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ABSTRACT 

The ability to design high performance buildings has acquired great importance in recent 

years due to numerous federal, societal and environmental initiatives. However, this 

endeavor is much more demanding in terms of designer expertise and time. It requires a 

whole new level of synergy between automated performance prediction with the human 

capabilities to perceive, evaluate and ultimately select a suitable solution. While 

performance prediction can be highly automated through the use of computers, 

performance evaluation cannot, unless it is with respect to a single criterion. The need to 

address multi-criteria requirements makes it more valuable for a designer to know the 

“latitude” or “degrees of freedom” he has in changing certain design variables while 

achieving preset criteria such as energy performance, life cycle cost, environmental 

impacts etc. This requirement can be met by a decision support framework based on near-

optimal “satisficing” as opposed to purely optimal decision making techniques. 

Currently, such a comprehensive design framework is lacking, which is the basis for 

undertaking this research.  

The primary objective of this research is to facilitate a complementary relationship 

between designers and computers for Multi-Criterion Decision Making (MCDM) during 

high performance building design. It is based on the application of Monte Carlo 

approaches to create a database of solutions using deterministic whole building energy 

simulations, along with data mining methods to rank variable importance and reduce the 

multi-dimensionality of the problem. A novel interactive visualization approach is then 

proposed which uses regression based models to create dynamic interplays of how 
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varying these important variables affect the multiple criteria, while providing a visual 

range or band of variation of the different design parameters. The MCDM process has 

been incorporated into an alternative methodology for high performance building design 

referred to as Visual Analytics based Decision Support Methodology [VADSM]. 

VADSM is envisioned to be most useful during the conceptual and early design 

performance modeling stages by providing a set of potential solutions that can be 

analyzed further for final design selection. The proposed methodology can be used for 

new building design synthesis as well as evaluation of retrofits and operational 

deficiencies in existing buildings.  
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1:   BACKGROUND 
 

Designing buildings to be energy efficient can be described as a multi-criteria 

optimization problem whose complexity originates from the large number of variables 

involved, the dynamic nature of building loads and processes, the intricacy of interaction 

effects among variables, and the inability of the designer to view cause and effect in 

multi-dimensional space. This complexity requires a performance based automated 

methodology which only detailed simulations can provide as opposed to prescriptive 

approaches based on a designer’s intuition and experience (heuristics). The design 

problem is further complicated by the fact that certain variables will be partially defined 

or even initially unknown, and there could be multiple design solutions. Finally, the 

choice of one design alternative can yield energy savings for one end-use (such as 

reduction in ambient light loads due to day lighting) while simultaneously resulting in an 

energy penalty for another end-use (increased cooling load due to additional solar gain). 

Finding the best solution has thus been traditionally viewed as a difficult multi-objective 

optimization problem that can only be tackled by computers, which have the advantage of 

computational speed, parallel processing, and accuracy.  In multi-objective optimization 

problems, the searching of a single optimal solution is of little value, since the objectives 

are often competitive. Instead, a number of feasible intermediary solutions that will 

satisfy the decision maker are searched through an interactive procedure. 

In the context of building energy simulation, such optimization will require numerous 

simulations and intelligent selections of parameter inputs, sub-system and equipment 

selections. Current design practices typically pursue individual design solutions since the 
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human cognitive system works in a sequential manner and has difficulty considering 

many variables simultaneously. The ability of computers to explore multiple solution 

paths and analyze in parallel simplifies the problem of finding a set of local optimal 

designs and perhaps a global optimum. Numerous optimization tools already exist and 

the mathematics of optimization have been well established. However, purely automated 

optimization routines employing brute force methods, though able to handle a large 

number of constraints and variables, often provide a mathematically optimal solution that 

may not be practical or even desired due to aesthetic reasons, program restrictions, or 

specific owner preferences. Thus, the need to address multi-criteria requirements makes it 

more valuable for a designer to know the “latitude” or “degrees of freedom” he/she has in 

changing certain design variables while achieving satisfactory levels of energy 

performance as well as addressing other relevant criteria like life cycle cost , 

environmental impacts etc. This requirement can be addressed by a decision support 

framework based on near-optimal Satisficing (Satisfy+ Suffice) as opposed to single 

optimal decision making techniques. 

While performance prediction can be highly automated through the use of computers, 

performance evaluation cannot, unless it is with respect to a single criterion. 

Multicriterion decision-making is the main non-delegable design task that requires human 

intervention. The rest of the design tasks, however, can and should be automated for 

faster and more accurate results. Additionally, computers can facilitate the evaluation 

process though appropriate user interfaces that provide graphical representation of data 

and allow for direct comparison of multiple solutions with respect to multiple 

performance considerations. Thus, the design of high performance (low energy) buildings 
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requires a synergy between automated performance prediction & visualization with the 

human capabilities to perceive, relate and ultimately select a satisficing solution. 

Currently such a comprehensive design framework is lacking and hence this thesis 

presents a new methodology for low energy building design evaluation. 
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2:  SCOPE AND OBJECTIVES  

 

The primary objective of this research is to facilitate a complementary relationship 

between human designers and computers for Multi-Criteria Decision Making (MCDM) 

in the domain of low energy building design. The MCDM process has two elements 

(Wright & Loosemore, 2001) 

 

1) A procedure to search for one or more solutions that reflect the desired pay-off 

between the criteria. 

2) The designer must make a decision as to which pay-off between the criteria 

results in the most desirable design solution; 

 

In the present research, the MCDM search element has been executed using data mining 

techniques while the MCDM decision making component has been supported through 

interactive visualizations. The complete MCDM process has been incorporated into a 

new methodology for low energy building design referred to as a Visual Analytics based 

Decision Support Methodology [VADSM].  

 

Visual analytics is the science of analytical reasoning facilitated by interactive visual 

interfaces. It has the potential to unify the language of building design which is primarily 

visual (form-based / graphical) with traditional analysis techniques that are 

predominantly numeric. Visual analytics can extend the benefits of analytical techniques 
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such as simulation to a wider audience of designers who are more comfortable with the 

visual exploration of data.  

 

The proposed methodology VADSM begins by identifying key design variables and their 

ranges defined by the owner/designer, and two or more response variables deemed key 

for decision making, such as annual energy use or peak electric demand. In the 

conventional use of simulation tools the inputs are in essence already decided and the 

resulting outputs are a function of those choices. This strategy only allows a limited trial 

and error design analysis.  However, if simulated outputs are used instead to fine tune the 

inputs, then that would potentially transform a design analysis operation into a design 

synthesis opportunity.  This is one of the key concepts incorporated in VADSM.  

 

Once the variable ranges have been determined, appropriate experimental design 

techniques are adopted to generate a feasible number of simulation runs (variable 

combinations) with respect to run time, and to ensure uniform sampling over the entire 

solution space. The batch simulated data can then be analyzed using state of the art data 

mining algorithms to ascertain variable importance, and irrelevant variables can be 

discarded to create simpler predictive models using traditional regression based 

techniques. The subsequent stage requires a Graphical User Interface (GUI) to provide 

designers a way of visualizing the predictive models and perform what-if scenarios in 

real time. The Decision Support Model Viewer (DSMV) application (Sec. 6.2.4) has 

been developed to fulfill this requirement. It allows designers to quickly and easily 

specify the characteristics of potential designs through direct manipulation of multiple 
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inputs and get real time information about their energy performance. The DSMV also 

allows a designer to visually keep track of how a specific change in a single variable 

affects the “degrees of freedom” of other variables, by dynamically updating variable 

ranges. 

The key objectives of VADSM are the following: 

(i) utilize detailed building energy simulation programs  for design synthesis,  

(ii) Develop a decision-support tool which allows the user to explore design 

“latitude” or “range of variability” of different design variables. 

(iii) generate a set of “satisficing” solutions rather than one unique solution,  

(iv) Provide real-time feedback on how design decisions involving a change in key 

design variable values impact building performance criteria. 

(v) Create a learning tool which assists in developing a designer’s intuition  

 

VADSM is envisioned to be most useful during the conceptual and early design 

performance modeling stages by proving a set of potential solutions that can be analyzed 

further for final design selection. Due to its reliance on statistical methods for estimating 

building energy performance, VADSM is not meant to be a substitute for detailed 

simulation during the final design phase .The proposed methodology, however, can be 

used for new building design as well as identifying operational improvements and/or 

evaluating efficiency retrofits in existing buildings. 
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3:  LITERATURE REVIEW  

 

3.1 Building Design as a Multi-criterion Decision Making (MCDM) activity 

 

 

Designing buildings to be energy efficient is by no means a straightforward process; 

building materials, building components, and building systems all have individual as well 

as interacting impacts on building energy use. The complexity of the design problem 

originates from the large number of variables involved, the dynamic nature of building 

loads and processes, and the intricacy of interaction effects among variables. The choice 

of one design alternative can yield energy savings for one end-use while simultaneously 

resulting in an energy penalty for another end-use. Choosing from the wide variety of 

innovative technologies and energy efficiency measures available today, a decision 

maker (DM) has to compensate environmental, energy, financial and social factors in 

order to reach the best possible solution that will ensure the maximization of the energy 

efficiency of a building while satisfying the final user/occupant/owner needs (Diakaki, 

Grigoroudis, & Kolokotsa, 2008). What is required is a model that will allow designers to 

explore the consequences of decisions relating to these variables at the conceptual stage 

of design, and hence design a building that achieves a good balance between multiple 

objectives (D'Cruz & Radford, 1987) . 

 

(Diakaki et al., 2008) suggest two approaches to solving this problem. According to the 

first approach, an energy analysis of the building under study is carried out, and several 

alternative scenarios, predefined by the energy expert, are developed and evaluated. 

These specific scenarios, which may vary according to buildings’ characteristics, type, 
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use, climatic conditions, etc., are pinpointed by the building expert and are then evaluated 

mainly through simulation. The selection of the alternative scenarios, energy efficiency 

measures and actions that will be finally employed is largely based on the energy experts’ 

experience. The second approach includes decision supporting techniques, such as 

multicriteria-based decision making (MCDM) methods (Zionts, 1979) that are employed 

to assist in a final decision being reached. The coupling between design criteria and its 

impact on the design solutions can be evaluated through the application of such methods.  

3.1.1 Multi-objective vs Single-objective Optimization 

 
 

Optimization is an essential process in many business, management, and engineering 

applications where multiple and often conflicting objectives need to be satisfied. Solving 

such problems has traditionally consisted of converting all objectives into a single 

objective (SO) function. The ultimate goal is to find the solution that minimizes or 

maximizes this single objective while maintaining the physical constraints of the system 

or process (Ngatchou, Anahita Zarei, & El-Sharkawi, 2005). The optimization solution 

results in a single value that reflects a compromise between all objectives. Conversion of 

the multiple objectives into an SO function is usually done by aggregating all objectives 

in a weighted function, or simply transforming all but one of the objectives into 

constraints. This approach to solving multi objective (MO) optimization problems has 

several limitations (Ngatchou et al., 2005):  

1) It requires a-priori knowledge about the relative importance of the objectives, and 

the limits on the objectives that are converted into constraints  

2) The aggregated function leads to only one solution;  
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3) Trade-offs between objectives cannot be easily evaluated; and  

4) The solution may not be attainable unless the search space is convex.  

 

This simple optimization process is no longer acceptable for complex systems such as 

buildings with multiple conflicting objectives. Compared to SO problems, MO problems 

are more difficult to solve, because there is no unique solution; rather, there is a set of 

acceptable sub-optimal solutions.  In multi-objective optimization problems, the 

searching of a single optimal solution is futile, since the objectives are often competitive. 

Instead, a feasible intermediary solution that will satisfy his/her preferences is searched 

out through an interactive procedure involving the decision maker. A strategy suited to 

this type of search has been demonstrated by (Addison, 1988) based on the idea of 

satisficing, a term coined by H.A. Simon in the context of economic theory (Simon, 

1957) . Simon proposes the idea of bounded rationality and suggests that in general, 

individuals look for alternatives which are “good enough” rather than optimal. An 

alternative is “good enough” if it satisfies the individual’s aspiration levels and suffices in 

the absence of a practicably obtainable optimum. In the context of building design, these 

aspiration levels may alternately be considered performance thresholds (Addison, 1988). 

3.1.2 Multi-objective Search – Pareto Optimality 

 

Multi-objective optimization is a scientific area that offers a wide variety of methods with 

great potential for the solution of complicated decision problems .The concept of multi-

objective optimization is attributed to the Italian economist Vilfredo Pareto (1848-1923) 

who used it in his studies of economic efficiency and income distribution . After several 

http://en.wikipedia.org/wiki/Economic_efficiency
http://en.wikipedia.org/wiki/Income_distribution


10 

 

decades, this concept, referred to as Pareto efficiency or Pareto optimality, was 

recognized in operations research and eventually found extensive applications in 

engineering optimization. Pareto optimality makes use of the concept of dominated and 

non-dominated solutions. A solution is Pareto optimal if it is not dominated by any other 

solution. In Figure 1 the points represent feasible solutions to a multi-objective 

minimization problem, where values for each of the two objective functions are assigned 

to the x and y axes. A solution dominates another if it is better than the other for at least 

one objective function and at least as good on all the others (Caldas & Norford, 2003). 

 

 

Figure 1 : Dominated and non-dominated [Pareto] solutions 

 

Point (3, 1) dominates point (4, 2) because it has both lower x and y values. It also 

dominates point (3, 3) because it has a lower y value for the same x value.  Points (3, 1) 

and (2, 4) are not dominated with respect to each other, and are therefore both Pareto-

optimal solutions. They represent trade-offs between the two objective functions. Point 

(2, 4) performs better than (3, 1) in terms of the x values but the inverse is true for y 
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values.  Once all the dominated solutions are eliminated, the DM is left with a Pareto 

optimum set of solutions for final selection.  

 

(Gero, D'Cruz, & Radford, 1983) were among the first to propose a multi criteria-model 

in order to explore the trade-offs between the building thermal performance and other 

criteria such as capital cost, and usable area of the building during building design. 

However, the number of design variables and decision options were restricted to enable 

Pareto optimal solutions to be identified through the process of exhaustive enumeration 

and tests of domination. In a subsequent paper (D'Cruz & Radford, 1987), provided as a 

continuation to the earlier research, additional performance criteria were added and the 

optimization problem was solved using a dynamic programming optimization algorithm 

instead of exhaustive enumeration. Although solutions where obtained, they were not 

sufficient to allow the pay-off between the criteria to be examined. A solution to this 

deficiency was examined through the use of a multi-criterion Genetic Algorithm (GA) 

optimization method by (Wright & Loosemore, 2001). More recently, other researchers 

have also employed multicriteria techniques to similar problems ((Diakaki et al., 2008) . 

 

Although several “traditional” methods exist, these often require a sequential and 

therefore computationally intensive approach to finding the Pareto set of solutions 

(Wright & Loosemore, 2001). Rather than progressively minimizing a single possible 

solution, GA’s operate with a set of possible solutions (known as the population). This 

enables several members of the Pareto optimum set to be found in a single run of the 

algorithm. A genetic algorithm starts by generating a number of possible solutions 
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(individuals) to a problem, evaluates them and then applies the basic genetic operators 

(reproduction, crossover and mutation) to that initial population according to the fitness 

of each individual. This process generates a new population with higher average fitness 

than the previous one, which in turn will be evaluated. The cycle is repeated for the 

number of generations set by the users, which is dependent on problem complexity 

(Caldas & Norford, 2003). A more detailed discussion of genetic algorithms is beyond 

the scope of the present research and the interested reader is directed to the works of 

David E. Goldberg and Kalyanmoy Deb. 

3.2 Data Mining  

 

The amount of data available nowadays to scientists, engineers and business mangers is 

vast. Almost all the data is stored electronically in databases and commonly connected 

and accessed via cloud infrastructure. Additionally, the rate of growth of data sets 

exceeds by far the coping ability of traditional “manual” analysis techniques. Hence, if 

one is to utilize the data in a timely manner, it would not be possible to achieve this goal 

if a traditional data analysis approach were followed. Effectively this means that most of 

the data would remain unused or un-analyzed. Data can grow along two dimensions: the 

number of fields (also called dimensions or attributes) and the number of cases. Human 

analysis and visualization abilities do not scale to high-dimensions and massive volumes 

of data.  

 

Data mining techniques allow for the possibility of computer-driven exploration of data. 

This opens up the possibility for a new way of interacting with databases: specifying 
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queries at a much more abstract level than SQL (Structured Query Language) permits. 

This addresses the query formulation problem: how can we provide access to data when 

the user does not know how to describe the goal in terms of a specific query or even as a 

computer program in a stored procedure? (U. Fayyad, 1997) . Data mining also facilitates 

data exploration for problems that, due to high dimensionality, would otherwise be very 

difficult to explore by traditional statistical methods and conventional graphing 

techniques.  Data Mining is the mechanized process of identifying or discovering useful 

structure in data (U. M. Fayyad, Grinstein, Wierse, & NetLibrary, 2002). Data mining 

techniques are deployed to scour large databases in order to find novel and useful patterns 

that might otherwise remain unknown (Tan, Steinbach, & Kumar, 2005).  

 

 

Figure 2 : Foundations of Data Mining 

 

Stemming from a purely computational approach, two distinct groups working on two 

fundamental aspects of data mining have emerged out of the field of computer science.  

The first focused on data storage and information retrieval technology as related to 

database theory and practice. The second notion of data mining, as algorithmic 

principles that enable the detection or extraction of patterns, evolved under the field of 

pattern recognition, and later under artificial intelligence (AI), machine learning (ML) 

Algorithmic Principles 
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and most recently the field of Knowledge Discovery in Databases (KDD) (U. M. Fayyad, 

Piatetsky-Shapiro, & Smyth, 1996). The last three or four years of the twentieth century 

saw the successful merging of database inspired techniques with KDD algorithms . 

3.2.1 Data mining objectives 

 

Data mining objectives are generally divided into two major categories (Tan et al., 2005)  

Predictive tasks: The objective is to predict the value of a particular attribute based on 

the values of other attributes. The attribute to be predicted is commonly known as the 

target or dependent variable while the attributes used for making the prediction are 

known as the independent variables.  

Descriptive tasks: The objective is to derive patterns (correlations, trends, clusters etc.) 

that summarize the underlying relationships in data. Descriptive data mining tasks are 

often exploratory in nature and require post processing techniques to validate and explain 

the results. 

 

Figure 3 : Data Mining Tasks 
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Figure 3 depicts a further breakdown of the two broad categories into five classes of data 

mining methods. Fayyad et al. (U. M. Fayyad et al., 1996) provide a list of the tasks 

required to meet the primary goals of data mining. 

Classification is the process of assigning the most likely categories to features or trends 

within the data. Identification of interesting features within the data is a form of 

classification. This is used for discreet target variables. For example, predicting whether a 

web user will make a purchase at an online store is a classification task since the outcome 

is binary  

Regression is development of a function that approximates the mathematical relationship 

between attributes and a continuous target variable. Forecasting the future price of stock 

is a regression task because price is a continuous valued attribute. 

Clustering is also known as segmentation and seeks to find groups of closely related 

observations that belong to a cluster such that those observations are more similar to each 

other than observations that belong to other clusters. Cluster analysis is described as 

unsupervised learning since the categories are learnt from the data itself and are not pre-

defined by the investigator. The grouping of news articles determined by the frequency of 

certain key words is a clustering exercise.  

Summarization is the process of finding a compact representation for data. There are 

two classes of methods which represent taking horizontal (cases) or vertical (fields) slices 

of the data. In the former, one would like to produce summaries of subsets: e.g. 

producing sufficient statistics. In the latter case, one would like to predict relations 

between fields. This class of methods is distinguished from the above in that rather than 
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predicting a specified field (e.g. classification) or grouping cases together (e.g. clustering) 

the goal is to find relations between fields. One common method is called association 

rules (Agarwal, Mannial, Srikant, Toivonen, & Verkamo, 1996). Associations are rules 

that state that certain combinations of values occur with other combinations of values 

with a certain frequency and certainty. A common application of this is market basket 

analysis where one would like to summarize which products are bought in conjunction 

with what other products. 

 

Dependency modeling is used to discover patterns that describe strongly associated 

features in data. It is a process of modeling dependencies or causality between variables. 

The discovered patterns are typically represented in the form of implication rules or 

feature subsets. Useful applications include finding groups of genes that have related 

functionality or identifying web pages that are accessed together.  

Deviation or Anomaly Detection – This is the task of identifying observations whose 

characteristics are significantly different from the rest of the data or which fall outside 

some normal change. The goal of an anomaly detection algorithm is to discover the real 

anomalies and avoid falsely labeling normal objects as anomalous. The distinguishing 

feature of this class of methods is that the ordering of observations is important and must 

be accounted for. Applications include detection of fraud, network intrusions and disease 

propagation. 
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3.2.2 Data mining and knowledge discovery in databases  

 

Data Mining is an integral part of KDD which is the overall process of converting raw 

data into useful information. However, there is potential for confusion about the 

distinction between KDD and data mining. Fayyad et al. (U. M. Fayyad et al., 1996) 

claim that KDD is the process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data ,whereas data mining is simply the application 

of algorithms for extracting patterns from data. Data mining is to be viewed as a subset of 

the KDD process. Figure 4 depicts this process of KDD which consists of a series of 

transformation steps, from data preprocessing to post processing of data mining results 

for knowledge extraction. 

 

Figure 4 : The Process of Knowledge Discovery in Databases. (U. M. Fayyad et al., 1996) 

 

The basic steps involved in KDD are described by (U. M. Fayyad et al., 1996) and (Han 

& Kamber, 2001)  

1. Developing a pool of expert knowledge and end-user goals 
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2. Selecting the data for which KDD is to be performed 

3. Data cleaning and pre-processing ( handling noise and missing data) 

4. Data reduction and transformation : reducing the number of attributes  to the 

minimum necessary to meet the end user goals 

5. Choosing the data mining task: deciding whether the end user goal can be met by 

classification, regression, clustering etc. 

6. Choosing the data mining algorithm 

7. Searching for patterns or rules using data mining 

8. Pattern interpreting i.e., the user examines the results of the preceding steps and 

may decide to repeat them if necessary 

9. Consolidating discovered knowledge i.e., incorporating new knowledge into the 

data base.  

The KDD process may contain loops between any two of these steps and may involve 

several iterations of any subset of this list. 

3.3 Data mining applications in the building energy domain 

 

3.3.1 General introduction 

 

The energy performance of a building is influenced by many factors, such as weather 

conditions, thermal properties of the construction materials, occupant behavior, sub-level 

components such as lighting, HVAC systems, their performance and schedules. Due to 

the complexity of the problem, precise consumption prediction is quite difficult. In recent 

years, a large number of approaches for prediction, either elaborate or simplified, have 
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been proposed and applied to a broad range of problems. These approaches (Zhao & 

Magoulès, 2012) include engineering based methods such as white box models based on 

physical principles, statistical methods such as Least Squares Regression, Fourier series 

models and machine learning methods such as Artificial Neural Networks, Support 

Vector Machines, Decision Tree Induction etc. Such research work has been carried out 

in the process of building design, operation or retrofit of contemporary buildings; varying 

from a building’s sub-system analysis to regional or national level modeling. Predictions 

can be performed on the whole building or sub-level components by thoroughly 

analyzing each influencing factor or approximating the usage by considering several 

major factors. Building energy simulation software based on physical principles calculate 

the thermal dynamics and energy behavior of buildings and are widely used to analyze or 

forecast energy consumption in order to facilitate the design and operation of energy 

efficient buildings. Simulation software may provide reliable solutions to estimate the 

impact of building design alternatives; however this process can be very time-consuming, 

requiring detailed inputs and user-expertise in a particular program. Moreover, the 

accuracy of the estimated results may vary across different building simulation software 

packages (Crawley, Hand, Kummert, & Griffith, 2008).  Hence, in practice many 

researchers have begun to rely on machine learning tools to study the effect of various 

building parameters on certain variables of interest because this is easier and much faster 

if a database of the required ranges of variables is available for training the model (Dong, 

Cao, & Lee, 2005).  
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Traditionally, least squares regression analysis has been the most popular technique in 

predicting energy consumption. However many studies in the general research area of 

energy performance of buildings (EPB) using classical regression techniques have made 

simplifying mathematical assumptions relying on linear correlations and normality which 

are known to be ill-suited for many complicated applications where normality 

assumptions do not hold (Tsanas & Xifara, 2012). State of the art nonlinear and 

nonparametric machine learning techniques such as Random Forest and Artificial Neural 

Networks overcome these limitations inherently and do not require any prior knowledge 

of variable distribution or structure of the feature space. Moreover pattern extraction 

using data mining can enhance the designer’s understanding through quantitative 

expressions of the factors that affect the quantity (or quantities) of interest that the 

building designer or architect may wish to focus on. A useful pattern could provide the 

building designer a strategy to increase the energy efficiencies of their buildings. A 

discovered pattern might relate to a single parameter like building insulation values that 

reduce energy use by 40-50%, with other factors held constant. Patterns might also be 

much more complex, taking into account several different building components such as 

walls, windows, doors, and roof and specifying the conditional probability of improving 

energy efficiency. Another related example involving useful patterns lies in the area of 

load forecasting for the electricity supply industry, where data mining can be used to 

detect correlations between climatic conditions and other characteristics that influence 

load demands, such as the time of day or week.  Again, this is a situation where the 

amount of data in combination with the complexity of potential correlations makes it 

difficult to manually determine these patterns from the data set (Morbitzer, 2003). 
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Recognizing the complexity of building energy performance prediction and the in-

adequacy of some of the traditional statistical approaches efforts to integrate machine 

learning with EPB has sparked enormous interest (Tsanas & Xifara, 2012). In the context 

of EPB, various machine learning techniques such as support vector machines (Dong et 

al., 2005) artificial neural networks (Kalogirou, 2000), CART (Yu, Haghighat, Fung, & 

Yoshino, 2010) and Random Forest (Tsanas & Xifara, 2012) have been explored to 

predict various quantities of interest. A brief overview of these techniques and a 

discussion of their applications for building energy prediction is provided in the 

following section. 

3.3.2 Artificial Neural Networks (ANNs) 

 

ANNs is a nonlinear statistical technique principally used for prediction and is the most 

widely used artificial intelligence method in the domain of building energy performance 

(Zhao & Magoulès, 2012). Neural network models were originally developed by 

researchers trying to mimic the neurophysiology of the human brain. A neural network 

can be any model in which the output is computed from the inputs by compositions of 

basic functions. One of the most commonly used neural network models consists of 

several “neurons” that are connected to each other through multiple layers. Neural 

networks perform well in applications when the functional form is nonlinear, and are 

especially useful for prediction problems where prior knowledge on the relationship 

between inputs and outputs are unknown (Tso & Yau, 2007).  
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In the past twenty years, researchers have applied ANNs to analyze various types of 

building energy consumption in a variety of conditions, such as heating/cooling load, 

electricity consumption, sub-level component operation/optimization, and estimation of 

parameters. Neural Network applications for building energy analysis were pioneered by 

the University of Colorado in the early 90’s (Krarti, Kreider, Cohen, & Curtiss, 1998). 

Kalogirou (Kalogirou, 2000) has published many papers on building applications using 

ANN, including a bibliographic review summing up the applications of ANNs in the field 

of energy-engineering systems. (Olofsson & Andersson, 2001) developed a neural 

network which makes long-term energy demand (the annual heating demand) predictions 

based on short-term (typically 2–5 weeks) measured data with a high prediction rate for 

single family buildings. Since the measured data was short term, in order to train the 

neural network on the seasonal variation they used energy calculation software to 

generate heating demand for a synthetic building comparable to the actual one. An early 

study by (Krarti et al., 1998) successfully trained ANNs to estimate the energy savings 

due to retrofits in existing commercial buildings.  A joint U.S Japanese research project 

(Kawashima, Dorgan, & Mitchell, 1995) investigated several time series modeling 

methods for hourly thermal load prediction over a 24h time horizon and compared the 

accuracy of each model. The results indicated that an artificial neural network (ANN) 

produced the most accurate thermal load predictions. The ANN model was then applied 

to two measured building loads from another research project and the results confirmed 

its accuracy. 
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In the area of building electricity usage prediction (Wong, Wan, & Lam, 2010) used a 

neural network to predict energy consumption for office buildings with day-lighting 

controls in subtropical climates. A total of nine variables were used as the input 

parameters – four variables related to the external weather conditions, four for the 

building envelope designs, and the last variable was day type. They used EnergyPlus as 

the building energy simulation software to generate daily building energy use data for the 

training and testing of ANNs. The outputs of the model included estimated daily 

electricity use for cooling, heating, electric lighting and total building. ANNs are also 

used to analyze and optimize sub-level components behavior, mostly for HVAC systems. 

(Lee, House, & Kyong, 2004) used a general regression neural network to detect and 

diagnose faults in a building’s air-handling unit. (Lundin, Andersson, & Östin, 2004) 

used ANNs to estimate building energy performance parameters like total heat loss 

coefficient, heat capacity and the gain factor, which are important for reliable energy 

demand forecasts. (Zhao & Magoulès, 2012) provide an extensive review on the various 

applications of ANNs in the building energy domain.  

 

ANN is a powerful technique with proven potential for building energy prediction; 

however, it is limited by a lack of interpretability and the fact that it requires a large 

amount of learning data and a complete database (that is no missing data in the databases 

and the same amount of information for each variable). The following statistical learning 

technique called support vector machines overcomes these difficulties. 
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3.3.3 Support Vector Machines (SVMs) 

 

Support vector machine (SVM) was introduced in 1995 by (Cortes & Vapnik, 1995). 

This artificial intelligence technique is usually used to solve binary classification 

problems or regression. For a complete technical overview of SVM refer to (Tan et al., 

2005) or (Hastie, Tibshirani, & Friedman, 2009). In the building energy field, SVM is 

mainly used for the forecasting of energy consumption (hourly, monthly etc.). One huge 

advantage is that it can work with heterogeneous databases where all variables do not 

have the same amount of information or have missing data (Foucquier, Robert, Suard, 

Stéphan, & Jay, 2013). Also, there are fewer free parameters to optimize compared to 

ANNs.  

 

The use of SVM in the forecasting of energy consumption in buildings is fairly recent. 

(Dong et al., 2005) were the first to use SVM for the prediction of building energy 

consumption. Based on this study, they found the performance of SVM in terms of CV (< 

3%) to be better than related results using ANNs and genetic programming. (Li, Meng, 

Cai, Yoshino, & Mochida, 2009) used SVMs to predict the hourly cooling load of an 

office building and also found the performance of the support vector regression to be 

better than the conventional back propagation neural networks. An extensive review of 

applications of SVMs for predicting energy consumption of buildings as well as HVAC 

fault detection and diagnostics is provided by (Zhao & Magoulès, 2012).  One drawback 

with SVMs is that the training time varies between quadratic and cubic with respect to 

the number of training samples (Dong et al., 2005).  The other difficulties lie in selecting 
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the best kernel (weighting) function corresponding to a dot product in the feature space 

and the parameters of the kernel function. 

3.3.4 Classification and Regression Trees (CART) and Random Forest (RF) 

 

CART is a conceptually simple, yet powerful, nonlinear method that works by 

successively splitting the input feature space into smaller and smaller sub-regions 

(Breiman, Friedman, Olshen, & Stone, 1984). This procedure can be visualized as a tree 

(called a Decision Tree) that originates from a root node and splits into successively 

smaller branches terminating in leaf nodes. Each branch represents a sub-region of the 

input variable ranges and the leaves contain data that “traverses” from the root node 

down the branches based on optimum splitting values of selected attributes. The tree 

grows until a certain stopping criterion has been met or the data in a node is completely 

homogenous. The tree is able to process both numerical and categorical variables, and 

perform classification and prediction tasks rapidly without much computation. A major 

advantage of the decision tree over other modeling techniques is that it produces a model 

which may represent interpretable rules or logic statements. A single decision tree, 

however, is susceptible to noise (over fitting) and is considered a high variance model.  

 

A natural extension of CART is random forests (RF), which is simply a collection (or 

ensemble) of many trees (Breiman, 2001). By averaging predictions across multiple trees 

the overall variance is effectively reduced. The training procedure is the same as in 

CART with two key differences: a randomly chosen subset of candidate variables are 

used to select the optimal variable for each split and each tree is trained on a bootstrapped 
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sample generated from the original training data.  Practice has shown the RF algorithm 

works extremely well in many diverse applications. Moreover, RF has the desirable 

ability of promoting the most important input variables towards predicting the output 

variable as part of their inherent learning strategy (Hastie et al., 2009). CART and RF are 

discussed at length in the methodology section of this study.  

 

Applications of CART and RF in the building energy domain are sparse. (Tso & Yau, 

2007) compared the prediction accuracy of three different approaches: regression, 

decision trees and neural networks for electrical energy use of residential households in 

Hong Kong. Results arising from this study were used by utility companies in assessing 

electricity energy consumption patterns and selecting a more accurate approach to 

estimating future energy demand. In the summer phase, the decision tree model resulted 

in a fewer numbers of significant factors influencing energy consumption as compared to 

the neural network and stepwise regression models. The decision tree model, with its 

simpler structure, was also found to be marginally more accurate than the other models, 

based on Root Mean Squared Error (RMSE) criteria. (Kim, Stumpf, & Kim, 2011) used 

the C4.5 decision tree algorithm for selecting the building elements most likely to 

improve energy efficiency in the design of a mid-size community emergency station. The 

case study revealed that data mining based energy modeling can help project teams 

discover useful patterns to improve the energy efficiency during the design phase. (Yu et 

al., 2010) applied the decision tree method to Japanese residential buildings for predicting 

and classifying building EUI (Energy Use Index) levels. The results demonstrated that 

the use of the decision tree method can classify and predict building energy demand 
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levels accurately (93% for training data and 92% for test data), identify and rank 

significant factors automatically, and provide the combination of significant factors as 

well as threshold values that will lead to high building energy performance.   

 

(Tsanas & Xifara, 2012) used Random Forest (RF) to study the effect of eight input 

variables (relative compactness, surface area, wall area, roof area, overall height, 

orientation, glazing area, and glazing area distribution) on two output variables, namely 

heating load (HL) and cooling load (CL), of residential buildings. They compared the RF 

to a classical linear regression technique (Iteratively Reweighted Least Squares – IRLS) 

and found that RF greatly outperformed IRLS in finding an accurate functional 

relationship between the input and output variables. Classical regression settings (such as 

IRLS) may fail to account for the presence of multi-collinearity, wherein variables appear 

to have large magnitude but opposite sign regression coefficients (Hastie et al., 2009). On 

the contrary, the RF learning mechanism randomizes the selection of a subset of features 

for each split, and thus can internally account for redundant and interacting variables 

(Breiman, 2001) . 

 

A body of research thus clearly supports the fact that machine learning techniques are 

viable alternatives to physical modeling and traditional statistical analysis of building 

energy data.  However, the disadvantages of such tools are that they often require 

extensive training data and are complex black box models that are not interpretable 

without advanced statistical knowledge. With the exception of CART, none of the other 

machine learning techniques allow much model visualization; which is often a critical 
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component for knowledge discovery that cannot be provided by automated data mining 

alone. The following section presents selected techniques of high dimensional data 

visualization that can enhance the process of knowledge discovery through visual 

analytics.  

3.4 Visualization of High Dimensional Data 

 

Visualization is the visual representation of data designed to capture inherent correlations 

or patterns.  Data is translated into graphical representation by means of the combined 

use of points , lines , a co-ordinate system, numbers, symbols, words , shading, and color 

(Tufte, 2001). The simple line graph or scatter plot has been used for visualization for 

hundreds of years. Perhaps they are the most widespread method of understanding the 

interaction of two variables. Understanding the expression of one value as a function of 

the second is easier if the function is plotted on a graph. The relationships between three 

variables can be partially understood by a three-dimensional view. The ability to 

understand the interactions or correlations between more than three variables becomes 

severely compromised when standard visualization tools are relied upon. 

 

High-dimensional data contains all those sets of data that have more than three variables. 

The extraction of relevant and meaningful information out of high dimensional data is 

notoriously complex and cumbersome. The curse of dimensionality is a popular way of 

stigmatizing the whole set of troubles encountered in high-dimensional data analysis; 

finding relevant projections, selecting meaningful dimensions, and getting rid of noise, 

being only a few of them (Bertini, Tatu, & Keim, 2011). Multi-dimensional data 
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visualization also carries its own set of challenges; for example the limited capability of 

any technique to scale to more than a handful of data dimensions. The following section 

is a brief survey of selected techniques for High Dimensional Data Visualization. The 

different techniques can be distinguished between icon-based, hierarchical and 

geometrical methods (U. M. Fayyad et al., 2002). 

3.4.1 Icon-based methods 

 

 

Icon-based methods are approaches that use icons (or glyphs) to represent high-

dimensional data by mapping data components to graphical attributes. The most famous 

technique is the use of Chernoff faces (D. Keim, 1995). In this case, a data point is 

represented by an individual face while the facial features map to the data dimensions. 

This is a widely-accepted way of visualizing multidimensional data that capitalizes on 

human sensitivity to faces and facial features (Parsaye & Chignell, 1993).  Figure 5 

depicts an annotated Chernoff Face that can be used to represent data with 11 dimensions 

or attributes. Each dimension can in turn have multiple levels. For example, five different 

sizes of the eyes could correspond to the five levels of an attribute.   

 
 

Figure 5 : Annotated Chernoff Face (http://bradandkathy.com/software/faces.html) 



30 

 

 

Probably the most common icon-based technique is the use of star glyphs to denote data 

points (Hoffmann & Grinstein, 2002) . A star glyph consists of a center point with 

equally angled rays. These branches correspond to the different dimensions and the 

length of the limbs mark the value of this particular dimension for the studied data point. 

A polygon line connects the outer ends of the spokes .This is similar to plotting points in 

polar co-ordinates instead of the familiar Cartesian co-ordinates. In a typical display, 

there is a star glyph for every n-dimensional data point. An illustration of the star glyphs 

approach is provided in Figure 6 below. 

 
 

Figure 6 : Star Glyphs (Hoffmann & Grinstein, 2002) 

 

These icon-based techniques are very vivid but have several disadvantages. A very severe 

problem is the organization of the glyphs on the screen as no coordinate system 

representing two of the dimensions is provided. Another obstacle is the amount of 

variables and the size of the data set itself. If the number of rays become too high the 

distinction between the different spokes and the values they represent is no longer clear 
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or discernible. Lastly, these types of representations may not be well suited for 

engineering applications that require quantitative comparisons. 

3.4.2 Hierarchical methods 

 

 

The most important representative of the group of hierarchical visualization techniques is 

dimensional stacking. It is a method of embedding coordinate systems recursively into 

each other (Grinstein, G., Hoffmann, P., Pickett, R., 2002).This method is very useful for 

hierarchical data sets that only have a small number of dimensions as otherwise the 

embedding process will make the resulting plot too crowded. The question of labeling 

can also become difficult with higher dimensions. Figure 7 shows an example of 

dimensional stacking with five products, five territories, two sales channels, two methods 

of payment and five quarters (Mihalisin, 2002). Additionally, the number of items sold 

can be depicted using a color scale as shown in the upper right of Figure 7. 

 
 

 
 

Figure 7 : Dimensional Stacking (Mihalisin, 2002) 
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A technique that displays the correlation between dimensions (not the data itself) 

recursively is the fractal foam (Hoffmann & Grinstein, 2002) .The starting point is a 

chosen dimension that is depicted by a colored circle. Attached to this circle are further 

circles, which symbolize the other dimensions. The size of these rings corresponds to the 

correlation between the inner circle and the fastened ones. A high correlation requires a 

large circle. Fixed to the second layer of circles is a third layer which describes the 

correlation of these dimensions and so on. An example of fractal foam used on the Iris 

Data can be seen in Figure 8 . The sepal length is center (white), petal length - right (red), 

petal width - top (yellow) and sepal width - bottom (green) 

 
Figure 8 : Fractal Foam display of the Iris Data (Hoffmann & Grinstein, 2002) 

 

3.4.3 Geometrical methods 

 

 

Geometrical methods cover a large group of visualization techniques. Probably the most 

commonly used one is the method of parallel coordinates (PC). Alfred Inselberg began 

the work on parallel coordinates in 1981 while working at the IBM research laboratory 
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(Siirtola & Räihä, 2006) . He suggested that PC can yield graphical representations of 

Multi-Dimensional relations rather than just finite point sets. 

 

In a PC plot, the dimensions are represented by parallel lines, which are equally spaced. 

They are linearly scaled so that the bottom of the axis stands for the lowest possible value 

whereas the top corresponds to the highest value. A data point is now drawn into this 

system of axes with a polyline, which crosses the variable lines at the locations the data 

point holds for the examined dimension. A simple example with three points and four 

dimensions is shown in Figure 9 .The points displayed are A = (1; 3; 2; 5), B = (2; 4; 1; 

6) and C = (1; 4; 3; 5). 

 

Figure 9 : Parallel Co-ordinates Plot (Hoffmann & Grinstein, 2002) 

 

The number of polylines and variables that can be added is only limited by the size of the 

computer screen and the limitation of visualization by the human eye (Peterson, 2009). 

PC plots are also able to visualize non-numerical data with each axis having its own scale 

and data range. This makes the PC plot a powerful tool with which to visualize 

multidimensional data (Siirtola & Raiha, 2006). It should be noted, however, that for 
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numeric variables that vary widely in magnitude or have outliers, the attributes need to be 

standardized before plotting ,else the variation on the smaller variables might not be 

visible at all.  

 

Figure 10 : Three Dimensional Points in Parallel Co-ordinates 

 

Another interesting geometrical visualization technique is the use of Andrew’s curves 

(Hoffmann & Grinstein, 2002). This method plots each data point by applying a 

transformation of the form  

 

 ( )   
  

√ 
                                           

(Eqn. 1) 

 

where t goes from –π to π and X1, X2, etc. are the columns (i.e., variables) of data. One 

Andrews curve is generated for each row of data (Figure 11). The advantage of this 

algorithm is that it is easily applied to data with a large amount of dimensions. The 
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disadvantage is the long computational time, as every data point requires the calculation 

of a trigonometric function. 

 

Figure 11 : Andrews Curves (Hoffmann & Grinstein, 2002) 

 

Radial Coordinate Visualization (RadViz) uses the elastic spring paradigm (Hoffmann 

& Grinstein, 2002) . From a center point n equally spaced limbs of the same length 

spread out, each representing one dimension. The ends of the lines mark the dimensional 

anchor (DA) of the respective variable, which are connected forming a circle. Before the 

data points can be visualized by this technique they need to be normalized. After that, one 

end of a spring is fastened to each dimensional anchor, the other end to the data point. 

The spring constant of each spring is the value of the data point of the respective 

dimension. In order to determine the location of the data point, the sum of the spring 

forces needs to equal zero. Figure 12 shows the result of this method applied to the well-

known Iris data set. An advantage of RadViz is that it preserves certain symmetries of the 

data set. The major disadvantage is the overlap of points. 
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Figure 12 : RadViz of the Iris Data Set (Hoffmann & Grinstein, 2002)  

 

All the techniques explained above allow one to visualize data sets without trying to 

change them in order to simplify the visualization.  Another class of visualization 

techniques involves non-linear projection methods that reduce the size of the dimension 

vector (Dimensionality Reduction). These include techniques like Multidimensional 

scaling which tries to preserve distances between data points , and Self Organizing Maps 

(SOMs) a method of artificial neural networks that focus on the maintenance of structure 

(Grinstein, G., Hoffmann, P., Pickett, R., 2002) . Yet another class of techniques rely on 

pixel oriented visualization where each data value in the data set is represented by one 

pixel in the display (D. A. Keim, 2000). There are still more techniques of high 

dimensional visualization that have recently come out of computer and cognitive 

sciences; however, a review of those is outside the scope of this research. 
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Due to its simplicity in construction and display, the parallel coordinates plot was 

selected as the basis for the development of an interactive Graphical User Interface (GUI) 

used to analyze energy simulation input-output relationships. This is presented in detail in 

chapter 7. 

3.5 Visual Analytics 

 

Historically, analysis techniques such as statistics and data mining developed 

independently from visualization and interaction techniques (D. A. Keim, Kohlhammer, 

Ellis, & Mansmann, 2010). However, some innovative insights changed the scope of the 

fields into what is today called visual analytics research. Statistical data analysis is useful 

if the relationship between variables is well defined. However, if the analyst does not 

know what to expect from the data then it often becomes necessary to visually explore 

the data in order to identify an appropriate statistical analysis technique (J. Haberl & 

Abbas, 1998). One of the most important developments  in early visual analytics was 

recognizing the need to move from confirmatory data analysis (using charts and other 

visual representations to just present results) to exploratory data analysis (interacting with 

the data/results). This idea was first presented to the statistics research community by 

John W. Tukey (Tukey, 1977).  

 

With improvements in computer graphics software, graphical user interfaces and 

interaction devices, a growing research community devoted their efforts to information 

visualization. At some stage, the potential of integrating the user in the knowledge 

discovery and data mining process through effective visualization techniques and 
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interaction capabilities was recognized and this led to visual data exploration and visual 

data mining (D. A. Keim, 2001). 

 

Two of the early uses of the term visual analytics can be traced back to the mid-2000s ; 

first by (Pak Chung Wong & Thomas, 2004) , and a year later in the R&D agenda, 

Illuminating the Path, which defined Visual Analytics as the science of analytical 

reasoning facilitated by interactive visual interfaces (Thomas & Cook, 2006) . To be 

more precise, visual analytics is an iterative process that involves collecting information, 

data preprocessing, knowledge representation, interaction, and decision making. The 

ultimate goal is to gain insight into the problem at hand, which may be described by vast 

amounts of scientific, forensic or business data from heterogeneous sources. To achieve 

this goal, visual analytics combines the advantages of machines with the strengths of 

human cognition. While methods from KDD, statistics and mathematics efficiently drive 

the automatic analysis side, the addition of human capabilities to perceive, relate and 

conclude have turned visual analytics into a very promising field of research (D. A. 

Keim, Mansmann, Schneidewind, & Ziegler, 2006).  

 

Information overload is a well-known phenomenon of the present information age. Due 

to the progress in computer power and storage capacity over the last few decades, data is 

being produced at an incredible rate and the ability to collect and store data is growing 

faster than the ability to analyze it. The overarching vision of visual analytics research is 

to turn this information overload into an opportunity. The transformation of data into 

meaningful visualizations is a non-trivial task that cannot be automatically improved 
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through steadily growing computational resources alone (D. A. Keim et al., 2006) . 

Decision-makers should be enabled to examine massive, multi-dimensional, multi-

source, time-varying information streams to make effective decisions in time-critical 

situations (D. A. Keim et al., 2010).  The specific advantage of visual analytics is that 

decision makers may focus their full cognitive and perceptual capabilities on the 

analytical process, while allowing them to apply advanced computational capabilities to 

augment the discovery process. Each approach has its advantages and its weaknesses. 

Whereas algorithms working in isolation can miss out on the “wisdom” that is readily 

available from human knowledge of the problem and the data, strictly manually guided 

approaches can easily cause users to lose their way with high dimensional data (U. M. 

Fayyad et al., 2002). Thus for informed decisions, it is indispensable to combine the 

flexibility, creativity, and background knowledge of human decision makers with the 

enormous storage capacity and processing power of today’s computers.  

3.5.1 Scope  

 

On a grand scale, visual analytics solutions provide technology that combines the 

strengths of human and electronic data processing. The challenge is to identify the best 

automated algorithm for the analysis task at hand, identify its limits which cannot be 

further automated, and then develop a tightly integrated solution which adequately 

combines the best automated analysis algorithms with appropriate visualization and 

interaction techniques (D. A. Keim & Andrienko, 2008). Visualization becomes the 

medium of a semi-automated analytical process, where humans and machines cooperate 

using their respective distinct capabilities for the most effective results (D. A. Keim & 
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Andrienko, 2008). The user has to be the ultimate authority in giving the direction of the 

analysis along his or her specific task. At the same time, the system has to provide 

effective means of interaction to concentrate on this specific task. On top of that, in many 

applications different people work along the path from data to decision. A visual 

representation will sketch this path and provide a reference for their collaboration across 

different tasks and abstraction levels. The diversity of these tasks cannot be tackled with 

a single theory. Visual analytics research is thus highly interdisciplinary and combines 

various related research areas such as visualization, data mining, data management, data 

fusion, statistics and cognition science (Figure 13)  

 

Figure 13 : Visual Analytics as a highly interdisciplinary field of research (D. A. Keim & Andrienko, 2008) 

 

3.5.2 Visual Analytics versus Information Visualization  

 

Historically, visual analytics evolved out of the fields of information and scientific 

visualization.  However visual analytics is more than just visualization and by definition 

is an integrated approach combining visualization, human factors and data analysis (D. A. 

Keim & Andrienko, 2008). The term visualization is meanwhile understood as “a 
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graphical representation of data or concepts” (Ware, 2000). While there is certainly some 

overlay and some of the information visualization work is certainly highly related to 

visual analytics, traditional visualization work does not necessarily deal with analysis 

tasks nor does it always also use advanced data analysis algorithms.  Most research 

efforts in Information Visualization have concentrated on the process of producing views 

and creating valuable interaction techniques for a given class of data (social network, 

multi-dimensional data, etc.). However, much less has been suggested as to how user 

interactions on the data can be turned into intelligence to tune underlying analytical 

processes. This is one place where Visual Analytics differs most from Information 

Visualization, namely, it gives higher priority to data analytics from the start and through 

all iterations of the sense making loop.  

3.5.3 The Visual Analytics Process 

 

The visual analytics process combines automatic and visual analysis methods with a tight 

coupling through human interaction in order to gain knowledge from data.  Figure 14 (D. 

A. Keim et al., 2010) shows an abstract overview of the different stages (represented 

through ovals) and their transitions (arrows) in the visual analytics process. 
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Figure 14 : Visual Analytics Process (D. A. Keim et al., 2010) 

 

In many application scenarios, heterogeneous data sources need to be integrated before 

visual or automatic analysis methods can be applied. Therefore, the first step is often to 

preprocess and transform the data to generate different representations for further 

exploration (as indicated by the Transformation arrow in Figure 14 ).  After the 

transformation, the analyst may choose between applying visual or automatic analysis 

methods.  If an automated analysis is used first, data mining methods are applied to 

generate models of the original data. Once a model is created the analyst has to evaluate 

and refine the model, which can best be done by interacting with the data. Visualizations 

allow the analysts to interact with the automated methods by modifying parameters or 

selecting other analysis algorithms. Model visualization can then be used to evaluate the 

findings of the generated models.  Alternating between visual and automatic methods is 

characteristic of the visual analytics process and leads to a continuous refinement and 

verification of preliminary results (D. A. Keim et al., 2010). The feedback loop stores this 

knowledge of insightful analysis and assists the analyst in drawing faster and better 

conclusions in the future.   
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3.5.4 Applications  

 

Visual Analytics is a highly application oriented discipline driven by practical 

requirements. Visual analytics is essential in application areas where large information 

spaces have to be processed and analyzed. Major application fields are physics and 

astronomy. Monitoring climate and weather is also a domain which involves huge 

amounts of data collected by sensors throughout the world and from satellites at short 

time intervals. A visual approach can help to interpret these massive amounts of data and 

to gain insight into the dependencies of climate factors and climate change scenarios that 

would otherwise not be easily identified. 

 

Figure 15 : Visual Analytics in Action:  Simulation of Climate Models (Tominski, Abello, & Schumann, 2009) 

 

Figure 15 represents visual support for the simulation of climate models provided by 

CGV (Coordinated Graph Visualization), a highly interactive graph visualization system 
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(Tominski et al., 2009). The area of bio-informatics uses visual analytics techniques to 

analyze large amounts of biological and medical data. Another major application domain 

for visual analytics is business intelligence.   

 

In the domain of building energy analysis there has been research done in the use of 

machine learning techniques such as neural networks and support vector machines for 

automated fault detection analysis and prediction of building energy consumption (Zhao 

& Magoulès, 2012). This aspect has been discussed earlier in section 3.3. There is also a 

history of R&D on visualization techniques (J. Haberl & Abbas, 1998) and graphical user 

interfaces (Papamichael, 1999) for the analysis of vast amounts of simulation outputs. 

However this present study did not find any commercial or research tool in the field of 

building energy simulation that effectively combines both (data mining and visualization) 

in the true definition of visual analytics as discussed previously in this chapter.  

 

3-D surface plots were used to view small differences between the simulated data and the 

measured data for non-weather dependent loads (J. S. Haberl, Bronson, Hinchey, & 

O'Neal, 1993). For weather dependent loads carpet matrix plots were used to detect 

different trends between DOE-2 simulations and measured consumption. While these 

techniques do assist the building energy analyst to review large amounts of building 

energy consumption data for errors or  to establish time and temperature related trends,  

the maximum number of dimensions (variables) that could be accommodated at a time in 

a  single display is still limited to  four – three axial and one using color. The fourth 

dimension could also be time, as illustrated by (J. Haberl, Sparks, & Culp, 1996) in their 
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use of animated (time sequenced) displays of energy use data. These techniques are rather 

limiting for the visual analysis of higher dimensional datasets involved in energy 

simulations as well as usage data recorded by sensors and BMS at short time intervals.   

 

There are very few examples of graphical user interfaces that allow a designer to use 

simulation results for design synthesis. One interesting prototype is the Building Design 

Advisor (BDA), a software environment developed at Lawrence Berkeley National Labs 

(LBNL, 2006), designed to facilitate informed decisions from the early schematic phases 

of building design to the detailed specification of building components and systems 

(Papamichael, 1999). To do that, the BDA supports the integrated, concurrent use of 

multiple simulation tools and databases, and makes their output available in forms that 

support multicriterion judgment. The BDA provides a graphical user interface that 

consists of two main elements: the Building Browser and the Decision Desktop. The 

Decision Desktop allows building designers to compare multiple alternative design 

solutions with respect to multiple design considerations, as addressed by the analysis and 

visualization tools and databases linked to the BDA. The parameters displayed in the 

Decision Desktop are selected in the Building Browser. The Decision Desktop (Figure 16 

) supports a large variety of data types, including 2-D and 3-D distributions, images, 

sound and video, which can be displayed and edited in their own windows. The limitation 

here, again, is from the data mining and knowledge discovery perspective; potentially 

useful patterns are not highlighted by machine learning algorithms, rather, the user has to 

discover these through trial and error visual analysis alone.  
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Figure 16 : BDA Decision Desktop (LBNL, 2006) 
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4:  PROPOSED METHODOLOGY 

 

4.1 Visual Analytics Based Decision Support Methodology [VADSM] 

 

This thesis proposes a new methodology called VADSM to facilitate the generation & 

evaluation of building design alternatives subject to user-defined selection criteria. This 

methodology is especially pertinent to high performance (low energy) buildings.  

 

Figure 17 : VADSM Flow Diagram 
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Specs
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The VADSM methodology consists of the following four stages:  

Stage 1: Pre-processing or selection of independent design variable combinations 

The pre-processing stage involves selecting design variables of interest and identifying 

practical ranges based on the building type, project requirements and owner 

specifications. If non-linear relationships between predictors and response are suspected 

then a minimum of three levels for each variable should be selected. Depending on the 

number of factors and levels, the number of evaluative combinations can range from 

thousands to millions. An appropriate experimental design technique such as Latin 

Hypercube sampling is thus necessary to generate a feasible number of runs from a 

simulation run time perspective.  This stage may be considered semi-automated since the 

variable selection is still largely dependent on the user but the experimental design 

application is automated. 

Stage 2: Simulation based generation of system response 

Selected variable combinations can now be input into an hourly building energy 

simulation program for batch processing. The responses could be direct outputs from the 

chosen simulation program, such as annual energy use/peak demand or could be derived 

metrics like energy costs or environmental impacts. A minimum of two responses are 

required in-order to perform multicriterion satisficing. This stage has the potential to be 

fully automated provided the chosen simulation tool can handle batch processing and has 

the necessary input-output interoperability with existing spreadsheet applications or can 

be connected to online databases for storing simulation results. 
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Stage 3: Post-processing of simulation results 

The post–processing stage involves the application of non-parametric statistical learning 

techniques such as Random Forest on the simulated data to identify variables that are the 

best predictors. This approach is also known as Feature Selection. This strategy serves 

the dual purpose of educating the designer of the important variables and also allows the 

fitting of simpler regression based models that are easier to visualize and manipulate 

dynamically than black box machine learning techniques. Once the prediction models 

(one for each response) have been developed the user can use these instead of the actual 

simulation tool to make real time predictions within the pre-defined solution space. This 

stage can be fully automated with minimal user intervention provided reliable model 

selection parameters are already established. 

Stage 4: Interactive Visualization of the solution space  

The visual analytics stage allows a user to choose their own design selections supported 

by interactive visualization of the predictive relationships between selected variables and 

responses. The Decision Support Model Viewer (DSMV) application has been designed 

to facilitate this activity. It allows the user to effectively reduce the solution space 

(simulation space) by dynamically adjusting response criteria. With the criteria in place 

the users can then investigate variable tradeoffs necessary to meet those constraints and 

make final selections.  Insights into the complex nature of building design suggest that 

this stage cannot be fully automated, but effective visualization tools can significantly aid 

in the human decision making process. 
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4.2 Experimental Design 

 

The purpose of experimental activity is to lead to an understanding of the underlying 

relationship between input (independent) and output (dependent) variables.  Experimental 

design is the aggregation of independent variables, the set of levels of each independent 

variable, and the combinations of these levels that are chosen for experimental purposes 

(Berger & Maurer, 2002). The core of an experimental design is to answer the three-part 

question; which factors should be studied, how should the levels of these factors vary, 

and in what way should these levels be combined? Two of the methods most relevant to 

this research are described below 

4.2.1 Central Composite Design 

 

Central Composite Design (CCD) is one of the most widely used experimental design 

techniques for fitting a second order response surface to estimate nonlinear behavior. 

There are three varieties: circumscribed, inscribed and face centered. The former two 

varieties require five levels for each factor while the third one requires three levels. The 

circumscribed CCD technique has been used for this study since it explores the largest 

variable space by virtue of its design.  

A central composite design has three components (Berger & Maurer, 2002)  

 A two level (fractional) factorial design, which estimates the main and two factor 

interaction terms. 

 A “star” or “axial” design which in conjunction with the other two components , 

helps estimate quadratic terms 
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 A set of center points, which estimates error and helps estimate surface curvature 

with more stability. It should be noted that for a computer experiment using a 

deterministic simulation program (as utilized in this study) replication is not 

required and only one center point is sufficient.  

 

Figure 18 : Circumscribed Central Composite Design (http://www.globalspec.com) 

 

If the distance from the center of the design space to a factorial point is ±1 unit for each 

factor, the distance from the center of the design space to a star point is          | |   

  . The precise value of    depends on certain properties desired for the design, like 

orthogonal blocking and on the number of factors involved (Reddy, 2011b). To maintain 

rotatability, the value of    depends on the number of experimental runs in the factorial 

portion of the central composite design:  

   [                        ]    

 

If the factorial is a full, then  

   [  ]    

However, the factorial portion can also be a fractional design. The total number of 

experimental runs for a CCD with k factors is 
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where c is the number of center points.  

4.2.2 Latin Hypercube Sampling 

 

Latin hypercube sampling (LHS) is a sampling technique for generating a set of input 

vectors from a multidimensional distribution (Mckay, Beckman, & Conover, 2000). This 

sampling method is often used to construct computer experiments for performing 

sensitivity and uncertainty analysis on complex systems (Helton & Davis, 2003). LHS 

uses stratified sampling without replacement and can be viewed as a compromise 

procedure combining many of the desirable features of random and stratified sampling 

(Reddy, 2011a). A Latin hypercube is the generalization of the Latin square to an 

arbitrary number of dimensions, whereby each sample is the only one in each axis-

aligned hyperplane containing it 

Latin hypercube sampling selects n different values from each of k variables          in 

the following manner. The range of each variable is divided into n non overlapping 

intervals on the basis of equal probability. For each column of X, the n values are 

randomly distributed with one from each interval (0,1/n), (1/n,2/n), ..., (1-1/n,1). The n 

values thus obtained for X1 are paired in a random manner with the n values of X2. These 

n pairs are combined in a random manner with the n values of X3 to form n triplets, and so 

on, until n k-tuplets are formed. These n k-tuplets form the Latin hypercube sample. It is 

convenient to think of this sample as forming an (n k) matrix of input where the ith row 

contains specific values of each of the k input variables to be used on the ith run of the 
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computer model. Refer to (Helton & Davis, 2003) for an exhaustive technical review of 

LHS and its advantages over other experimental design methods.  

4.3 Multiple Linear Regression [MLR] 

 

Multiple linear regression (MLR) is a method used to model the linear relationship 

between a dependent variable and one or more independent variables. A MLR model is 

given by  

                                  

          (Eqn. 2) 

where,                    are the population regression coefficients that have to be 

estimated.          are the independent variables ( or regressors)  and   represents a 

random error component that cannot be explained by the model. 

When the number of independent variables, k, is two or more, the (graphical) dimension 

of the problem increases. The regression ceases to be a line in two dimensional space and 

becomes instead a hyper-surface in (k+1) dimensional space (Kleinbaum, 2008). The 

regression equation is the surface described by the mean values of Y at various 

combinations of X. For the three-dimensional case, the least–squares solution that gives 

the best fitting plane (Figure 19) is determined by minimizing the sum of squares of the 

distances between the observed values Yi and the corresponding predicted values. 
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Figure 19 : Best Fitting Plane for Three Dimensional Data 

 

The better the fit the smaller the deviations of observed from predicted values. Thus if  

 ̂    ̂     ̂        ̂         ̂     

          (Eqn. 3) 

denotes the fitted regression model , the sum of squared errors (SSE) or deviations of 

observed Y values from the corresponding values predicted  by the fitted regression 

model is given by 

    ∑(    ̂ )
 
       ∑(      ̂     ̂          ̂     )

 
 

   

 

   

 

         (Eqn. 4) 

 

The least-squares solution then consists of the values    ̂     ̂       ̂  , called the least-

squares estimates for which the sum above is a minimum. This approach is known as the 

ordinary least squares (OLS) method.  
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The fundamental equation of regression analysis, which holds for any regression 

situation, is given by  

∑(    ̅)
        ∑(  ̂     ̅)

 
   

 

   

 

   

   ∑(     ̂ )
 
   

 

   

 

          (Eqn. 5) 

where    ̅ and  ̂  denote the mean and fitted values of     .  

4.3.1 Assumptions of MLR 

 

Existence: For each specific combination of values of the independent variables, Y is a 

univariate random variable with a certain probability distribution having finite mean and 

variance. 

Independence: The Y observations are statistically independent of one another. This 

condition also applies to the X values. Correlated regressors (multi-collinearity) lead to 

unstable and biased regression coefficients. 

Linearity: The mean value of Y for each specific combination of           is a linear 

function of the regression coefficients (                 ). 

Homoscedasticity: The variance of Y is the same for any fixed combination of        . 

In general, mild departures do not have significant adverse effects. 

Normality: For any fixed combination of            , the variable Y is normally 

distributed.  
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In other words, 

       (  |     
 ) 

Or equivalently, 

       (    ) 

The assumption is that the random error component has a normal distribution with mean 

0 and variance   . The assumption of a Gaussian distribution is needed to justify the use 

of procedures of statistical inference involving the t and F distributions. 

4.3.2 Model Evaluation  

 

The most widely used measure of model accuracy or goodness-of-fit is the coefficient of 

determination or R
2
 where             

           R
2  

= SSR (explained variation of Y) / SST (total variation of Y ) 

R
2
 is a misleading statistic since it does not account for the number of degrees of freedom 

and increases as additional variables are included even if these variables have very little 

explicative power. A more desirable goodness-of-fit measure is the correct or adjusted R
2
 

computed as,
 

               (     )
    

   
 

        (Eqn. 6) 
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where n is the total number of observations, and k is the number of model parameters. A 

widely used estimate of the magnitude of the absolute error of the model is the root mean 

square error (RMSE), defined as  

       √
   

   
 

          (Eqn. 7) 

The RMSE is an absolute measure with the same units as the Y variable. A normalized 

measure is often more appropriate. Such a measure is the coefficient of variation of the 

RMSE (CVRMSE or simply CV) defined as  

     
    

 ̅
 

          (Eqn. 8) 

The F-statistic, which tests for significance of the overall regression model (goodness-of-

fit), is defined as: 

   
   

   
       

   

   
   

          (Eqn. 9) 

4.3.3 Model Parsimony using Stepwise Regression 

 

It is best to select the model that yields a reasonably high “goodness-of-fit” for the fewest 

model parameters .This is referred to as model parsimony (Reddy, 2011c). This approach 

helps reduce the multi collinearity problem due to correlated and potentially redundant 

regressors. Among the different methods that can be used to select a parsimonious model, 

stepwise regression is one of the most effective.  
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The stepwise regression procedure combines elements of both backward elimination and 

forward selection (Dielman, 2001). It begins with forward selection by examining the list 

of all possible regressors in simple regressions and choosing the one with the largest 

partial F statistic. The next most highly correlated predictor to the response is identified, 

given the current variable already in the regression equation. This variable is then 

allowed to enter the equation and the parameters re-estimated along with the goodness-

of-fit. Any parameter that is not statistically significant is removed from the equation. 

This process continues until no more variables “enter” or “leave” the regression equation. 

The stepwise technique helps to identify some important variables but doesn’t necessarily 

produce the best regression equation (Dielman, 2001). The final decision on model 

section requires the judgment of the model builder, and on mechanistic insights into the 

problem. 

4.4 Classification and Regression Trees (CART) 

 

Predictors like linear or polynomial regression are global models, where a single 

predictive formula is supposed to hold over the entire data space. When the data has 

features which interact in complicated, nonlinear ways or when the solution space has 

regions with abrupt ridges and discontinuities, assembling a single global model may not 

be satisfactory. Some of the non-parametric smoothers try to fit models locally and then 

merge them together, but such models can be hard to interpret. An alternative approach to 

nonlinear regression is to sub-divide, or partition, the space into smaller regions, where 

the interactions are more manageable. These regions can then be partitioned further into 

smaller sub-divisions in a recursive manner, as in hierarchical clustering, until finally the 
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regions can be fit with simple models (constant or linear). The global model thus has two 

parts: one is the recursive partition; the other is a simple local model for each cell of the 

partition. 

 

Recursive partitioning is a stage wise process that sequentially breaks the data up into 

smaller and smaller pieces. This is initiated by a two-step search method.  First, for each 

split (value) of a given predictor, a sum of squares of the response is computed within 

each of the two splits and added. Their sum will be equal to or less than the original sum 

of squares for the response variable. The “best” split for each predictor is defined as the 

split that reduces the sum of squares the most.  Second, with the best split of each 

predictor determined, the best split overall is determined using the same sum of squares 

criteria. By selecting the best split overall, the best predictor by the sum of squares 

criteria is implicitly chosen. The result is a recursive partitioning of the data that can be 

represented within a basis function framework. The basis functions are indicator variables 

defined by the best splits (Berk, 2008) . This two-step search procedure is easily 

generalized so that the response variable can be categorical or numeric, and in its most 

visible implementation, the recursive partitioning is called Classification and Regression 

Trees (CART). CART was developed by Leo Breiman (Breiman et al., 1984) over three 

decades ago and remains a popular data analysis tool.  

4.4.1 Regression Trees 

 

Regression Trees are a subset of CART and are used to predict a continuous response. 

Consider a regression problem with continuous response Y and inputs X1 and X2, each 
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taking values in the unit interval. The CART algorithm selects a variable and 

corresponding split-point to achieve the best fit and splits the space into two regions, and 

models the response by the mean of Y in each region. Then one or both of these regions 

are split into two more regions, and this process is continued, until some stopping rule is 

applied. For example in Figure 20 the first split is at X1 = t1. Then the region X1 ≤ t1 is 

split at X2 = t2 and the region X1 > t1 is split at X1 = t3 and so on.  The result of this 

process is a partition into the five regions R1… R5.  

 

Figure 20 : Recursive Binary Partitions (Hastie et al., 2009) 

 

 

The corresponding regression model predicts Y with a constant     in region    that is, 
 

 ̂( )    ∑   

 

   

  {(     )      } 

        (Eqn. 10) 

  
 

Where,                                           (  |       )  

 

This is called a piecewise constant model. This same model can be represented by the 

binary tree on the left panel in Figure 21 . A key advantage of the recursive binary tree is 
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its interpretability. The feature space partition is fully described by a single tree .The full 

dataset sits at the top of the tree in the root node. Observations satisfying the condition at 

each junction or branch node are assigned to the left branch, and the others to the right 

branch. The terminal nodes or leaves of the tree correspond to the regions R1…R5. The 

right panel of Figure 21 is a perspective plot of the regression surface from this model 

(Hastie et al., 2009). 

 

Figure 21 : Binary Regression Tree Diagram and Regression Surface Plot (Hastie et al., 2009) 

 

4.4.2 Regression tree growing Algorithm 

 

The sum of squared errors for a tree T is  

   ∑   ∑(     )
 

              ( )

  

                    (Eqn. 11) 

where, 

    
 

  
 ∑   
     

 

 

is the prediction of leaf c with nc data points. 
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The basic tree growing algorithm is as follows: 

Step 1: Start with a single node containing all points. Calculate    and   

Step 2: If all the points in the node have the same value for all the input variables, stop.  

Otherwise, search over all binary splits of all variables for the one which will reduce   as 

much as possible. If the largest decrease in   would be less than some threshold δ, or one 

of the resulting nodes would contain less than q points, stop. Otherwise, take that split, 

creating two new nodes. 

Step 3: In each new node, go back to step 1. 

 

The most critical aspect in the tree growing algorithm is the stopping criteria. Selecting 

the right size tree is a matter of balancing the bias-variance tradeoff. Larger trees fit the 

data closely with fewer data points in terminal nodes implying a high variance model 

while shallower trees will be affected by model bias. The most widely used strategy to 

constrain the size of a tree is called “pruning”. The pruning process removes undesirable 

branches by combining nodes that do not reduce heterogeneity sufficiently for the extra 

complexity added. The process starts at the terminal nodes and works back up the tree 

until all of the remaining nodes are satisfactory. K-fold cross validation (generally k =10) 

is used to prune extra nodes that do not help improve the generalization error.  

4.4.3 Variable Importance with CART 

 

Estimates of predictor importance for a regression tree are calculated by summing 

changes in the mean squared error (MSE) due to splits on every predictor and dividing 

the sum by the number of branch nodes. This sum is generally taken over the best splits 
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found at each branch node unless the tree is grown with surrogate splits, in which case 

the sum is taken over all splits at each branch node including surrogate splits. A detailed 

explanation of surrogate splits and variable importance is provided by (Breiman et al., 

1984). At each node, MSE is estimated as node error weighted by the node probability. 

The probability of a node is computed as the proportion of observations from the original 

data that satisfy the conditions for that node. Variable importance associated with a split 

is computed as the difference between MSE for the parent node and the total MSE for the 

two children.  

4.4.4 Instability of Individual Trees 

 

One major problem with trees is their high variance. Often a small change in the data can 

result in a very different series of splits, making interpretation somewhat precarious. The 

major reason for this instability is the hierarchical nature of the process: the effect of an 

error in the top split is propagated down to all of the splits below it. One can alleviate this 

to some degree by trying to use a more stable split criterion, but the inherent instability is 

not removed. It is the price to be paid for estimating a simple, tree-based structure from 

the data. Random Forest, an ensemble of trees, utilizes Bagging (explained below) to 

average predictions across many trees to reduce this variance. 

4.5 Random Forests [RF] – An Ensemble of Binary Trees 

 

Since CART was introduced, it has been widely used in statistical data analysis. It has 

many good properties; it handles all types of data in regression and classification 

problems and deals with missing values effectively. It is appropriate to use in high 



64 

 

dimensional and large data sets since it is highly resistant to irrelevant feature variables 

and computationally efficient. It also provides some insights into which variables are 

important and where, by virtue of providing a visual tree. But CART often has a higher 

error rate than other methods such as SVMs or Boosting and is unstable in the sense that 

if the training data is changed a little bit, it can change a lot. Ensemble methods were 

introduced to improve weak and unstable predictors such as CART. 

 

Leo Breiman attempted to improve methods such as CART and pointed out that unstable 

predictors can be stabilized by making many predictions using multiple weak learners 

that together constitute an ensemble learner (Breiman, 1998).  Bagging (Bootstrap 

Aggregating) is an ensemble method refined from that idea. It generates multiple trees by 

making bootstrap replicates of the original data and using them as new training data sets 

to construct trees. Because about 2/3 of the original data are used to construct each tree, 

the performance of each tree is relatively worse than a tree built with the original training 

data set. But by averaging predictions across those trees, the variance of the final 

ensemble gets smaller and often results in significant accuracy improvement (Breiman, 

1996) . The computational cost of Bagging, however, is high and the performance of 

Bagging is often worse than other machine methods such as SVMs and Boosting, 

especially when the dimension of the feature space is large. Additionally, since bagging 

involves all the predictors for each tree split it can be adversely affected by correlated 

predictors or a few dominant predictors. 
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The success and some drawbacks of Bagging rapidly inspired a huge amount of work on 

various different ensemble methods to improve CART. Several researchers suggested the 

random selection of a subset of features for each tree split or even randomly choosing a 

split from k best splits (Bae, 2008). (Breiman, 2001) further investigated the ideas of 

Bagging and random feature selection and developed a new algorithm for classification 

and regression; Random Forests (RF). RF works by building an ensemble of decision 

trees on bootstrapped samples wherein each tree split is chosen from a limited set of 

randomly selected features. Since it includes many trees, this ensemble is called a forest. 

 

Since RF was suggested by Breiman, it has received much attention due to its remarkable 

empirical success. Breiman showed that the accuracy of RF is as good as or sometimes 

better than that of SVMs (Breiman, 2001).  One of the reasons why RF is so effective for 

complex response functions is that it capitalizes on very flexible fitting procedures that 

can respond to highly local features of the data. Such flexibility is desirable because it 

can substantially reduce the bias in the fitted values compared to the fitted values from 

parametric regression .The flexibility in RF comes in part from individual trees that can 

find nonlinear relationships and interactions. Another source of the flexibility is large 

trees that are not precluded from having very small sample sizes in their terminal nodes. 

RF consciously address over-fitting by using OOB observations ( explained below ) to 

construct the fitted values and measures of fit and by averaging over trees. Yet another 

source of flexibility is the random sampling of predictors. This strategy allows predictors 

that work well, but only for a very few observations, the opportunity to participate. This 

also reduces competition between correlated predictors, and given a large enough number 
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of trees each gets a chance to contribute. This two part strategy – flexible fitting functions 

and averaging over OOB observations is highly effective and has the potential to break 

the bias-variance tradeoff (Berk, 2008). 

4.5.1 RF Algorithm 

 

Let       {(      )            }           (  
( )      

( ))               be 

the i.i.d. training data set. Then the Random Forest algorithm suggested by Breiman is 

constructed as follows (Bae, 2008): 

Step 1: Draw K independent bootstrap samples                from     , 

where  |  |    . Note that each    consists of n samples chosen randomly from     with 

replacement and |A| is the number of elements in set A. 

 

Step 2:  For each                , grow a tree with following rules. 

2.1 At each node, randomly select a subset of F variables from d variables, where 

F ≤ d is a tuning parameter in the Random Forests algorithm. 

2.2 At each node, find the best split (feature variable and split point) among the F 

variables chosen at 2.1. 

2.3 Grow trees to a maximum depth without pruning. That is, grow trees until 

each terminal node contains no more than 5 training data observations in 

regression and until each terminal node contains data with same class in 

classification.  



67 

 

2.4 Let   (         ) be the resulting tree predictor where x is a set of feature 

variables,    is a randomly chosen variable consisting of subsets of feature 

variables, split points at each node and     . Thus               are identical 

independent distributed random variables 

 

Step 3: Define the final Random Forests predictor   (     ) as 

  (     )      
 

 
 ∑  (         )

 

   

 

                    (Eqn. 12) 

4.5.2 Out of Bag Observations and forecasting error 

 

In random forests, there is no need for cross-validation or a separate test set to get an 

unbiased estimate of the forecasting or test error. When sampling randomly from a set of 

observations to generate a bootstrap training sample for a single tree an average of 36.8% 

of the observations are not used for building that individual tree. These observations are 

considered “out of the bag” or OOB for that tree. The accuracy of a random forest’s 

prediction can be estimated from these OOB data as 

        
 

 
 ∑ (     ̂     ̅̅ ̅̅ ̅̅ ̅̅ ) 
 

       

 

        (Eqn. 13) 

Where   ̂     ̅̅ ̅̅ ̅̅ ̅̅   denotes the average prediction for the ith observation from all trees for 

which this observation has been OOB, n is the data size. 
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4.6 Predicator importance with RF 

 

In many statistical learning applications the goal is not only to achieve high prediction 

accuracy but also to understand the underlying mechanism, or in other words explore 

how inputs are related to outputs. Finding relevant variables may be one of the ways to 

understand this. RF provides two approaches to assess predictor importance. 

4.6.1 Contribution to Model Fit 

 

One approach to measuring predictor importance is to record the decrease in fitting 

measure (ex. Gini Index) each time a given variable is used to define a split. The sum of 

these reductions for a given tree is a measure of importance for the variable when the tree 

is built. For RF one can average this measure of importance over the set of trees. 

However, reductions in the fitting criteria ignore the forecasting skill of a model since the 

fit measures are computed with the training data and not the test data (OOB Data). If one 

cannot forecast well it means that the model cannot usefully reproduce the empirical 

world. Moreover it can be difficult to translate contributions to fit statistics into practical 

terms.  

4.6.2 Contributions to Forecasting Skill  

 

(Breiman, 2001) has suggested another approach based on the reduction of predictive 

accuracy when a predictor is randomly shuffled. The shuffling makes that predictor on 

the average unrelated to the response and all other predictors. In contrast to fit statistics, 

forecasting skill has direct implications for actual decisions and can be translated into 

practical terms. The measure of variable importance is based on the difference between 
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predictive performance of the ensemble on the original data set and the performance on 

the modified data set in which an algorithm randomly permutes values of the observed 

attribute between examples (Figure 22). By measuring the performance before and after 

the described modification for each tree in the forest, the algorithm combines these 

differences into an importance estimate. In the RF framework, the most widely used 

score of importance of a given variable is the increase in the mean error of a tree (mean 

square error for regression and misclassification rate for classification) in the forest when 

the observed values of this variable are randomly permuted in the OOB samples (Genuer, 

Poggi, & Tuleau-Malot, 2010).  

 

 

Figure 22 : Randomly permuting values of the attribute vj  

 

Permutation-based MSE reduction has been adopted as the state-of-the-art approach for 

variable ranking by various authors (Grömping, 2009; Ishwaran, Kogalur, Blackstone, & 

Lauer, 2008). It is determined as follows: For tree t, the OOB mean squared error is 

calculated as the average of the squared deviations of OOB responses from their 

respective predictions: 

                  
 

       
 ∑ (     ̂   )
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                    (Eqn. 14) 

where the ˆ indicates predictions, OOBt = { i : observation i is OOB for tree t}, that is, 

summation is done over OOB observations only, and  nOOB,t is the number of OOB 

observations in tree t.  If regressor Xj does not have predictive value for the response, it 

should not make a difference if the values for Xj are randomly permuted in the OOB data 

before the predictions are generated. Thus, 

                (           )   
 

       
 ∑ (     ̂   (           ))

 

 

               

 

        (Eqn. 15) 

should not be substantially larger than OOBMSEt . For each variable Xj in each tree t, the 

difference [OOBMSEt (Xj permuted) – OOBMSEt] is calculated based on one random 

permutation of the variable’s out-of-bag data for the tree. This difference is 0 for a 

variable that happens to be not involved in any split of tree t. The MSE reduction 

according to regressor Xj for the complete forest is obtained as the average over all ntree 

trees of these differences. Variable Importance of Xj is then equal to:  

 

   (   )   
 

     
 ∑ (

     

   

        (           )           )  

        (Eqn. 16) 

 

One can standardize the above equation by computing its standard deviation over the 

ntree trees. The result can then be interpreted as a z-score so that importance measures 

are now all on the same scale (Berk, 2008).  It is sometimes possible for forecasting 

accuracy to improve slightly when a variable is shuffled because of the randomness 
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introduced. A negative measure of forecasting importance follows ,which can be treated 

as no decline in accuracy or can simply be ignored (Berk, 2008). 

4.7 RF Tuning parameters 

 

Despite the complexity of the RF algorithm and the large number of potential tuning 

parameters, most of the usual defaults work well in practice. The tuning parameters most 

likely to require some manipulation are the following: 

4.7.1 Node size 

 

Unlike in CART, the number of observations in the terminal nodes of each tree in RF can 

be very small. Software packages like Matlab and R use the default of 5 for regression 

and 1 for classification .The goal is to grow trees with as little bias as possible. The high 

variance of individual trees that would result can be tolerated because of the averaging 

over a large number of such trees.  

4.7.2 Number of Trees 

 

The number of trees should be chosen based on the cost of computation. In practice 500 

trees are often a good compromise and appear commonly in research. One benefit of a 

large number of trees is that each predictor will have an ample opportunity to contribute, 

even if very few are drawn for each split. 
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4.7.3 Number of Predictors Sampled 

 

Most statistical software applications (R, Matlab) by default take the square root of the 

total number of variables for classification, and one third the total number for regression. 

Breiman suggested starting with the defaults and then trying a few more or less. In 

practice large differences in performance are rarely found and selecting a few predictors 

each time seem to be adequate provided the number of trees is in the order of 500 or so.  
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5:  DESCRIPTION OF ILLUSTRATED CASE STUDY BUILDING  

 

5.1 Prototype Building Selected 

 

The US Dept. of Energy’s (DOE) Building Technologies Program, working with DOE's 

National Labs, developed models for 16 commercial building types in 16 locations 

representing all U.S. climate zones. These 16 building types cover about 70% of the 

commercial buildings in the United States (NREL, PNNL, & US DoE, 2011). From this 

list, the medium office prototype was selected as the baseline simulation model for this 

study. By virtue of its size the medium office was expected to be affected by both 

envelope and internal loads and hence would allow a wider mix of design variables to be 

evaluated as compared to the smaller or larger commercial building types which tend to 

be either envelope or internal load dominated . 

 

The baseline medium office prototype building is a theoretical building modeled with 

characteristics typical of buildings of this size and use. The building is a 53,600 ft
2
 (4,980 

m
2
) three-story building. The building is rectangular shaped, 164 ft. (50 m) by 109 ft. (33 

m) with an aspect ratio of 1.5. The HVAC system consists of Packaged Units with a gas 

furnace for primary heating.  Delivery is via Variable Air Volume terminals which also 

have electric reheat coils. Building components regulated by ASHRAE Standard 90.1- 

2004 are assumed to meet the minimum prescriptive requirements of that standard. 

Components not regulated by Standard 90.1 are assumed to be designed as is standard 

practice for a medium office building. Standard practice is determined from various 

sources including a review of the Commercial Buildings Energy Consumption Survey 
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(CBECS) and the input of various design and construction industry professionals 

(Thornton, Wang, Lane, Rosenberg, & Liu, 2009). 

 

 

 

Figure 23 : Axonometric View of the Medium Office Prototype Building 

 

See Appendix A for a score card that summarizes the building descriptions, system 

characteristics, thermal zones, internal loads, schedules, and other key modeling input 

information. This can be downloaded as a spreadsheet from DOE’s Energy Efficiency 

and Renewable Energy news site -

http://www.energycodes.gov/development/commercial/90.1_models .  For an exhaustive 

review of the medium office prototype building features and energy modeling guidelines 

refer to a technical report published by PNNL (Thornton et al., 2009) 

5.2 Simulation Parameters 

 

5.2.1 Weather File 

 

For this study TMY2 weather data for Oklahoma City, which is categorized as Climate 

Zone 3A (warm-humid), was used to run simulations on the medium office prototype 

http://www.energycodes.gov/development/commercial/90.1_models


75 

 

using eQuest version 3.65. This location was chosen because buildings situated here 

require both heating and cooling over the year. 

5.2.2 Building Simulation Inputs – Independent Variables  

 

Careful selection of input parameters is important for obtaining meaningful results. (Lam 

& Hui, 1996) performed sensitivity analysis on 60 input parameters relevant for the 

energy performance of a 40 story office building in Hong Kong. They categorized 

parameters with significant influence on energy use and demand into three major groups: 

Building Load Parameters - occupant density, lighting load and equipment load are the 

most important. Other significant parameters include design variables of the window 

system and building envelope. 

HVAC System Parameters- summertime thermostat set point, supply fan efficiency and 

fan static pressure  

HVAC Plant Parameters- coefficient of performance (COP) of chillers, chilled water 

supply temperature, chilled water design temperature difference and chilled water pump 

impeller efficiency. 

 

(Reddy, Maor, & Panjapornpon, 2007) provide a list of heuristically identified influential 

parameters that have simple and clear correspondence to specific inputs to the DOE-2 

simulation program.  Based on the above guidelines a list of 15 independent design 

variables (Table 1) representing all three major categories (building - system - plant) of 

interest were chosen for investigation. All the rest of the energy modeling parameters 
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were set to the DoE mid-size commercial prototype description or kept as eQuest defaults 

where necessary. See appendix B for the complete DoE2 definitions of the selected 

variables. All the selected variables take numeric values. 

 

 

Table 1 : List of Independent Variables 

 

5.2.3 Simulation Outputs (Response) 

 

The simulation outputs used in this study are annual Energy Use Index (EUI) with units 

of kBtu/sqft/yr. and annual peak electric demand (PED) in kW/yr. Annual electric 

consumption figures generated by eQuest in MWh (1000 X kWh) and annual gas 

consumption figures in MBTUs (1,000,000 x Btu) were converted to like units and added 

to generate the total annual energy use. This figure was divided by the total area of the 

building (53,600 sqft.) to get the EUI in kBtu/sqft/yr. 

Category Parameters Abbreviations Units

Internal Load Variables Lighting Power Density LPD W/ft2

Eqip Power Density EPD W/ft2

Envelope Load Variables Wall Construction R-Value Wall-R h-ft2-°F/Btu

Roof R-Value Roof-R h-ft2-°F/Btu

Glass U-Value Win-U Btu/h-ft2-°F

Shading Coefficient SC Fraction

Infiltration_AC Infil-AC AC-h

Window Height Win-Ht ft

System Variables Supply Fan Pressure Fan-Pres in. of WG

Min Flow Ratio Min-FlowR Fraction

Min Outdoor Air Min-OA Fraction

Min Cooling Supply Temp Min-CoolT °F

Max Heating Supply Temp Max-HeatT °F

Plant Variables Furnace Eff Furn-Eff Fraction

Cooling EIR Cool-EIR Fraction
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Annual PED for the whole building was reported directly by eQuest as the sum of the 12 

monthly coincident peak demand values. Coincident peak demand for each energy end-

use is captured at the time the whole building experiences its peak demand. In this case 

the end use coincident demands were combined to represent a single building total. 

Electric demand is simulated at an hourly time step by eQuest. 

5.3 Applications to Selected Design Feature Sets  

 

Two different feature (design variable) sets were selected to test and contrast the different 

analytical techniques discussed in Chapter 4. The small feature set is a group of 5 

variables selected from the list of 15 simulation inputs presented earlier. The large feature 

set consists of all 15 variables. 

The purpose of picking the small feature set was to test whether traditional techniques 

like OLS Linear Regression would provide superior results over an inductive statistical 

learning technique like CART, when dealing with fewer variables. Conversely, a 

nonlinear technique like RF was expected to be more effective for modeling the higher 

dimensional feature set that is much sparser and hence technically not a good candidate 

for fitting a single global linear regression model. 

While most design problems tend to involve at least a dozen or more variables, the 

number of significant variables might subsequently be reduced to no more than 6-7. This 

is due to the limitation of both conventional visualization techniques as well as human 

perception limits. Accurate identification of important variables, from a prediction 

perspective, allows the fitting of simpler models and also simplifies 
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visualization/reporting requirements. For the small feature set this was not critical; 

however , for the large feature set variable ranking techniques were explored since the 

chances of redundant variables being included was higher. 

For the small feature set with 5 variables a carpet plot matrix of    [( 
 
)     ] subplots 

can depict all possible variable pairs. However such traditional 2D or even 3D 

visualization techniques such as response surface plots are inadequate for joint 

visualization of larger variable sets.  The large feature set required the evaluation of high 

dimensional data visualization techniques from the domain of visual data mining .One 

such technique has been incorporated into a GUI presented in section 6.2.4. 

Lastly, with the small feature set an exhaustive combination of variables could be 

simulated for analysis. However, with the larger feature set this was not feasible from a 

simulation run time perspective and appropriate experimental design techniques were 

explored to sample fewer but representative runs from the solution space.   

5.3.1 Small Feature Set – 5 Design Variables 

 

From the list of 15 simulation inputs introduced earlier, a subset of five variables having 

5 discreet numeric levels each (Table 2) were selected as independent inputs to the 

baseline energy model. An exhaustive combination of (        )
   

 runs was 

generated for simulation. The simulated responses are EUI in kBtu/sqft/yr. and PED in 

kW/yr. Approximately 20% of the data was randomly set aside for model testing.  Two 

contrasting modeling techniques, OLS Regression and Regression Tree (CART) were 
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employed on the data to determine important variables and create models for real time 

prediction without having to re-run the simulation engine.  

A variety of OLS regression models were successively built, involving linear, quadratic 

and cross terms. Stepwise regression was then employed to retain important variables and 

identify a parsimonious model. Alternatively, individual regression tree models (for 

different terminal node sizes) were trained on the simulated data set .The visual tree 

outputs generated were used to assess variable importance, study variable interactions 

and make predictions.  

 

Table 2: Small Feature Set (5 Levels Each) 

 

With the intent of reducing simulation run time, Central Composite Design was 

employed to generate  (            )         variable combinations. However, 

only OLS Regression models were built on this reduced dataset since the runs were 

deemed too few to effectively train a statistical learning model like CART. These OLS 

models have been compared with the ones generated using the exhaustive variable 

combination and the results are discussed later in this is study. 

 

 

1 2 3 4 5

LPD 1.5 1.325 1.15 0.975 0.8

SC 0.7 0.575 0.45 0.325 0.2

Ewall R 27 22.2 17.4 12.6 7.8

Win U 1 0.815 0.63 0.445 0.26

Win H 7.575 6.06 4.545 3.03 1.515Fa
ct

o
rs

Regressors
Levels
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5.3.2 Large Feature Set – 15 Design Variables 

 

All 15 variables were utilized for this analysis. A minimum of three levels for each 

variable (Table 3) were retained to capture any quadratic behavior. However, even with 

three levels an exhaustive combination of the 15 variables would lead to                 

combinations; an impractical number of simulations. An experimental design technique 

was essential to select fewer runs while ensuring stratified (representative) sampling of 

the variable space. Latin Hypercube Sampling (LHS) was used to generate a relatively 

sparse 15000 variable combinations for simulation. See Section 4.2.2 for an overview of 

LHS. The simulated responses are EUI in kBtu/sqft/yr. and PED in kW/yr. 

 

Table 3 : Large Feature Set (15 Variables) 

 

A RF ensemble of 500 regression trees was then utilized to generate variable rankings for 

both responses. It should be noted that the choice of range for each variable is influential 

for predictor ranking using RF. For example, if a designer overly restricts the range of 

Low Mid High

LPD 0.80 1.40 2.00

EPD 0.80 1.00 1.20

Wall-R 7.80 17.40 27.00

Roof-R 15.00 22.50 30.00

Win-U 0.25 0.74 1.22

SC 0.16 0.55 0.93

Infil-AC 0.20 0.60 1.00

Win-Ht 1.52 4.55 7.58

Fan-Pres 1.50 2.75 4.00

Min-FlowR 0.30 0.65 1.00

Min-OA 0.10 0.30 0.50

Min-CoolT 50.0 57.5 65.0

Max-HeatT 85.0 102.5 120.0

Furn-Eff 1.25 1.40 1.54

Cool-EIR 0.359 0.405 0.450

Levels
Regressors

Fa
ct

o
rs
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variability of an otherwise influential parameter, that variable can turn out to be 

insignificant. Once the best predictive variables were ordered according to importance, 

several OLS regression models were built on the top ranked 5-8 variables. Two best OLS 

models (one for each response) were selected based on         and       

The variable ranking and model building process discussed above has been automated 

using a software application specially developed for the purpose of this study. The GUI 

of this software application has been designed to allow users to vary inputs to the selected 

OLS models for real time predictions, while simultaneously setting constraints on the 

responses in order to perform multicriterion satisficing what-if scenarios. This is 

described in detail in the following chapter. 
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6:  RESULTS OBTAINED WITH THE CASE STUDY BUILDING  

  

6.1 Small Design Feature Set 

The small feature set is a matrix of dimension 3125 x 5 (Simulation Runs x Predictors). 

See section 5.3.1 for an overview of the analysis performed. 625 rows of data were 

randomly set aside for model testing (Test Data) while the remaining 2500 (Training 

Data) were utilized to build the OLS and CART models. A separate dataset of 43 

simulation runs, derived using CCD, was used to for building OLS models only. The 

same Test Data was used to validate these models as well. 

6.1.1 Simulated Building Energy Response 

The simulated responses are EUI in kBtu/sqft/yr. and PED in kW/yr. Figure 24 shows the 

frequency distribution of the simulated EUI across all 3125 runs. The EUI falls in the 

expected range of 40-60 for this type of building. The Y –Axis represents the number of 

runs for each EUI bin. Figure 25 shows the corresponding distribution for PED. There is 

a strong linear correlation between the two responses as can be observed in Figure 26. 

 

 

Figure 24 : Frequency Histogram of Simulated EUI 
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Figure 25 : Frequency Histogram of Simulated PED 

 

 

Table 4 : Simulated Response Descriptive Statistics (5 Vars) 

 

 

Figure 26 : Simulated Response Scatter Plot 
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6.1.2 Linear Regression – Exhaustive Variable Combinations 

 

Several OLS regression models were built for both EUI and PED prediction using linear, 

interaction, and quadratic terms. The models were validated using the Test Data. The 

results are presented in Table 5 and Table 6 for EUI and PED respectively. Stepwise 

regression was utilized for model parsimony. However, stepwise regression was not able 

to conclusively identify important predictors and in all cases retained all variables from 

the full model.  In a simplified strategy the variables were ranked by regressing them 

individually (Models 1-5). WinH appeared to be the dominant predictor for EUI followed 

by SC and WinU. For PED only WinH and WinU were important. Based on this, models 

involving the top 2 and 3 variables (Models 6-9) were built.  For EUI prediction, Model 

9, involving WinH, SC and WinU was found to have good overall fit (R
2
 ~ 92.5%) as 

well as predictive ability (test CV of 3.29%) .  

 

Table 5 : Regression Model Results for EUI Prediction 

 

Model Mdl Name Adj R2 RMSE CV # of Model Terms Predictors

1 WallR 0.40% 5.45 11.87% 2 1

2 LPD 6.66% 5.27 11.49% 2 1

3 WinU 10.40% 5.17 11.26% 2 1

4 SC 12.97% 5.09 11.10% 2 1

5 WinH 62.91% 3.32 7.25% 2 1 RMSE CV

6 2Var-Full 79.47% 2.47 5.39% 6 2 2.40 5.20%

7 2Var-Stepwise 79.48% 2.47 5.39% 5 2 2.40 5.19%

8 3Var-Full 92.46% 1.50 3.27% 10 3 1.52 3.29%

9 3Var-Stepwise 92.46% 1.50 3.27% 8 3 1.52 3.29%

10 AllVar-Linear 93.60% 1.38 3.01% 6 5 1.38 2.98%

11 Linear-Stepwise 93.60% 1.38 3.01% 6 5 1.38 2.98%

12 Interactions 99.46% 0.40 0.87% 16 5 0.42 0.90%

13 Interac-Stepwise 99.46% 0.40 0.87% 14 5 0.42 0.90%

14 PureQuadratic 93.76% 1.36 2.97% 11 5 1.38 2.98%

15 Full 99.60% 0.34 0.75% 21 5 0.36 0.77%

16 Full-Stepwise 99.60% 0.34 0.75% 20 5 0.36 0.77%

Test Data 

Validation
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For PED prediction, the 3 variable model had excellent fit (R
2
 ~ 97%) and a test CV of 

only 2.3%. Models built using all 5 variables (Models 10-16) were found to be 

progressively better with the addition of higher order terms and the full variable models 

had an R
2
 > 99% and CV < 1%. 

 

Table 6 : Regression Model Results for PED Prediction 

 

6.1.3 Linear Regression – Central Composite Design 

 

A similar approach as described in section (7.1.2) was adopted for the CCD dataset and 

multiple models were developed.  The models were validated using the same Test Data. 

The results are presented in Table 7 and Table 8 for EUI and PED respectively. Here too 

models involving the top 3 predictors displayed acceptable fit and predictive abilities. 

Similar to the results found with the exhaustive dataset, models built on all 5 variables 

were found to be progressively more accurate with the addition of higher order terms and 

the full models had an R
2
 > 99% and CV < 2%. 

 

Model Mdl Name Adj R2 RMSE CV # of Model Terms Predictors

1 WallR 1.03% 612.28 13.21% 2 1

2 LPD 1.32% 611.38 13.19% 2 1

3 SC 4.01% 603.00 13.01% 2 1

4 WinU 22.97% 540.16 11.66% 2 1

5 WinH 63.73% 370.68 8.00% 2 1 RMSE CV

6 2Var-Full 90.91% 185.52 4.00% 6 2 198.98 4.26%

7 2Var-Stepwise 90.92% 185.48 4.00% 5 2 198.82 4.26%

8 3Var-Full 97.03% 106.14 2.29% 10 3 108.29 2.32%

9 3Var-Stepwise 97.03% 106.12 2.29% 9 3 108.17 2.32%

10 AllVar-Linear 93.50% 156.90 3.39% 6 5 152.89 3.28%

11 Linear-Stepwise 93.50% 156.90 3.39% 6 5 152.89 3.28%

12 Interactions 99.27% 52.64 1.14% 16 5 54.35 1.16%

13 Interac-Stepwise 99.27% 52.62 1.14% 14 5 54.19 1.16%

14 PureQuadratic 93.86% 152.46 3.29% 11 5 151.47 3.25%

15 Full 99.60% 38.80 0.84% 21 5 40.77 0.87%

16 Full-Stepwise 99.60% 38.78 0.84% 18 5 40.67 0.87%

Validation

Test Data 
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Table 7 : Regression Model Results for EUI Prediction (CCD) 

 

 

Table 8 : Regression Model Results for PED Prediction (CCD) 

 

6.1.4 Regression Tree Models – All Predictors 

 

Along the lines of model parsimony for linear regression, a tradeoff between predictive 

accuracy and visual interpretability is also necessary to select a regression tree model. 

The depth of the tree is a function of the minimum leaf size, i.e. the minimum number of 

data observations allowed for each terminal node. Figure 27 depicts the effect of 

Model Mdl Name Adj R2 RMSE CV # of Model Terms Predictors

1 WallR -2.07% 3.34 7.29% 2 1

2 LPD 4.16% 3.24 7.07% 2 1

3 WinU 6.73% 3.20 6.97% 2 1

4 SC 14.27% 3.07 6.68% 2 1

5 WinH 65.46% 1.95 4.24% 2 1 RMSE CV

6 2Var-Full 81.62% 1.42 3.10% 6 2 2.41 5.22%

7 2Var-Stepwise 81.73% 1.42 3.09% 3 2 2.66 5.75%

8 3Var-Full 91.30% 0.98 2.13% 10 3 1.56 3.37%

9 3Var-Stepwise 91.97% 0.94 2.05% 5 3 1.68 3.64%

10 AllVar-Linear 98.12% 0.45 0.99% 6 5 1.39 3.01%

11 Linear-Stepwise 98.12% 0.45 0.99% 6 5 1.39 3.01%

12 Interactions 99.88% 0.12 0.25% 16 5 0.57 1.23%

13 Interac-Stepwise 99.89% 0.11 0.24% 9 5 0.57 1.24%

14 PureQuadratic 97.91% 0.48 1.04% 11 5 1.40 3.02%

15 Full 99.97% 0.06 0.13% 21 5 0.55 1.18%

16 Full-Stepwise 99.97% 0.06 0.12% 13 5 0.53 1.15%

Test Data 

Validation

Model Mdl Name Adj R2 RMSE CV # of Model Terms Predictors

1 WallR -1.51% 364.49 7.88% 2 1

2 LPD -1.34% 364.18 7.87% 2 1

3 SC 2.20% 357.75 7.73% 2 1

4 WinU 21.71% 320.10 6.92% 2 1

5 WinH 67.56% 206.05 4.45% 2 1 RMSE CV

6 2Var-Full 69.96% 198.28 4.29% 6 2 293.26 6.29%

7 2Var-Stepwise 71.50% 193.11 4.18% 3 2 270.20 5.79%

8 3Var-Full 97.36% 58.81 1.27% 10 3 155.32 3.33%

9 3Var-Stepwise 97.32% 59.18 1.28% 6 3 189.67 4.07%

10 AllVar-Linear 98.19% 48.65 1.05% 6 5 153.75 3.30%

11 Linear-Stepwise 98.19% 48.65 1.05% 6 5 153.75 3.30%

12 Interactions 99.62% 22.17 0.48% 16 5 67.58 1.45%

13 Interac-Stepwise 99.65% 21.43 0.46% 9 5 70.11 1.50%

14 PureQuadratic 98.18% 48.75 1.05% 11 5 151.53 3.25%

15 Full 99.94% 8.95 0.19% 21 5 57.80 1.24%

16 Full-Stepwise 99.94% 8.62 0.19% 15 5 57.52 1.23%

Test Data 

Validation
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minimum leaf size on the number of Tree splits (measure of complexity) and Test Data 

CV% (predictive accuracy) for both EUI and PED prediction. A smaller leaf size implies 

finer partitioning of the data and hence a better fitting model (more accuracy), but this is 

achieved only by increasing the number of splits in the tree (more complexity). For 

example increasing the min leaf size from 10 to 100 (X-Axis) reduced the tree splits by 

approximately a factor of 10; however, the prediction CV% more than doubled. 

 

Figure 27 : Tradeoff between Complexity and Accuracy of Regression Trees 
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Based on the results shown in Figure 27 a minimum leaf size of 100 was deemed 

appropriate for the given dataset in order to generate trees for both responses. Figure 28 

depicts the EUI prediction tree which has 14 splits (levels), and is thus visually simple. 

The tree was tested using the separate Test Data and a CV of 4.69% was achieved. A 

lower CV could be attained by decreasing the min leaf criteria; however as pointed out 

earlier the tree will grow deeper and be difficult to interpret. Figure 29 depicts the PED 

prediction tree which has 15 splits (levels) and a test CV of 4.35%. It should be noted that 

both trees were pruned to be within 1 standard error of the minimum cost tree. This is 

standard practice used to reduce the generalization error through cross validation.  Refer 

to section 4.4.2 for an overview of pruning. A choice of tree size will depend on the 

intended use of the model. If only prediction is required then a deep tree may be 

acceptable, however, if the tree is meant to be a visual aid as well, then a compromise has 

to be reached between predictive accuracy and visual interpretability.   

A visual inspection of the trees reveals an inherent variable ranking derived from the 

order in which the variables appear in the tree.  In both cases WinH is clearly the 

dominant predictor. Although the training data contained all 5 predictors, not all variables 

were used for building the trees. For example, in the EUI tree (Figure 28) WallR is not 

used at all while in the PED tree (Figure 29) LPD has been eliminated. Thus, the tree 

model is helpful as a visual aid for identifying important predictors. 
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Figure 28 : EUI Prediction Tree_5 Variables (Test CV 4.69%) 
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Figure 29 : PED Prediction Tree_5 Variables (Test CV 4.35%) 
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6.1.5 Regression Tree Models – Best Predictors 

As discussed in the previous section, variable importance can be visually determined 

from a tree; however, it is not always a reliable technique since multiple variables may 

occupy the same level on different nodes. Alternatively CART provides a more rigorous 

method for computing variable importance based on a reduction of mean squared error 

due to splits on each variable. See section 4.4.3 for an explanation of the ranking process.  

 

Figure 30 : CART Predictor Ranking for EUI 

 

Figure 31 : CART Predictor Ranking for PED 
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Figure 30 and Figure 31 show the relative predictor rankings (scaled to the maximum)  

for EUI and PED respectively. WinH is clearly the most important for both responses. In 

the case of PED the only other variable that appears to have any influence is WinU. The 

other three have little to no impact. For EUI, both SC and WinU have similar standing, 

although compared to WinH they are relatively much less important. The predictor 

ranking provided an opportunity for further simplification of the tree model by retaining 

only the top 2-3 variables, provided a Test CV < 5% could be achieved. 

Figure 32 is the EUI prediction tree built only on the three variables WinH, WinU and 

SC. Compared to the tree (Figure 28) trained on all 5 variables this tree has the same 

number of levels and slightly poorer Test CV (4.78%). This suggests that there is not 

much additional benefit to using this tree model. For PED the 3 variable tree model 

(Figure 33) has one less level than the 5-variable model (Figure 29). The test CV is again 

slightly poorer at 4.41% compared to 4.35% for the 5-variable tree. A second PED model 

trained only on WinH and WinU data is shown in Figure 34. This tree has four levels less 

than the 5-variable model and the Test CV is ~ 5%. This one might be a reasonable 

substitute for the 5-varaible model due to its simplicity and acceptable predictive ability.  

By tweaking the min leaf size, applying pruning criteria and using variable importance 

ranking, the decision maker can come up with several tree alternatives and select the one 

that best meets the dual criteria of predictive ability and visual interpretability. 
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Figure 32 : EUI Prediction Tree_3 Variables (Test CV 4.78%) 
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Figure 33 : PED Prediction Tree_3 Variables (Test CV 4.41%) 
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Figure 34 : PED Prediction Tree_2 Variables (Test CV 5%) 
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6.1.6 Final Model Selection 

 

The results obtained from analyzing the small feature set suggest that if high prediction 

accuracy and explicit analytical models are required, then OLS regression is the better 

choice. However, if visual interpretability is more desirable and a reasonable reduction in 

predictive ability can be tolerated (as is often the case with early stage or schematic 

design synthesis) then CART may be a better alternative. CART is flexible enough to 

handle categorical independent variables, categorical dependent variables (classification 

problems) and is also well suited to handle a non-continuous solution space.  

CCD based run generation was found to be very promising due to the excellent predictive 

ability of the OLS models built on the CCD dataset, which contains less < 2% of the 

variable combinations in the exhaustive dataset. This translates into a very significant 

reduction in simulation run time. Hence for OLS regression modeling, CCD or other such 

experimental design techniques should be explored wherever possible instead of 

exhaustive enumeration. However, CART being a statistical induction technique which 

fits local models to variations in the data, the CCD dataset was too sparse to train a useful 

decision tree and the entire exhaustive data was used instead.  

While it was feasible to simulate the exhaustive combinations of the small feature set, 

such an approach is impractical for larger data sets where combinations might run into 

tens of thousands or even millions. Experimental design techniques such as Latin 

Hypercube Sampling would be required to generate a feasible number of representative 

simulation runs.  
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6.2 Large Design Feature Set 

The large feature data set is a matrix of dimension 15000 x 15 (Simulation Runs x 

Predictors). The 15000 rows were obtained using Latin Hypercube Sampling from a 

sample space of over 3
15 

possible combinations. See section 5.3.2 for an overview of the 

analysis performed on the large feature set.  

6.2.1 Simulated Building Energy Responses  

The simulated responses are EUI in kBtu/sqft/yr. and PED in kW/yr. Figure 35 shows the 

frequency distribution of the simulated EUI across all 15000 runs.  The Y –Axis 

represents the number of runs for each EUI bin. The distribution has a positive skew with 

a mean of 54 kBtu/sqft/yr.  

 

Figure 35 : Frequency Histogram of Simulated EUI 

 

Table 9: Simulated Response Descriptive Statistics 
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Figure 36 shows the frequency distribution of the simulated PED across all 15000 runs.  

The Y –Axis represents the number of runs for each PED bin. The distribution has a 

positive skew with a mean of 5739 kW/yr. Figure 37 clearly depicts a strong linear 

correlation between the two responses for electric demand and consumption. 

 

Figure 36 : Frequency Histogram of Simulated PED 

 

Figure 37 : Simulated Response Scatter Plot (15 Vars) 
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6.2.2 Feature Selection results using Random Forest  

 

A random forest ensemble of 500 regression trees was built on the large feature dataset 

and a CV of 6.52% was found for EUI prediction. Despite the fact that the RF ensemble 

is also a very capable predictive model, the purpose of using RF at this stage was solely 

to take advantage of its robust feature selection ability. See section 4.6.2 for a detailed 

overview of the feature selection process using RF. The strength of this technique lies in 

the fact that it ranks variables based on their predictive ability using OOB (Out-of-Bag) 

test data. An overall measure of predictor importance is standardized for each variable 

across all the trees in the ensemble and is provided as a Z-score. A Z-score > 3 may be 

used to select the most important predictors; however, a more appropriate representation 

would be to scale the variable importance measures relative to the maximum observed 

value as shown in Figure 38. In this case the Var Imp measure of Min-FlowR is unity, so 

the second most influential variable Min-CoolT has a relative measure of approximately 

0.8 and so on. 

 

Figure 38 : Relative Measure of Variable Importance (EUI) 
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Another RF ensemble of 500 regression trees was trained for PED prediction, and a test 

CV of 6.13% was found.  Figure 39 depicts relative importance of the PED predictors by 

scaling the individual Z-scores to the value for Min-FlowR. 

 

Figure 39 : Relative Measure of Variable Importance (PED) 
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6.2.3 OLS Predictive Models  

 

Once the important predictors were identified , pairs of OLS models ( one for each 

response)  were fit to successively larger subsets (starting with 5) of the top ranked 

variables for EUI (Figure 38) and PED prediction (Figure 39), till established model 

performance criteria were achieved (CV < 10 % and R
2
 > 90%).  

Table 10 and Table 11 present pertinent statistics for the OLS models built on the top 

ranked variables related to EUI and PED respectively. Only the models involving the 

Top-8 variables were found to meet the pre-defined criteria and were selected for the next 

phase. Incidentally, the Top 8 predictors for both responses are the same. Table 12 lists 

the coefficients and terms of the two selected OLS regression models. 

 

 

Table 10 : OLS Models fit to Top Ranked Variables related EUI  

 

 

Table 11 : OLS Models fit to Top Ranked Variables related to PED  

 

Predictors RSquared % CV % RSquared % CV %

Top_5 79.8 14.1 80.0 14.8

Top_6 83.5 12.8 86.7 12.1

Top_7 86.5 11.5 88.0 11.5

Top_8 91.4 9.2 94.6 7.7

EUI Model PED Model

Predictors RSquared % CV % RSquared % CV %

Top_5 71.7 16.7 79.3 15.1

Top_6 79.5 14.2 85.6 12.6

Top_7 88.4 10.7 93.3 8.6

Top_8 91.4 9.2 94.6 7.7

EUI Model PED Model
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Figure 40 : Residual Plots of EUI prediction models built on Top (5-8) Variables 

The standardized residual plots in Figure 40 and Figure 41 suggest some degree of 

hetroskedasticity at higher values of EUI and PED. However it may be reasoned that 

prediction accuracy at such high values is not critical. It is also clear that there is no 

noticeable improvement in residual behavior with the increase in variables from 5 to 8. 

 

Figure 41 : Residual Plots of PED prediction models built on Top (5-8) Variables 
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Table 12 : OLS Model Coefficients 

 

Terms Coefficients Terms Coefficients

Intercept 471.87 (Intercept) 48148.73

Min-FlowR -128.24 Min-FlowR -12101.34

Min-CoolT -13.70 Min-CoolT -1406.84

Win-Ht -8.67 Win-Ht -935.71

Min-OA -61.91 Min-OA -7270.63

SC -92.83 SC -9110.29

Infil-AC 16.21 Infil-AC 1863.84

LPD 0.25 LPD -464.45

Win-U 3.60 Win-U 393.77

Min-FlowR x Min-CoolT 1.61 Min-FlowR x Min-CoolT 149.75

Min-FlowR x Win-Ht 2.70 Min-FlowR x Win-Ht 302.07

Min-FlowR x SC 13.13 Min-FlowR x Min-OA 2875.15

Min-FlowR x Infil-AC 13.59 Min-FlowR x SC 1572.91

Min-FlowR x LPD -0.72 Min-FlowR x Infil-AC 1365.61

Min-FlowR x Win-U 8.56 Min-FlowR x LPD -80.91

Min-CoolT x Win-Ht 0.11 Min-FlowR x Win-U 722.68

Min-CoolT x Min-OA 1.02 Min-CoolT x Win-Ht 11.64

Min-CoolT x SC 1.27 Min-CoolT x Min-OA 112.81

Min-CoolT x Infil-AC -0.31 Min-CoolT x SC 117.53

Min-CoolT x LPD 0.09 Min-CoolT x Infil-AC -24.87

Min-CoolT x Win-U -0.07 Min-CoolT x LPD 11.54

Win-Ht x Min-OA 2.79 Win-Ht x Min-OA 219.63

Win-Ht x SC 3.00 Win-Ht x SC 328.72

Win-Ht x Infil-AC -0.15 Win-Ht x Infil-AC -22.35

Win-Ht x LPD -0.09 Win-Ht x Win-U 200.74

Win-Ht x Win-U 1.62 Min-OA x SC 1784.60

Min-OA x SC 17.50 Min-OA x Infil-AC 1024.31

Min-OA x Infil-AC 6.69 Min-OA x LPD 134.88

Min-OA x Win-U 5.16 Min-OA x Win-U 128.21

SC x Infil-AC -3.65 SC x Infil-AC -149.10

SC x Win-U -2.96 SC x Win-U -207.69

Infil-AC x LPD -0.54 Infil-AC x Win-U -258.56

Infil-AC x Win-U -0.86 LPD x Win-U 50.25

Min-FlowR x Min-FlowR 27.16 Min-FlowR x Min-FlowR 2274.78

Min-CoolT x Min-CoolT 0.11 Min-CoolT x Min-CoolT 10.95

SC x SC 6.42 Min-OA x Min-OA -2274.27

Infil-AC x Infil-AC 3.50 SC x SC 629.97

LPD x LPD 0.57 Infil-AC x Infil-AC 177.38

Win-U x Win-U -2.54 LPD x LPD 77.06

Win-U x Win-U -351.63

PED ModelEUI Model
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6.2.4 Selecting Final Solution(s) using the DSMV Interface 

 

Once the regression models have been selected the user can make real time predictions 

using the Decision Support Model Viewer (DSMV) Interface version 1.3. The DSMV has 

been developed to facilitate the interactive visualization stage of the VADSM framework 

proposed by this research. It has been programmed in VBA (Visual Basic for 

Applications) using Microsoft® Excel as the host application. The DSMV is independent 

of any particular energy simulation program and only requires the following inputs in 

.xlsx or .csv format 

 Independent Variable Names , Units and Levels ( Only Numeric Variables ) 

 Dependent Variables Names and Units 

 Table of Simulation Inputs [X]( Rows represent runs and Columns represent 

variables) 

 Simulated Response(s) for each simulation input row in [X] 

The DSMV has been designed to gradually present more complex data as the user 

proceeds though a wizard consisting of several user forms. The following section 

presents DSMV screen captures and provides descriptions of associated 

information/options using an illustrative example. 
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Figure 42 : DSMV Welcome Screen 

  

Upon loading the DSMV wizard a user is presented with the welcome screen that offers 

a single button to load simulation results and load the Simulation Inputs screen. 
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Figure 43 : DSMV Simulation Inputs  

 

The Simulation Inputs screen provides the following information and options. 

1. Table of Input Variable names, abbreviations, levels and units. In this case the 

display shows the three levels for each design variable.  

2. DOE2 definitions of each variable (can be replaced by user descriptions or notes). 

3. Scroll Bar to view additional variables. 

4. Load the next screen. 

1

2

3

4
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Figure 44 : DSMV Simulated Response Distribution  

 

The Simulated Response screen provides the following information and options  

1. A frequency distribution of the simulated response. In this graph Peak Electric 

Demand in kW is depicted. The X-Axis represents kW bins and the Y-axis shows 

the number of simulated runs. This information will provide the user with 

guidelines for setting practical constraints on the response. 

2. This dropdown allows the user to view additional response variable(s) and their 

distribution. 

3. Load the next screen. 

 

 

1 2

3
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Figure 45 : DSMV Variable and Model Selection 

The Variable and Model Selection screen provides the following information and 

options  

1. Variable Importance Ranking determined by the Random Forest algorithm for 

Response 1 (EUI). The variable scores are sorted along the X-Axis in decreasing 

importance from left to right. 

2. Variable Importance Ranking for Response 2 (PED). 

3. Pairs of Regression models (one for each response) built on top ranked 5, 6, 7 and 

8 variables as per Response 1. R
2  

and CV are provided as selection parameters. 

4. Pairs of Regression models built on top 5, 6, 7 and 8 variables as per Response 2.  

Note: In this example the models built on the Top-8 variables were selected based 

on R
2
 and CV. See Table 12 for the complete list of regression coefficients. 

5. Alternatively, a user may build models with a custom variable combination. 

6. Load the next screen. 

1 2

3

5

4

6
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Figure 46 : DSMV Decision Support Model Interface Part 1 

 

The Decision Support Model Interface screen provides the following information 

1. Graphical representation of simulated response range. 

2. Enter user defined width of constraint region for the Response. 

3. Scroll bar to position the constraint region within the simulated range. 

4. User defined Response constraint bands. 

5. Spin button controls to adjust variable values between provided limits. 

6. Polyline representing a single user selected variable combination (design option) 

as input to the regression models.  

Note: Only the Top 8 variables have been selected for visualization and are presented  

in order of importance from left to right  
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Figure 47 : DSMV Decision Support Model Interface Part 2 

 

1. The white dot represents the predicted response(s) based on the user selected 

variable combination (blue polyline). Note: This dot has to remain within the 

constraint bands in order to satisfy the response criteria.  

2. Once the response criteria have been fixed this button calculates Min-Max Ranges 

for each variable by successively feeding the response constraints and the selected 

values of all the other 7 predictors as constants, into the second order regression 

equation and solving a resulting quadratic equation for each variable. These Min-

Max points are connected by the yellow dotted lines (Label 3) as a visual range of 

movement for each variable. Note: Solving the quadratic equations may result in 

more than one solution within the predefined variable range; however, in this 

interface only the first one to satisfy the constraints is selected by default. 

3

1 1

22
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Figure 48 : DSMV Decision Support Model Interface Part 3 

 

Assume that the requirement is to increase Win-Ht. from 3.945ft and Min-OA fraction 

from 0.26 (Figure 47) to 4.85ft and 0.32 respectively, while meeting the response criteria 

of (38< EUI<53 kBtu/sqft) and (4.97<PED<6.47 MW). When Win-Ht. is increased to 

4.85 ft. (Figure 48) predicted EUI hits the upper constraint of approx. 53 kBtu/sqft./yr. 

(white dot on the red bar) so we re-calculate the available variable ranges for the given 

constraints. The new upper bounds suggest that none of the variables can be further 

increased (Figure 49) for the given response criteria. 
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At this point the only alternative is to adjust another variable in order to lower the 

predicted EUI. In this particular example LPD is reduced from 1.46 to 1.1 W/ft2 (Figure 

50) since an increase in Win-Ht. can be expected to provide more natural lighting. 

 

Figure 49 : DSMV Decision Support Model Interface Part 4 

 

Figure 50 : DSMV Decision Support Model Interface Part 5 
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After a reduction in LPD the EUI drops to 49 kBtu/sqft./yr. The variable ranges are 

recalculated and now there is more flexibility in adjusting the other variables (Figure 51) 

while still meeting the response criteria. The Min-OA fraction is now increased to 0.32 

and the final design solution still meets the response criteria (Figure 52).  

 

Figure 51 : DSMV Decision Support Model Interface Part 6 

 

Figure 52 : DSMV Decision Support Model Interface Part 7 
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This solution can now be recorded, and if required, the entire process can repeated for 

evaluating other feasible design options. After the desired number of iterations the final 

solutions (red numbered circles) can be compared as shown in Figure 53 by plotting them 

using the two design criteria (EUI & PED) as X and Y coordinates respectively . In this 

example, 6 alternative design options were generated in the manner described above and 

plotted within the DSMV interface using the - Plot Selections – button.  

 

Figure 53 : Final Solution Comparison Chart 

 

In this case the two criteria (EUI & PED) happen to be strongly correlated (Figure 37 ) 

hence the linear trend in Figure 53 . Consequently in this case there is a single solution 

that has both lowest EUI and PED values. Such a solution however, may not be attainable 

if inversely related design criteria are being considered.  The final selections plot in that 

case would be useful in identifying more than one non-dominated solution; allowing the 

designer to evaluate tradeoffs offered by each. 
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7:  SUMMARY AND FUTURE WORK 

 

7.1 Summary 

 

High performance (low energy) building design is a difficult multi-criteria decision 

making (MCDM) problem that requires careful analysis of numerous possible design 

variables by generating large number of simulation runs using detailed energy simulation 

programs. This task can only be tackled by computers, which have the advantage of 

computational speed, parallel processing, and accuracy.  In MCDM problems, the 

searching of a single optimal solution is of little value, since the objectives are often 

competitive. So a purely optimization based technique is inadequate, instead, an 

interactive procedure involving the decision maker is required to determine near-optimal 

Satisficing (Satisfy + Suffice) solutions.  The need to address multi-criteria requirements 

makes it more valuable for a designer to know the “latitude” or “degrees of freedom” he 

has in changing certain design variables while achieving satisfactory levels of energy 

performance. Currently such a design framework is lacking and hence this thesis 

proposes an alternative methodology [VADSM] for low energy building design 

evaluation. VADSM supports the two key elements of the MCDM process, namely 

search and decision making, using data mining techniques and interactive visualizations 

respectively. A custom software interface [DSMV] has been developed for enabling 

interactive and dynamic decision making. 

Two different design feature sets were selected to evaluate and contrast different 

analytical techniques incorporated in VADSM. The small feature set was made up of 5 

design variables while the larger set contained 15 variables. The simulated responses in 
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both cases were building EUI in KBtu/sqft/yr. and PED in kW/yr. The purpose of picking 

the small feature set was to test whether traditional techniques like OLS Linear 

Regression would provide superior results when dealing with fewer variables, over an 

inductive statistical learning technique like CART. Conversely, a nonlinear technique like 

RF was expected to be more effective for feature selection and modeling the higher 

dimensional feature set that is much sparser and hence technically not a good candidate 

for fitting a single global linear regression model. 

The results obtained from analyzing the small feature set suggested, that if high 

prediction accuracy and explicit analytical models are required then, OLS regression is 

the better choice.  However if visual interpretability is more desirable and a reasonable 

reduction in predictive ability can be tolerated, then CART is a viable alternative, 

especially in the case of categorical variables and/or a non-continuous (jagged) solution 

space. CART is also well suited for classification problems where the output is 

categorical. Additionally, CART also provides clear variable ranking (both visual and 

statistical) that can used to eliminate redundant ones and create simpler predictive 

models. 

For the small design feature set OLS Models built on the CCD runs had excellent 

predictive ability when compared to similar OLS models built on exhaustive variable 

combinations. This implies a significant potential for reduction in simulation run time. 

Hence for OLS regression modeling, CCD or other such experimental design techniques 

should be explored wherever possible instead of exhaustive enumeration. However, 
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CART being a statistical induction technique, which fits local models to variations in 

data, the CCD approach may not yield sufficient data to train a useful decision tree. 

With the small feature set an exhaustive combination of variables could be simulated for 

analysis. However, with the larger feature set this was not feasible since the time need to 

simulate the hundreds of thousands of runs would be prohibitive. So sampling methods 

such as LHRS were used to sample fewer, but representative runs from the entire solution 

space.  The selection of a specific number of representative simulations to run for a given 

set of independent variable combinations can be addressed as a tradeoff between 

generating adequate training data for statistical models and reducing computer run time. 

Experimental design is a well-established technique that helps in this regard and specific 

techniques applicable for computer experiments should be further explored.  

Separate RF ensembles of 500 trees each were built for both design responses. RF was 

chosen due to its robust variable ranking technique. The strength of this technique lies in 

the fact that it ranks variables based on their predictive ability using OOB (Out-of-Bag) 

test data. Once the important predictors were identified pairs of OLS models ( one for 

each response)  were fit to successively larger subsets (starting with 5) of the top ranked 

variables for EUI and PED prediction , till established model performance criteria was 

met (CV < 10 % and R
2
 > 90%). Although the RF models themselves had acceptable 

predictive ability they are very difficult to visualize. Hence after feature selection simpler 

OLS regression models were chosen instead due to their analytically explicit equations 

that could be visually incorporated in the DSMV application.  
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Model selection parameters such R
2
 , CV, RF ensemble size should be reflective of the 

objectives of the designer in evaluating alternatives. For preliminary design a relatively 

lower R
2
 might suffice, however, for detailed design evaluation higher prediction 

accuracy would be more appropriate. 

7.2 Future work 

 

7.2.1 Methodological Improvements 

 

This study was limited to 15 key independent design variables relevant to a mid-size 

commercial building; however, high performance building design can often involve much 

larger design feature sets in the range of 50-100 variables. Thus a natural extension of 

this research would be to explore the analysis of such large feature sets involved in the 

design of more complex buildings. Clearly, appropriate feature selection techniques 

would be critical in such cases to identify the most relevant variables and reduce the 

complexity of any prediction models. Similarly, the number of objective functions 

(design criteria) could be increased in order to evaluate additional relevant design criteria 

such as primary and secondary HVAC components, life cycle costing, CO2 emissions, 

day lighting, comfort etc. A strategy of applying user defined weights to each criterion 

can help in prioritizing the relative impacts of design decisions. 

Additionally the scope of the DSMV application can be expanded to include categorical 

predictors like HVAC system types, control strategies, material types etc. Feedback from 

different types of users such as architects, energy engineers, environmental designers etc. 

would be helpful for improving the workflow and interface design 
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While the present research explored the application of VADSM to new building design 

only, the proposed methodology is also well suited for evaluating energy efficiency 

retrofits or identifying and improving operational deficiencies in existing buildings, 

provided a well-calibrated energy model with a set of relevant independent variables and 

ranges is available.  

7.2.2 Software Improvements 

 

Integration of the DSMV application as a module or add-in with an existing energy 

simulation tool will reduce potential interoperability errors and allow for faster iterations. 

Moving beyond energy there is a wide range of other performance criteria such as 

comfort, economics, safety, environmental impact etc. Links to such simulation tools will 

provide additional information to further enhance the decision-making process. Future 

research in this area should also explore the benefits of the rapid and parallelized 

computing power of cloud-based infrastructure to run large batch simulations in near real 

time. A more sophisticated interface that can inform the designer of simultaneous 

changes to multiple objectives while allowing them to adjust the level of detail 

appropriate to the specific task would be a future improvement. Advances in the fields of 

high dimensional data visualization and GUI design could provide further innovative data 

visualization solutions.  
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APPENDIX A 

DOE2 VARIABLE DEFINITIONS 
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LIGHTING-W/AREA (LPD) 

Takes a list of values of electric lighting power per unit space floor area, including 

ballasts where applicable, for each of up to 5 lighting subsystems. Whether or not the 

subsystem serves the entire space, the value entered should be the total peak power for 

the subsystem (before multiplying by the lighting schedule) divided by the total space 

floor area. Each subsystem can have a different lighting schedule (see LIGHTING-

SCHEDULE, below). Example input: if a space has two lighting subsystems, one with 

0.5 W/ft2 and the other with 1.0 W/ft2, then LIGHTING-W/AREA = (0.5, 1.0). 

EQUIPMENT-W/AREA (EPD) 

Takes a list of values of maximum equipment power per unit floor area of the space for 

up to five types of electrical equipment. An alternative to EQUIPMENT-KW. If both 

EQUIPMENT-W/AREA and EQUIPMENT-KW are specified, the contributions are 

added. The program calculates the electrical power in watts for all of the equipment in a 

space as 

Watts = (EQUIPMENT-KW * 1000 

+ AREA * EQUIPMENT-W/AREA) * (EQUIP-SCHEDULE value) 

for all equipment types. 

The EQUIP-SENSIBLE and EQUIP-LATENT keywords give the fraction of heat gain 

for each equipment type that is sensible and latent, respectively. The total hourly heat 

gain from all of the equipment (for all of the equipment types) is, therefore:  

Qwatts = Watts * (EQUIP-SENSIBLE + EQUIP-LATENT) 

RESISTANCE (Wall-R/Roof-R) 

The thermal resistance of the material. 

GLASS-CONDUCTANCE (Win-U) 

The conductance of the glazing, excluding the outside air film coefficient. The 

conductance given in glass manufacturers' data sheets usually includes the outside air 

film resistance for a wind speed of 7.5 mph (summer) or 15 mph (winter).  

SHADING-COEF (SC) 

When TYPE=SHADING-COEF is entered, the program first calculates the solar heat 

gain using transmission and absorption coefficients for a reference glazing (clear, 1/8" 

thick, single-pane, double-strength sheet glass). This solar heat gain is then multiplied by 

the value of SHADING-COEF to determine the resultant solar heat gain.  
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The shading coefficient depends, in general, not only on the type of glass but also on 

whether blinds, shades, draperies, etc., are used with the window. To simulate operable 

shading devices, assign a SHADING-SCHEDULE to a window (see the WINDOW 

command) and the resultant solar heat gain each hour will be multiplied by the schedule 

value.  

For shading coefficient values of different glazing types with and without shading 

devices, see manufacturers' data sheets or the ASHRAE 1989 Handbook of 

Fundamentals, p. 27.26ff.  

We strongly recommend that exterior WINDOWs in a sunspace be described with 

TYPE=GLASS-TYPE-CODE rather than SHADING-COEF. This allows the program to 

accurately calculate the hourly direct and diffuse radiation transmitted by the glazing. 

This is not possible with SHADING-COEF except for standard 1/8" clear glass.  

HEIGHT (Win-Ht) 

Height of the glazed part of the window.  

FURNACE-HIR (Furn-Eff)  

Ratio of fuel used by the furnace (including that used by the pilot light, if present) to the 

heating energy produced. In calculating this ratio, the fuel used and heating produced 

should be expressed in the same units. 

COOLING-EIR (Cool-EIR) 

The Electric Input Ratio (EIR), or 1/(Coefficient of Performance), for the cooling unit at 

ARI rated conditions. The program defines EIR to be the ratio of the electric energy input 

to the rated capacity, when both the energy input and rated capacity are expressed in the 

same units. This EIR is at ARI rated conditions, i.e., without correction for different 

temperature or part load.  

Note: If you include fan electric energy consumption in your value of COOLING-EIR, 

then you should set SUPPLY-KW/FLOW to zero (and SUPPLY-STATIC, SUPPLY-EFF 

and SUPPLY-DELTA-T should be omitted). Otherwise, the supply fan electrical energy 

will be double counted. For commercial systems the default value of COOLING-EIR 

includes compressor and outdoor fan energy, but not indoor fan energy. Imbedding the 

fan energy into the COOLING-EIR is valid only if the fan is constant volume and 

INDOOR-FAN-MODE = INTERMITTENT; i.e. the fan cycles on/off with the 

compressor. If the fan runs continuously during occupied hours, or the fan is variable 

volume, then the fan energy cannot be included in the COOLING-EIR (or HEATING-

EIR).  
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SUPPLY-STATIC (Fan-Pres) 

Total static pressure of the supply fan at design flow rate. Pressure losses should include 

filters, coils, fan housing, and distribution system. Use either SUPPLY-STATIC and 

SUPPLY-EFF or SUPPLY-DELTA-T and SUPPLY-KW/FLOW. 

MIN-FLOW-RATIO   ( Min-FlowR ) 

Minimum allowable zone air supply flow rate, expressed as a fraction of design flow rate. 

Applicable to variable-volume type systems only. This keyword also appears in the 

SYSTEM command, where it is a system level keyword that applies to all zones in the 

system. Here, it is a zone level keyword that applies only to this zone, allowing different 

MIN-FLOW-RATIOs for each zone. MIN-FLOW-RATIO can be scheduled using 

ZONE:MIN-FLOW-SCH. 

If the sum of the MIN-FLOW-RATIOs of all the zones times the design flow rate is less 

than the specified outside air flow rate, there is implied 100 per cent outside air operation 

at, and possibly above, the zone MIN-FLOW-RATIO. In other words, it may be 

necessary for the system to operate at 100% outside air at very low airflows in order to 

satisfy the ventilation requirements.  

If THERMOSTAT-TYPE = REVERSE-ACTION is not specified, zone MIN-FLOW-

RATIO is also the flow rate fraction in the heating mode. The VAV box will modulate its 

airflow between the top and bottom of the cooling setpoint throttling range, and be at the 

minimum flow at all temperatures below the cooling throttling range. Care must be taken 

to specify a reasonable MIN-FLOW-RATIO in this case. Depending on the value of the 

MIN-FLOW-RATIO, the system may not have enough reheat capacity. Additionally, the 

introduction of a small amount of (low velocity) warm air at the ceiling level may cause 

temperature stratification problems in many buildings. To avoid this, the 

THERMOSTAT-TYPE should be REVERSE-ACTION, or an HMIN-FLOW-RATIO 

can be specified to establish a higher flow ratio during heating. 

For dual-duct systems, MIN-FLOW-RATIO is the flow ratio at the outlet of the mixing 

box, and should be specified only if the box has a controller measuring air flow at the 

outlet. HMIN-FLOW-RATIO and CMIN-FLOW-RATIO specify the minimum air flows 

at the inlets to the mixing box (hot and cold decks, respectively). You should refer to the 

discussion of these keywords in the SYSTEM command for more information. 

AIR-CHANGES/HR (Infil-AC) 

The number of infiltration-caused air changes per hour at a reference wind speed of 10 

mph (4.47 m/s) (see table under INF-METHOD). It has a correction for wind speed as 

shown by the following equation.  

Infiltration in ach = (AIR-CHANGES/HR) * (wind-speed)/(reference wind speed) 
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MIN-OUTSIDE-AIR (Min OA) 

The minimum outside air flow divided by the supply air flow during winter heating 

periods. You may alternatively, or additionally, specify outside air quantities at the zone 

level using the ZONE keywords OA-CHANGES, OA-FLOW/PER or OUTSIDE-AIR-

FLOW. The default is calculated from zone loads and ZONE input.  

If you enter MIN-OUTSIDE-AIR as well as the ZONE keywords OUTSIDE-AIR-

FLOW, OA-CHANGES, OA-FLOW/PER or EXHAUST-FLOW, the ZONE values take 

precedence. If no zone-level values are specified, MIN-OUTSIDE-AIR will be used. If 

MIN-AIR-SCH is specified, MIN-OUTSIDE-AIR, or the corresponding ZONE values, 

should be entered.  

The program will not allow MIN-OUTSIDE-AIR to be less than the sum of the 

EXHAUST-FLOWs for all zones divided by the sum of all supply flows for all zones. 

That is, the exhaust fan operation will override MIN-OUTSIDE-AIR if MIN-OUTSIDE-

AIR is set too low.  

The minimum outside air ratio reported on SV-A is based on the design calculated supply 

air flow and not on the value input for SUPPLY-FLOW, which overrides the design flow 

rate.  

When evaporative cooling is in effect, the outside air dampers are 100% open. When 

outside air is able to cool the building without the aid of evaporative cooling, the outside 

and return air dampers modulate open. 

MIN-SUPPLY-T (Min-CoolT) 

For systems that can provide cooling, this is a required keyword that gives the minimum 

temperature of the air delivered to the zone. MIN-SUPPLY-T and COOL-DESIGN-T are 

used to size the capacity of the cooling coil and supply air flow rate. The supply air flow 

rates needed to satisfy the heating and cooling requirements are compared and the greater 

of the two quantities is used for the system air flow rate. Note that MIN-SUPPLY-T also 

controls the amount of moisture that can be removed by the cooling coils.  

Note, that for those systems that are to maintain a constant cooling air discharge 

temperature (see keyword COOL-CONTROL), the control set point is determined by the 

value entered for COOL-SET-T rather than MIN-SUPPLY-T. In this case, the program 

uses MIN-SUPPLY-T to limit subcooling for dehumidification purposes (and to calculate 

the design air flow rate for cooling).  

Note that MIN-SUPPLY-T is the design supply temperature at the zone, downstream of 

duct losses. COOL-SET-T, COOL-SET-SCH, COOL-RESET-SCH and the heating 

counterparts are all defined as entering the duct, upstream of duct losses. As such, they 
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should be adjusted for the expected duct losses so that the hourly supply temperature at 

the zone is the desired temperature. 

MAX-SUPPLY-T (Max-HeatT) 

The maximum allowable temperature (i.e., maximum diffuser temperature) of the air 

delivered to the zones in a system. MAX-SUPPLY-T and DESIGN-HEAT-T are used to 

size the supply air flow rate and the capacity of the heating coil. MAX-SUPPLY-T, 

which should be greater that DESIGN-HEAT-T, is also used as an upper limit for supply 

air temperature control.  

This entry is mandatory for certain types of systems (e.g., RESYS, MZS, DDS, SZCI, 

UVT, UHT, HP, HVSYS, FC, IU, PSZ, PMZS, PTAC) and optional for other types of 

systems (SZRH, VAVS, RHFS, CBVAV, PVAVS). If no entry is made, the program will 

use the sum of MIN-SUPPLY-T and REHEAT-DELTA-T. 

Note that MAX-SUPPLY-T is the design supply temperature at the zone, downstream of 

duct losses. HEAT-SET-T, HEAT-SET-SCH, HEAT-RESET-SCH and the cooling 

counterparts are all defined as entering the duct, upstream of duct losses. As such, they 

should be adjusted for the expected duct losses so that the hourly supply temperature at 

the zone is the desired temperature.  

 

 Source: DOE2 Online Help File eQuest version 3.64 
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APPENDIX B 

ASHRAE 90.1 PROTOTYPE BUILDING MODELING SPECIFICATIONS 
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Zone 1A:  Miami (very hot, humid)

Zone 1B:  Riyadh, Saudi Arabia 

(very hot, dry)

Zone 2A:  Houston (hot, humid) 

Zone 2B:  Phoenix (hot, dry)

Zone 3A:  Memphis (warm, humid) 

Zone 3B:  El Paso (warm, dry)

Zone 3C:  San Francisco 

(warm,marine)

Zone 4A:  Baltimore (mild, humid)

Zone 4B:  Albuquerque (mild, dry)

Zone 4C:  Salem (mild, marine)

Zone 5A:  Chicago (cold, humid)

Zone 5B:  Boise (cold, dry)

Zone 5C:  Vancouver, BC (cold, 

marine)

Zone 6A:  Burlington (cold, humid)

Zone 6B:  Helena (cold, dry)

Zone 7:  Duluth (very cold)

Zone 8:  Fairbanks (subarctic) Selection of representative climates 

based on Briggs' paper. See 

Reference.

Perimeter zone depth: 15 ft. 

Each floor has four perimeter zones 

and one core zone.

Percentages of floor area:  

Perimeter 40%, Core 60%

2003 CBECS Data and PNNL's 

CBECS Study 2007.

Floor to ceiling height (feet)
9 

(4 ft above-ceiling plenum)

Glazing sill height (feet) 3.35 ft 

(top of the window is 7.64 ft high with 4.29 ft high glass)

Thermal Zoning

Floor to floor height (feet)

13

Azimuth non-directional

Number of Floors
3

Window Fraction

(Window-to-Wall Ratio) 33%

(Window Dimensions: 

163.8 ft x 4.29 ft on the long side of facade  

109.2 ft x 4.29 ft on the short side of the façade)

Shading Geometry none

Window Locations even distribution among all four sides

Aspect Ratio 

53,600

(163.8 ft x 109.2 ft)

Building shape 

Program
Vintage NEW CONSTRUCTION

Location 

(Representing 8 Climate Zones)

Building Prototype

Medium Office

Available fuel types gas, electricity

Item Descriptions Data Source

1.5

Building Type (Principal Building 

Function)

OFFICE

Form
Total Floor Area (sq feet)
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Construction type: 2003 CBECS 

Data and PNNL's CBECS Study 

2007.

Exterior wall layers: default 90.1 

layering

ASHRAE 90.1

Construction type: 2003 CBECS 

Data and PNNL's CBECS Study 

2007. 

Roof layers: default 90.1 layering

ASHRAE 90.1

Ducker Fenestration Market Data 

provided by the 90.1 envelope 

subcommittee 

Skylight

ASHRAE 90.1

Reference: 

PNNL-18898: Infiltration Modeling 

Guidelines for Commercial Building 

Energy Analysis.

ASHRAE 90.1

NA

ASHRAE 90.1 Requirements

Nonresidential; Walls, Above-Grade, Steel-Framed

ASHRAE 90.1 Requirements

Nonresidential; Vertical Glazing, 31.1-40%, U_fixed

NA

Air Barrier System

   Infiltration Peak: 0.2016 cfm/sf of above grade exterior wall surface area (when fans turn off)

Off Peak: 25% of peak infiltration rate (when fans turn on)

    Dimensions based on floor area and aspect ratio

Interior Partitions

   Construction 2 x 4 uninsulated stud wall

   Dimensions based on floor plan and floor-to-floor height

Internal Mass 6 inches standard wood (16.6 lb/ft²)

Foundation

Foundation Type Slab-on-grade floors (unheated)

    Construction
8" concrete slab poured directly on to the earth

    Thermal properties for ground level 

floor

    U-factor (Btu / h * ft2 * °F) 

    and/or

    R-value (h * ft2 * °F / Btu)

ASHRAE 90.1 Requirements

Nonresidential; Slab-on-Grade Floors, unheated

    Thermal properties for basement 

    Glass-Type and frame

Hypothetical window with the exact U-factor and SHGC shown below

    U-factor (Btu / h * ft
2
 * °F) 

    Operable area 0

    Dimensions Not Modeled

    SHGC (all)

Window

    Dimensions
based on window fraction, location, glazing sill height, floor area and aspect ratio

    Visible transmittance

    Glass-Type and frame

    U-factor (Btu / h * ft
2
 * °F) 

    SHGC (all)

    Visible transmittance

Hypothetical window with the exact U-factor and SHGC shown above

    U-factor (Btu / h * ft
2
 * °F) and/or

    R-value (h * ft
2
 * °F / Btu)

ASHRAE 90.1 Requirements

Nonresidential; Roofs, Insulation entirely above deck

    Tilts and orientations horizontal

    Dimensions based on floor area and aspect ratio

Architecture
Exterior walls

    Tilts and orientations vertical

    Construction
Built-up Roof: 

Roof membrane+Roof insulation+metal decking

Roof

    Construction

Steel-Frame Walls (2X4 16IN OC)

0.4 in. Stucco+5/8 in. gypsum board + wall Insulation+5/8 in. 

    U-factor (Btu / h * ft
2
 * °F) and/or

    R-value (h * ft
2
 * °F / Btu)

    Dimensions based on floor area and aspect ratio 
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System Type

HVAC Sizing

HVAC Efficiency

ASHRAE 90.1

ASHRAE 90.1

HVAC Control

ASHRAE 90.1

ASHRAE Ventilation Standard 62.1

ASHRAE 90.1

ASHRAE 90.1

Supply Fan

Pump

Cooling Tower

Service Water 

Heating

ASHRAE 90.1

     Pump Power autosized

     Cooling Tower Type NA

     Cooling Tower Efficiency NA

ASHRAE 90.1 requirements for 

motor efficiency and fan power 

limitation

NA

    Water temperature setpoint 120F

    Water consumption See under Schedules

     Rated Pump Head

    Tank Volume (gal) 260

    SWH type Storage Tank

    Fuel type Natural Gas

    Thermal efficiency (%) ASHRAE 90.1 Requirements

Water Heating Equipment, Gas storage water heaters, >75,000 Btu/h input

    Supply Fan Total Efficiency (%) 60% to 62% depending on the fan motor size

    Supply Fan Pressure Drop Various depending on the fan supply air cfm

    Demand Control Ventilation ASHRAE 90.1 Requirements

    Energy Recovery ASHRAE 90.1 Requirements

    Fan schedules See under Schedules

    Chilled water supply temperatures NA

    Hot water supply temperatures NA

     Pump Type

NA

    Economizers Various by climate location and cooling capacity

Control type: differential dry bulb

    Ventilation ASHRAE Ventilation Standard 62.1  

See under Outdoor Air.

80°F Cooling/60°F Heating

    Supply air temperature Maximum 104F, Minimum 55F 

2003 CBECS Data, PNNL's CBECS 

Study 2006, and 90.1 Mechanical 

Subcommittee input.

    Cooling type

    Air Conditioning

    Thermostat Setpoint 75°F Cooling/70°F Heating

    Thermostat Setback

    Heating autosized to design day

Packaged air conditioning unit

    Distribution and terminal units VAV terminal box with damper and electric reheating coil

Zone control type: minimum supply air at 30% of the zone design peak supply air. 

    Heating Various by climate location and design heating capacity

ASHRAE 90.1 Requirements

Minimum equipment efficiency for Warm Air Furnaces

    Air Conditioning Various by climate location and design cooling capacity

ASHRAE 90.1 Requirements

Minimum equipment efficiency for Air Conditioners and Condensing Units

autosized to design day

HVAC

    Heating type Gas furnace inside the packaged air conditioning unit
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Source: Pacific Northwest National Laboratory, updated on 04-30-2011 

 
 

 

 

 

 

 

Lighting

ASHRAE 90.1

Plug load 

User's Manual for ASHRAE 

Standard 90.1-2004 (Appendix G)

Occupancy

User's Manual for ASHRAE 

Standard 90.1-2004 (Appendix G)

Elevator

90.1 Mechanical Subcommittee, 

Elevator Working Group

DOE Commercial Reference 

Building TSD and models (V1.3_5.0) 

and Addendum DF to 90.1-2007

Exterior Lighting

    Daylighting Controls
ASHRAE 90.1 Requirements

Motor type

Peak Motor Power

(W/elevator)

Heat Gain to Building

2

hydraulic

16,055

Interior

161.9

Reference: 

DOE Commercial Reference 

Building Models of the National 

Building Stock

ASHRAE 90.1

Lighting Power Densities Using the Building Area Method

See under Schedules

ASHRAE 90.1 Requirements

    Average power density (W/ft
2
)

    Schedule

    Schedule

    Occupancy Sensors

See under Schedules

    Peak Power (W)

Misc.

Internal Loads & Schedules

Motor and fan/lights Schedules

See under Schedules

14,385

    Average power density (W/ft
2
)

See under Zone Summary

    Schedule
See under Schedules

    Average people

See under Schedules
    Schedule

See under Zone Summary

Peak Fan/lights Power

(W/elevator)

PNNL's CBECS Study. 2007. Analysis of Building Envelope Construction in 2003 CBECS Buildings.  Dave Winiarski, Mark 

Halverson, and Wei Jiang. Pacific Northwest National Laboratory.  March 2007.

Gowri K, DW Winiarski, and RE Jarnagin.  2009.  Infiltration modeling guidelines for commercial building energy analysis .  

PNNL-18898, Pacific Northwest National Laboratory, Richland, WA.  

http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18898.pdf
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APPENDIX C 

MATLAB FUNCTIONS FOR RANDOM FOREST GENERATION 
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Matlab Class: TreeBagger 

Sample Code 

 

Tree Bagger Default Settings 

 

 

Reference: http://www.mathworks.com/help/stats/treebagger.html 

 

X Data [15000x15]

Y Data [15000x1]

Nvars: 15

NVarToSample: 5

MinLeaf: 5

FBoot: 1

SampleWithReplacement: 1

ComputeOOBPrediction: 1

ComputeOOBVarImp: 1

TreeBagger 

Default 

Settings

Training 

Data


