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ABSTRACT

Nowadays product reliability becomes the top concern of the manufacturers and

customers always prefer the products with good performances under long period. In order

to estimate the lifetime of the product, accelerated life testing (ALT) is introduced because

most of the products can last years even decades. Much research has been done in the ALT

area and optimal design for ALT is a major topic. This dissertation consists of three main

studies. First, a methodology of finding optimal design for ALT with right censoring and

interval censoring have been developed and it employs the proportional hazard (PH) model

and generalized linear model (GLM) to simplify the computational process. A sensitivity

study is also given to show the effects brought by parameters to the designs. Second, an

extended version of I-optimal design for ALT is discussed and then a dual-objective design

criterion is defined and showed with several examples. Also in order to evaluate different

candidate designs, several graphical tools are developed. Finally, when there are more than

one models available, different model checking designs are discussed.
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Chapter 1

INTRODUCTION

1.1 Overview

Reliability is defined as the ability of a system or component to perform its

required functions under stated conditions for a specified period of time. An easier

definition is: reliability is the quality over time (Condra (1993)). Nowadays, with the

rapid development of advanced technologies, new products with interesting features have

been delivered to the market frequently and manufacturers have to respond to the market

quickly which means more competitions to them. On the other hand, consumers become

more concerned about the reliability of the products because they want to own products

with long lifetime. Therefore, the manufacturers could not take the risk of losing

customers due to the poor quality and reliability of their products and have to invest

money and manpower to continuously improve the reliability of products. The popular

quality and reliability improvement methods include Advanced Product Quality Planning

(APQP), New Product Introduction (NPI), Failure Modes and Effects Analysis (FMEA),

Statistical Process Control (SPC), and Root Cause Analysis (RCA), Failure Reporting,

Analysis and Correction Action System (FRACAS), and Reliability, Availability,

Maintainability, and Safety (RAMS). In all these methods, in order to find the root causes

of the failures and estimate the lifetime of a product, testing plays an important role. Since

a newly developed product can last years even decades, the naive method of testing

sample units at the normal use condition is not practical due to the cost and time

limitation. Therefore, Accelerated Life Testing (ALT) is widely used to shorten the testing

time of new products. Basically, ALTs increase certain test stresses, like temperature,

humidity, voltage, and cycles to accelerate the failure of test units. However, even for

ALTs the testing time could be too long for observing all failures so censoring has to be
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introduced into tests.

There are several different censoring methods and the most popular ones are right

censoring and interval censoring. Right censoring means that the testing time is prefixed

so when the time reaches the prefixed testing time, the test is terminated. The advantage

of right censoring is that for those failure units which fail before the censoring time, exact

failure times can be collected. However, in many situations exact failure times are difficult

to obtain due to measurement availability, cost, and other constraints. Therefore, interval

censoring is introduced which can be easily implemented. The general idea of interval

censoring is given certain number of test units, the total testing time is divided into several

time intervals and at the end of each interval, the number of failures will be counted.

However, despite the ease of the ALT application, interval censoring also brings ’side

effects’ because the exact failure times of test units are unknown and the only information

obtained is in which intervals the units fail. This feature will cause the reduction of the

accuracy of the estimation of product’s lifetime.

In Montgomery (2012), the statistical design refers to the process of planning the

experiment so that appropriate data will be collected and analyzed by statistical methods,

resulting in valid and objective conclusions. Typical experimental designs include

standard factorial design and optimal design. A factorial experiment is an experiment

whose test plan consists of two or more factors, each with discrete possible values or

levels, and whose experimental units take on all possible combinations of these levels

across all such factors. The fractional factorial design, as indicated by its name, includes

partial runs from the full factorial designs. Some other designs related to the factorial

designs are composite designs and Plackett-Burman designs. Optimal designs are a class

of experimental designs that are optimal with respect to some statistical criteria. The most

popular criteria are alphabetic optimalities including A-optimality, D-optimality,

T-optimality, G-optimality, and I-optimality. There are some other alphabetic optimality
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criteria that can be derived or updated from the basic optimality criteria.

Developing optimal design for ALTs is an interesting topic. Maximum likelihood

estimation (MLE) is usually used to estimate the ALT model parameters with different

censoring situations and this approach involves the calculation of first and second partial

derivatives of a log-likelihood function. With the censoring situation, it will be more

difficult to solve but the Generalized Linear Model (GLM) could be applied here to

simplify the problem. The details of the GLM method will be given in later chapters.

Two other important topics are how to evaluate the different designs and how to

distinguish different models by a design. The first problem could be solved by applying

some evaluation criteria and also some graphic tools. The second problem could be

handled by some specific design like T-optimal design which will be discussed later.

Overall, this dissertation will explain the methods of finding an optimal design

based on different optimal criteria with different censoring scenarios. The cases of right

censoring and interval censoring will be discussed. After obtaining the optimal designs,

how to compare and evaluate these designs with other alternative designs would be

explained. Finally, details of applying optimal criteria such as Ds−optimality to

distinguish competing ALT models will be discussed.

1.2 Motivation

Accelerated life testing has become an important part of modern reliability and

how to obtain good test plans/designs and evaluate them under ALT is a practical topic. In

this dissertation, these problems will be addressed.

First, this research is motivated by the work from Monroe et al. (2011). Most

experimental designs in the books have been done with the normal use condition settings

and DOE books seldom mentioned the ALT. Therefore, it would be an interesting topic to
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consider the ALT and DOE together. By reviewing the literature, a lot of work has been

done in experimental design for ALTs. The earliest one can be traced back to Chernoff

(1962). Most of the work related with ALT and DOE (optimal design) was done in late

80s and early 90s. Work from Monroe et al. (2011) is different compared with the

previous research because they implemented the Generalized Linear Model (GLM)

method to find the optimal design under ALT. As we know that the big difference between

the normal testing and ALT is the design region of ALT may not cover the use condition

which requires experimenters to extrapolate the data from the design region back to the

use region. As mentioned before, MLE will be used to estimate the parameters of the ALT

model but it may cause a lot of computation loads. GLM is a better way to simplify the

computational process. Therefore it would be an interesting topic to develop and derive

some further work based on Monroe et al. (2011)’s research.

Second, right censoring may be the most popular method due to its simplicity.

However, in reality it is difficult to observe the exact failure times for the test units and

instead, interval censoring is actually more often to be applied in the real ALT. Much

research work has been done with right censoring cases but interval censoring cases are

seldom discussed before. Therefore, finding optimal design for ALTs with interval

censoring is appealing. In addition, another interesting topic is the use condition region of

ALTs. For the simplicity, the use condition is usually considered as a single, fixed point in

a lot of previous studies. However, in the real world the use condition is seldom limited as

a single point/condition but a region. So finding optimal designs for ALTs with a

pre-defined use condition region would be a valuable technique which is more applicable

and close to real cases.

The third motivation comes from a question: when there is more than one design

available, how to choose the designs? Once some candidate designs have been developed

based on different optimal criteria, some of them are easy to be implemented, some have
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good statistically features, so it is necessary to evaluate them and choose the best ones.

There are several ways to evaluate designs and the traditional methods are usually single

value criteria like optimal efficiency values. In addition, graphical evaluation methods are

also popular due to their visualization. They are more straightforward methods and

usually more comprehensive compared with single value criteria. Variance Dispersion

Graphs (VDG) and Fraction of Design Space (FDS) plots are popular graphical tools for

design evaluation. However, under ALT not many graphical tools have been introduced

and it is necessary to derive and develop some graphical methods based on existing

approaches. Sometimes there are several competing models for failure mechanism under

ALT and how to distinguish different models by a design is also an appealing topic.

1.3 Research Objectives

• Find optimal designs by applying the Generalized Linear Model (GLM) approach

under ALT with right censoring;

• Find optimal designs by applying the Generalized Linear Model (GLM) approach

under ALT with interval censoring;

• Use or develop different single value criteria and graphical tools to evaluate

different designs;

• Find designs to distinguish different failure models under ALT scenario.

1.4 Dissertation Organization

The remainder of this dissertation is structured as follows. A literature review is

summarized in Chapter 2. The review includes previous and current research in

accelerated life testing (ALT), optimal designs, generalized linear model(GLM), design

evaluation, and model separation. Chapter 3 introduces the theoretical work associated

5



with the GLM-based approach toward planning ALT optimal designs with right censoring

and interval censoring. Chapter 4 develops some single value criteria and graphical tools

to evaluate different ALT designs. Model checking and discrimination are discussed in

Chapter 5. Finally, Chapter 6 is a conclusion for the previous chapters and also gives an

insight for the future potential research.
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Chapter 2

REVIEW OF RELATED LITERATURE

In this chapter, a literature review is provided with the major topics in this

dissertation. The review has five parts: accelerated life testing, experimental designs,

generalized linear model, design evaluation, and model discrimination.

2.1 Accelerated Life Testing

Accelerated life testing (ALT) is the process of testing a product by subjecting it to

conditions (stress, strain, temperatures, etc.) in excess of its normal service parameters in

an effort to uncover faults and potential modes of failure in a short amount of time

(Wikipedia). The reason for applying ALT is the good quality and reliability of new

products which have long lifetimes under normal use conditions. With the consideration

of limited time and cost, in order to observe some failures during the test, the levels of

stress factors have to be increased or decreased out of their normal use value region. Two

models are needed for designing and analyzing ALTs, one is the acceleration model and

the other one is the lifetime distribution.

Acceleration models are fit to the data to describe the effect that the variables have

on the failure-causing process for the testing over the range of accelerating stress

variables. The typical accelerating stress variables include temperature, voltage, humidity,

pressure, or any other stress related to the failure mechanism. The purpose is to test at

high stress levels to speed up the failure processes and to establish the functional

relationship between failure parameters and stresses. The acceleration models can be

classified into two categories, physical acceleration models and empirical acceleration

models. Physical accelerations models are developed under well-understood failure

mechanisms based on physical/chemical theory. On the other hand, empirical models are
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an alternative if it is impossible to develop a model based on physical/chemical theory. In

previous research, physical acceleration models are more common and some typical

models will be introduced next.

The first acceleration model mentioned here is the Arrhenius model. It describes

the effects that temperature has on the rate of a simple chemical reaction. The Arrhenius

model has been widely used and has the form

R(temp) = γ0 exp(
−Ea

kB× tempK
) (2.1)

in Meeker & Escobar (1998) where R is the reaction rate and tempK is temperature in the

absolute Kelvin scale, kB is Boltzmann’s constant, and Ea is the activation energy. The

parameters Ea and γ0 are product or material characteristics. One thing that should be

noticed is the Arrhenius relationship does not apply to all temperature acceleration

situations.

The Eyring model is another temperature related acceleration model. It is

introduced by Glasstone et al. (1941) and it represents the amount of energy needed to

move an electron to the state where the processes of chemical reaction or diffusion or

migration can take place (Tobias & Trindade (2011)). The reaction rate of the Eyring

model can be written as

R(temp) = γ0×A(.)× exp(
−Ea

kB× tempK
) (2.2)

where again Ea and γ0 are product or material characteristics. The term A(.) is a function

which could represent the effects of temperature or other stress factors. It depends on how

the modeler defines the problem. Sometimes A(.) could be a inverse power law function

and is used to describe the voltage effects.

The last acceleration model discussed here is the inverse power law (IPL) model.
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The inverse power relationship can be described as

AF(volt) = AF(volt,voltU ,β1) =
T (voltU)
T (volt)

= (
volt

voltU
)−β1 (2.3)

where T (volt) and T (voltU) are the failure times at test condition and use condition

respectively. β1 is a parameter and usually has β1 < 0. AF(volt) is the accelerated factor.

The inverse power law relationship describes the effects of voltage to the failure and can

be part of the Eyring model we mentioned above.

Another important part of ALT modeling is the lifetime distribution model. The

lifetime distribution is used to describe the failure rate at specific time point. The popular

ones are the exponential distribution (which is a simple version of Weibull distribution),

Weibull distribution, and lognormal distribution. Details of these three popular

distributions are given below and they are originally described in Meeker & Escobar

(1998).

The exponential distribution is denoted as T ∼ EXP(θ ,γ) and it has cumulative

density function (cdf), probability density function (pdf), and hazard function (hf) written

as

F(t;θ ,γ) = 1− exp(−t− γ

θ
), t > r

f (t;θ ,γ) =
1
θ

exp(−t− γ

θ
), t > r

h(t;θ ,γ) =
1
θ
, t > r

where θ > 0 is a scale parameter and γ is a location parameter and t > γ .

The Weibull distribution has cdf

F(t;η ,β ) = 1− exp[−( t
η
)β ]

where t > 0. However, for the Weibull distribution it is usually reparameterized by the

smallest extreme value (SEV) distribution. If T has a Weibull distribution then
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Y = log(T )∼ SEV (µ,σ), where σ = 1/β is the scale parameter and µ = log(η) is the

location parameter. Now the Weibull distribution can be indicated as T ∼WEIB(µ,σ)

and the cdf, the pdf, and the hf can be written as

F(t; µ,σ) = Φsev[
log(t)−µ

σ
],

f (t; µ,σ) =
1

σt
φsev[

log(t)−µ

σ
] =

β

η
(

t
η
)β−1exp[(

t
η
)β ],

h(t; µ,σ) =
1

σexp(µ)
[

t
exp(µ)

]1/σ−1 =
β

η
(

t
η
)β−1.

When variable T belongs to a lognormal distribution, it is indicated as

T ∼ LOGNOR(µ,σ), and Y = log(T )∼ NOR(µ,σ). It has cdf and pdf written as

F(t; µ,σ) = Φnor[
log(t)−µ

σ
],

f (t; µ,σ) =
1

σt
φnor[

log(t)−µ

σ
]

where φnor and Φnor are pdf and cdf for the standardized normal distribution.

With these fundamental models and distributions, much research has been done in

the ALT area. Nelson (2005a) gave a comprehensive review of the research related to ALT

and it classified those papers into several categories: the basis of ALT, the history of test

plans, general AT models including ALT and ADT, failure time and stress model,

development of test plans, optimal criteria, censoring, constraints, and other topics. The

second part of the review from Nelson (2005b) listed references of all the important

papers mentioned in the previous one.

2.2 Experimental designs

Statistical design history

The original experimental design is from the field of agriculture which is used to

find out the influential factors to the yield. Fisher is the pioneer who first introduced the
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ideas of factorial design and analysis of variance and the details of his research work can

be found in (Fisher, 1958, 1966).

For any experimental design, the factors can be classified as controllable factors

and uncontrollable factors. Usually, the controllable factors which experimenters are

interested in can be changed in certain ranges and have major influences on the response.

On the other hand, uncontrollable factors can be further classified into two subgroups.

One is called unknown and uncontrollable factor and another is called known and

uncontrollable factor. The former type of factor is handled by randomization so that their

effects on the response can be canceled out by the random order of the runs. The latter

type can be handled by a technique called blocking. The idea of blocking is to run each

test unit with uncontrollable variable in different blocks which can eliminate the

uninterested effects in the experiment. Therefore, in order to deal with the nuisance factor,

randomized complete block design (RCDB) is introduced and early research include

Kempthorne (1952) and Wilk (1955).

As mentioned before, the factorial design is first introduced by Fisher and Yates

also made important contributions to modify the idea. The factorial design is usually

denoted as nk where n is the level of each factor and k is the number of factors. The

advantage of factorial designs has several aspects. The biggest one is it has less runs

compared with one-factor-at-a-time designs. In addition, a factorial design is needed to

detect the interaction effects in the experiments. Most of the time, an early stage model

with main effects and their interactions will be built first and in order to give some

protection against effects brought by quadratic terms, some additional center points could

be added to the designs. By adding some more axial runs to the design, the classical

central composite design is formed. A standard full factorial design is useful but

sometimes the experiment has put some constraints including time and limited resource.

Therefore, running a full factorial design may be expensive and not available sometimes
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and fractional factorial designs are developed in order to use less runs to estimate more

terms in the model. Confounding and resolution are two important terms for fractional

factorial designs and the Plackett & Burman (1946) designs and Box & Behnken (1960)

designs are two famous examples.

In early 1980s, product quality improvement became an interesting topics to the

western world and the research and practical work from (Taguchi, 1987, 1991) had great

impact on manufacturing. Basically, a Taguchi design is a crossed array design

incorporating controllable variables and uncontrollable variables. However, a Taguchi

design also has some defects including not addressing the interactions between the

controllable variables and not having a clear statistical model format. Box et al. (1988)

and Hunter (1989) discussed some details about the features and defects about the

Taguchi design.

After late 1980s and 1990s, the concepts of experimental design were not limited

in the agriculture and manufacturing industry, but widely spread to other fields including

business, healthcare, psychology, and others. For example, Kuhfeld et al. (1994) applied

the D-optimal design and discussed orthogonal, nonorthogonal design algorithms for

marketing research. Viney et al. (2005) investigated the design properties of discrete

choice experiments and developed three experimental design approaches in health care.

Kirk (2012) explained how to apply experimental design to analyze problems in

behavioral science. In the reliability field, Chapter 13 of Wu & Hamada (2009) explains

how to use designed experiments for improving reliability.

Optimal design criteria

The standard factorial design and classical designs like central composite design

and Box-Behnken design are widely used. However, in some circumstances it is hard or

impossible to apply them. First, the design region of experiments may not be a regular
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space. For example, the two factor experimental design region is not a square and the

three factor design region is not a cube. Second, the response surface model may not be a

hierarchical model which means some terms are not included in the model. For example, a

full second order model for a two factor experiment should have 6 terms but experimenters

exclude one of the squared term due to certain pre-knowledge and only discuss a model

with 5 terms. Third, due to the limitations of time and money, experiments can only have

small number of runs which the classical designs may not be applicable. In order to tackle

the design problems with constraints mentioned above, Kiefer (1959, 1961) developed the

concepts of optimal design. Optimal designs are certain types of designs with the respect

of different optimal criteria. Several popular optimal criteria will be introduced below.

The most widely used optimality is D-optimality. A D-optimal design focuses on

good model parameter estimations and trying to maximize the determinant of moment

matrix as shown below (Myers et al. (2009)),

max |M(ξ )|= max |X(ξ )′X(ξ )

N
| (2.4)

where X(ξ ) is the design matrix of an experimental design ξ and N is the sample size.

The purpose of A-optimality is to make a design that minimizes the variances of

model coefficients by minimizing the trace of inverse information matrix which can be

written as

minTrace(X(ξ )′X(ξ ))−1 (2.5)

where X(ξ ) is the design matrix of an experimental design ξ .

The G-optimality criterion is used to minimize the maximum value of prediction

variance over the design region and can be written as

minmax
Nx′(X(ξ )′X(ξ ))−1x

σ2 (2.6)
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where N is sample size and x is a point from design region and X(ξ ) is the design matrix

of an experimental design ξ .

The I-optimality criterion is used to minimize the average prediction variance over

the whole design region and can be written as

min
∫

Ω
x′(X(ξ )′X(ξ ))−1xdx

SΩ

(2.7)

where x is a point from design region and X(ξ ) is the design matrix of an experimental

design ξ and Ω is the design region and S is the area of design region.

The four optimality criteria mentioned above are called alphabetic optimality

criteria because they are all named after a letter. There are also some other alphabetic

optimality criteria that are variations of the basic criteria we discussed above. For

example, V-optimality is a special case of I-optimality which only consider a subset of

points in the design region and Ds-optimality only checks the subset of model coefficients.

Several other derived alphabetic optimality criteria will be discussed in detail in later

chapters. Since under many situations, the optimal designs are not standard designs and

the design structures are unknown, experimenters have to find those designs with the help

of computers.

A widely used algorithm for optimal design is called point exchange. Basically,

the experimenters start to select a set of points from a candidate set as an initial design.

Next, select an point out of the current design and replace with a point from the pool

which can improve the optimality criterion. Then repeat the last step until there is no

improvement found. The advantage of the point exchange method is it is easy to

understand and apply but on the other hand, point exchange cannot always guarantee to

find an optimal design and may end up at a local optimality case. In addition, the

experimenter may not know the pool of candidate points before they start to build the

designs and this could be another issue for point exchange method. The point exchange
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algorithm was first introduced by Mitchell (1974).

Another approach, similar to the point exchange, is the coordinate exchange. It

also starts with an initial design. Then in each iteration, the algorithm tries to find a single

coordinate in each point in the design and replace it with a new coordinate which can

improve the optimality of the criterion. After many iterations, the design will converge

when any changes made to it will not improve the optimality. Compared with the point

exchange algorithm, the coordinate exchange algorithm does not need a candidate pool

and usually have better convergence speed. This algorithm was first described in Meyer &

Nachtsheim (1995).

The definitions of alphabetical optimal criteria and two typical search algorithms

have been discussed. Now how to compare the available designs and find out the best ones

is an interesting topic. Design efficiency is a scaled value and changes from 0 to 1.

D-efficiency and G-efficiency are the two common ones which are defined as

De f f = {
M(ξ )

M(ξ ∗)
}1/p (2.8)

Ge f f =
d̄(ξ ∗)
d̄(ξ )

=
p

d̄(ξ )
(2.9)

where M is the information matrix and p is the number of parameters in the model. d̄() is

a maximal function over the design region. These two efficiency formulas are adopted

from Atkinson et al. (2007). Design efficiencies are easy to calculate and used to compare

the current designs with the optimal designs. However, since the design efficiency is a

single value criterion, it sometimes may not well present the properties of designs over the

whole design region. Therefore, some other graphical tools are developed which are

straightforward to compare different designs. Two common tools are variance dispersion

graph (VDG) and fraction of design space (FDS) which will be discussed in detail in later

chapters.
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2.3 Generalized Linear Model

The most important statistical model for data analysis is the linear regression

model and it is usually described as

y = β0 +β1x1 +β2x2 + · · ·+βkxk + ε

where y is the response variable, xi represents the regressor variable, and βi represents the

unknown parameter. This model is called a linear model because the expectation of

response variable y is a linear function of unknown parameters of βi. In addition, the error

terms ε belong to a normal distribution and they are independent to each other.

A nonlinear model is an extension of the linear model which usually explains

some complicated mathematical relationship between the response and the regressors.

The nonlinear model is usually written as

y = f (x,β )+ ε

where the response y is not a linear function of the parameters β . The nonlinear model

also assumes that the responses belong to a normal distribution and they are independent

to each other.

The linear and nonlinear models have been briefly discussed above and both of

them have an important assumption that the response variables belong to the normal

distribution. However, a lot of times the response variables may not be continuous

variable. For example, the binary variables could be the response which can only take

values of 0 or 1. This is a common situation when the regression model is trying to

classify things into two groups. In addition, response variable may only take values

between 0 and 1 which is not uncommon that the regression model is trying to find out the

probability of an event happening. Therefore, the generalized linear model (GLM) was
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developed to fit the model with the response variable belongs to a more general

distribution. Nelder & Wedderburn (1972) first explained theory of GLM and more details

were discussed in McCullagh & Nelder (1989). Myers et al. (2002) gave a clear

description about the GLM and the details are inherited here. As mentioned above, the

responses in GLM usually belong to a general distribution which is called the exponential

family and some commonly-used distributions include the normal, binomial, Poisson, and

exponential distributions all belong to this family. Now in order to build up a relationship

between the response variable of a linear model and the true response variable which

belongs to an exponential family, a link function is used to fulfill the task. This

relationship can be written as

g(µi) = g[E(yi)] = ηi = x′iβ (2.10)

where g() is the link function and x is a vector of regressors and β is a vector of unknown

parameters. For link functions, there are a lot of options available and the criterion of

choosing a link function for GLM is based on the response data, modeler’s preference,

and other requirements. The typical link functions include identity link, logistic link,

reciprocal link. They are given by

ηi = µi

ηi = ln(
P

1−P
)

ηi =
1
µi
.

Some other link functions will be discussed in later chapters. Now the input to a link

function is usually called linear predictor and it is defined as

ηi = x′β = β0 +β1x1 +β2x2 + · · ·+βkxk

In conclusion, GLMs model the relationship of linear regressors with the response

variables belong to a general distribution. A typical GLM has three components,
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• a distribution from the exponential family,

• a linear predictor,

• a link function.

Since the introduction by Nelder & Wedderburn (1972), GLM has been applied to

different research topics and survival analysis is one of them. Aitkin & Clayton (1980)

fitted the model with censored data by using exponential, Weibull, and extreme

distributions from GLM. Later, Holford (1980) and Bennett (1983) discussed the

log-linear models and log-logistic models for survival data respectively. Hurley (1985)

used GLM to do the survival analysis with two different types of failures. Later, the

application of GLM has extended to the area of accelerated life testing (ALT). Barbosa &

Louzada-Neto (1994) considered a Weibull failure distribution and a log link function to

build the relationship between stress variables and response variable and finally estimated

the mean lifetime of the units under use stress. Wang & Kececioglu (2000) presented an

algorithm to obtain the MLE of model parameters from testing data with Weibull

log-linear model. Lee & Pan (2010) analyzed the step-stress ALT with exponential

distribution and applied GLM approach to estimate the parameters.

2.4 Design evaluation

Because of the different optimality criteria, experimenters may need to compare

the different available designs and choose the best one out of them. There are a lot of

ways to compare designs based on computational algorithms, efficiency, and other

standards. Box & Draper (1959) discussed two problems which are how to fit a

polynomial model close to the true model by least square method over the design region

and how to easily detect the gap between the polynomial model built by the experimenters

and true model. Two examples were given and the optimal design derived were two level
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fractional design with center points. Cook & Nachtsheim (1980) compared existing

algorithms for computer generating D-optimal design and modified the Fedorov algorithm

which reduced the computational time. Bohning (1986) introduced an vertex-exchange

method to find exact D-optimal design and compared the convergence speed with other

existing iteration methods. Fedorov (1989) discussed the case where the number of runs

had restrictions and proposed an heuristic algorithm based on the point exchange method.

Nguyen & Miller (1992) reviewed and compared the exchange algorithms and suggested a

modified Fedorov exchange algorithm.

As described in previous sections, the design efficiencies are great criteria to

compare different candidate designs. D-efficiency, G-efficiency, and other derived

efficiencies have been widely used. However, there are some disadvantages of design

efficiencies since they are single value criteria and sometimes may not fully represent the

situations over the whole design region and they are hard to explain. For example, for

G-efficiency its definition is to minimize the maximal prediction variance in the design

region. However, suppose there are two designs, one has smaller maximal prediction

variance but the rest area in design region have similar prediction variance values to the

maximum. The other design has a slightly larger maximal prediction variance in design

region compared with the first design but the rest area all have relative smaller prediction

variance values. Therefore, the average prediction variance of the first design will be

larger than the second design and most of the times the second design will be preferable

even the first one is preferred by G-efficiency. This situation actually led to the

development of I-optimality criterion which is used to represent the average prediction

variance over the whole design region. In the purpose of better illustration, some

graphical tools have been developed to compare different designs. Two examples are the

variance dispersion graph (VDG) and fraction of design space (FDS) graph.

The original idea of variance dispersion graph (VDG) was presented in
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Giovannitti-Jensen & Myers (1989) and VDG is a performance comparison tool of

competing designs on a fixed design space. The first step of generating a VDG is finding

all the available design points with same distance r from the center of design region and

calculating the maximum, minimum, and average prediction variances. The second step is

to increase the radius of r and record the maximum, minimum, and average prediction

variances. The last step is to plot the data points which should have three different curves.

One exception is when the design is rotatable and the maximum, minimum, and average

prediction will be the same and three curves will converge into one. The VDG allows

experimenters to compare designs and check their overall variance properties over the

whole design region. Since VDG is a quite popular graphical tool, much research has

been done to apply the tool and modify it for different purposes. Piepel et al. (1993)

applied VDG to irregular design regions. Borkowski (1995) applied the VDG to the

mixture designs. Trinca & Gilmour (1998, 1999) compared blocked response surface

designs by using VDG and derived a difference variance dispersion graph (DVDG) to

help in the choice of response surface designs. Goldfarb, Borror, et al. (2004) discussed

the design factors in mixture experiment and some other independent variables which will

change without affections of other independent variables or mixture variables. In order to

evaluate this mixture-process designs, three dimensional VDG were built. Liang,

Anderson-Cook, Robinson, & Myers (2006) considered the prediction properties of

split-plot designs and used three dimensional VDG to demonstrate comprehensive study

with the traditional single value criteria like D-, V-criteria.

Fraction of design space (FDS) plots were first developed by Zahran et al. (2003)

and it gave the percentage of design space where the scaled prediction variance is less than

or equal to a pre-defined value. The desirable curve of FDS plots are flat which means

most of the design space have small prediction variances. Goldfarb, Anderson-Cook, et al.

(2004) developed the FDS plots for mixture experiments and used them to help identify
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the important factors which affect the scaled prediction variance (SPV). Ozol-Godfrey et

al. (2005) used the FDS plots to compare design robustness by SPV values. FDS plots can

show the SPV distributions of potential designs over the same design space which will

give experimenters better understanding of features of these designs. J. Li et al. (2009)

compared three designs including central composite design (CCD), small composite

design (SCD), and minimum run resolution (MinRes) V design with different axial length

choices. The fraction of design (FDS) plots were used to represent the prediction

variances of these three designs and help the experimenters to make selection. Liang,

Anderson-Cook, & Robinson (2006) applied FDS plots to the split-plot designs and

analyzed the whole design over the whole design region. In addition, the curves of FDS

plots are also sliced into different subregion groups in order to satisfy certain design

constraints. The authors demonstrated their method by using FDS plots with variance

ratio to compare two CCD split-plot examples. Ozol-Godfrey et al. (2008) raised the issue

that the designs under GLM are given by the experimenters which may be misspecified.

Therefore, applying FDS plots to several designs with different sets of parameters can

help experimenters evaluate the design robustness. Jang & Anderson-Cook (2011) built a

ridge regression model for mixture experiment in order to handle the multicollinearity.

2.5 Model discrimination

For optimal design of accelerated life testing (ALT), the response variable and

stress factors usually have a nonlinear relationship which is quite different from the

optimal design of linear relationship in terms that: the model parameters need to be

pre-specified based on previous experience. Therefore, the optimal designs for ALT are

model dependent and the quality of the model settings will decide the quality of generated

designs. However, many potential models are available for the experimenters to choose

from and how the designs will be affected by model selections and how to distinguish
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different models by certain designs become interesting topics to explore. For the first

question, it can be viewed as the robust design problem and the experimenters prefer the

designs which would be less affected by the unknown parameters values. The second

question is a model selection problem and the experimenters want to know if some of the

terms in the model are necessary to explain the data. For example, a two stress factor

model could have only two main effect terms, or it could also have the interaction term, or

even more that it can include all the second order terms. Therefore, experiments are

generated to distinguish different models.

Atkinson & Fedorov (1975a,b) described the experimental designs for

discriminating between rival regression models, especially for T-optimal designs. Hill

(1978) reviewed the several methods for model discrimination designs including Box and

Hill’s procedure, Fedorov’s procedure, and Atkinson’s procedure. Jones et al. (2007)

proposed several criteria including SA, MPD, EPD for gauging the capability of a design

for model discrimination. Agboto et al. (2010) discussed the existing methods like

T-optimality and several new criteria to construct optimal two-level model discriminating

designs for screening experiments. However, the previous two papers only discussed the

linear model situation. Dette & Titoff (2009) derived several new properties of optimal

designs with respect to the T-optimality and also demonstrated that in nested linear

models the number of support points of T-optimal designs is usually too small to estimate

all parameters in the full model. Biedermann et al. (2011) developed optimal design

theory for additive partially nonlinear regression models and generalised their results to

parameter robust optimality criteria, called Bayesian and standardised maximin

D-optimality. DeLeon & Atkinson (1991) used numerical methods to find non-sequential

optimal designs, which can be used both for the construction of designs and for checking

the optimality of proposed designs. Chaloner (1984) discussed optimal Bayesian

experimental designs for estimation and prediction in linear models. An optimal Bayesian
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design for the nonlinear problem with a single explanatory variable is considered in

Chaloner (1993) and a literature review on Bayesian experimental design is given by

Chaloner & Verdinelli (1995). DuMouchel & Jones (1994) modified D-optimality with a

Bayesian paradigm and handled the dependent problem on assumed models. Another

interesting work from Waterhouse et al. (2006) considered a problem when two rival

GLMs for a binomial response and compared designs based on four different optimal

criteria.
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Chapter 3

Optimal Accelerated Life Test Planning With Interval Censoring

Accelerated life testing (ALT) is widely used in industry to obtain the lifetime

estimate of a product which is expected to last years or even decades. It is important to

find an effective experimental design of ALT with the consideration of certain optimality

criteria. In this paper, we discuss a new approach to designing ALT test plans when

readout data (i.e., interval censoring) are collected. In this chapter, we utilize the

proportional hazard (PH) model for a failure time distribution, and formulate a

generalized linear model (GLM) for censored data. The optimal design is obtained such

that the prediction variance of the expected product lifetime at the products’ use condition

is minimized.

3.1 Introduction

Background and Motivation

New products will be tested in order to check their functionality, safety, and

reliability before they are released to the market. However, most products nowadays can

last years, even decades, so the regular life tests are not the options for them. Accelerated

life testing (ALT) is introduced in order to shorten the product’s lifetime. In ALT certain

stress variables, such as temperature, humidity, and voltage, are set to the higher than the

normal stress level so that experimenters can expect more failures from test units within a

limited testing period. Readout data are very common in ALTs, as due to measurement

availability, cost, and other constraints, experimenters are often not able to monitor test

units continuously; instead, they inspect the test units periodically according to an

inspection plan. Therefore, the product failure times are interval censored; i.e., we know a
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test unit failed in a certain time interval, but we do not know the exact failure time. The

ALT with interval censoring is easy to implement, but interval censoring also brings the

side effect of losing the exact failure time information into experimental planning and data

analysis. This situation may reduce the accuracy of the product lifetime prediction, and it

also complicates the way of finding the expected information matrix for constructing

optimal test plans.

The conventional way to develop an optimal ALT plan is to formulate the

likelihood function, and then derive the expected information matrix for test planning.

When interval censoring is applied, the likelihood function of an interval censored failure

time is the probability of observing a failure between the lower and upper bounds of the

time interval. This causes the total likelihood function to be overly complicated and its

expected information matrix is hard to obtain. In this chapter, we propose to use the

proportional hazard (PH) model for failure time distribution with stress variables

(experimental factors). In general, the PH model is semi-parametric, thus it is more

flexible compared to the traditional failure time regression model. More specifically, when

the baseline hazard function is defined, this model will become many different

distributions, such as Weibull distribution and gamma distribution, which are commonly

used in reliability data analysis. Given the proportional hazard rate property of the PH

model, we can formulate the total likelihood function of censored data by a generalized

linear model (GLM) formulation. The GLM was developed by Nelder & Wedderburn

(1972) and its details can be found in McCullagh & Nelder (1989) and Myers et al.

(2002). Typically there are three components in a GLM formulation:

• a distribution from the exponential family,

• a linear predictor, and

• a link function.
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With the help of GLM, the information matrix can be easily derived, and then it can assist

experimenters to find the optimal test plan and to assess the properties of the optimal plan

quickly.

To plan an optimal ALT, some statistical criteria need to be achieved. For example,

we may want to maximize the determinant of expected information matrix (as the overall

variance of model parameter estimates will be minimized), then it is a D-optimal design.

Other optimal criteria include A-optimality, G-optimality, V-optimality, I-optimality, etc.

(Myers et al. (2009)). In this chapter, we are interested in the asymptotic variance of the

expected product lifetime at the use condition. A test plan that minimizes the product

lifetime prediction variance at its use condition is called the Uc-optimal design in Monroe

et al. (2010). As the Uc-optimality minimizes prediction variance, this optimal design

gives us more confidence on predicting a product’s lifetime at its use condition.

In conclusion, compared with the conventional ALT optimal plans which are

generated under the accelerated failure time (AFT) model, our PH model assumes that

stress variables accelerate the failure rate. However, it is well known that, through some

re-parameterizations, these two models are equivalent for the exponential or Weibull

failure time distribution. The benefit of applying the PH model is that we can formulate

the problem by a generalized linear model (GLM), so the statistical inference of

regression coefficients can be easily obtained. By using this formulation, we are ready to

plan an ALT with more than one stress variable and with interaction of stress variables,

which can not be conveniently done by the conventional method.

Previous work

The literature on optimal ALT designs is vast. In this section we mention some

important developements that had been done in this field, particularly for a test with

censoring, but it is not intended to be a comprehensive review of ALT. For that, readers
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may refer to Nelson (2005a,b). Nelson & Kielpinski (1976) discussed the theory of

optimal ALT plans for estimating a simple linear relationship between a stress factor and

product lifetime that has a normal or lognormal distribution, when censoring is

considered. Nelson & Meeker (1978) and Meeker & Nelson (1975) applied the maximum

likelihood theory for designing optimal ALT plans, while assuming the product lifetime

has a Weibull or smallest extreme value distribution. Tang et al. (1999) presented the

method for finding optimal ALT plans for censored two-parameter exponential

distribution. However, these papers only discussed ALTs with a single stress factor.

Escobar & Meeker (1995) introduced the ALT planning with censoring for two stress

factors. Park & Yum (1996) and Sitter & Torsney (1995) presented the optimal test plans

with two stress factors. In addition, Xu & Fei (2007) and C. Li & Fard (2007) consider

step-stress accelerated life testing plans for two stress variables. To deal with interval

censoring, Finkelstein & Wolfe (1985) and Finkelstein (1986) developed a PH regression

model for analyzing interval censored data. However, we found very few papers directly

addressed the optimal test plans with the consideration of readout data. Islam & Ahmad

(1994) and Yum & Choi (1989) developed the optimal designs under periodic inspection

and type-I censoring. Seo & Yum (1991) extended the optimal ALT plans under

intermittent inspection scheme. Tse et al. (2008) gave the optimal ALT designs under

interval censoring with random removals. In Ng et al. (2004), the ways of finding optimal

test plans for different optimal criteria by deriving the expected Fisher information matrix

were discussed in detail. Other extensions of ALT plans can be found in Pascual (2007),

Pascual (2008) and Liu & Qiu (2011). They derive the the plans for ALT with

independent competing risks.

All previous work in optimal ALT designs follows the direct approach of deriving

the expected information matrix from the likelihood function of failure times. Recently,

Monroe et al. (2011) and Pan & Yang (2011) proposed to use the generalized linear model
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(GLM) approach to approximate the information matrix for finding optimal ALT plans.

Their methods had been applied on the ALT with type-I censoring. We will modify and

improve this approach in this chapter, so as to plan ALTs with interval censoring. In

Woods et al. (2006) the reasons of why exact (optimal) design is more efficient than the

traditional factorial design were discussed. Aitkin & Clayton (1980) showed how to fit the

regression model with censored survival data by the use of exponential, Weibull, and

extreme value distribution in GLM. In addition, Barbosa et al. (1996) analyzed ALT

results using a piecewise exponential distribution with the GLM approach. To see the

difference between the optimal experimental designs for GLM and those for typical linear

models, one may refer to Chipman & Welch (1996), in which the authors used the

asymptotic covariance matrix to develop an analogous D-optimality criterion and made

the comparisons between GLM D-optimal designs and linear regression D-optimal

designs. Dror & Steinberg (2006) proposed a heuristic method, based on clustering a set

of local optimal designs, for constructing robust designs for multivariate generalized linear

models, and they also discussed sequential experimentation methods. Moreover, M. Yang

et al. (2011) develop a new approach to identifying optimal designs for multi-factor

logistics and probit models under different optimal criteria. In this chapter, we will apply

the proportional hazard model on failure times so as to transform the problem of ALT

planning with interval censoring into the problem of experimental design for GLM.

3.2 Methodology

Optimality criterion

First, we introduce the optimality criterion for finding the optimal experimental

design in this chapter. The benefits of applying optimal experimental design principles on

the ALT planning had been demonstrated in Monroe & Pan (2008). In this chapter, we

consider the Uc-optimality, which is to seek the smallest asymptotic variance of the failure

28



time prediction at the product’s use condition among all test plans.

Define a moment matrix as (Myers et al. (2002))

M =
X(ξ )′ ·X(ξ )

n
, (3.1)

where X is the design matrix of an experimental design ξ and n is sample size. The design

matrix X has the form of

X(ξ ) =



1 x1,1 . . . x1,p

1 x2,1 . . . x2,p

...
... . . . ...

1 xn,1 . . . xn,p


,

where there are p covariates and each row in the design matrix stands for a testing

condition (a point in the experimental design region).

For a linear model, the inverse of M contains the variances and covariances of

regression coefficients. The asymptotic variance of the response prediction at a point in

the design region is determined by x′(X(ξ )′X(ξ ))−1x, where x is the vector of the

covariates at this specific point. In ALT, we are interested in the lifetime prediction under

the product’s actual use condition, so it is the point xuse. However, notice that this point

typically is located outside of the experimental design region and extrapolation is needed

in order to compute the prediction variance.

Moreover, regression models for lifetime data are not linear models. In addition,

when the failure time censoring exists, it makes the situations more complicated. Thus,

the above formula needs to be modified for lifetime prediction variance estimation. If we

can reformulate the lifetime regression problem as a GLM problem, then the

Uc-optimality becomes as solving the following optimization,

argmin
ξ

xuse
′ · (X(ξ )′WX(ξ ))−1 ·xuse, (3.2)
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where W is a weight matrix associated with the variance of response variable in the GLM

formulation.

Model derivation

In this section, we will present the GLM approach to find optimal designs of ALT

with interval censoring. The GLM formulation of interval censored survival data was

initially discussed in Collett (2003) and the details are given below. Suppose that all test

units enter a test at time 0 and during the course of the test, they are inspected at times

t1, t2, . . . until tk, where t1 < t2 < · · ·< tk. Furthermore, let t0 = 0 and tk+1 = ∞. If a test

unit has failed in the jth interval, then its failure time has t j−1 ≤ t < t j, for j = 1,2, . . . ,k.

Let pi j be the probability of failure of the ith test unit in the jth interval and let πi j be the

conditional probability of the ith test unit failed in the jth interval given that it survived at

t j−1, i.e.,

pi j = P(t j−1 ≤ Ti < t j),

and

πi j = P(Ti < t j | Ti ≥ t j−1)

=
P(t j−1 ≤ Ti < t j)

P(Ti ≥ t j−1)

=
pi j

Ri(t j−1)
,

with i = 1,2, . . . ,n and j = 1,2, . . . ,k. R(.) is a reliability function. For a test unit that have

survived to the last inspection time tk, we have

pi,k+1 = P(Ti ≥ tk) = Ri(tk) = 1−
k

∑
l=1

pil,

and

πi,k+1 = P(Ti ≥ tk | Ti ≥ tk) = 1.
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It then follows that

1−πi j = 1−
P(t j−1 ≤ Ti < t j)

P(Ti ≥ t j−1)
=

P(Ti ≥ t j)

P(Ti ≥ t j−1)
,

so

(1−πi1)(1−πi2) · · ·(1−πi, j−1) = P(Ti ≥ t j−1),

and

pi j = (1−πi1)(1−πi2) · · ·(1−πi, j−1)πi j (3.3)

for j = 2,3, . . . ,k+1, with pi1 = πi1.

We let ri j be an indicator variable for whether or not the ith test unit is failed in the

t j interval and let si j be another indicator variable for whether or not the ith test unit

survives by the time t j, i.e.,

ri j =

 1 when t j−1 ≤ Ti < t j

0 otherwise

and

si j =

 1 when Ti ≥ t j

0 otherwise
,

then

si j = ri, j+1 + ri, j+2 + · · ·+ ri,k+1

for j = 1,2, . . . ,k.

The sample likelihood of ri j’s is

n

∏
i=1

k+1

∏
j=1

pri j
i j .

Substituting pi j by (3.3), the likelihood function becomes

n

∏
i=1

k+1

∏
j=1

[
(1−πi1)(1−πi2) · · ·(1−πi, j−1)πi j

]ri j .
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This function can be written as

n

∏
i=1

π
ri1
i1 [(1−πi1)πi2]

ri2 · · ·
[
(1−πi1) · · ·(1−πik)πi,k+1

]ri,k+1,

which reduces to

n

∏
i=1

[
π

ri,k+1
i,k+1

k

∏
j=1

π
ri j
i j (1−πi j)

si j

]
. (3.4)

As πi,k+1 = 1, (3.4) becomes

n

∏
i=1

[
k

∏
j=1

π
ri j
i j (1−πi j)

si j

]
. (3.5)

The above likelihood function has the same likelihood function form as from

random variables Yi j such that Yi j ∼ Binomial(ri j + si j, πi j). Since we have n units and k

intervals in a test, there are nk corresponding binomial variables. Based on the definitions

of ri j and si j, their sum will be 1 if the ith test unit survives at the time t j−1 and 0 if it fails

before t j−1, i.e.,

ri j + si j =

 1 when Ti ≥ t j−1

0 otherwise
.

Therefore, we have

E[ri j + si j] = 0×P(Ti < t j−1)+1×P(Ti ≥ t j−1)

= P(Ti ≥ t j−1) = 1−
j−1

∑
l=1

pil. (3.6)

Note that

1−πi j = P(Ti ≥ t j | Ti ≥ t j−1) =
Ri(t j)

Ri(t j−1)
. (3.7)

When the proportional hazard model is applied, (3.7) can be written as

1−πi j =

[
R0(t j)

R0(t j−1)

]exp(ηi)

, (3.8)
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where R0() is baseline reliability function and ηi is a linear predictor, i.e., ηi = xiβ .

Taking two steps of logarithm, we find that

log{− log(1−πi j)} = ηi + log[log{R0(t j−1)/R0(t j)}]

= ηi + γi (3.9)

where γi = log[log{R0(t j−1)/R0(t j)}] and it is irrelevant to stress factors. Therefore, if we

apply the GLM formulation on the binomial likelihood function, the link function is a

complementary log-log link function.

The iterative weighted least square (IWLS) procedure is used to find the maximum

likelihood estimation of a GLM (Myers et al. (2002)). The weight matrix W is a diagonal

matrix and the diagonal elements can be derived by finding the approximate variance of

the linear predictor, which is

W = Diag{∆V ∆}, (3.10)

where ∆ = diag{ dθi
dηi
} and V is the variance of Yi j. The θi is the natural location parameter

of the distributions from exponential family. The ∆ term is introduced into the weight

matrix because the log-log link function is not a canonical link function for the binomial

distribution. As ri j and si j are random variables, we use their expectations to replace these
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variables in V . We derive the weight matrix from the (3.10) as

Wad j = Diag{
d(log πi j

1−πi j
)

d(log(− log(1−πi j)))
·V

·
d(log πi j

1−πi j
)

d(log(− log(1−πi j)))
}

= Diag{(−
log(1−πi j)

πi j
) ·V · (−

log(1−πi j)

πi j
)}

= Diag{
log(1−πi j)

πi j
·E[ri j + si j] ·πi j · (1−πi j)

·
log(1−πi j)

πi j
}

= Diag{
[log(1−πi j)]

2(1−πi j)

πi j
E[ri j + si j]} (3.11)

The weight matrix here becomes Wad j because we use the expected sample size of the

binomial distribution, E[ri j + si j] from (3.6), to replace the actual sample size.

Now, based on the Uc-optimality, the prediction variance can be written as

PVuse = x′use · [X′Wad jX]−1 ·xuse (3.12)

where X is the design matrix and xuse is the vector of the use condition.

We apply the nonlinear optimization procedure in SAS software to find the

Uc-optimal design. Readers need to pay attention to the format of the design matrix X. If

we have n test units and k time intervals, then the dimension of X will be nk× (p+1)

where the p is the number of stress factors used in ALT. For a specific test unit, its testing

conditions are the same in different time intervals. In other words, the ALT only have n

different test units, but, because of the k intervals, these n test units are virtually treated as

nk units. Now, we have developed a general method that can handle different lifetime

distributions, such as exponential, Weibull and so forth, with interval censoring.
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Weibull and exponential distributions

Assuming a Weibull distribution for product’s lifetime distribution, in this section

we will show the formulation of the adjusted weight matrix for finding the optimal test

plan, given an inspection plan of the test. The failure function of Weibull distribution is

F(t) = 1− e−tα λ ,

where α and λ are the shape and scale parameters, respectively. According to the PH

model, the stress factors will affect λ only by a log-linear function, i.e.,

logλ = η = β0 +β1x1 + . . .+βpxp,

where η is the linear predictor and xi’s are the stress factors. Thus, for a test unit we have

F(t) = 1− e−tα eηi
.

The reliability function is R(t) = 1−F(t) and replace it into (3.7),

1−πi j =
e−tα

j eηi

e−tα
j−1eηi

. (3.13)

Assume the shape parameter α is known. Let y j = tα
j , then we have

πi j = 1− e−tα
j eηi

e−tα
j−1eηi

= 1−{ e−y j

e−y j−1
}eηi

. (3.14)

With (3.11), (3.12) and (3.14), we can do the optimization and find the Uc-optimal test

plan.

Now consider a special case of α = 1, so the failure time distribution becomes

exponential distribution,

F(t) = 1− e−teηi
.
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Suppose all the time intervals have the same length, ∆t, then (3.13) can be written as

1−πi j =
e−t jeηi

e−t j−1eηi
=

e− j∆teηi

e−( j−1)∆teηi
= e−eηi∆t , (3.15)

and the Wad j matrix can be derived as

Wad j = Diag[
(1−πi j)[log(1−πi j)]

2

πi j
·E[ri j + si j]]

= Diag[
e−eηi∆t · [−eηi∆t]2

1− e−eηi∆t
· e−eηi( j−1)∆t ]

= Diag[
∆t2 · e2ηi−∆t·(eηi+eηi( j−1))

1− e−eηi∆t
]. (3.16)

3.3 Examples, comparison, and sensitivity analysis

We first use a simple example from Tse et al. (2008), and compare our Uc-optimal

test plan from the GLM approach with their equal spaced (ES) and equal probability (EP)

test plans. The ES test plan means the testing time is equally divided into several intervals

and the EP test plan makes the failure probability equal in each test interval. We then

demonstrate the capabilities of our method by applying it on a multiple-stress factor ALT

and performing the sensitivity study of the optimal plan to model parameter assumptions.

Comparison with a traditional method

Tse et al. (2008) used the second derivative of the total likelihood function to

obtain the design information matrix and to develop the equal spaced (ES) and equal

probability (EP) deigns for Uc-optimal test plans. Only one stress factor was considered in

Tse et al. (2008) and the lifetime distribution was given as a Weibull distribution with the

shape parameter being 2.

In order to make comparisons between the optimal design generated from the

GLM approach and optimal designs under ES and EP from Tse et al. (2008), we use the
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Table 3.1. Uc-optimal design with type-I censoring Pu = 0.001,Ph = 0.9

number of intervals ES EP GLM
k s∗1 α∗1 PV s∗1 α∗1 PV s∗1 α∗1 PV
2 0.453 0.85 0.41 0.452 0.85 0.41 0.464 0.86 0.41
3 0.457 0.85 0.41 0.456 0.85 0.41 0.459 0.86 0.41
5 0.460 0.85 0.40 0.459 0.85 0.41 0.462 0.86 0.40

10 0.461 0.85 0.40 0.460 0.85 0.40 0.463 0.86 0.40

Table 3.2. Uc-optimal design with type-I censoring Pu = 0.001,Ph = 0.5

number of intervals ES EP GLM
k s∗1 α∗1 PV s∗1 α∗1 PV s∗1 α∗1 PV
2 0.367 0.90 0.67 0.367 0.90 0.67 0.392 0.86 0.67
3 0.367 0.90 0.67 0.367 0.90 0.67 0.393 0.86 0.67
5 0.367 0.90 0.66 0.367 0.90 0.66 0.393 0.86 0.66

10 0.368 0.90 0.66 0.368 0.90 0.66 0.393 0.86 0.66

same assumptions from their paper and apply the ES inspection scheme to get the optimal

design. The comparison is given in Tables 3.1 and 3.2. In these two tables, Pu and Ph stand

for the percentile of failure at the use condition and the high stress condition and k is the

number of intervals in the test. s∗1 stands for the coded stress level, α∗1 stands for the

percentage of the test units allocated at the α∗1 level, and PV stands for the prediction

variance at the use condition. An important thing should be noticed here is that in this

comparison, the coded stress variable s1 of the use condition and the high stress level

condition are set as 0 and 1 in order to match the terms in Tse et al. (2008).

One can see that the results from our GLM method and Tse’s ES, and EP are very

similar. The small differences in test plans come from the computation roundup errors.

However, when there is more than one stress factor, the traditional method has to

reformulate the information matrix, which becomes very complicated, while the GLM

approach can easily address the problem by adding new stress variables in the linear

predictor. Moreover, the interaction effect of stress factors can be investigated by the

GLM approach without further difficulty.
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An example with two stress factors

Suppose there is an electronic part whose lifetime belongs to an exponential

distribution and its lieftime is affected by the temperature and humidity. The use condition

of this electronic part is set as 30◦C and 25%. Under the ALT test, the temperature ranges

from 60 ◦C to 110◦C and the relative humidity level ranges from 60% to 90%. The natural

stress of temperature and humidity can be presented as S1 = 11605/T , with temperature

in degree Kelvin, and S2 = log(h), with relative humidity as a percentage. Following the

notation used in Monroe et al. (2010), we let the design space of this experimentation to

be a unit square and the use condition to be located at the first quadrant. The

transformation is given by x ji =
S ji−S jH
S jL−S jH

where S jH and S jL are the high and low level of

stress factor j; thus, the highest stress level is transformed to (0, 0) and the lowest stress

level is transformed to (1, 1). The linear predictor is given below, while we note that an

interaction effect of temperature and humidity is considered in this model.

η =−4.086x1−1.476x2 +0.01x1x2. (3.17)

Let the total testing time be 30 hours and set k equal-length inspection intervals

during the test, where k = 2, 5, 10, and 30. We program the optimal design for GLM in

SAS, based on the method from Atkinson et al. (2007). Tables 3.3 to 3.6 show the optimal

test plans for these experiments. In these tables, four ALT testing conditions are selected

and their temperature and humidity settings are given. The allocation column lists the

number of test units to be allocated at each testing condition, with the assumption of

totally 100 test units. The next two columns are the failure probability at the end of testing

period and the lifetime prediction variance at the use condition. Figures 3.1 to 3.4 provide

the contour plots of prediction variance under these optimal test plans. The unit square

region in the lower-left corner of each graph is the experimental design region. The
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Table 3.3. Uc-optimal design with 2 intervals

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 108.72 0.022 60.00 1.000 12 0.99 11.86
2 94.55 0.280 85.65 0.097 31 0.99
3 64.22 0.905 60.00 1.000 44 0.16
4 60.00 1.000 90.00 0.000 13 0.40

Table 3.4. Uc-optimal design with 5 intervals

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 60.00 1.000 11 0.99 8.32
2 103.00 0.124 90.00 0.000 21 1.00
3 67.00 0.843 60.00 1.000 49 0.20
4 60.00 1.000 90.00 0.000 19 0.40

Table 3.5. Uc-optimal design with 10 intervals

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 15 1.00 7.37
2 110.00 0.000 60.00 1.000 10 0.99
3 66.64 0.851 60.00 1.000 54 0.19
4 60.74 0.984 90.00 0.000 21 0.42

selected testing conditions are marked by circles and the circle diameter is corresponding

to the sample size allocation at such condition. The use condition is marked by a

rectangle, which is located outside of the experimental design region, and the locations

with equal prediction variance are outlined by contour lines.

Table 3.6. Uc-optimal design with 30 intervals

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 12 1.00 6.94
2 110.00 0.000 60.00 1.000 12 0.99
3 67.82 0.825 60.00 1.000 52 0.21
4 61.74 0.961 90.00 0.000 24 0.45
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Figure 3.1. Contour plot of Uc-optimal
design with 2 intervals

Figure 3.2. Contour plot of Uc-optimal
design with 5 intervals

Figure 3.3. Contour plot of Uc-optimal
design with 10 intervals

Figure 3.4. Contour plot of Uc-optimal
design with 30 intervals
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From these tables and figures readers can see that with increasing number of

inspection intervals, the lifetime prediction variance at the use condition is decreasing.

This is expected, as more intervals means that more precise information of failure times

can be obtained. Notice that the number of test units being allocated at the location of the

lowest combination in coded variables x1 and x2 (or, the highest stress level) shows a

decreasing trend when the number of inspection intervals increases, i.e., 31 at (0.280,

0.097), 21 at (0.124, 0.000), 15 at (0.000, 0.000), and 12 at (0.000, 0.000) in Tables 3.3 to

3.6, respectively. This happens because with fewer number of intervals failure time

information is less available, and correspondingly, sample size needs to be increased. This

phenomenon is more prominent at a higher stress level. Also, fewer intervals (or longer

interval time) causes the problem to be more nonlinear, thus the highest testing stress

condition may not be located at the low-left corner of the design region, as it often appears

on the optimal experimental design for linear models. In fact, the actual number of testing

conditions found by our algorithm are more than four; however, in order to have an easier

implementation of any optimal test plan, we round up the coded test location coordinates

to 0.001, which aggregates these locations to four distinct points. Moreover, in all of these

plans one can see that most test units are allocated at the upper-right corner of the design

region, which corresponds to the lowest testing stress level. This is because 1) it is the

closest point in the design region to the use condition point, so more failure information at

this point will help reduce the prediction variance at the use condition; 2) as fewer failures

are expected at low stress level, we need to increase the sample size.

Now we compare the interval censoring case with a right censoring case with the

same model assumption, as shown in Table 3.7. One can see that the optimal test plan for

interval censoring becomes more and more close to the optimal plan for right censoring,

as the number of intervals increases. Actually when we run an extreme case with 120

intervals during 30 hours testing period, the optimal test plan is exactly the same as that of
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Table 3.7. Uc-optimal design with type-I censoring

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 12 1.00 6.91
2 110.00 0.000 60.00 1.000 12 0.99
3 67.86 0.824 60.00 1.000 52 0.21
4 62.05 0.954 90.00 0.000 24 0.46

a right censoring case. It validates the test plan generated for interval censoring.

Sensitivity study

The linear predictor in (3.17) in our model plays a very important role in

determining the optimal test plan. The coefficients specified in the linear predictor are

from previous experimental results and engineering experience. However, the true model

may not be the same as the model pre-specified; therefore, a study of the sensitivity of the

optimal test plan to a misspecified model is necessary. Suppose the original coefficient

values in (3.17) are used for finding an optimal test plan. However, the real values of these

coefficients are not the same as those in (3.17). Assuming that the real value of each

stress’s coefficient may vary ±20% from the used value, we have 9 combinations of these

coefficient values, or 9 true linear predictor models. We will compare the performance of

the assumed optimal test plan to the true optimal plan and discuss the impact of the

misspecified model. In this study, we let the number of inspection intervals k = 10 and the

shape parameter α = 1.2. The results are presented in Table 3.8, where the column of

ideal PV gives the lifetime prediction variance if the right model is specified and the

column of actual PV gives the prediction variance when the predictor model is

misspecified.

In Table 3.8, the ideal PV is always smaller than the actual PV. This is because the
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Table 3.8. PV of designs with different combination for stress coefficient

No. comb coefficient of x1 coefficient of x2 ideal PV actual PV % Change
0 (Orig,Orig) −4.086 −1.476 5.08 5.08 0.0%
1 (+20%,Orig) −4.900 −1.476 7.73 8.58 11.0%
2 (−20%,Orig) −3.269 −1.476 3.43 3.52 2.6%
3 (+20%,+20%) −4.900 −1.771 8.76 10.25 17.0%
4 (−20%,+20%) −3.269 −1.771 3.78 3.88 2.6%
5 (+20%,−20%) −4.900 −1.181 6.85 7.37 7.6%
6 (−20%,−20%) −3.269 −1.181 3.14 3.29 4.8%
7 (Orig,+20%) −4.086 −1.771 5.78 5.86 1.4%
8 (Orig,−20%) −4.086 −1.181 4.45 4.53 1.8%

the “ideal PV” is calculated from the true optimal test plan derived from the true predictor

function, while the “actual PV” is calculated from the assumed optimal test plan from the

misspecified predictor function. One can see that their differences are relatively small

(< 8%) in 6 out of 8 cases, which indicates that, under these cases, even if the model is

misspecified, the resulted test plan still give a robust performance. However, for the cases

that the coefficient of x1 changes in the positive direction when the coefficient of x2 is kept

the same or moving to the same direction, the PV differences are larger than 10%. This

can be explained from the predictor function, in (3.17), as one can see that x1 has a much

larger influence on η . The result implies that at the test planning stage, we should pay

more attention to the coefficient of temperature and specify it as accurately as possible.

The above example shows how the wrongly estimated coefficients in the linear

predictor will affect ALT results. Therefore, a reliability engineer may prefer a test plan

that is robust to a group of possible models, instead of a single model. It is common that

at the test planning stage, the engineer assumes that the coefficients used in the predictor

function may take values from an interval with certain distribution, or it can be discretized

to a set of values using probability weights. For example, let the coefficient of x1 be

chosen from −4.486, −4.286, −4.086, −3.886, and −3.686 with the probability of 0.1,

0.2, 0.4, 0.2, and 0.1, respectively, and the coefficient of x2 be chosen from −1.876,

−1.676, −1.476, −1.276, and −1.076 with the probability of 0.1, 0.2, 0.4, 0.2, and 0.1
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Table 3.9. Weighted average Uc-optimal design with 5 intervals

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 60.00 1.000 10 0.99 8.59
2 103.04 0.123 90.00 0.000 21 0.99
3 66.73 0.849 60.00 1.000 50 0.19
4 60.00 1.000 90.00 0.000 19 0.40

respectively. Then, we can seek a test plan that can minimize the average prediction

variance over the range of the coefficient values. We call it a weighted average Uc-optimal

test plan. The optimal criterion of the weighted average Uc-optimal design can be written

as

min∑
c1

∑
c2

p ·xuse
′ · (X′WX)−1 ·xuse (3.18)

where c1 and c2 are the index of the available values for the coefficients and p is the prior

probability for each coefficient combination.

Continuing our example, we compute the weighted average prediction variance

based on the 25 coefficient combinations. Also, assume that the shape parameter is 1 and

there are 5 inspection intervals in the test. The weighted average Uc-optimal test plan is

given in Table 3.9 and the contour plot is in Figure 3.5. Suppose the coefficient values

(−4.086, −1.476) are the true values, then given the weighted average Uc-optimal plan

from Table 3.9, the real prediction variance at the use condition is 8.356, which is close to

the predicted value, 8.59.

In addition, the comparisons among the weighted average Uc-optimal plans with

different probability distributions are presented in Table 3.10. With the same discretizing

schemes for x1 and x2 as above, we compare plans for three different weighting schemes,

equal weighting (0.2, 0.2, 0.2, 0.2, 0.2), symmetric weighting (0.1, 0.2, 0.4, 0.2, 0.1), and

concentrated weighting, or fixed coefficient value, (0, 0, 1, 0, 0), respectively. The last

case is assumed using the true coefficient values. We also vary the number of intervals
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Figure 3.5. Weighted average Uc-optimal design with 5 intervals

from 2 to 10. From this table we can see that Case B, which has larger weight on the true

coefficient values, provides a better test plan than Case A, where all possible coefficient

combinations have the equal weight. In other words, when the prior probabilities of these

coefficients are more accurate, the test plan will be closer to the true optimal plan. At the

same time, when the number of inspection intervals increases the prediction variance will

decrease monotonically.

3.4 Conclusion

In this chapter, we develop a GLM approach to constructing optimal ALT test

plans when failure times of test units are expected to be interval censored. The optimal

criterion is selected to minimize the prediction variance of the product’s expected lifetime

at its use condition. A PH regression model is assumed for the failure time distribution, as

it allows the GLM formulation to be derived from the total likelihood function of readout

data. This assumption indeed encompasses a wide range of failure time distributions, with

Weibull and exponential distributions as two special cases. Compared to the conventional
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Table 3.10. Comparisons among weighted average Uc-optimal test plans

Interval Case A: equal weighting Case B: symmetric weighting Case C: concentrated weighting
2 Location Alloc PV Location Alloc PV Location Alloc PV
i x1 x2 ni x1 x2 ni x1 x2 ni
1 0.048 1.000 13 12.48 0.042 1.000 12 12.18 0.022 1.000 12 11.86
2 0.284 0.096 29 0.285 0.087 29 0.280 0.097 31
3 0.897 1.000 45 0.908 1.000 46 0.905 1.000 44
4 1.000 0.000 13 1.000 0.000 13 1.000 0.000 13

Interval Case A Case B Case C
5 Location Alloc PV Location Alloc PV Location Alloc PV
i x1 x2 ni x1 x2 ni x1 x2 ni
1 0.000 1.000 10 8.68 0.000 1.000 10 8.59 0.000 1.000 11 8.32
2 0.125 0.000 20 0.123 0.000 21 0.124 0.000 21
3 0.848 1.000 51 0.849 1.000 50 0.843 1.000 49
4 1.000 0.000 19 1.000 0.000 19 1.000 0.000 19

Interval Case A Case B Case C
10 Location Alloc PV Location Alloc PV Location Alloc PV
i x1 x2 ni x1 x2 ni x1 x2 ni
1 0.000 0.000 14 7.64 0.000 0.000 14 7.51 0.000 0.000 15 7.37
2 0.000 1.000 10 0.000 1.000 10 0.000 1.000 10
3 0.841 1.000 55 0.846 1.000 55 0.851 1.000 54
4 0.980 0.000 21 0.984 0.000 21 0.984 0.000 21

approach to ALT test planning, our GLM approach has the advantages on both the

easiness of computation and the ability of handling more complex models, such as a

model with more than one stress factor and with the interaction effect of two stress

factors, or the sensitivity study of a test plan to its model parameter specification, etc.

These have been demonstrated in the examples above.
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Chapter 4

Design and Evaluation of Accelerated Life Testing Plans with Dual Objectives

4.1 Introduction

Background and Motivation

Accelerated life testing (ALT) is widely accepted in the manufacturing industry

for predicting a product’s lifetime that could last years or even decades. The general idea

of ALT is to elevate the stress level of an environmental stress factor (e.g., temperature,

humidity or pressure) to a higher-than-normal level so that a good number of product

failures can be observed within the testing period and the failure time distribution can be

effectively estimated. However, even with an ALT, cost, equipment capability and other

practical experimental constraints are often critical to designing a feasible and statistically

efficient test plan. For instance, failure time censoring is almost unavoidable in ALT due

to the constraint of limited testing period or the method used for inspecting test units. Two

common censoring types are right censoring and interval censoring. If a test unit survives

after the testing period or it is removed from the test before failure, then its failure time is

right censored. If a test unit is periodically inspected, its exact failure time cannot be

observed and it is interval censored. Experimenters must consider the effect of censoring

when selecting an ALT test plan. Moreover, the physical/engineering model, such as

Arrhenius model, Eying model, or Peck model, etc., for modeling the relationship

between mean lifetime and environmental stress factors is typically a nonlinear function.

For a multi-factor ALT experiment, it is not easy to find a test plan that is both practically

feasible and statistically optimal.

The techniques of alphabetic optimal experimental design have been applied on

ALT planning (e.g. Park & Yum (1996), McGree & Eccleston (2009)). The conventional
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approach to obtaining an optimal test plan is by constructing a sample likelihood function

of failure times based on the failure time distribution assumption and then deriving the

expected Fisher information matrix. However, when censoring exists, the likelihood

function may become quite complicated and its information matrix cannot be easily

computed. To alleviate the computation and to show the intrinsic features of optimal test

plans, Monroe et al. (2011) and Pan & Yang (2011) proposed a proportional hazard (PH)

model approach, which treats the optimal ALT planning problem as an experimental

design problem for a generalized linear model (GLM). We will take this approach to

deriving optimal ALT plans in the rest of the chapter.

An optimally designed ALT may have the purpose of optimizing either model

parameter estimation or making precise prediction at the use condition stress level. An

estimation-oriented test plan tries to optimize an optimality criterion that is related to the

quality of model parameter estimation. For example, the D-optimal criterion, which

considers the general variance of parameter estimators, is one of the most popular

optimality criterion for model estimation. A prediction-oriented ALT test plan focuses on

the quality of model-based prediction, which is typically the prediction of product’s mean

lifetime or a low percentile of its lifetime under its use condition. The Uc-optimality,

proposed in Monroe et al. (2010), assumes that product’s use condition is a single

combination of stress factors and levels. In practice, a product’s use environment may

vary according to its application and/or time, so its use stress condition is no longer a

fixed point. Instead, it is a use region. For example, the operational temperature of a CPU

may vary from 35◦C to 50◦C depending on computing demands. Therefore, we would like

to find an optimal test plan that can minimize the average prediction variance over the

entire use condition region, and we define it as I-optimality. In addition, a good ALT plan

should take into consideration that any optimal test plan is model and parameter

dependent; i.e., the optimal plan can only be obtained after the product’s life-stress model
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and model parameters are fully specified. The experimenter may want to assess the

estimation property of a test plan, such as its D-efficiency, as well as its prediction

property at the same time so as to choose a balanced plan.

In this chapter, we introduce a dual-objective optimization process based on the I-

and D-optimality to provide experimenters the most efficient ALT plan. We develop

several graphical tools – the fraction of use space (FUS) plot, efficiency plot, and Pareto

frontier plot – for evaluating and comparing ALT test plans. In the rest of this section the

previous work of optimal ALT planning is reviewed. The I-optimality is then introduced

in Section 2 and we study the effect of interval censoring on I-optimal test plans. The dual

objective optimization is formulated in Section 3, followed by the discussion of test plan

evaluation using graphical tools in Section 4. Finally, this chapter is concluded in Section

5.

Previous work

The literature on ALT and ALT planning is vast. One may refer to Nelson

(2005a,b) for a summary of ALT literature up to 2005. Notably, Meeker & Nelson (1975)

and Nelson & Meeker (1978) applied the maximum likelihood theory on designing

optimal ALT plans, while assuming the product lifetime has a Weibull or extreme value

distribution. Nelson & Kielpinski (1976) discussed the theory of optimal ALT plans for

establishing a simple linear relationship between a single stress factor and product lifetime

that has a normal or lognormal distribution, and they also considered censoring. In

Escobar & Meeker (1995), Park & Yum (1996), and Sitter & Torsney (1995), optimal test

plans with two stress factors were discussed and right censoring was adopted. Islam &

Ahmad (1994) developed the optimal designs under periodic inspection and type-I

censoring. More recently, Tang et al. (2002) considered two alternative methods for

planning optimal ALTs with three stress levels. Tse et al. (2008) provided the optimal
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ALT designs under the interval censoring with random removals.

The conventional approach to developing optimal test plans for ALT is by

applying the accelerated failure time (AFT) model to obtain the likelihood function of

failure observations. However, due to censoring and the nonlinear relationship between

failure time and stress factors, obtaining the expected information matrix from the

log-likelihood function of AFT model becomes a tedious task for many commonly used

failure time distributions. In Monroe et al. (2011) and Pan & Yang (2011), a new approach

based on the proportional hazard (PH) model was proposed. This approach converts the

multi-stress ALT planning problem to an experimental design problem for GLM. Their

method has been applied to designing optimal ALT plans with right censoring and interval

censoring. For the theories and applications of the PH model, one may also refer to, e.g.,

Finkelstein & Wolfe (1985), Finkelstein (1986), and Elsayed & Jiao (2002).

In the design of experiments literature, Myers et al. (2009) described the I-optimal

design as an experimental design that minimizes the average model prediction variance

over the entire design space. For an ALT experiment, the region of use stress levels is

usually located outside of the experimental design space, so the model-based

extrapolation has to be conducted in order to infer the failure time distribution under use

condition. This implies that the model parameter estimation property of a test plan is very

important too, since any bias in parameter estimation can be exaggerated by extrapolation.

In fact, in some ALT applications experimenters are more interested in establishing the

product’s lifetime-stress model than predicting its failure time at use stress level (e.g.,

Monroe & Pan (2008)). Therefore, it is necessary to investigate a multi-objective

optimization process to find a test plan with desirable estimation and prediction

properties. Konak et al. (2006) pointed out that a reasonable solution to a multi-objective

problem was to investigate a set of solutions, with each of which satisfying the objectives

at an acceptable level without being dominated by any other solutions, i.e., a Pareto
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optimal solution set. In this chapter, we formulate a dual-objective optimization problem

with the consideration of both I- and D-efficiency of an ALT plan.

Graphical methods are very attractive to experimenters for assessing the

performance of an experimental design and for comparing different designs.

Giovannitti-Jensen & Myers (1989) proposed the variance dispersion graph (VDG) as a

performance comparison tool of competing designs on a fixed design space. Zahran et al.

(2003) developed the plot of fraction of design space (FDS), which shows the distribution

of scaled prediction variance (SPV) in a design region. As aforementioned, the use stress

region in ALT is often located outside of the experimental design region. Therefore, we

propose a plot of the fraction of use space (FUS), in analogy to FDS. In addition, the

efficiency plot and the Pareto frontier plot will be used to compare different test plans.

4.2 I-optimal Test Plan

Optimal criterion

In this chapter we consider the I-optimality, which, among all test plans, seeks the

one that minimizes the integral of variance of failure time prediction over the product’s

use condition region. It is an extension of the Uc-optimality defined in Monroe et al.

(2010). The design matrix of an experimental design (a test plan) ξ has the form of

X(ξ ) =



1 x1,1 . . . x1,p

1 x2,1 . . . x2,p

...
... . . . ...

1 xn,1 . . . xn,p


,

where each column corresponds to a term in the linear predictor (including the intercept

term as the first column) and each row corresponds to the testing condition of a single test

unit. Thus, this matrix specifies how the experiment will be conducted.
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A generalized linear model consists of three components (see McCullagh & Nelder

(1989)): (1) the distribution of response variable that is from the exponential family; (2) a

linear predictor of independent variables such as η = xβ ; and (3) a link function that

connects the linear predictor to the response distribution parameter, e.g., η = g(µ), where

µ is the mean of response variable. Given a design matrix X, the asymptotic

variance-covariance matrix of the estimators of the linear predictor coefficients is found to

be proportional to (X′WX)−1, where W is a diagonal matrix with the diagonal elements

being weights, and the specification of the weight matrix depends on the link function and

the censoring type. At the use condition, xuse, the asymptotic variance of response

prediction is then proportional to x′use(X′WX)−1xuse. A test plan ξ ∗ that minimizes the

asymptotic prediction variance at the use condition is called the Uc-optimal design.

To consider a region of use conditions, we define the I-optimal test plan to be the

plan, among all test plans, that minimizes the average prediction variance over the entire

use condition region. That is, we are looking for a test plan such that

ξ
∗ := min

ξ

∫
Ω

xuse
′ · (X′WX)−1 ·xusedxuse

SΩ

, (4.1)

where Ω is the use condition region and SΩ is the area of the use condition region.

GLM formulation

In this section, we briefly describe how to convert an optimal ALT planning

problem to the problem of experimental design for GLM. More details, along with an

example, are given in Appendix A.

By the proportional hazard assumption used in the PH model, the failure rate

function and the reliability function can be written as λ (t) = λ0(t)ex′β and

R(t) = e−Λ0(t)exp(x′β ) = R0(t)exp(x′β ), respectively. Here, λ0(t) is the baseline hazard
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function, Λ0(t) =
∫ t

0 λ0(τ)dτ is the baseline cumulative hazard function, and

R0(t) = e−Λ0(t) is the baseline reliability function.

For the case of interval censoring, suppose that all test units are inspected at times

t1, t2, . . . , tk, where t1 < t2 < · · ·< tk. Denote ri j as a binary variable indicating whether or

not the ith test unit fails in the inspection interval from t j−1 to t j, and mi j as another binary

variable indicating whether or not the ith test unit survives at the time t j−1. It is shown in

Collett (2003) that the log-likelihood function of failure observations during the course of

testing can be expressed as

L =
n

∑
i=1

k

∑
j=1

[
ri j logπi j +(mi j− ri j) log(1−πi j)

]
, (4.2)

where πi j is the conditional probability of the ith test unit failing in the time interval (t j−1,

t j). A log-log link function between πi j and the linear predictor ηi, ηi = x′iβ , can be

established as

log[− log(1−πi j)] = ηi + log
[

log
R0(t j−1)

R0(t j)

]
. (4.3)

The second term on the right hand side of (4.3) is an offset term, as it is irrelevant to stress

factors. This formulation can be viewed as the sample likelihood function of the binomial

random variable ri j with a log-log link function. The weight matrix is a diagonal matrix

with its diagonal elements being wi = mi j(1−πi j)[log(1−πi j)]
2/πi j with i = 1,2, ...,n

and j = 1,2, ...,k. Using this formulation, T. Yang & Pan (2013) derived the Uc-optimal

ALT plans.

For the case of right censoring, exact failure times, ti’s, are observed from the ALT

test, unless the test unit is censored. Without loss of generality, we assume a common

censoring time tc, where tc > ti for all i’s. Let ci be a binary variable indicating whether or

not the failure time of the ith test unit is censored. It is shown in Aitkin & Clayton (1980)

that the sample log-likelihood function can be expressed as

L =
n

∑
i=1

[ci log µi−µi]+
n

∑
i=1

[
ci

logλ0(ti)
logΛ0(ti)

]
, (4.4)
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where µi is the value of the cumulative hazard function of the ith test unit at its failure time

and

log µi = ηi + logΛ0(ti). (4.5)

Notice that the second term in the right hand side of the log-likelihood function above is a

constant, unrelated to stress factors. Therefore, to maximize the likelihood function, we

may ignore this term. Then, this likelihood function can be viewed as a Poisson

distribution with a log link function. The weight matrix is given by a diagonal matrix with

its diagonal elements as wi = µi with i = 1,2, ..,n. For the derivation of the optimal test

plans with exponential and Weibull failure time distributions, one may refer to Monroe et

al. (2011) and Pan & Yang (2011).

We code the optimization process of finding optimal ALT plans in SAS. The

computer program is available from the author Tao Yang upon request.

Effects of censoring on I-optimal test plans

In Monroe et al. (2010) an ALT experiment with two stress factors was described.

Engineers are interested in studying the lifetime of an electronic part, which is assumed to

have an exponential distribution and its mean lifetime is affected by temperature and

humidity. During the ALT experiment temperature can be varied from 60◦C to 110◦C and

relative humidity can be varied from 60% and 90%. The nominal use condition is set at

30◦C and 25% relative humidity, but it is known that the actual use condition has the

temperature range as from 20◦C to 40◦C and the relative humidity from 20% to 30%. All

experimental runs are scheduled to last 30 hours.

Following the notation in Monroe et al. (2010), we standardize the ALT

experimental region of natural testing stresses (i.e., the inverse of temperature in degrees

Kelvin and the natural logarithm of relative humidity) as a unit square with each coded
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stress variable having values from 0 to 1. The highest test stress level is coded as 0 and the

lowest test stress level is coded as 1, so the use stress level, which is outside of this

experimental region, falls in the first quadrant. The nominal use condition becomes

(1.758, 3.159) and the use region is a 0.557×1 rectangle. The derivation of the GLM

formulation of this example is given in Appendix A. We assume that test units are

periodically inspected to determine whether or not they have failed and these inspection

intervals are all equal in time. There are a total of 100 test units and an optimal test plan is

to allocate them to four distinct testing conditions (as there are four regression coefficients

to be estimated; see the linear predictor function in Appendix). Table 4.1 lists the

I-optimal designs when there are 2, 5, 10, or 30 inspections. The last two columns in

Table 4.1 represent the expected proportion of failed units among all test units allocated at

such testing condition, and the average prediction variance of the test plan.

Table 4.1. I-optimal designs

Interval Test Temperature Humidity Alloc FP PV
No. Cond. Natural Std Natural Std

k i ◦C x1 % x2 ni
2 1 64.13 0.907 60.00 1.000 44 0.16 12.92

2 60.00 1.000 90.00 0.000 13 0.40
3 108.66 0.023 60.00 1.000 12 0.99
4 94.50 0.281 85.75 0.094 31 0.99

5 1 66.91 0.845 60.00 1.000 49 0.20 9.03
2 60.00 1.000 90.00 0.000 19 0.40
3 110.00 0.000 60.00 1.000 11 0.99
4 102.88 0.126 89.12 0.000 21 0.99

10 1 66.64 0.851 60.00 1.000 53 0.19 8.04
2 60.91 0.980 90.00 0.000 21 0.41
3 110.00 0.000 60.00 1.000 10 0.99
4 110.00 0.000 90.00 0.000 16 0.99

30 1 66.59 0.826 60.00 1.000 52 0.21 7.50
2 60.00 0.962 90.00 0.000 24 0.45
3 110.00 0.000 60.00 1.000 12 0.99
4 110.00 0.000 90.00 0.000 12 0.99

From Table 4.1 one can see that when the inspection becomes more frequent, the

I-optimal design gives a smaller average prediction variance. This is anticipated, because

more inspection intervals will provide more precise failure time information from the test.
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One can also see that when the inspection becomes more frequent, more test units will be

allocated to the lowest stress level (testing condition 1) and fewer units to the highest

stress level (test condition 4). The lowest stress level is closer to the use condition region

than other testing conditions and it is expected to have fewer failure observations as the

stress is less severe than others. Therefore, the optimal test plan allocates more test units

to the lower test condition. When more failure information can be obtained by increasing

the number of intervals, the optimal plan tends to have even more units allocated to this

condition. In Figure 4.1 we plot the contour lines of prediction variance over the

experimental design region and the use region for the cases of k = 2 and k = 30. One can

see that the contour lines become less dense over the use region when the number of

intervals increases, which indicates smaller prediction variance, and the distribution of test

units in the experimental region shifts to the lowest testing condition (the contour lines are

at the same level for both figures).

4.3 Dual-Objective Test Plan

It is known that optimal ALT plans are model dependent, so these optimal plans

are local optimal plans; that is, the test plan depends on the specific model used in

planning. Typically some physical models, such as Arrhenius model, are used to describe

the relationship between product lifetime and environmental stress factors. The model

parameter value used in the lifetime-stress model must be specified by engineers before

planning the optimal experimentation, and they are called the planning values. Although

these planning values are assumed known, but, in fact, they are also of interest to

experimenters. Model estimation is an important task to ALT experimenters, because the

model-based extrapolation is unavoidable for inferring failure distribution at the product’s

use stress level. Therefore, besides of obtaining a test plan that can minimize the

prediction variance at the use region, it is also desired that the plan has a good model
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Figure 4.1. Contour plots of I-Optimal designs with k = 2 (top) and k = 30 (bottom)

parameter estimation property. Meeker & Escobar (1998) (Table 20.5, page 553) proposed

a split design for the ALT with two stress variables, in which two optimal design points (at

the highest stress level and a lower stress level) are first found to minimize the prediction

variance at the use stress level, then the design point at the lower stress level is split to two

design points according to the D-optimality criterion so that the test plan may cover a
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larger experimental region and model parameters can be better estimated.

In this chapter we propose a dual-objective formulation for ALT planning, so we

can study the trade-off between the I- and D-optimalities of a test plan and provide

experimenters alternative test plans to suit their specific needs. The goal of dual

optimization is to find the test plans that are located on the Pareto efficiency frontier; i.e.,

there is no any other plan that is more efficient with both I- and D-optimalities than the

plans on the frontier. Let Detopt be the determinant of a D-optimal design and Varopt the

average prediction variance of an I-optimal design. Suppose that the determinant value of

the information matrix of a test plan, ξ , is Detξ and its average prediction variance value

is Varξ . We want to find a test plan such that it can maximize the combination of

D-efficiency and I-efficiency as

max
ξ

{λ ×
Varopt

Varξ

+(1−λ )×
Detξ

Detopt
}, (4.6)

where λ is the weight assigned to the I-optimality and 0≤ λ ≤ 1.

Using the previous example and letting λ be 0.1, 0.3, 0.5, 0.7, or 0.9, we find the

test plans listed in Table 4.2 that maximize (4.6). From this table, one can see that when

the λ value increases, I-optimality becomes more important, so the average prediction

variance will decrease and the test plan has more test units allocated at the lowest stress

level (testing condition 1).

4.4 Test Plan Evaluation

In this section we describe several graphical tools that are used to evaluate the

estimation and prediction properties of an ALT plan and to help experimenters compare

different test plans. These tools are illustrated by examples.

58



Table 4.2. Dual-objective designs with 5 equal inspection intervals

Weight Test Temperature Humidity Alloc FP PV Det
Cond Natural Std Natural Std

λ i ◦ C x1 % x2 ni
0.1 1 75.97 0.650 60.00 1.000 35 0.38

2 62.53 0.943 90.00 0.000 21 0.47
3 110.00 0.000 60.00 1.000 19 0.99 10.63 7524
4 96.09 0.251 90.00 0.000 25 0.99

0.3 1 74.78 0.675 60.00 1.000 37 0.35
2 62.27 0.949 90.00 0.000 21 0.46
3 110.00 0.000 60.00 1.000 18 0.99 10.21 7196
4 96.25 0.248 90.00 0.000 24 0.99

0.5 1 72.85 0.716 60.00 1.000 41 0.31
2 61.83 0.959 90.00 0.000 20 0.45
3 110.00 0.000 60.00 1.000 16 0.99 9.71 6331
4 96.68 0.240 90.00 0.000 23 0.99

0.7 1 71.26 0.750 60.00 1.000 42 0.28
2 61.35 0.970 90.00 0.000 19 0.43
3 110.00 0.000 60.00 1.000 16 0.99 9.52 5928
4 97.64 0.222 90.00 0.000 23 0.99

0.9 1 67.91 0.823 60.00 1.000 48 0.28
2 60.00 1.000 90.00 0.000 20 0.40
3 110.00 0.000 60.00 1.000 12 0.99 8.95 3856
4 100.41 0.171 90.00 0.000 20 0.99

Fraction of use space plot

Although the I-efficiency can provide the average prediction variance over the use

stress region, it is more informative to experimenters if the distribution of prediction

variance over the whole use region can be displayed. As a hypothetical case, a test plan

that has large prediction variances over the most part of its use stress region may have

very small variances over a small portion of the use region, which keeps the average

prediction variance low. Obviously, this plan is worse than a plan that keeps the prediction

variances relatively low over most of the use stress region. The fraction of design space

(FDS) plot, developed in Zahran et al. (2003), displays the fraction of an experimental

design region that is under certain prediction variance values and it is good at assessing

the overall prediction performance on the entire design region. A good design should have
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a flat FDS curve. We extend this idea to the use stress region. We plot the prediction

variance versus the fraction of use stress region that has less than or equal to this

prediction variance value, and call it the fraction of use space (FUS) plot.

Using the previous example, the four I-optimal designs, corresponding to four

different inspection intervals, in Table 4.1 are evaluated by their FUS plots, as shown in

Figure 4.2. In this figure, the horizontal axis represents the fraction of use region that has

the value of prediction variance that is less than or equal to the value on the vertical axis.

It is clear from the figure that when there are more intervals the prediction variances over

the whole use stress region are reduced and the FUS curve becomes flatter. Figure 4.3

depicts the FUS curves for the both I-optimal and D-optimal test plans with 5 inspection

intervals. We notice that the curve of I-optimal test plan is uniformly lower than the curve

of D-optimal test plan, which indicates that this test plan is well behaved by keeping the

prediction variance low over the entire use stress region.

Figure 4.2. FUS Plots of I-optimal test plans with different intervals

In addition, the dual-objective designs in Table 4.2 are evaluated by their FUS

plots, as shown in Figure 4.4. As expected, when the weight value in (4.6) increases the

prediction variance of the FUS curve decreases.
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Figure 4.3. FUS Plots of I-optimal test plan and D-optimal test plan

Figure 4.4. FUS Plots of dual objective design

Efficiency plot

To evaluate the D-efficiency and I-efficiency simultaneously, we plot them against

the λ value in the dual-objective optimization formulation. At the two extremes when

λ = 0 and λ = 1, the test plan is basically a D-optimal test plan and I-optimal test plan,

respectively. However, for any other λ values the efficiency plot will illustrate the

trade-off between the two optimality criteria for the optimal test plan. Table 4.3 gives both

efficiency values for the previous example with various weight values and with five
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inspection intervals. As one can see from Figure 4.5, the D-efficiency decreases more

rapidly than the increase of I-efficiency when the weight changes from 0 to 1. Therefore,

an I-optimal test plan may not be desirable to experimenters as it possesses a poor ability

of estimating model parameters. Based on the experimenter’s goal, a test plan that

carefully balances its prediction and estimation abilities can be found from this plot.

Table 4.3. I-efficiency and D-efficiency of dual-objective designs with different weights

λ Det D-eff PV I-eff
0 7696.96 1.00 10.80 0.83

0.1 7523.92 0.98 10.63 0.84
0.2 7555.80 0.98 10.43 0.86
0.3 7195.92 0.93 10.21 0.88
0.4 6818.83 0.89 10.06 0.89
0.5 6331.19 0.82 9.71 0.92
0.6 6263.95 0.81 9.51 0.94
0.7 5928.14 0.77 9.52 0.94
0.8 5164.94 0.67 9.23 0.97
0.9 3855.65 0.50 8.95 0.99
1.0 3031.50 0.39 8.93 1.00

Figure 4.5. Efficiency plots of multi-objective designs

Pareto frontier

A test plan may not achieve two optimalities at the same time, but we can find a

plan that is not dominated by any other plans with both optimal criteria. Such solutions
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form the the Pareto frontier and any other solution that is not on the frontier can be

improved by moving it toward the frontier. The Pareto frontier can be found by solving

the combined optimization problem of (4.6) with different weights and selecting

non-dominated solutions. In this section, we use the Pareto frontier to compare our

dual-objective design with Meeker & Escobar (1998)’s approach of optimal split design

(Table 20.5, page 553). The ALT experimentation is performed on a type of insulation

with two stress factors – voltage and temperature. The main objective of the experiment is

to predict a low percentile of failure time of the insulation at its use stress condition,

which is 120◦C and 80 volts. The highest stress level can be set as 260◦C and 200 volts. It

is assumed that a Weibull distribution with the shape parameter of 1.485 is good for the

failure time distribution and the location parameter is a function of the two stress factors.

When the lifetime-stress function is fully specified, it is convenient to treat the

linearly combined multiple stresses as one stress factor. By Meeker and Escobar’s

approach, one will first find the lowest test stress level of the combined stress factor and

the test unit allocation on this level (as the highest stress level is always used), and then

these test units can be split to two design points that are located on the edges of design

region and have the same expected product lifetime as the low testing stress condition.

The optimal split is determined by the secondary objective, i.e., to maximize the

estimation property of the test plan. Thus, a 3-design point test plan is obtained with one

design point located at the highest stress levels of both stress factors and the other two

design points at two boundary lines of the design region. Figure 4.6 plots the optimal split

design for the example above.

Using the dual-objective optimization we find the Pareto frontier of this problem.

As shown in Figure 4.7, the optimal split solution is not on the frontier, so it is possible to

improve this test plan by either increasing its D- or I-efficiency without sacrificing the

other type of efficiency. In particular, we find that the estimation ability of the optimal
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Figure 4.6. Optimal split design for the example in Meeker and Escobar (1998) (Table
20.5, page 553)

split test plan is poor. We can easily improve it without compromising the prediction

ability of the test plan. Two such plans, along with the optimal split plan are presented in

Table 4.4. The test unit allocations and the contours of prediction variance of these plans

are shown in Figure 4.8. Note that the use condition in this example is a single point, so

the dual-objective designs is based on D-optimality and Uc-optimality which is a special

case of I-optimal design. Our test plans have four testing conditions, instead of three as in

the optimal split plan, thus they cover a larger portion of the experimental design region

and have a better parameter estimation property.

Figure 4.7. Pareto frontier

64



Table 4.4. Optimal test plans for the example in Meeker and Escobar (1998)

Test Test Voltage Temperature Alloc Det PV
Plan Cond Natural Std Natural Std

i Volts x1
◦C x2 ni

Opt. 1 124.00 0.522 260 0.000 36 1422 0.3100
Split 2 159.05 0.250 120.00 1.000 25

3 200.00 0.000 260.00 0.000 39
Non- 1 200.00 0.000 260 0.000 22 4864 0.2946

dominated 2 200.00 0.000 120.00 1.000 4
1 3 173.36 0.156 120.00 1.000 27

4 132.30 0.451 260.00 0.000 47
Non- 1 200.00 0.000 260 0.000 20 3662 0.2853

dominated 2 200.00 0.000 120.00 1.000 1
2 3 168.82 0.185 120.00 1.000 31

4 130.25 0.468 260.00 0.000 48

4.5 Conclusion

In this study we investigate the PH model-based approach to optimal ALT

planning. We consider both the censoring of failure times and the varying use stresses. To

provide experimenters a set of alternative test plans with desirable model prediction and

model estimation properties, we propose a dual-objective optimization process for finding

the best plan. The FUS plot, efficiency plot, and Pareto frontier plot are developed to

evaluate the prediction and estimation abilities of a test plan and to help experimenters

compare the competing plans. The examples used in this chapter demonstrate the

advantages of our approach over the conventional approach to optimal ALT planning.
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Figure 4.8. Two dual-objective test plans with λ = 0.62 (top) and λ = 0.80 (middle) and
the optimal split test plan (bottom)

66



Chapter 5

Optimal design of ALT plans for acceleration model checking

5.1 Introduction

Background and motivation

Accelerated Life Testing (ALT) is a popular method to shorten the products’

lifetime. In ALT, certain stress factors, such as temperature, humidity, voltage, are set to

be at high stress levels so more failures from test units can be observed in limited testing

period. For ALT, censoring is a important feature for failure data collection and two most

popular ones are right censoring and interval censoring. For right censoring case, ALT is

terminated at a pre-determined time and exact failure time of test units can be observed

for those who fail before the pre-determined time and the failure time of the rest of test

units are censored. For the interval censoring case, ALT is also terminated at a

pre-determined time but the testing period is divided into several time intervals and only

the number of failures from each interval can be counted. For these two censoring

mechanisms, the advantage of right censoring is that exact failure time are available which

can bring more information from the experimental design, but the shortcoming is also

obvious because it is hard to implement in reality due to the difficulty of exact failure time

observation; in contrast, interval censoring only needs to count the failure number from

each interval and is easier to implement but the side effect is less information are available

to find the optimal designs.

The conventional way of developing an optimal ALT plan is to formulate the

likelihood function and then derive the expected information matrix for test planning.

When different censoring methods are applied, the likelihood function becomes

complicated and is hard to obtain. In order to find a better way to solve this problem,
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T. Yang & Pan (2013), Pan & Yang (2013) suggested using the proportional hazard (PH)

model for a failure time distribution with stress variables. The PH model is

semiparametric and so is more flexible than the traditional failure time regression model.

Given the proportional hazard function, the total likelihood function of censored data can

be formulated by using a generalized linear model (GLM) formulation. The GLM was

originally developed by Nelder & Wedderburn (1972) and work from McCullagh &

Nelder (1989), and Myers et al. (2002) have given more details about it. The GLM

formulation usually has three parts: a distribution from the exponential family; a linear

predictor; a link function.

In order to plan an optimal design with the GLM formulation we developed,

different statistical efficiency criteria may be applied. For example, D-optimality,

A-optimality, G-optimality, I-optimality, etc and the definition of these optimal criteria

could be found in Myers et al. (2009).

The optimal designs we got are local optimal because of the nonlinear relationship

between the response variable and stress variables. Therefore, the accuracy of the optimal

designs depend on the estimation of model parameters and model structures in the linear

predictor of a GLM. Most of the time, only limited information is available for the

experimenter about the models and a best guess based on historical data should be made.

For example, for an ALT with two stress variables the full second order model includes

intercept, two main effects, one interaction, and two squared terms. The terms in the

reduced model are a subset of the full model which may only have intercept, two main

effects, and interaction. Therefore, we want to develop a design which can distinguish the

two competing models. Ds-optimality is a good choice to do model checking and it

focuses on estimating a subset of the parameters as precisely as possible. However,

Atkinson et al. (2007) mentioned that the potential disadvantage of Ds-optimality is that

the effort is concentrated on checking whether the reduced model is true, rather than on
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estimating the parameters of that model. In order to handle this problem, a dual objective

design of D-optimality and Ds-optimality could be considered here to trade off efficiency

of estimation of the parameters in the reduced model against efficiency for the model

checking parameters in the full model but not in the reduced model. In addition, a lot of

times only limited information is available for the model so a Bayesian design could be

useful.

In this chapter, the previous research work about model checking and

discrimination are briefly reviewed first. Then several examples of designs with a full

model and reduced models by the GLM approach are given and comparisons are made to

show the importance of how different models would affect the designs and their features.

Next, details of Ds-optimal design and dual objective design are discussed. And last, a

Bayesian design for model checking and estimation is discussed.

Previous work

The details of how to develop optimal designs under ALT with different censoring

situations have been discussed in T. Yang & Pan (2013), Pan & Yang (2013). Examples of

D-optimal designs, Uc-optimal design, and I-optimal designs, etc. are shown and some

tools for design evaluations are developed. Atkinson & Fedorov (1975a,b) described the

experimental designs for discriminating between rival regression models, especially for

T-optimal designs. Hill (1978) reviewed the several methods for model discrimination

designs including Box and Hill’s procedure, Fedorov’s procedure, and Atkinson’s

procedure. Jones et al. (2007) proposed several criteria including SA, MPD, EPD for

gauging the capability of a design for model discrimination. Agboto et al. (2010)

discussed the existing methods like T-optimality and several new criteria to construct

optimal two-level model discriminating designs for screening experiments. However, the
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previous two papers only discussed the linear model situation. Dette & Titoff (2009)

derived several new properties of optimal designs with respect to the T-optimality and also

demonstrated that in nested linear models the number of support points of T-optimal

designs is usually too small to estimate all parameters in the full model. Biedermann et al.

(2011) developed an optimal design theory for additive partially nonlinear regression

models and generalized their results to parameter robust optimality criteria, called

Bayesian and standardised maximin D-optimality. DeLeon & Atkinson (1991) used

numerical methods to find non-sequential optimal designs, which can be used for both the

construction of designs and for checking the optimality of proposed designs. Chaloner

(1984) discussed optimal Bayesian experimental designs for estimation and prediction in

linear models. An optimal Bayesian design for nonlinear problem with a single

explanatory variable is considered in Chaloner (1993) and a literature review on Bayesian

experimental design is done by Chaloner & Verdinelli (1995). DuMouchel & Jones

(1994) modified D-optimality with the Bayesian paradigm and handled the dependent

problem on assumed models. Another interesting work from Waterhouse et al. (2006)

considered a problem with two rival GLMs for a binomial response and compared the

designs based on four different optimal criteria.

5.2 Optimal designs with different models

In T. Yang & Pan (2013) and Pan & Yang (2013), the development of the GLM

approach for finding optimal designs with right censoring and interval censoring has been

discussed. However, in previous research they supposed the model of linear predictor is

the ’best guess’ they can get and did not compare the designs based on different models.

In this section, examples of Uc-optimal design under ALT with right censoring are given

and different models are chosen to develop the experiments.

The background setting of the example is from T. Yang & Pan (2013) and for the

70



convenience, we also describe it here. Suppose there is an electronic part whose lifetime

belongs to an exponential distribution and its lifetime is affected by temperature and

humidity. The use condition of this electronic part is set as 30◦C and 25%. Under the ALT

test, the temperature ranges from 60 ◦C to 110◦C and the relative humidity level ranges

from 60% to 90%. The natural stress of temperature and humidity can be presented as

S1 = 11605/T , with temperature in degree Kelvin, and S2 = log(h), with relative

humidity as a percentage. Let the design space of this experimentation to be a unit square

and the use condition to be located at the first quadrant. The transformation is given by

x ji =
S ji−S jH
S jL−S jH

where S jH and S jL are the high and low level of stress j; thus, the highest

stress level is transformed to (0, 0) and the lowest stress level is transformed to (1, 1).

There are three linear predictors available for GLM and shown below,

η =


−4.086x1−1.476x2

−4.086x1−1.476x2 +0.01x1x2

−4.086x1−1.476x2 +0.01x1x2 +0.03x2
1 +0.03x2

2

The first two models are reduced models and the last one is a full model and the

generalized model form could be written as

η = Xrβr +Xsβs (5.1)

where Xr and Xs are the design matrix of the required and the secondary terms

respectively. βr and βs stand for the coefficient parameters for required and secondary

terms respectively.

The I-optimality is defined as

ξ
∗ := argmin

ξ

∫
Ω

xuse
′ · (X′WX)−1 ·xusedxuse

SΩ

, (5.2)

where Ω is the use condition region and SΩ is the area of the use condition region and X is

the design matrix.
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Table 5.1. I-optimal design with only main effects under right censoring

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 28 0.99 0.48
2 81.64 0.533 60.00 1.000 67 0.54
3 62.89 0.935 90.00 0.000 5 0.48

Table 5.2. I-optimal design with main and interaction effects under right censoring

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 12 0.99 7.04
2 110.00 0.000 60.00 1.000 12 0.99
3 67.82 0.825 60.00 1.000 52 0.21
4 62.00 0.955 90.00 0.000 24 0.45

Table 5.3. I-optimal design with main, interaction, and quadratic effects under right cen-
soring

Test Temperature Humidity Alloc FP PV
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 15 0.99 46.76
2 110.00 0.000 71.95 0.522 9 0.99
3 93.34 0.303 74.14 0.449 48 0.98
4 88.87 0.389 60.00 1.000 11 0.75
5 88.00 0.406 90.00 0.000 1 0.98
6 72.85 0.716 60.00 1.000 16 0.31

Now suppose the temperature of use condition varies between 1.458 to 2.058 and

the humidity of use condition varies varies between 2.859 to 3.459 in coded variables.

The failures are right censored and the censoring time is 30 hours. Now based on the three

different models of η , the results of I-optimal designs are given in Tables 5.1 to 5.3. From

Tables 5.1 to 5.3, we can see that the three I-optimal designs have 3, 4, and 6 design

locations respectively and this is due to the models which have 3, 4, and 6 parameters

(including intercept). However, if the true model is the first model which has only main

effects, what kind of effects will be brought by the designs from the wrong models under

true model settings? Here FUS (Fraction of Use Space) plots in Figure 5.1 will be given in

order to show the difference. A FUS plot is a graphical tool which plots the prediction
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Figure 5.1. FUS plots with different models

variance versus the fraction of use stress region that has less than or equal to this

prediction variance value. More details about FUS plot can be found in Pan & Yang

(2013). From Figure 5.1 we know that wrong models will affect the prediction accuracy in

the use region. Also if the wrong model has more or fewer terms compared with the true

model, then the prediction power would be less accurate and this can be proved by the

curve of the wrong model with main, interaction, and quadratic effects is higher than the

curve of wrong model with main, and interaction effects.

In addition, extrapolation is also an important feature of ALT. The extrapolation

will exaggerate the difference between two models as the use condition moving away

from use region. Now suppose we use the last two linear predictors of η in this section

and give their mean time to failure (hours) based on three different use conditions. The

results are shown in Table 5.4 and it is obvious that extrapolation will be a serious
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Table 5.4. Ds-optimal design: checking x2, x2
2

Model Mean time to failure
No. use condition (1, 1) use condition (1.3, 2) use condition (1.758, 3.159)
2 257.75 3781.21 89164.78
3 242.74 3187.84 131970.90

problem when use condition is far away from design region and wrong model is used.

Therefore, it is important to choose the right model before developing the optimal design

and this is a motivation to find some model checking and discrimination designs to

distinguish rival models.

5.3 Ds-optimal design

When the experimenters have interest in estimating a subset of s parameters as

precisely as possible, the Ds-optimal design is a good choice. Suppose we have a linear

predictor that can be written as

η = Xβ = X1β1 +X2β2 (5.3)

And the information matrix of the design can be partitioned as

M(ξ ) =

 M11(ξ ) M12(ξ )

M′12(ξ ) M22(ξ )

 ,
where M11(ξ ) and M22(ξ ) are the information matrices corresponding to the subsets 1

and 2. The Ds-optimality criterion under GLM formulation to check parameters subset β2

could be defined as

ξ
∗ := max

ξ

|X′2WX2−X′2WX1(X′1WX1)
−1X′1WX2|=

|M(ξ )|
|M11(ξ )|

(5.4)
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Now suppose we have 3 different scenarios which the pairs of full model and reduced

model can be written as

Scenario1


reduced model:−4.086x1−1.476x2 +0.01x1x2

full model:−4.086x1−1.476x2 +0.01x1x2 +0.03x2
1 +0.03x2

2

Scenario2


reduced model:−1.476x2 +0.01x1x2 +0.03x2

2

full model:−4.086x1−1.476x2 +0.01x1x2 +0.03x2
1 +0.03x2

2

Scenario3


reduced model:−4.086x1 +0.01x1x2 +0.03x2

1

full model:−4.086x1−1.476x2 +0.01x1x2 +0.03x2
1 +0.03x2

2

Based on the three scenarios, we want to check the parameters in the reduced models and

the three Ds-optimal designs are shown in Tables 5.5 to 5.7 and the designs are also

illustrated in Figures 5.2 to 5.4.

From the Table 5.5 and Figure 5.2, we know that in order to check the quadratic

effects x1 and x2 in the model, the Ds-optimal design allocates more test units at the center

point of the all design boundaries and also the center of the design region which has the

largest number of test units as 40. From Table 5.6 and Figure 5.3, almost all the test units

are allocated on the x1 axis in order to check the effects only brought by the x1. Table 5.7

and Figure 5.4 is similar to the previous case but the only difference is that almost all the

test units are allocated on x2 axis. In general, the Ds-optimality is a good criteria to check

the interesting terms in the model. However, the Ds-optimality focuses on checking

whether the reduced model is true, rather than on estimating the parameters of the model.

Therefore in next section, a dual objective design criterion will be given to tackle this

problem.
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Table 5.5. Ds-optimal design: checking x2
1, x2

2

Test Temperature Humidity Alloc
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 4
2 110.00 0.000 73.50 0.470 10
3 110.00 0.000 60.00 1.000 2
4 91.40 0.340 60.00 1.000 11
5 88.82 0.390 74.11 0.450 40
6 86.78 0.430 90.00 0.000 13
7 60.00 1.000 90.00 0.000 3
8 60.00 1.000 76.58 0.370 14
9 60.00 1.000 60.00 1.000 3

Table 5.6. Ds-optimal design: checking x1, x2
1

Test Temperature Humidity Alloc
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 24
2 110.00 0.000 74.72 0.430 1
3 104.88 0.090 60.00 1.000 1
4 84.27 0.480 90.00 0.000 41
5 74.54 0.680 60.00 1.000 1
6 60.00 1.000 90.00 0.000 23

Table 5.7. Ds-optimal design: checking x2, x2
2

Test Temperature Humidity Alloc
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 26
2 110.00 0.000 77.21 0.350 1
3 110.00 0.000 72.60 0.500 46
4 110.00 0.000 60.00 1.000 25
5 79.82 0.570 77.21 0.350 1
6 66.68 0.850 90.00 0.000 1
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Figure 5.2. Ds-optimal design: checking x2
1 and x2

2

Figure 5.3. Ds-optimal design: checking x1 and x2
1

Figure 5.4. Ds-optimal design: checking x2 and x2
2
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5.4 Dual objective design

In previous section, Ds-optimal designs have been discussed and are good choices

for checking the interesting subset of model parameters. However, in equation (5.1) if we

already know that the required terms Xr are important in the model and want to check the

effects of secondary terms Xs, Ds-optimality may no longer be a good option. Therefore,

a dual objective design of D- and Ds-optimalities are introduced here. The D-optimality is

used to estimate the required terms in the model and Ds-optimality is used to check the

potential terms in the model. The dual objective design was described by Atkinson et al.

(2007) and the criterion is defined as

ξ
∗ : = argmax

ξ

[
κ

r
log |M11(ξ )|+

1−κ

s
{log |M(ξ )|− log |M11(ξ )|}]

= argmax
ξ

[
(pκ− r)

rs
log |M11(ξ )|+

1−κ

s
log |M(ξ )|] (5.5)

where r is the number of required terms in the full model and s is the number of secondary

terms and p = r+ s. κ is between 0 and 1.

In addition, in the first row of equation (5.5), the first part is for the D-optimal

design with the required terms and the second part is for the Ds-optimal design of the

secondary terms. Now we use the first scenario from the last section to develop three dual

objective designs with κ = 0.2,0.5,0.8. The three designs are given in Tables 5.8 to 5.11

and they are also plotted in Figures 5.5 to 5.7.

From equation (5.5), we know that with the increase of κ , the focus of dual

objective design shifts from Ds-optimal design to D-optimal design. There are three

special situations for dual objective designs which are Ds-optimal design when κ = 0;

D-optimal design when κ = 1 for βr; and D-optimal design for β when κ = r
p . From

Figures 5.5 to 5.7, when κ = 0.2, more test units are allocated at the center of each

boundary and the center of the design region. This is due to the strong emphasis on

78



Table 5.8. Dual objective design with κ = 0.2

Test Temperature Humidity Alloc Ds-eff D-eff
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 5 1.00 0.49
2 110.00 0.000 72.90 0.490 9
3 110.00 0.000 60.00 1.000 3
4 90.37 0.360 60.00 1.000 12
5 88.82 0.390 74.11 0.450 35
6 85.77 0.450 90.00 0.000 13
7 60.00 1.000 90.00 0.000 6
8 60.00 1.000 75.02 0.420 13
9 60.00 1.000 60.00 1.000 4

Table 5.9. Dual objective design with κ = 0.5

Test Temperature Humidity Alloc Ds-eff D-eff
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 8 1.00 0.63
2 110.00 0.000 72.90 0.490 11
3 110.00 0.000 60.00 1.000 8
4 88.82 0.390 60.00 1.000 9
5 88.31 0.400 73.50 0.470 28
6 85.27 0.460 90.00 0.000 12
7 60.00 1.000 90.00 0.000 10
8 60.00 1.000 74.41 0.440 6
9 60.00 1.000 60.00 1.000 8

Table 5.10. Dual objective design with κ = 0.8

Test Temperature Humidity Alloc Ds-eff D-eff
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 8 0.66 0.82
2 110.00 0.000 74.11 0.450 11
3 110.00 0.000 60.00 1.000 8
4 86.78 0.430 72.90 0.490 9
5 82.77 0.510 60.00 1.000 28
6 82.28 0.520 90.00 0.000 12
7 66.68 0.850 60.00 1.000 10
8 60.00 1.000 90.00 0.000 6
9 60.00 1.000 72.01 0.520 8
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Figure 5.5. Dual objective design with κ = 0.2

Figure 5.6. Dual objective design with κ = 0.5

Figure 5.7. Dual objective design with κ = 0.8
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Figure 5.8. Efficiency plot

Ds-optimality to check the quadratic terms x2
1 and x2

2. When κ = 0.5, all 9 different

locations almost have received similar number of test units except the center point of the

design region and this design is a more balanced one. For κ = 0.8, more test units are

allocated at four corners and it is caused by the D-optimality trying to estimate βr. In

order to better illustrate the effects of κ , a efficiency plot of Ds-efficiency for βs and

D-efficiency for βr is given in Figure 5.8. From this figure, we know that when κ is

greater than 0.3, the D-efficiency will be high and when κ is less than 0.8, the

Ds-efficiency will be high. Therefore, the κ value could be chosen between 0.3 and 0.8 to

get a good estimation of required terms and check the potential terms at the same time.

Meeker & Escobar (1998) discussed the statistical optimum design and introduced

the compromise design which uses more stress levels and reduces the statistical efficiency.

The benefit of the compromise designs is stated in Meeker & Escobar (1998) and they

tend to be more robust to misspecification of unknown inputs and they allow one to

estimate model parameters even if there are no failures at one level of the accelerating

variables. Since the dual objective design introduced in this chapter is also a robust design
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Table 5.11. Dual objective design with κ = 0.8

Design Test Voltage Temperature Alloc Ds-eff D-eff PV
Cond Natural Std Natural Std

i % C x1
◦ x2 ni

compromise 1 124.00 0.520 260.00 0.000 27 0.36 0.65 3.23
Split 2 145.00 0.350 260.00 0.000 12

3 170.00 0.180 260.00 0.000 16
4 158.00 0.260 120.00 1.000 27
5 185.00 0.090 120.00 1.000 8
6 200.00 0.000 158.00 0.660 10

Dual 1 200.00 0.000 260.00 0.000 9 0.99 0.71 1.18
Objective 2 200.00 0.000 120.00 1.000 15
κ = 0.2 3 153.33 0.290 146.44 0.760 52

4 131.21 0.460 260.00 0.000 24
Dual 1 200.00 0.000 260.00 0.000 16 0.95 0.89 1.61

Objective 2 200.00 0.000 120.00 1.000 22
κ = 0.8 3 168.04 0.190 120.00 1.000 13

4 162.00 0.230 133.90 0.870 22
5 134.87 0.430 260.00 0.000 27

to the unknown parameters, we will use the example of a two stress factor ALT on page

555 from Meeker & Escobar (1998) and applied the same settings to generate several dual

objective designs and compare them with the compromise design. The dual objective

designs consider if the interaction term should be included or not in the model. The results

can be seen from Table 5.11. From the result of the comparison, dual objective designs

have better D-efficiency and Ds-efficiency and smaller prediction variances than the

compromise design. Therefore, dual objective design is a good option to find a robust

experimental design when uncertainty exists in the model.

5.5 Parsimonious model checking design

In this section, a Bayesian method of model checking will be discussed and is

originally introduced by DuMouchel & Jones (1994). Atkinson et al. (2007) gave a more

detailed explanation for this method. In a lot of situations, the experimenters are pretty

sure about the main and interaction effects in the model but not quite sure about if the

quadratic terms should be included in the model or not. Therefore, the parameters β of the
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model could be divided into two subgroups. One is βr for the required terms and the other

is βs for secondary terms. Now the joint prior distribution of the all parameters is

β ∼ N


 βr

0s

 ,
 γ2Ir 0r×s

0s×r τ2Is


= N


 βr

0s

 ,D(β )

 (5.6)

In order to design experiments, we require the prior information matrix for β , that is we

require the inverse of the dispersion matrix D(β ). As γ → ∞

{D(β )}−1→ 1
τ2 K, (5.7)

where

K =

 0r×r 0r×s

0s×r Is

 (5.8)

So the posterior information matrix for β , given design ξ , is

M̃(ξ ) = N0K +NM(ξ ) (5.9)

where N0 =
σ2

τ2 and this equation can be normalized as

Mα(ξ ) = (1−α)K +αM(ξ ) (5.10)

where

α =
N

N +N0
=

Nτ2

σ2 +Nτ2 . (5.11)

Now for our GLM case, we only need to modify the information matrix M(ξ ) and then

maximize the determinant of Mα(ξ ) will give us a design for model checking. In Tables

5.12 to 5.14 and Figures 5.9 to 5.11, three Bayesian D-optimal designs with

α = 0.1,0.5,0.9 are given. The DB values in the tables mean that the determinant values

of the designs.

From the results we notice that when α is approaching 0, the design is more like a

D-optimal design for the required terms in the model and when α is approaching to 1,
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Table 5.12. Bayesian D-optimal design with α = 0.1

Test Temperature Humidity Alloc DB
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 20 1.99
2 110.00 0.000 60.00 1.000 19
3 76.44 0.640 60.00 1.000 35
4 67.14 0.840 90.00 0.000 26

Table 5.13. Bayesian D-optimal design with α = 0.5

Test Temperature Humidity Alloc DB
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 12 569.49
2 110.00 0.000 74.41 0.440 7
3 110.00 0.000 60.00 1.000 17
4 87.80 0.410 72.90 0.490 14
5 80.31 0.560 90.00 0.000 11
6 80.31 0.560 60.00 1.000 3
7 73.60 0.700 60.00 1.000 21
8 60.00 1.000 90.00 0.000 15

Table 5.14. Bayesian D-optimal design with α = 0.9

Test Temperature Humidity Alloc DB
Cond Natural Std Natural Std

i ◦ C x1 % x2 ni
1 110.00 0.000 90.00 0.000 11 4100.8
2 110.00 0.000 73.20 0.480 10
3 110.00 0.000 60.00 1.000 13
4 87.29 0.420 72.90 0.490 20
5 84.77 0.470 60.00 1.000 8
6 83.77 0.490 90.00 0.000 13
7 64.44 0.900 60.00 1.000 10
8 60.00 1.000 90.00 0.000 13
9 60.00 1.000 72.31 0.510 2

then the design becomes a D-optimal design for all the terms. This explains that when

α = 0.1, there are only four locations for test units and it is similar to the design with only

main and interaction effects. On the other hand, once the α is over 0.5, then the designs

reduced test units from the corners of design region and added them to the boundaries and

center which can be used to estimate the potential quadratic terms. Therefore, the

Bayesian D-optimal criteria is a good way to find a model checking design with some

prior information.
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Figure 5.9. Dual objective design with κ = 0.2

Figure 5.10. Dual objective design with κ = 0.5

Figure 5.11. Dual objective design with κ = 0.8
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Chapter 6

CONCLUSIONS AND FUTURE RESEARCH

In this dissertation, the D-optimal design, Uc-optimal design, and I-optimal

designs have been developed by the GLM approach with right censoring and interval

censoring. In addition, model sensitivity analysis, graphical tools for model evaluation,

and dual objective design concept have been introduced. At last, model checking and

discrimination are discussed.

Future work could be Bayesian design, more general distributions, and type-II

censoring.

6.1 Conclusion

In Chapter 3, the GLM approach of finding the optimal design under ALT with

right censoring and interval censoring is introduced. Some D-optimal designs, Uc-optimal

designs, and I-optimal designs are generated in order to show the advantage of the GLM

approach. Then the Uc-optimality is proved to be a robust criterion with the wrongly

estimated model parameters. Chapter 4 starts with the discussion of the I-optimal designs

which is an extension of the Uc-optimality. However, the Uc-optimality and I-optimality

only consider the prediction variance in the use condition or use region. Therefore, a dual

objective design is explained based on I- or Uc-optimality and D-optimality and the

experimenters have to make trade-off between these optimal criteria. Now with several

optimality criteria available, choose designs by applying graphical methods like the FUS,

efficiency plot, and Pareto frontier would be straightforward. Model checking and

discrimination are important when the experimenters are not sure about the model

structure and this is addressed by the Ds-optimal design, dual objective optimal design

with D- and Ds-optimality, and parsimonious design introduced in Chapter 5.
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6.2 Future work

The research in this dissertation has highlighted several types of the optimal

designs and the graphical methods for design evaluations associated with accelerated life

testing. Some extension of this work include:

• deriving the Uc- or I-optimal criteria for other distributions such as lognormal;

• deriving the Uc- or I-optimal criteria for other censoring plans such as Type II

censoring;

• developing an optimal criterion which generate robust designs to multiple censoring

plans;

• incorporating Bayesian methods which assign the prior distributions to the model

parameters and finding a robust design;

• constructing robust designs from the clusters of different designs corresponding to

the different combinations of models.
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A GLM Example

The PH model is assumed for the hazard function of failure time. Thus, the hazard
function and reliability function are respectively,

λ (t) = λ0(t)ex′β , (A.1)

and
R(t) = e−Λ(t) = R0(t)exp(x′β ), (A.2)

where λ0(t) is the baseline hazard function, Λ(t) is the cumulative hazard function,
Λ(t) =

∫ t
0 λ (τ)dτ = Λ0(t)ex′β , and Λ0(t) is the baseline cumulative hazard function, and

R0(t) is the baseline reliability function with R0(t) = exp(−Λ0(t)). The failure function is
the compliment of reliability function, i.e., F(t) = 1−R(t).

To obtain the GLM formula for censored failure time data, we need to (1) identify
a variable and its distribution that belongs to the exponential family; (2) define the linear
predictor; and (3) find a suitable link function. We will start from the interval censoring
case and then discuss the right censoring case.

Suppose that all test units are inspected at times t1, t2, . . . until tk, where
t1 < t2 < · · ·< tk. For a single test unit, one observes the following data set, (0, t1, ri1), (t1,
t2, ri2), ..., (tk−1, tk, rik), where ri j is a binary variable indicating whether or not the test unit
fails in the corresponding interval, (t j−1, t j). Let Ti be the failure time of test unit i, then

ri j =

{
1 when t j−1 ≤ Ti < t j
0 otherwise

As shown in Collett (2003), ri j can be treated as independent binomial random
variable with parameters mi j and πi j, where mi j is the number of partially survived test
unit at the time t j−1 and πi j is the conditional probability of failure in the jth interval; i.e.,

mi j =

{
1 when Ti > t j−1
0 otherwise

and
πi j = P(Ti ≤ t j|Ti > ti j).

The sample likelihood of ri j’s is given by

L =
n

∏
i=1

[
k

∏
j=1

π
ri j
i j (1−πi j)

mi j−ri j

]
(A.3)

From the definition of πi j, we have

1−πi j = P(Ti ≥ t j | Ti ≥ t j−1) =
Ri(t j)

Ri(t j−1)
. (A.4)
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Together with Eq. (A.2), we have

1−πi j =

(
R0(t j)

R0(t j−1)

)exp(ηi)

, (A.5)

where ηi is a linear predictor, i.e., ηi = x′iβ . Then, we have a complementary log-log link
function as

log[− log(1−πi j)] = ηi + log
[

log
(

R0(t j−1)

R0(t j)

)]
. (A.6)

The second term on the right hand side of link function is an offset term, as it is irrelevant
to stress factors xi. Thus, we have formulated a GLM for the ALT with interval censoring.
For finding the weight matrix of an experimental design matrix and the Uc-optimal
design, one may refer to T. Yang & Pan (2013).

In Section 2.2, we use an example adopted from Monroe et al. Monroe et al.
(2010), where the linear predictor is derived from Peck’s acceleration model with two
stress factors – temperature and relative humidity. After factor standardization, the linear
predictor is given by

ηi =−4.086x1i−1.476x2i +0.01x1ix2i, (A.7)

where x1 and x2 may take values from 0 to 1.

In the right censoring case one observes the following data pair, (ti, ci), for each
test unit, in which ti is failure time or censoring time and ci is a binary variable of whether
or not a failure is observed. As shown in Aitkin & Clayton (1980), ci can be treated as a
Poisson distributed variable with mean such as

µi = Λi(ti) = Λ0(ti)eηi. (A.8)

The link function is, therefore, a logarithm function as

log µi = ηi + logΛ0(ti). (A.9)

Again, the second term in the right hand side of the equation above is not related to stress
factors, so it is an offset term. For the derivation of optimal test plans with exponential
and Weibull failure time distributions, one may refer to Monroe et al. (2011) and Pan &
Yang (2011).
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APPENDIX B

SAS Code
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1 libname tojmp 'D:\program files\SAS results';
2 /* this code is used to find U−optimal designs for interval ...

censoring case with different number of intervals*/
3 /* this code is used to generate the Tables 3 to 6 in Interval ...

censoring paper */
4 proc iml;
5
6 /* define the U−optimality function */
7 start UOptimal(xx)
8
9 global (Weight, Var1,b0, b1, b2, b3, t, a,Phi,sum,k);

10
11 /* shape function used here to make a 100*2 size matrix*/
12 x=shape(xx,nrow(xx)*ncol(xx)/2,2);
13
14 /* F is the design matrix ...

*/
15 /* F is constructed by horizontal concatenating (pipe ...

operator) */
16 /* First column is all 1's, then column x1, x2, x1*x1, ...

x1*x2, and x2*x2 */
17 /* H is the (x1, x2) matrix ...

*/
18
19 F=j(nrow(x),1) | | x[,1] | | x[,2]||x[,1]#x[,2];
20 G= F ;
21 H= x[,1] | | x[,2];
22
23
24 /* b matrix is a column vector (denoted by //) of beta ...

coefficients */
25 b=b0//b1//b2//b3;
26
27 /* Codes below are used to find weight matrix ...

*/
28 a1=G*b;
29 a2=exp(a1);
30 a3=exp(−a2*t);
31 a4=(−a2*t)#(−a2*t);
32 a5=a4#a3;
33
34
35 Phi=a5/(1−a3);
36
37
38 W=diag(Phi);
39
40
41
42
43 /* This is the use condition location (x1,x2)=(1.758, ...

3.159) */
44
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45 use={1 1.758 3.159 5.553};
46
47
48 sum=0;
49
50 /* k is the number of intervals and in the paper it has ...

values of 2, 5, 10, and 30 */
51 k=5;
52
53
54 do j=1 to k by 1;
55
56 a6=(a3##(j−1));
57 sum=sum+a6;
58 end;
59
60
61
62
63
64 /* calculate the prediction variance ...

*/
65 XWX=F`*(sum#W)*F;
66 Var=use*inv(XWX)*use`;
67 pred var=Var;
68
69 /* Round function makes output easier to read and avoids ...

scientific notation */
70
71 Var1=round(Var,0.01);
72 Weight=round(Phi,0.01);
73 XWX1=round(XWX,0.01);
74
75 /* Return the value back to the nlpcg function which is a ...

nonlinear optimization process */
76 return(Var);
77
78 finish;
79
80 /*to invoke the create statement the first time through ...

*/
81 first=1;
82
83 /* set the values of parameters ...

*/
84 do b0=0 to 0;
85 do b1=−4.086 to −4.086;
86 do b2=−1.476 to −1.476;
87 do b3=0.01 to 0.01;
88
89
90 /* when change the value of k, change the ...

denominator of gap */
91 gap=30/5;
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92 a=1;
93 t=gap**a;
94
95 /* number of test units ...

*/
96 Nd=100;
97
98 /* ranuni is random univariate number generator ...

between 0 and 1 */
99 /* 2*rand −1 generates a set of numbers between ...

−1 and +1 */
100 /* 1:Nd*2 is a row vector, with transpose it is ...

a Nd*2 by 1 column vector */
101 x0init = ranuni((1:(Nd*2))`);
102
103
104 /* con is the constraint matrix ...

*/
105 /* shape is (value=−1, # of rows, # of cols ...

*/
106 /* double slash (//) operator is a vertical ...

concatenation */
107 /* con = {0 occurs Nd times, 1 occurs Nd times} ...

*/
108 /* first shape function is for lower bounds, ...

the second for upper bound */
109 con = shape(0,1,Nd*2) // shape(1,1,Nd*2);
110
111
112
113 /* Nonlinear program using NLPCG ...

*/
114 call nlpcg(rc, /* Return code ...

*/
115 x0, /* Returned ...

optimum factors */
116 "UOptimal", /* Function to ...

optimize */
117 x0init, /* Initial ...

value of factors */
118 0, /* Specify a ...

minimization */
119 con); /* Specify ...

constraints */
120
121
122 /* Round function makes output easier to read ...

and avoids scientific notation */
123 toout=round(shape(x0, nd,2),0.001) | |
124 Weight | |
125 repeat(Var1,nd,1) | |
126 repeat(b0,nd,1) | |
127 repeat(b1,nd,1) | |
128 repeat(b2,nd,1) | |
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129 repeat(b3,nd,1) | |
130 repeat(t,nd,1) | |
131 repeat(a,nd,1);
132
133 if first then do;
134 colnames={'x1' 'x2' 'weight' 'pred var' 'b0' ...

'b1' 'b2' 'b3' 't' 'a'};
135 create tojmp.newdat from ...

toout[colname=colnames];
136 end;
137 append from toout;
138 first=0;
139
140 end;
141 end;
142 end;
143 end;
144
145
146
147 quit;
148 proc freq data=tojmp.newdat;
149 /* make the table called summary */
150 tables b0*b1*b2*b3*t*a*x1*x2*pred var / noprint ...

out=tojmp.summary(drop=percent);
151 run;
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1 libname tojmp 'D:\program files\SAS results';
2 /* this code is used to find I−optimal designs for right ...

censoring case */
3 /* this code is used to generate the Tables 1 to 3 in Model ...

Checking paper */
4
5 proc iml;
6 /* define the Integration part of I−optimality */
7 start norpdf2(u1) global(u2,c);
8
9 use=1 | |u1 | | u2 | | u1*u2;

10 pvs=use*c*use`;
11 return(pvs);
12 finish;
13
14
15
16
17 start marginal(v) global(yy,u2,c);
18
19 interval = 1.458 | | yy;
20
21 u2 = v;
22
23 call quad(pm,"NORPDF2",interval);
24 return(pm);
25 finish;
26
27
28
29 start norcdf2(au,bu) global(yy,c);
30
31
32 yy = bu;
33
34 interval= 2.859 | | au;
35
36
37 call quad(p,"MARGINAL",interval);
38
39
40 return(p);
41 finish;
42
43
44
45
46 /* define the I−optimality function */
47 start UOptimal(xx)
48
49 global (Weight, Var1,b0, b1, b2, b3, t, a,Phi,sum,k, c, Var);
50
51 /* shape function used here to make a 100*2 size matrix*/
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52 x=shape(xx,nrow(xx)*ncol(xx)/2,2);
53
54 /* F is the design matrix ...

*/
55 /* F is constructed by horizontal concatenating (pipe ...

operator) */
56 /* First column is all 1's, then column x1, x2, x1*x1, ...

x1*x2, and x2*x2 */
57 /* H is the (x1, x2) matrix ...

*/
58 F=j(nrow(x),1) | | x[,1] | | x[,2]||x[,1]#x[,2];
59 G= F ;
60 H= x[,1] | | x[,2];
61
62
63 /* b matrix is a column vector (denoted by //) of beta ...

coefficients */
64 /* b can be changed based on the different models. e.g. for ...

main effects only model,
65 b=b0//b1//b2
66 */
67 b=b0//b1//b2//b3;
68
69 /* Codes below are used to find weight matrix ...

*/
70 a1=G*b;
71 a2=exp(a1);
72 Phi= 1−exp(−(t**a)*a2) ;
73 W=diag(Phi);
74
75
76
77
78
79 XWX=F`*W*F;
80 c=inv(XWX);
81
82
83
84
85
86
87 /* Calculate the average prediction ovet the whole use ...

region */
88 p = norcdf2(3.459,2.058)/0.36;
89
90
91
92
93 Var=p;
94 pred var=Var;
95
96 /* Round function makes output easier to read and avoids ...

scientific notation */
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97 Var1=round(Var,0.01);
98 Weight=round(Phi,0.01);
99

100
101 /* Return the value back to the nlpcg function which is a ...

nonlinear optimization process */
102 return(Var);
103
104 finish;
105
106
107 /*to invoke the create statement the first time through ...

*/
108 first=1;
109 do b0=0 to 0;
110 do b1=−4.086 to −4.086;
111 do b2=−1.476 to −1.476;
112 do b3=0.01 to 0.01;
113
114
115 /* Cenroing time ...

*/
116 t=30;
117 a=1;
118
119 /* number of test units ...

*/
120 Nd=100;
121
122 /* ranuni is random univariate number generator ...

between 0 and 1 */
123 /* 2*rand −1 generates a set of numbers between ...

−1 and +1 */
124 /* 1:Nd*2 is a row vector, with transpose it is ...

a Nd*2 by 1 column vector */
125 x0init = ranuni((1:(Nd*2))`);
126
127 /* con is the constraint matrix ...

*/
128 /* shape is (value=−1, # of rows, # of cols ...

*/
129 /* double slash (//) operator is a vertical ...

concatenation */
130 /* con = {0 occurs Nd times, 1 occurs Nd times} ...

*/
131 /* first shape function is for lower bounds, ...

the second for upper bound */
132 con = shape(0,1,Nd*2) // shape(1,1,Nd*2);
133
134
135 /* Nonlinear program using NLPCG ...

*/
136 call nlpcg(rc, /* Return code ...

*/
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137 x0, /* Returned ...
optimum factors */

138 "UOptimal", /* Function to ...
optimize */

139 x0init, /* Initial ...
value of factors */

140 0, /* Specify a ...
minimization */

141 con); /* Specify ...
constraints */

142 print x0;
143 print c;
144 print Var;
145
146
147 /* Round function makes output easier to read ...

and avoids scientific notation */
148 toout=round(shape(x0, nd,2),0.001) | |
149 Weight | |
150 repeat(Var1,nd,1) | |
151 repeat(b0,nd,1) | |
152 repeat(b1,nd,1) | |
153 repeat(b2,nd,1) | |
154 repeat(b3,nd,1) | |
155 repeat(t,nd,1) | |
156 repeat(a,nd,1);
157
158 if first then do;
159 colnames={'x1' 'x2' 'weight' 'pred var' 'b0' ...

'b1' 'b2' 'b3' 't' 'a'};
160 create tojmp.newdat from ...

toout[colname=colnames];
161 end;
162 append from toout;
163 first=0;
164
165 end;
166 end;
167 end;
168 end;
169
170
171
172 quit;
173 proc freq data=tojmp.newdat;
174 /* make the table called summary */
175 tables b0*b1*b2*b3*t*a*x1*x2*pred var / noprint ...

out=tojmp.summary(drop=percent);
176 run;
177
178 proc print data=tojmp.summary;
179 run;

107



1
2 libname tojmp 'D:\program files\SAS results';
3
4 /* this code is used to find Dual objective designs with D− and ...

Ds−optimalities */
5 /* this code is used to generate the Tables 8 to 10 in Model ...

Checking paper */
6 proc iml;
7
8
9 /* define the dual objective optimality function */

10 start DOptimal(xx)
11
12 global (Weight, DCompound, b0, b1, b2, b3, b4, b5, t , a, ...

DsEff, Deff);
13
14 /* shape function used here to make a 100*2 size matrix*/
15 x=shape(xx,nrow(xx)*ncol(xx)/2,2);
16
17 /* F is the design matrix ...

*/
18 /* F is constructed by horizontal concatenating (pipe ...

operator) */
19 /* First column is all 1's, then column x1, x2, x1*x1, ...

x1*x2, and x2*x2 */
20 /* H is the (x1, x2) matrix ...

*/
21 F=j(nrow(x),1) | | x[,1] | | x[,2]||x[,1]#x[,2] | | x[,1]#x[,1] ...

| | x[,2]#x[,2];
22 G= F;
23 H= x[,1] | | x[,2];
24
25 /* b matrix is a column vector (denoted by //) of beta ...

coefficients */
26 b=b0//b1//b2//b3//b4//b5;
27
28 /* Codes below are used to find weight matrix ...

*/
29 a1=G*b;
30 a2=exp(a1);
31 Phi= 1−exp(−(t**a)*a2);
32 W=diag(Phi);
33
34
35 /* Computing the determinant of the Fisher Information ...

Matrix */
36 XWX=F`*W*F;
37 D=det(XWX);
38
39
40 /* set Ds−optimality part for the dual objective design ...

*/
41 D11=det(XWX[1:4,1:4]);
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42 r=4;
43 s=2;
44
45 /* K is the value to decide the weight of D−optimal design ...

for the simpler model*/
46 k=0.8;
47
48
49 /* Dual objective function ...

*/
50 DCompound=(6*k−r)/r/s*log(D11)+(1−k)/s*log(D);
51
52 Ds=D/D11;
53
54
55 /* Calculate the Ds and D efficiencies ...

*/
56 DsEff=(D/D11/0.90295)**(1/s);
57
58 Deff=(det(D11)/24438.53)**(1/r);
59
60
61
62 /* Round function makes output easier to read and avoids ...

scientific notation */
63 D1=round(D,0.01);
64 Weight=round(Phi,0.01);
65 XWX1=round(XWX,0.01);
66
67 /* Return the value back to the nlpcg function which is a ...

nonlinear optimization process */
68 return(DCompound);
69
70 finish;
71
72
73 /*to invoke the create statement the first time through ...

*/
74 first=1;
75 do b0=0 to 0 by −1;
76 do b1=−4.086 to −4.086;
77 do b2=−1.476 to −1.476;
78 do b3=0.01 to 0.01;
79 b4=0.03;
80 b5=0.03;
81
82
83 /* Cenroing time ...

*/
84 t=30;
85 a=1;
86
87
88 /* number of test units ...
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*/
89 Nd=100;
90
91 /* ranuni is random univariate number generator ...

between 0 and 1 */
92 /* 2*rand −1 generates a set of numbers between ...

−1 and +1 */
93 /* 1:Nd*2 is a row vector, with transpose it is ...

a Nd*2 by 1 column vector */
94 x0init = ranuni((1:(Nd*2))`);
95
96 /* con is the constraint matrix ...

*/
97 /* shape is (value=−1, # of rows, # of cols ...

*/
98 /* double slash (//) operator is a vertical ...

concatenation */
99 /* con = {0 occurs Nd times, 1 occurs Nd times} ...

*/
100 /* first shape function is for lower bounds, ...

the second for upper bound */
101 con = shape(0,1,Nd*2) // shape(1,1,Nd*2);
102
103 /* Nonlinear program using NLPCG ...

*/
104 call nlpcg(rc, /* Return code ...

*/
105 x0, /* Returned ...

optimum factors */
106 "DOptimal", /* Function to ...

optimize */
107 x0init, /* Initial ...

value of factors */
108 1, /* Specify a ...

maximization */
109 con); /* Specify ...

constraints */
110
111
112 /* Round function makes output easier to read ...

and avoids scientific notation */
113 toout=round(shape(x0, Nd,2),0.01) | |
114 Weight | |
115 repeat(DCompound,Nd,1) | |
116 repeat(b0,Nd,1) | |
117 repeat(b1,Nd,1) | |
118 repeat(b2,Nd,1) | |
119 repeat(b3,Nd,1) | |
120 repeat(b4,Nd,1) | |
121 repeat(b5,Nd,1) | |
122 repeat(t,Nd,1) | |
123 repeat(a,Nd,1) | |
124 repeat(DsEff,Nd,1) | |
125 repeat(Deff,Nd,1);
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126
127 if first then do;
128 colnames={'x1' 'x2' 'weight' 'Dcompound' ...

'b0' 'b1' 'b2' 'b3' 'b4' 'b5' 't' 'a' ...
'DsEff' 'Deff'};

129 create tojmp.newdat from ...
toout[colname=colnames];

130 end;
131 append from toout;
132 first=0;
133
134 end;
135 end;
136 end;
137 end;
138
139
140
141 quit;
142 proc freq data=tojmp.newdat;
143 /* make the table called summary */
144 tables b0*b1*b2*b3*b4*b5*t*a*x1*x2*Dcompound*DsEff*Deff / ...

noprint out=tojmp.summary(drop=percent);
145 run;
146
147 proc print data=tojmp.summary;
148 run;

111



1
2 libname tojmp 'D:\program files\SAS results';
3 /* this code is used to find I−optimal designs for interval ...

censoring case with different number of intervals*/
4 /* this code is used to generate the Table 1 in design evaluation ...

paper */
5
6 proc iml;
7 /* Do the integration part */
8 start norpdf2(u1) global(u2,c);
9

10 use=1 | |u1 | | u2 | | u1*u2;
11 pvs=use*c*use`;
12 return(pvs);
13 finish;
14
15
16
17
18 start marginal(v) global(yy,u2,c);
19
20 interval = 1.491 | | yy;
21
22 u2 = v;
23
24 call quad(pm,"NORPDF2",interval);
25 return(pm);
26 finish;
27
28
29
30 start norcdf2(au,bu) global(yy,c);
31
32
33 yy = bu;
34
35 interval= 2.713 | | au;
36
37 call quad(p,"MARGINAL",interval);
38
39
40 return(p);
41 finish;
42
43
44
45
46 /* define the U−optimality function */
47 start UOptimal(xx)
48
49 global (Weight, Var1,b0, b1, b2, b3, t, a,Phi,sum,k, c, Var);
50
51 /* shape function used here to make a 100*2 size matrix*/
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52 x=shape(xx,nrow(xx)*ncol(xx)/2,2);
53
54 /* F is the design matrix ...

*/
55 /* F is constructed by horizontal concatenating (pipe ...

operator) */
56 /* First column is all 1's, then column x1, x2, x1*x1, ...

x1*x2, and x2*x2 */
57 /* H is the (x1, x2) matrix ...

*/
58 F=j(nrow(x),1) | | x[,1] | | x[,2]||x[,1]#x[,2];
59 G= F ;
60 H= x[,1] | | x[,2];
61
62
63 /* b matrix is a column vector (denoted by //) of beta ...

coefficients */
64 b=b0//b1//b2//b3;
65
66 /* Codes below are used to find weight matrix ...

*/
67 a1=G*b;
68 a2=exp(a1);
69 a3=exp(−a2*t);
70 a4=(−a2*t)#(−a2*t);
71 a5=a4#a3;
72
73
74
75
76 Phi=a5/(1−a3);
77
78
79 W=diag(Phi);
80
81 sum=0;
82 k=2;
83
84
85 do j=1 to k by 1;
86
87 a6=(a3##(j−1));
88 sum=sum+a6;
89 end;
90
91
92
93
94
95
96 XWX=F`*(sum#W)*F;
97 c=inv(XWX);
98
99
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100
101
102
103 /* calculate average prediction variance in use regoin ...

*/
104 p = norcdf2(3.714,2.048)/0.557;
105
106
107
108 /* calculate the prediction variance ...

*/
109 Var=p;
110 pred var=Var;
111
112 /* Round function makes output easier to read and avoids ...

scientific notation */
113 Var1=round(Var,0.01);
114 Weight=round(Phi,0.01);
115
116
117 /* Return the value back to the nlpcg function which is a ...

nonlinear optimization process */
118 return(Var);
119
120 finish;
121
122 first=1;
123 /* set the values of parameters ...

*/
124 do b0=0 to 0;
125 do b1=−4.086 to −4.086;
126 do b2=−1.476 to −1.476;
127 do b3=0.01 to 0.01;
128
129
130 /* when change the value of k, change the ...

denominator of gap */
131 gap=30/2;
132 a=1;
133 t=gap**a;
134
135 /* number of test units ...

*/
136 Nd=100;
137
138 /* ranuni is random univariate number generator ...

between 0 and 1 */
139 /* 2*rand −1 generates a set of numbers between ...

−1 and +1 */
140 /* 1:Nd*2 is a row vector, with transpose it is ...

a Nd*2 by 1 column vector */
141 x0init = ranuni((1:(Nd*2))`);
142
143 /* con is the constraint matrix ...
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*/
144 /* shape is (value=−1, # of rows, # of cols ...

*/
145 /* double slash (//) operator is a vertical ...

concatenation */
146 /* con = {0 occurs Nd times, 1 occurs Nd times} ...

*/
147 /* first shape function is for lower bounds, ...

the second for upper bound */
148 con = shape(0,1,Nd*2) // shape(1,1,Nd*2);
149
150 /* Nonlinear program using NLPCG ...

*/
151 call nlpcg(rc, /* Return code ...

*/
152 x0, /* Returned ...

optimum factors */
153 "UOptimal", /* Function to ...

optimize */
154 x0init, /* Initial ...

value of factors */
155 0, /* Specify a ...

minimization */
156 con); /* Specify ...

constraints */
157 print x0;
158 print c;
159 print Var;
160
161 /* Round function makes output easier to read ...

and avoids scientific notation */
162 toout=round(shape(x0, nd,2),0.001) | |
163 Weight | |
164 repeat(Var1,nd,1) | |
165 repeat(b0,nd,1) | |
166 repeat(b1,nd,1) | |
167 repeat(b2,nd,1) | |
168 repeat(b3,nd,1) | |
169 repeat(t,nd,1) | |
170 repeat(a,nd,1);
171
172 if first then do;
173 colnames={'x1' 'x2' 'weight' 'pred var' 'b0' ...

'b1' 'b2' 'b3' 't' 'a'};
174 create tojmp.newdat from ...

toout[colname=colnames];
175 end;
176 append from toout;
177 first=0;
178
179 end;
180 end;
181 end;
182 end;
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183
184
185
186 quit;
187 proc freq data=tojmp.newdat;
188 /* make the table called summary */
189 tables b0*b1*b2*b3*t*a*x1*x2*pred var / noprint ...

out=tojmp.summary(drop=percent);
190 run;
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