the SPR response can be used to extrapolate the kinetic parameters of the
molecular binding. Global analysis [137], the process of simultaneously fitting association and
dissociation kinetic data from an SPR biosensor, has been shown to accurately measure the

kinetic binding constants of a binding event partially controlled by mass transport [138].
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Figure 16. The change in light intensity at a fixed angle due to the association and dissociation
of an analyte in solution and its binding partner immobilized on a sensor surface. The
exponential growth and decay of this SPR sensorgram may be fitted with the association and

dissociation equations above.

The association and dissociation rate constants can be calculated from the slope and
intercept, respectively, of the dR,/dt versus R4 plot, where R, is the SPR response obtained from
the kinetic curves after subtraction of the background signal [139]. Additionally, we can obtain
Kp from a graph of the maximum SPR signal versus analyte concentration as shown in Figure

17.
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Figure 17. The dissociation constant Ky, is the concentration of analyte that generates 50% of the

saturated SPR signal.

There are two significant obstacles facing the current SPR detection paradigm for small
molecule binding analysis: (1) mass sensitivity [140]: the mass ratio of the two binding partners
is (empirically) limited to < 2000, effectively limiting the mass of the smaller binding molecule
to approximately > 95 Da [123], and (2) mass transport limitation (MTL): the chemical process
of association and dissociation can be influenced by dilatory mass transport of sample analytes to
the sensing region, confounding the accuracy of kinetic rate constant measurement. (The latter
obstacle may be considered a consequence of the mass sensitivity of SPR: the conventional
strategy of decreasing the surface density of immobilized receptors to mitigate the effects of
MTL simultaneously decreases the mass-dependent SPR signal.)

A number of recent publications have addressed the mass sensitivity constraints of SPR
[141]; techniques such as plasmonic-based impedance sensors and SPR microscopy [142]
employ novel detection strategies or improved optical systems to augment conventional SPR

sensitivity. The theory of kinetic binding analysis has been rigorously examined: data from a
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binding reaction that is partially limited by mass transport may be evaluated using various
analysis methods such as global fitting but only if the kinetic model assumptions are satisfied
[143-147]. There is little evidence of hardware improvement to increase the dynamic range of
kinetic rate constants (k,, k4) measurement. The fluidic delivery system is not an ancillary

component of a comprehensive SPR detection platform and warrants individual consideration.
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4. FOUR-PORT MICROFLUIDIC FLOW-CELL WITH INSTANT SAMPLE
SWITCHING
4.1 Introduction

In its most popular application, surface plasmon resonance (SPR) technology provides
real-time measurement of the extent of solute adsorption to a sensor surface; the rates of
association k, [Mol's™'] and dissociation kq [s™'] between molecular binding partners can be
extracted from an SPR signal. In general, the observed kinetic measurement data are a function
of analyte mass transport and analyte/receptor binding affinity. The binding reaction is mass
transport limited (MTL) if hydrodynamic forces retard the reaction rates of association and/or
dissociation.

A common example of MTL occurs when the diffusion of the analyte near the sensor
surface is comparable or slower than the binding of the analyte to the surface [130,148]. The
delivery speed of analyte to the sensing region, before it diffuses to the sensor surface, is another
potentially limiting factor. Although it is typically assumed to have a negligible effect in most
popular kinetic binding models, this speed become important when the binding reactions have
fast kinetics [143-147]. Small molecule binding reactions are less likely to be limited by slow
diffusion rates than their large molecule analogues, as an analyte’s diffusion coefficient scales
inversely with its molecular weight (D~1/3/MW). However, this increased diffusion rate during
sample convection to the sensing region may limit the availability of a quickly associating
analyte or prolong removal during the dissociation phase. The large dispersion rate and fast
binding kinetics characteristic of small molecules make their measurement particularly

susceptible to this type of MTL.
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The no-slip boundary condition in viscous fluid flow restricts the velocity of a fluid
immediately adjacent to a solid boundary, which can manifest as a parabolic fluid velocity
profile in microfluidic tubing. As analytes randomly diffuse during transport they experience
disparate convective forces according to their position in the tubing. Consequently, it takes a
finite amount of time for the fluid in the sensing region to transition between 100% buffer and
100% sample. This ‘transition’ time (or injection rise and fall time) can limit the chemical
reaction on the sensor surface by reducing the availability of analyte during the association phase
(reducing measured k,), or insufficiently removing unbound analytes during dissociation
(reducing measured kq). Formally, this type of MTL invalidates the ‘continuously replenished
analyte bulk concentration’ assumption of popular kinetic analysis models [149]. A minimal
transition time between buffer and sample solution on the sensor surface is necessary to measure

the fast kinetic rates of bi-molecular interactions.

4.2 Experimental Section

The presented four-port microfluidic device (Figure 18) addresses the specific mass-
transport limitation of sample dispersion during convective transport in flow cell-based SPR
detection platforms [176]. The device is particularly useful for small molecule kinetic
measurements: rapidly switching between buffer and sample solutions on the order of
milliseconds. This enables the detection of binding events that occur two orders of magnitude
faster than the current limits of popular commercial SPR systems (Table 2) and expands the

dynamic range of kinetic rate constant determination to values of kg < 130 s [150].
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Figure 18. (a) Image of the four-port microfluidic device taken with an optical microscope using
transmitted light. PDMS is cured on an SU-8 mold (60 pum height) fabricated using common soft
lithography techniques. The device is press-clamped onto an Au sensor chip or permanently
bound to a glass microscope slide with Au sensor regions using oxygen plasma. (b) Target
receptors (e.g. [gG) are immobilized on an Au sensor surface prior to binding PDMS device. (c)
A small Au sensor chip is fabricated on a glass microscope slide, allowing for a permanent bond
between the PDMS device and the surrounding glass surface using oxygen plasma. Target

receptors are bound to the surface using flow-based immobilization methods.
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Table 2. Summary of the Kinetic Measurement Capabilities of Several Major Commercial SPR

Platforms
Measurement Limits
Company Instrument K M1 Kkgfs'']  Sample Volume [ul]
Biorad ProteOn XPR 36 3x 100 0.6 95
Biacore T200 5x 107 1 22
Biacore X100 1x 107 0.1 20
GE Healthcare .
Biacore 3000 1x 107 0.1 >21
Biacore 4000 5x 10° 1 30
SensiQ 3
Wegimellaees (All Products) I1x10 0.1 5
Plexara PlexArray 1x 108 .01 50
IBIS IBIS-MX96 5x 10° .05 (n/a)

Another advantage of this device is the minimal requirement of sample volume. Binding
kinetics can be measured with as little as 1 pL of analyte solution, which enables measurement

for precious samples.
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Figure 19. A schematic of the microfluidic delivery platform. (a) A syringe pump pushes buffer
solution (blue) through the two inlet ports. One of the syringes is connected to an injection
valve, allowing for the introduction of sample to the microfluidic device. The two outlet ports
are connected to a high-speed switching valve. The switching valve allows for a single outlet
port to flow at a time (open: solid line; closed: dotted line). By selecting which port is open, the
direction of flow through the device and the composition of the solution (sample or buffer) in the
central sensing area are controlled. (b) The relationship between the switching valve and the
fluidic flow through the microfluidic device is illustrated. Buffer and sample (red) solutions
flow through the device simultaneously, while only one solution flows over the central sensing
area. The mixture (orange) of the solutions exits the device through the outlet port selected by
the switching valve. The alternating opening and closing of the two outlets ports reverses the

direction of flow and determines which solution flows over the central sensing area.

The four-port flow cell has two inlets and two outlets and is described in detail in Figure

19. Buffer flows into one inlet, and the sample flows into the other. The two outlets are
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connected to a high-speed switching valve (Low Pressure Stream Selector Valve 1/16" and
microelectric actuator, VICI Valco Instruments). Only one outlet is open at any given time,
controlling the direction of flow through the microfluidic device and the composition of the
solution localized to the sensor surface. Depending on which outlet is opened, the buffer or
sample flows exclusively over the sensor surface, transitioning between the two rapidly. The
small distance the sample travels to the sensing region minimizes the opportunity for sample
dispersion (i.e. increased transition time). Note that the sample plug experiences dispersive
effects due to diffusion of its constituent molecules as it travels from the injection valve to the
microfluidic flow cell. However, the sample is not introduced to the sensing region of the flow
cell until the switching valve selects the appropriate outlet port. The diffuse concentrations in
the front and tail ends of the sample plug are never introduced to the sensing region,
circumventing the dispersive effects of this initial travel time. The transition time will scale with
the physical dimensions of the device and is inversely proportional to the fluid flow rate. At a
volumetric flow rate of 5 pL/min, the devices pictured in Figure 18b and Figure 18c transitioned
between buffer and sample in 26 ms and 7.6ms, respectively.

A two-dimensional computer simulation of the four-port microfluidic device was
conducted using COMSOL’s Convection & Diffusion in combination with the incompressible
Navier-Stokes fluid dynamics application modes, and followed the assembly of the Fluid Valve
(COMSOL Model ID: 315) [151]. The mass transport of 50 uM of a 100 Da molecule (D =
4x10"° m?/s) with a constant influx rate of 5 pL/min was modeled using the physical dimensions
of the device in Figure 18b. The simulated fluids were assumed to be Newtonian, and the default

no-slip boundary conditions were employed. The alternate closing of the outlet ports was
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modeled as local changes in fluid viscosity (U — o). A summary of the simulated mass
transport of the sample through the device is summarized in Figure 20a. Empirical measurement
of the device’s performance (170 mM ethanol in water, MW 46 Da, D = 1.2x10"° m?/s) and the
computed sample concentration profile at a central point (i.e. sensing region) in the flow cell
device is plotted as a function of time in Figure 20b.

The device functionality was tested using a model IgG anti-IgG binding event on a
homemade SPR platform. A non-contact piezoelectric inkjet printer (Engineering Arts LLC)
was used to immobilize a uniform pattern of human IgG spots (via EDC/NHS coupling) with
200 um spacing as previously described. Prior to the print, the Au sensor chip was
functionalized with 5 mM of 50:1 PEG-OH:PEG-COOH in a 4:1 % v/v ethanol to water

solution.
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Figure 20. (a) COMSOL simulation of sample flow through four port flow cell. Buffer flow
from the top left inlet and the sample solution flows from the top right inlet. The bottom two
outlets are connected to a switching valve. The bottom left outlet is opened in the first three
pictures, then is switched closed as the bottom right outlet is opened. The flow through the
center sensing region reverses direction as the sample solution flows out the open outlet. (b) The
sample concentration in the center sensor region of the flow cell is plotted in red as a function of
time. The black scatter plot is experimental data showing the SPR sensor signal. The
experimental data matches the COMSOL simulation almost exactly. (c) Experimental data

showing an IgG/algG binding for three discrete printed spots.

I1x PBS was used as a running buffer and filled the microfluidic device and tubing prior
to the sample injection. A 1 puL sample solution of 20 pg/mL goat anti-human IgG was injected

into the injection valve and allowed to run through the microfluidic device until the front edge of
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the dispersed sample had passed through the microfluidic device, the sample was then introduced
to the sensing region of the device for 20s then removed. Local areas on the sensor surface
without immobilized IgG were used as reference regions. The reference-subtracted SPR
sensorgrams for the binding event are shown in Figure 20c. The measured binding affinity (Kp
= 22 nM) is consistent with values reported in the literature, while the measured association and
dissociation rate constants (k, = 1.069 x10° M™'s™, kg = 0.023 s™) are faster than expected [152].
This is due to the short recording time and single injection concentration. The high frame rate of
the CCD camera (Pike, Allied Vision Technologies) rapidly fills the computer’s memory buffer,
setting an upper bound on the total recording time. Neither the association nor dissociation
process was measured for a sufficiently long time to make an accurate measurement of the slow
kinetics of this proof-of-principle binding event. These experimental artifacts are easily

overcome and are irrelevant for the measurement of fast kinetic rate constants.
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5. PLASMONIC-BASED ELECTROCHEMICAL IMPEDANCE MICROSCOPY
5.1 Introduction

The interactions between small molecules and biological macro-molecules constitute one
of the most important components of biological networks. Communication between cells,
expression of genes, and the entire immune system are dependent on a massively parallel
network of binding interactions of proteins and small molecules. The development of drug
candidates and the identification of biomarkers for clinical diagnosis rely on quick detection of
target molecules in complex environments. Ideally, a detection technique provides information
valuable kinetic information rigorous, quantitative measurements of binding events between
small molecules and their biological receptors. Methods for elucidating these types of binding
reactions are paramount for understanding of one the most fundamental mechanisms of biology.

Traditionally, it has been difficult to measure the binding affinities of small molecules.
For most transducers, the signal is proportional to either the mass or concentration of the
reactants. The diminutive size of small molecules presents an immediate obstacle in their
detection. Many biologically-relevant small molecules are only available at low concentrations,
further exacerbating the difficulties associated with small signal detection.

In 1977 the dependence of surface plasmon excitation on (interfacial) electron density
was demonstrated for both gold and silver electrodes in contact with an electrolyte solution
[153]. Twenty-three years later, Wang et al. demonstrated exquisite angular resolution of
potential-modulated SPR measurement and laid the fundamental building blocks of Plasmonic-
base Electrochemical Impedance Microscopy (P-EIM) [154]. Since then, the relationship
between the electrical properties of an electrode sensor surface and the optical signal of

conventional SPR has been explored.
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The underlying principles governing surface impedance measurement were presented in a
2008 publication authored by Foley et al. [155]. In this work, Foley et al. demonstrate surface
impedance imaging and extract local amplitude and phase information from sensor surface. A
gold sensor electrode was partially patterned with 1-dodecanethiol (DDT) and examined via
conventional and the novel Surface Impedance Imaging Technique. The two measured values
were found to be in close agreement, and a theoretical framework for interpreting the real and
imaginary parts of the ac SPR signal were formulated (more below).

A number of electrochemical measurements have been conducted capitalizing on the
fundamental dependence of SPR on surface charge density. Wang et al. developed a quantitative
formalism of electrochemical surface plasmon resonance (EC-SPR) [156]. EC-SPR was shown
to have several unique advantages over conventional convolution voltammetry, including high
spatial resolution and surface sensitivity. Huang et al. exploited the spatial resolution of this
technique by simulataneously monitoring the electrochemical current and conventional SPR
signals of several stages of the hydroquinone-benzoquinone (HQ-BQ) reaction system [157].
Using EC-SPR they were able to monitor the kinetics and identified the semiquinone radical
anion as an intermediary phase of the HQ-BQ reaction. Shan et al. explored the relationship
between SPR and surface charge density via the response of particles to various surface

chemistries [158] and to ac potentials applied to a sensor surface [159].

5.2 Theory of P-EIM
The following discussion follows the methodology as reported by Foley et al. The SPR

resonance angle 6is a function of the dielectric constant of the metal film ¢,, as defined by:
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€16 (41)

sin(6r) = (&1 t em)e;

where &; and &, are the dielectric constants of the buffer solution and prism, respectively.
According to the Drue model, ¢, is a function of frequency:

n,e? (42)
oMy 4m?f?

where e, m,, and n, are the electron charge, mass, and density, respectively, and &, =

Sm(f)zl_

8.85x107 12 F/m. For a thin metal film of thickness d,,, the relationship between electron
density and the surface charge Ao can be written as:

Ao = —ed,;,An, (43)
Changes in the surface charge density may thus be written as:

ed,,An 44
_ImERe A (44)
em— 1

Ao =

The relationship between the resonance angle shift and changes in surface charge density

is given by:
Ao = alby (45)
where
edAn, &, (g, + £,,)% sin(265) (46)
a=— >
&1 (Sm - 1)

Foley et al. allow that Drude model provides a semi-quantitative description of their
empirical data, and expect that @ will be refined as a more sophisticated model is developed.
The interfacial capacitance density c is related to surface charge density by:

Ao = cAViy, (47)
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where AV, is the fraction of applied voltage dropped across the electrode/solution interface.
Therefore, the interfacial capacitance of a sensor surface can manifest in an optical SPR signal:

c(x,y) = abby(x,y)/AV (48)

Foley et al. use a Randles equivalent circuit (Figure 21) to model the electrochemical

setup: the electrolyte solution is understood to have a resistance R, and the metal-solution

interface is modeled as a capacitor (C,) and resistor (R,) in parallel.

o | ==

Figure 21. Randles equivalent circuit for P-EIM

The fraction of applied voltage dropped across the solution versus the fraction dropped
across the electrode/solution interface is determined by their respective impedance values:

(49)

Ztot(x;y):Zs+Zp(x'y):Rs+ 1 ]
R—p+]a)Cp(x,y)

where C, is the total capacitance of the metal-solution interface and is a function of position

(x,¥). The potential drop across the interface AV;,, is related to the applied potential AV, as

described by:
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Zy(x,y) (50)
14

——— AV

Ziot(x,y) awp

The local resonance angle is expressed as:

AVipe(x,y) =

Co(x,y) Zp(x,y) AV (51)

AHR (X, y) = a th(x, y) app

In the absence of electrochemical reactions on the electrode, the surface resistance R,

may be modeled as infinite. The relationship between the resonance angle and applied voltage

may be rewritten as:

AOr(x,y)  Cp(x,y) 1 1 B 1 (52)
AVopp a jwcp(x'}’) Ziot(x,y)  jwaZio(x,y)

Note that the observed SPR signal contains information of the total impedance of the electrode
and solution system; this impedance has both real and imaginary parts (or equivalently,
amplitude and phase information). Reducing the resistance of the electrolyte solution further

reduces the above equation to:

86p(x,) _ Cp(%,) (53)
AVapp a

5.3 Data
5.3.1 Summary

Charge-based detection of small molecules is demonstrated by plasmonic-based
electrochemical impedance microscopy (P-EIM) [175]. The dependence of surface plasmon
resonance (SPR) on surface charge density is used to detect small molecules (60-120 Da) printed
on a dextran-modified sensor surface. Local variations in charge density on an electrode surface

are manifest in an optical SPR signal. The SPR response to an applied ac potential measures the
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sensor surface impedance, which is a function of the surface charge density. This optical signal
is comprised of a dc and an ac component, and is measured with high spatial resolution. The dc
element of the SPR signal represents conventional SPR imaging information. The amplitude and
phase of local surface impedance is provided by the ac component. The phase signal of the small
molecules is a function of their charge status, which is manipulated by the pH of a solution.
Small molecules with positive, neutral, and negative charge are detected by P-EIM. This
technique is used to detect and distinguish small molecules based on their charge status, thereby

circumventing the mass limitation (~100 Da) of conventional SPR measurement.
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Figure 22. (a) Schematic illustration of the P-EIM setup. An ac potential modulation from a
function generator is applied to the Au sensor chip (WE) via a potentiostat. (b) The P-EIM
signals of printed small molecules spots (ethylenediamine and ethanolamine conjugated to
dextran surface via EDC/NHS coupling chemistry, indicated by solid and dash circles,
respectively) are imaged by a CCD camera, and vary with the applied voltage. The dc
component of the response is the average intensity, and the ac component is comprised of a
phase (relative to the applied potential) and amplitude (peak-to-peak amplitude). (¢c) Molecular
structures of the charged dextran/small molecule conjugates. (d) The Randles equivalent circuit
is used to model the electrical response of the sensor chip. The solution has a resistive effect (Rs),
and the double layer formed on the interface between the sensor surface and solution (where the

small molecules bound to) has both resistive (R,) and capacitive (Cq) characteristics [175].
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5.3.2 Introduction

The interactions between small molecules and biological macro-molecules constitute a
crucial component of biological networks and are the subject of extensive investigation in both
academic and commercial laboratories. Important biological processes such as communication
between cells, expression of genes, and immune response are dependent on massively parallel
networks of the transient interactions of proteins and small molecules. Drug discovery and
biomarker validation for clinical diagnosis rely on rigorous, quantitative measurements of
binding events between small molecules and their biological receptors [160]; small molecules
(generally <1000 Da) currently represent over 90% of FDA approved drugs [161]. The
development of detection techniques for elucidating these types of binding reactions is
paramount for the advancement of pharmacology and health therapeutics.

Current techniques to measure small molecule binding kinetics employ labels to detect
the small molecule or its bound target, or alternatively, measure an intrinsic characteristic of the
binding event or its constituent molecules in a “label-free” detection platform [162-165]. The
decision to use a particular measurement technique is informed by its inherent strengths and
weaknesses, and the specific requirements for the intended measurement (e.g. sensitivity,
selectivity, throughput, etc.). For example, the use of labels to enhance measurement sensitivity
must be weighed against the potential consequence of adversely affecting the system being
measured [166, 167]. By definition, label-free methods eschew this risk but may suffer from
other limitations such as weak signals and non-specific binding [168].

The potential of plasmonic-based impedance imaging techniques for studying the binding

of macro-molecules including antigen/antibody binding events has been previously demonstrated
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[155, 156, 169-171]. In a recent demonstration the real-time electrical impedance signal
followed the kinetics of the protein association and dissociation process and was less prone to the
various sources of noise in conventional SPR measurements (i.e. bulk refractive index changes,
non-specific adsorption) [172].

Here is presented a novel label-free technique for detecting and imaging small molecules
using plasmonic-based electro-chemical impedance microscopy (P-EIM). The molecules’
charge is expressed in the phase component of the electro-chemical impedance, and therefore
small molecules with charge different than the substrate can be detected with distinct phase
signals. In addition, charge status of small molecules and/or the substrate can be manipulated by
changing solution pH, and therefore in principle, any small molecules can be detected regardless
the charge status and mass of molecules

P-EIM may be immediately useful for a variety of applications. It could be used to
directly measure small molecule binding events that have traditionally generated too small a
signal for high throughput label-free assays (e.g. drug discovery). The study of post-translational
modification (PTM) is another potential application of P-EIM: for example, monitoring the
change in charge status due to the addition of charged phosphate groups during a

phosphorylation event [173].

5.3.3 Materials

16-mercaptohexadecan-1-01, epichlorohydrin, diethylene glycol dimethyl ether
(diglyme), dextran, bromoacetic acid, N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide
hydrochloride (EDC), ethanol, ethanolamine, ethylenediamine dihydrochloride (ethylenedia-

mine), NaOH, H,SO,, and Na,CO5, were purchased from Sigma (St. Louis, MO).
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5.3.4 Chip Preparation

The Au sensor chips were rinsed with water and ethanol then annealed with hydrogen
flame. The chips were treated with 5 x 10~ M solution of 16-mercaptohexadecan-1-01 in a 4:1
ethanol to water solution overnight at 25 °C. The resulting hydrophilic surfaces were then
reacted with 0.6 M solution of epichlorohydrin in a 1:1 mixture of 0.4 M sodium hydroxide and
diglyme for 4 hours at 25 °C. After thoroughly washing with water, ethanol, and water again,
the chips were treated with a basic dextran solution (3 g dextran in 10 mL of 0.1 M sodium
hydroxide) for 20 hours at 25 °C. Further functionalization of the carboxymethyl-modified
matrix was done by reaction with bromoacetic acid (1 M solution in 2 M sodium hydroxide) for
20 hours at 25 °C. The dextran-modified sensor chips were rinsed with water, dried with

nitrogen gas, and stored at 4 °C under nitrogen gas.

5.3.5 Small Molecule Printing

1 M stock solutions of water mixed with ethylenediamine and ethanolamine, respectively,
were prepared preceding the print. Both of these small molecules have at least one amine group,
which is used for their immobilization to the dextran surface via EDC coupling. 20 pL of each
solution was mixed with 20 pL 0.8 M EDC in water immediately prior to printing. The solutions
were deposited at discrete spots on the dextran modified gold surfaces. A non-contact
piezoelectric inkjet printer (Engineering Arts LLC) was used to deposit a uniform pattern of
spots with 500 um spacing. A short, 22.5 KHz, burst of 5 drops deposited ~0.5 nL of solution at
each spot. Precise dew-point control was used during printing to mitigate evaporation of the
spots. Relative humidity (65%) and temperature (24 °C) were precisely regulated inside the

printing chamber. The gold surfaces were chilled to 21 °C which is a few degrees above the
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dew-point temperature (17 °C) to prevent condensation. After printing, the gold surfaces were
maintained with dew-point control for 50 minutes and then stored under argon gas at 4 °C. Two
batches of two chips were prepared to mitigate any variability transmitted from unknown
nuisance factors of the printing process.

The printed spots on the sensor surface represent areas of high small molecule
concentration (Figure 25). The P-EIM signals from these regions of interest (ROIs) are
determined by the intrinsic properties of the small molecules (i.e. charge status) and
environmental factors such as their distributions of mass from the printing process. Additionally,
as the small molecules are immobilized in a three dimensional hydrogel, the underlying dextran
infrastructure also influences their P-EIM responses. These spots are prudently referred to as

ROIs to reflect the ambiguity of their local print density and distribution.

5.3.6 Plasmonic Based Impedance Measurements

A custom SPR measurement system based on the Kretschmann configuration was used
for the following experiments. A temperature-controlled (TCLDM9, ThorLabs) LED (wave-
length 670 nm, Hamamatsu) was used as a light source. Reflected light from a BK7 triangular
prism was collected by a CCD camera (Pike, Allied Vision Technologies) with a 2.5-10X
variable magnification lens (Edmund Optics). The SPR sensor chips (44 nm gold on a 1.5 nm
chromium layer) were fabricated by thermal evaporation at high vacuum (3 x 10 Torr) on BK7
glass cover slides. Four Au chips were prepared in two batches to block any unknown effects of
chip fabrication. The Au sensor chip served as a working electrode (WE) while silver and
platinum wires were used as reference (RE) and counter electrodes (CE), respectively Figure

22a). A potentiostat (EG&G model 283 potentiostat/galvanostat, Princeton Applied Research)
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controlled the potential of the WE with respect to the CE. A 10 s ac potential modulation of 500
mV (dc offset of 100 mV) at a frequency of 10 Hz was applied to the sensor chip for each
solution pH, and was controlled by an external function generator (model 33521A, Agilent). A
PDMS gasket placed on top of the sensor surface formed an open well to house the solution and
electrodes.

The pH of the solution was used to control the charge status of the printed small
molecules and dextran surface. Three solutions were prepared at 0.5 mM: H,SO, (pH 1), NaOH
(pH 5) and Na,CO5; (pH 9). A low ionic strength is used to reduce the charge-screening effect of
an electric double layer [158]. The solution was removed via pipette prior to the addition of a
subsequent solution. All three buffers were used for each of the four chips tested, and the run
order of the buffer pH was randomized. The selection of the applied voltage amplitude,
frequency, and offset potential were controlled via homemade Matlab software. The camera
output and potential modulation signals were captured by a data acquisition board (NI USB-
6251, National Instruments) using the same Matlab program. A fast Fourier transform algorithm
was applied to the SPR image data captured by the CCD camera to generate phase and amplitude

information for the imaged sensor surface.

5.3.7 Basic Principle and Set-up

Conventional electrical impedance spectroscopy measures the electrical current response
(AI) of an electrode surface to an applied ac potential modulation (amplitude AV applied at
frequency w) to determine surface impedance (Z(w) = AV /AI). In contrast, P-EIM does not
require electrical current measurement; the principle of P-EIM is based on the dependence of the

SPR signal (Af) on the surface charge density (Ag) of the sensor. The NJ Tao laboratory has
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previously shown that A6 is proportional to Ao, given by Ac = aA@, where a is a coefficient that

can be calibrated experimentally or calculated theoretically®. The current density (AJ) on the

sensor surface is related to charge density by AJ = jwAc (where j = V—1). Therefore, the local
surface impedance density can be determined by the ac component of the SPR signal (Af) as
given by Z(w) = jwalAB/AV.

The measured response of the P-EIM technique is simply an optical signal of light
intensity, varying sinusodially with time due to the modulation of applied electrical potential.
The dc component is the average intensity of this signal and represents conventional SPR
measurement; it is a function of the local refractive index on, and immediately above, the sensor
surface. The ac signal has an amplitude and phase (or equivalently, real and imaginary parts),
which represent the electrochemical impedance density on the sensor surface. The dc and ac SPR
signals are simultaneously measured to provide high resolution SPR imaging and

electrochemical impedance imaging capabilities in the same setup.

5.3.8 Effect of Solution pH

The charge status of a small molecule ROI is determined by the protonation status of the
immobilized molecules’ terminal functional groups, which is a function of the pH of the solution
(Table 3). The respective pKa values of ethylenediamine and ethanolamine were determined
from the Curtipot program [174]. The unbound end of the printed ethanolamine regions are
terminated with OH functional groups and remain neutral in the pH range of the tested solutions.
At a pH below 3.5, the dextran surface does not carry a charge; the COOH terminal groups
remain neutral''. The unbound end of the immobilized ethylenediamine is terminated with one

amine group, which carries at positive charge (NHJ) at the low solution pH. As the pH of the
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solution increases, the terminal groups on the dextran surface become negatively charged
(COO™). The positively charged amine groups are neutral (NH,) at pH 9 and the

ethylenediamine ROIs lose their positive charge.

Table 3. Charge Status of Small Molecule Terminal Groups as a Function of Solution pH

Solution pH
Molecule 1 5 9
Ethanolamine OH OH OH
Dextran COOH Co00~ Co00~
Ethylenediamine NHF NHF NH,

5.3.9 Impedance Models

The impedance response of the sensor can be described by an electrical model using a
Randles equivalent circuit and a mechanical model of the three-dimensional dextran hydrogel
response (Figure 22d, Figure 23, Figure 24). The solution is understood to have a resistive effect
(Rs), and the double layer formed on the interface between the sensor surface and solution has
both resistive (R;) and capacitive (Cqi) characteristics. The NJ Tao laboratory has previously
derived the relationships of these three electrical components and I only list their final form

here’. According to the model, the current amplitude and phase on the sensor surface is given by:

o AV (54)
TR+ (R + jwCy)
; p ( AV > (55)
h = Aarg —
prase Ry + (Ry' + jowCqy)
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The modification of the sensor surface with a flexible dextran hydrogel adds an
additional layer of complexity to the impedance model, as the hydrogel responds mechanically to
the driving force of the ac potential. This response to the applied potential can be modeled as a

driven harmonic oscillator with a spring constant that changes as a function of charge density.

NH:

COO~

<o

Figure 23. Illustration of the mechanical response of the dextran surface (blue lines). The
solution pH determines the charge status of the terminal groups (dots). In general, the presence
of charge increases the force from the applied potential on by the dextran surface, resulting in
greater amplitudes of fluctuation. Regions with positive charge respond 180° out of phase

relative to negatively charged ROlIs.

The mechanical response of the dextran hydrogel on the sensor surface can be modeled as
a viscoelastic medium driven by the force from the applied potential (ﬁ = in ); the charged

functional groups of the hydrogel and small molecule ROIs are displaced (x = x,e~/“?) by the
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electric field according to the polarity of their charge (Figure 23). The mechanical response of
the flexible hydrogel layer to the electrostatic driving force is described by k, the elastic restoring
force constant, and g, the internal damping of the polymer matrix. The corresponding equation
takes the form of:

jwxge IOt + kx,e~it = +qE (56)
The displacement of a local region on the surface is described by:

+qE (57)
X = —
yjow +k

Regions with a high density of charge experience an additional repulsive force between
similarly-charged functional groups, causing the hydrogel to become more rigid (Figure 24).

This rigidity is the equivalent of a change in k.

[ 1

Figure 24. The repulsive electrical force between the charged terminal groups causes the dextran

(Charged)

to expand (left). Dextran is more rigid in this state, decreasing the amplitude of SPR fluctuation.
However, the presence of charge allows the hydrogel to respond to the driving ac potential,

possibly increasing its amplitude of SPR fluctuation.
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The parameters in the Randles model are related to the viscoelastic model, but an explicit
expression requires further information and assumptions. For example, the small molecules are
not immobilized with a 100% printing efficiency; not every dextran terminal group in a small
molecule ROI is used to bind the small molecule. The impedance response of the small molecule
ROIs are influenced by these un-coupled carboxyl groups. Quantitative analysis of the absolute
impedance signal is thus difficult but fortunately unnecessary for the purposes of small molecule
detection. Instead, consider the relative differences in impedance response between the different
small molecule ROIs and dextran background. Due to the convolution of effects outlined above,
the phase component of the impedance signal is examined, which follows the simple model of

charge-based response.
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Figure 25. Dc and ac SPR signals as a function of solution pH. Ethanolamine and
ethylenediamine are printed in an alternating pattern with 500 pm spacing on a dextran-
functionalized Au microscope slide. (Top) The masses of the immobilized ethanolamine and
ethylene small molecules are too small (60-120 Da) to be detected by conventional dc SPR.
(Middle) The amplitude component of the ac SPR signal reveals the presence of the small
molecules, but does not differentiate between them in an obvious manner. (Bottom) The phase
component clearly distinguishes the small molecules based on their charge status. At pH 1 the
neutrally charged COOH terminal groups of the dextran background are 90° out of phase from
the positively charged NHF terminal groups of the ethylenediamine regions of interest (ROIs).

The neutrally charged ethanolamine ROIs (OH) are also resolved but have a larger distribution of
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phase response. At pH 5 the dextran is negatively charged (COO™) and is 180° out of phase with
the positively charged ethylenediamine ROIs. At pH 9 the ethylenediamine ROIs become

neutral and the phase contrast between the neutral and charged ROIs returns to 90°.

5.3.10 Amplitude Component

At pH > 3.5, the terminal groups of the dextran hydrogel have a net negative charge.
These localized charges repel each other and cause the dextran to expand above the sensor
surface. The reorganization of mass away from the sensor surface is confirmed by the decreased
dc SPR signal at high pH (Figure 25). In this charged state the dextran surface is rigid and resists
modulation by the applied potential. As explained above, the presence of charge has the
additional effect of increasing the mechanical dextran response to the applied potential, which
theoretically increases the amplitude of its fluctuation. As the number of negatively charged
terminal groups increases, the hydrogel experiences a larger force from the applied potential and
the dextran impedance decreases. At low pH the impedance-damping effect of rigidity is
reduced but the uncharged dextran matrix experiences a smaller force from the applied voltage.
The relationship between these two competing forces obfuscates the net impedance response of
dextran and does not allow for an unambiguous interpretation of the amplitude component of the

P-EIM signal.
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Amplitude of SPR Fluctuation as a Function of Solution pH
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Figure 26. Box plots of pixel intensity of small molecule and dextran ROIs in the P-EIM
amplitude images (filled boxes represent 25%-75% of mean values, minimum and maximum
values marked by whiskers). The amplitude component of the P-EIM signal does not

demonstrate any obvious patterns of SPR fluctuation for the small molecules or dextran ROIs.

Note that the presence of the small molecules (undetected by the conventional SPR
signal) is easily confirmed by their amplitude signals (Figure 25, Figure 26). However, the phase
responses of differently-charged small molecules are much clearer, and allow for distinction

based on charge status.
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5.3.11 Phase Component

A small molecule ROI’s phase response is a function of its charge status and
environmental effects such as the response of the underlying dextran matrix. The determination
of the absolute phase signal is confounded by the multi-variable response of the dextran
hydrogel, and ultimately unnecessary. In the presence of an ac electric field, positively charged
regions will respond up to 180° out of phase with negatively charged regions according to the
oscillator model. The relative phase contrast of the differently charged regions is sufficient to
detect and identify the small molecules.

At low pH, the positively charged ethylenediamine ROIs respond approximately 90° out
of phase relative to the neutral ethanolamine and dextran regions. At pH 5, the positively
charged ethylenediamine ROIs are 180° out of phase with the negatively charged dextran matrix.
When the ethylenediamine regions lose their positive charge at high pH, the phase contrast
between the neutral and negatively charged regions decreases to 90°. These results are

summarized in Figure 27.
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P-EIM Phase Histogram of Small Molecule ROIs as a function of Solution pH
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Figure 27. Pixel intensity histograms of small molecule and dextran ROIs in the P-EIM phase
images. The P-EIM phase signal allows for the detection and identification of small molecules
based on their charge status. At a solution of pH 1, regions with immobilized ethylenediamine
(NH% functional groups) are approximately 90° out of phase with neutrally charged dextran
(COOH) and ethanolamine (OH) ROIs. When the solution pH is increased above the pKx of the
dextran surface to pH 5, there is a 180° phase contrast between the positively charged functional
groups of the ethylenediamine and the negatively charged carboxyl groups of dextran. At pH 9
the ethylenediamine functional groups lose their positive charge and are once again 90 ° out of

phase with the negatively charged dextran ROIs.
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Ideally, the neutral charge status of the ethanolamine ROIs would remain unchanged as a
function of solution pH. However, this would require a 100% printing efficiency in which every
terminal group of the dextran matrix binds to an ethanolamine small molecule during the printing
process. It is reasonable to assume that the not every dextran terminal group is consumed during
the print in the ethanolamine ROIs and that the remaining unmodified COOH regions follow the
general trend of the global dextran matrix. The histogram plots of the ethanolamine regions
tend to follow the dextran response, but their phase response never exceeds that of the dextran.
The influence of the unmodified dextran terminal groups is greater in the neutrally-charged
ethanolamine than the ethylenediamine ROIs (which have positively charged terminal groups to

screen the surrounding negative charge and present a net positive charge).

5.4 Conclusion

Charge-based detection of small molecules is demonstrated using plasmonic-based
electrochemical impedance microscopy (P-EIM). The P-EIM phase signal was found to be a
function of localized surface charge; the phase contrast between differently-charged printed
small molecules and a dextran hydrogel sensor surface was used to detect and identify the small
molecules, and was validated by the pH dependence of the various ROIs’ charge statuses. The
technique requires that a small molecule target be differently charged than the binding or
background surface, which can be achieved by control of solution pH and/or selection of proper
probing/referencing molecules. Therefore this technique is applicable to small molecules with

any charge status. More importantly, this “proof-of-principle” P-EIM measurement provides a
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mass independent signal that could potentially be used to measure post-translational

modifications or small molecule binding events in drug discovery or clinical diagnostics.
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DERIVATION OF THE SURFACE PLASMON DISPERSION RELATION
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Figure Al. Interface of two media and their respective constitutive parameters.

z<0
Ey = (QyExq + G,E, ) e/ kX —ka2)
H, = ayHyle—j(kx1x—k21z)

z>0
E, = (4,E,, + 4,E,,) e (kx2X+kz22)

I-I2 = ayHyze_j(kx2x+kzzz)

A.1 Time-Harmonic Electromagnetic Fields

(1a)

(Ib)

(2a)

(2b)

The propagation of electromagnetic radiation in the two semi-infinite nonmagnetic media in
Figure Al can be described by Maxwell’s equations. The index i describes the media: i = 1

atz<0andi=2atz > 0.
VXEi = —](,UHHI

VXHi :j(USiEi
V'D; = Gepi
V:B; = @muyi
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E = electric field intensity (V/m)

H = magnetic field intensity (A/m)

D = electric flux density (C/m?)

B = magnetic flux density (W/m?)

J: = impressed (source) electric current density (A/m?)
I = conduction electric current density (A/m?)

Ja = displacement electric current density (V/m?)

M; = impressed (source) magnetic current density (V/m?)
M, = displacement magnetic current density (V/m?)
G., = electric charge density (C/m’)

Gmy = magnetic charge density (W/m”)

o  =4nx 107 (H/m)

& =8.854 x 10" (F/m)

Oy = static field conductivity

(P = alternating field conductivity

e = sigma s + sigma e equivalent conductivity

el@t time convention

Asumptionl: source free regions ¢, =0 and M; = g,,, = 0 and lossless (g; = 0). Non
ferrous mediums pop; = Uolly = Up

VXE = —jwuH
&, a, 8,
0 d 0
VXE, = /ax /ay /aZ
E ee—j(kxlx—kzlz) 0 E ee—j(kxlx—kzlz)
x1 z1

a, [% (Ezle—j(kxlx—kmz))] -a, [aa_x (Eypelnr—kn) _ % (Exle—j(kxlx—knz))]

0 .
— az I:@ (Exle—](kxlx_kzlz))]
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0E,4

=a e_j(kxlx_kzlz)
* [ dy

, OE ok
] _ay [e_](kxlx_kzlz) <a—;1 _jkxlEzl - a—;l _jkzlEx1>]

—a [e—j(kxlx_kzlz) %:l
VA ay

The value of E,, represents the amplitude of the electric field wave traveling in the A direction,
. a a aH
and is constant such that 22 = 2%z = o 222
dy dx at

VXEq = —a,[e/*x*~kan?) (—jk  E,1 — jk,1Ex)]

= 0 etc.

—j(,l)‘l,loHl = —ay [jw’u_OHyle—j(kxlx_kzlz)]

Applying (3) to (1) and (2):

—Jjkx1Ez1 — jkz1Exr = JjouoHy, (7a)
—Jjkx2Ezp + jkExy = jouoHy, (7b)
VXH = jweE
a, a, a,
d 0 d
VxH; = |/ gy /6y /o2

0 Hyle_j(kxlx_kzlz) 0

d . 0 .
= —ax I:E (Hyle_](kxlx_kzlz))] + a’Z I:a (Hyle—](kxlx_kzlz))]

| B 0H,; | . B 0H,;
= —a, le J(kx1x—kz12) (a_; +]kley1>l + a, le J(kx1x—kz12) (a—; _]kley:L)l

= —ax[jkleyle_j(kxlx_kzlz)] — aZ[jkleyle_j(kxlx—kzlz)]
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j =7 a a —j(kx1x—kz12
jweoe Eq = jwege; (AyEyq + G,E,,)e I kx1x=kz12)

P —j(kx1x—kz12Z P I —j(kx1x—kz12Z
— ax[]wgoglExle J (k1 z1 )] + aZ[]wSOSIEZIe JIG2% z1 )]

VXH, = jwgoe Eq = _ax[jkleyle_j(kxlx_k21z)] — az[jkleyle—f(kx1x—kz1Z)]
= ax [j(l)goelExle_j(kxlx—kzlz)] + aZ [ngoglEzle—j(kxlx—kzlz)]

From applying (4) to (1) and (2):

—jk;1Hyy = jwegeExq (8a)
—jkx1Hy = jowegeEzq (8b)
Jkz2Hyp = jwegeEyy (8¢)
—jkzHy, = jwegerEy, (8d)

Boundary Conditions; Finite Conductivity Media

Ax(E, — &) =0 )
AX(H, —H,) =0 (10)
Ep = Ey (11a)

Hy,, = H,, (11b)

kix = Kax (11c)

Using equations (11a-c), equations (7a) and (7b) can be rewritten as:
—kxEz1 — kz1Ex = wpoH, (12a)
—kyEz + kpEx = wpoH, (12b)
Using (11a-c), equations (8a-d) can be rewritten as:
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kaHy _ £ (13a)

WEYE,
_ keHy (13b)

— bz1

WEYE,
JkaHy _ £ (13c)
WEYE, x

_JkeHy (13d)

— bz2

WEHE,

The dispersion relation for surface plasmons formed at the interface between media 1 and
2 is found from (13a) and (13c).
kzl _ kzZ (14)

& &

An expression for the wave vector in medium 1 is found from (13a,b) and (12b)

k2 N ki w® (15a)
g & 2

Similarly for medium 2: combining (13c¢,d) with (12a)

K, k2 o (15b)

& &  C?

Plugging the dispersion relation into one of the wavevector equations and simultaneously solving
for k, gives the surface plasmon propagation vector along the interface.

Rt (16)
Yo et g
Additionally,
=2 __& (17)
e g

Assumption2: o and &, are real, &, = &; + j&;

Equation (16) becomes
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@ (&1 + jey)e, _w (165 + jeres) ey + &3 —je

k, = - — = — - - = -
Yoo (g tje te) (e te ) e — g
_w 5152(31 + 32) + &%, + je €2 (18)
¢ (e +2) +e

k, is complex (k, = k, + jk, ) which suggests that equation (18) be decomposed into real and
complex parts.
w?e1e;y(e + &) + 128, + je, €2

k2 = k2 — k2 + j2kyky =

! 2 .
¢t (&1 +&)" +e?
Real part:
2 " w? ¢, (51 + 52) + &%, (19a)
kx - kx = _2 ’ 2 N2
¢ (&1 +&) +&
Imaginary part:

1 ? &, €2 (19b)
2k, c? (e, + 52)2 + &2

Plugging (19b) into (19a) and solving for k,

"

X

102 |8182(e1 + &) + &%, & \/[Sigz(gi +&) + 51/252]2 + & %ed
k'2 —

Y 2c (e, + 82)2 + &2

For Au: g, < |£1 |, for non trivial answers, the real part of the of the x-component of the surface

plasmon wave vector
(20)
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Plug (20) back into (19b) for the imaginary part

e 2(g8)Y? (e, + 52)2 + &2
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