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ABSTRACT  
   

Current policies subsidizing or accelerating deployment of photovoltaics (PV) are 

typically motivated by claims of environmental benefit, such as the reduction of CO2 

emissions generated by the fossil-fuel fired power plants that PV is intended to displace.  

Existing practice is to assess these environmental benefits on a net life-cycle basis, where 

CO2 benefits occurring during use of the PV panels is found to exceed emissions 

generated during the PV manufacturing phase including materials extraction and 

manufacture of the PV panels prior to  installation.  However, this approach neglects to 

recognize that the environmental costs of CO2 release during manufacture are incurred 

early, while environmental benefits accrue later.  Thus, where specific policy targets 

suggest meeting CO2 reduction targets established by a certain date, rapid PV deployment 

may have counter-intuitive, albeit temporary, undesired consequences.  Thus, on a 

cumulative radiative forcing (CRF) basis, the environmental improvements attributable to 

PV might be realized much later than is currently understood.  This phenomenon is 

particularly acute when PV manufacture occurs in areas using CO2 intensive energy 

sources (e.g., coal), but deployment occurs in areas with less CO2 intensive electricity 

sources (e.g., hydro).  This thesis builds a dynamic Cumulative Radiative Forcing (CRF) 

model to examine the inter-temporal warming impacts of PV deployments in three 

locations: California, Wyoming and Arizona.  The model includes the following factors 

that impact CRF: PV deployment rate, choice of PV technology, pace of PV technology 

improvements, and CO2 intensity in the electricity mix at manufacturing and deployment 

locations.  Wyoming and California show the highest and lowest CRF benefits as they 

have the most and least CO2 intensive grids, respectively. CRF payback times are longer 
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than CO2 payback times in all cases. Thin film, CdTe PV technologies have the lowest 

manufacturing CO2 emissions and therefore the shortest CRF payback times. This model 

can inform policies intended to fulfill time-sensitive CO2 mitigation goals while 

minimizing short term radiative forcing. 
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CHAPTER 1 

INTRODUCTION 

 

PV capacities have increased from 277 MW in 2000 to 32,223 MW in 2012 and are 

projected to further grow at the international, national and state levels [1-3]. The share of 

PV electricity is projected to increase to around 11%  of the total electricity generated 

worldwide  by 2050  [4]. The Sun Shot initiative launched by the US Department of 

Energy seeks to deploy 632 GW  by  2050  which is significantly greater than the 

cumulative installed capacity of 2.5GW in 2010 [3, 5]. The primary motive of increased 

PV deployments is to  reduce dependence on fossil fuels for electricity generation and 

prevent the global warming impacts of the associated GHG emissions [4, 6]. This large 

scale increase in PV deployments involves upfront CO2 emissions during the raw 

material extraction, purification and PV manufacturing stages which is gradually offset 

by the CO2 avoided as PV electricity displaces grid electricity generated from fossil fuels. 

Due to this temporal CO2 trade-off and the rapid increase in worldwide PV capacity 

additions, the magnitude of upfront PV manufacturing CO2 emissions can temporarily 

increase global warming impacts.  The short term global warming impacts of these CO2 

flows should be evaluated for time frames defined by climate policy for reducing GHG 

emissions to prevent a 2 to 4 degree Celsius global temperature rise. The typical time 

frames identified by climate goals is thirty to fifty years [7]. 

Life Cycle Assessment (LCA) is the preferred framework to evaluate such environmental 

impacts over the PV lifecycle. LCAs quantify the environmental impacts of the material 

and energy flows for each stage of the PV lifecycle and ensure that impacts are not 

shifted from one life cycle stage to another [8]. Energy payback time (EPBT) is the 
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primary metric used in PV LCAs to measure temporal energy trade-offs over the PV 

lifecycle [9-11]. EPBT is a ratio of the total energy produced by a PV module in the use 

phase and the energy invested in manufacturing a PV system. EPBT does not consider 

the CO2 footprint of the energy used to manufacture the PV modules or the CO2 intensity 

of the grid electricity that is displaced at the deployment location.  EPBT does not 

quantify the CO2 flows emitted and avoided during the PV manufacturing and use phase, 

respectively, and therefore cannot be used to measure the global warming impacts of PV 

deployments. PV LCAs have also relied on the ‘grams/kWh’ metric to compare the CO2 

footprint of PV electricity with other traditional electricity sources [9, 12-14]. This metric 

is determined by allocating the PV lifecycle CO2 emissions over the total electricity 

generated during the use phase of the PV modules.  However, by ignoring the CO2 

footprint of the electricity displaced during the use phase of the PV module, this metric 

does not quantify the CO2 flows avoided during the use phase of the PV module. 

Therefore, existing PV LCA standards [15]  and studies  [13, 14, 16, 17]  do not measure 

temporal trade-off of CO2 over the PV lifecycle and cannot measure the corresponding 

short-term  global warming impacts.  

The global warming potential of a CO2 emission is a non-linear function of the 

atmospheric residence time of CO2 (Equation (2)) and can be measure using the  

Cumulative Radiative Forcing (CRF)  which was developed by IPCC [18].  A limited 

number of LCA studies have used the CRF metric to incorporate non-linear warming 

impacts of GHG flows over a product’s lifecycle. Kendall and Price provided a method to 

quantify the trade-offs between increased upfront CO2 emissions required to manufacture 

light weight fuel efficient vehicles and  the decreased CO2 emissions  due to the higher 
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fuel efficiency of these vehicles [19]. This study used a CRF based time correction metric 

to account for actual GWP impacts when the vehicle’s manufacturing and end of life 

emissions are averaged over the total distance travelled during the life time. Another 

study developed a correction factor which accounts for the difference in CRF impacts 

when CO2 emissions attributed to land use changes at the start of biofuels life cycle is 

amortized over a longer time horizon [20]. Kendall developed a correction factor based 

on the difference in CRF impacts of temporally separated CO2 emissions occurring over 

different stages of a product’s life cycle [21].  Chang and Kendall have quantified the 

difference in payback times for CO2 and CRF when the CO2 emitted while constructing a 

high speed rail (HSR) system is gradually offset by the  CO2 emissions avoided when 

HSR displaces road and air travel [22].  

The CRF based correction factors developed in these studies are restricted to 

transportation and biofuel LCAs and are not directly applicable to PV LCAs. The 

scenarios modeled involve a single upfront emission (e.g., land use change for biofuels, 

construction of transportation infrastructure) which is offset by CO2 emissions that are 

avoided later in time. There is no distinct one time emission when PV systems are 

deployed because PV systems installations do not happen at once but are staggered over a 

period of time. The CO2 avoided each year is a function of the cumulative PV capacity 

added until that year. Further, technology improvements, grid CO2 intensities at the 

manufacturing and deployment locations and the choice of PV technology further 

introduce complexity in quantifying the CRF impacts of PV system deployments.  

Upfront PV manufacturing CO2 emissions and the CO2 avoided over the use phase of the 

PV system are a function of these dynamic factors.  
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This study has developed a framework (Figure 2) that incorporates these factors and 

measures the CO2 and CRF impacts of California’s PV policy targets.  

Cumulative Radiative Forcing (CRF)   

The CRF impact of a pulse CO2 emission is determined by the radiation that it absorbs 

when it decays in the atmosphere before it is completely sequestered. This atmospheric 

decay of  CO2  is defined by the Bern carbon cycle model  [18]  and is given by 

    

t /172.9 t/18.51 t/1.186c(t) 0.217 (0.259 e ) (0.338 e ) (0.186*e )                 (1) 

                

where c(t) is the CO2 that is resident in the atmosphere after ‘t’ years have elapsed since 

the unit pulse of CO2 was emitted. As the CO2 decays in the atmosphere it traps radiation 

which gives rise to the greenhouse effect. This radiation imbalance caused by a decaying 

pulse of CO2 is measured using the CRF metric [18]. The CRF (in watts/m2) caused by a 

CO2 pulse decaying over a time period of TH years is given by  

 

                  
TH

c

0

CRF a c(t) dt                     (2) 

 

where ac is radiative efficiency of CO2 and is defined as follows 

  c 5.35 log C Coa                         (3) 

 



  14 

where Co is the initial CO2 concentration in the atmosphere and C is the concentration in 

the atmosphere after the event which causes the perturbation. Based on IPPC’s approach, 

ac is assumed to be constant at 1.4135×10
-5

  by setting Co at 378 ppm and C at 379 ppm 

after a +1 ppm perturbation [18]. 

Time Sensitivity of CRF impacts  

From Equation (2) it can be inferred that the CRF impacts of a CO2 emission is 

dependent on the year in which the emission occurs and the atmospheric residence time 

over which the impacts are calculated (TH). The time sensitive CRF impacts of  CO2 

emissions over a ten year horizon is depicted in Figure 1. The time horizon chosen is 

consistent with the 10 year horizon of California’s Solar initiative whose CRF impacts 

are modeled in later sections. 

 
Figure 1 CRF impacts of CO2 emissions over a 10 year time horizon. The CRF 

impacts of one Kg of CO2 emitted in a particular year ‘n’ is measured over a time 

period of (10-n) years. The impact is depicted by the height of the multi-colored bar 
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in that year. The colored blocks within the multi-colored bar represent Radiative 

Forcing (RF) components that contribute to the CRF. For example, if one Kg of CO2 

was emitted in year 5 then the CRF impact is 6.57E-05 watt/m2 and it consists of six 

RF components represented by the six colored blocks. The six colored blocks 

represent the annual RF impacts for each of the six years that the CO2 decays (from 

the beginning of year 5 to end of year 10). For example, the red block (RF – Y2D in 

the multi-color bar in year 5) represents the radiative forcing as CO2 decays during 

the 2nd year after emission. 

 

Therefore, the CRF metric provides a time sensitive quantitative measure of the 

environmental impacts of a pulse of CO2 emission. This study designs a CRF based 

framework to evaluate the time sensitive environmental impacts of CO2  flows  during the 

PV lifecycle. Earlier CO2 emissions in the PV lifecycle will be will be assigned a higher 

weightage when compared to a later emission due to higher CRF impacts. For example, 

let 100 grams of CO2 be emitted when a PV module is manufactured and deployed in 

year one and let this PV module displace 30 grams of CO2 for every subsequent year. The 

100 gram emission is assigned the year 1 weight and the 30 grams of CO2 that are 

subsequently avoided are assigned the weights from year 2 to 10. The net CRF benefit at 

the end of 10 years is the difference between the avoided and emitted CRF and is 4.4E-06 

watts/m2.  The calculation for CRF weights are explained in Appendix A. 
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METHODS 

 

The time sensitive CRF impacts of PV deployments will depend on the timing of CO2 

emitted and avoided during the PV lifecycle and there is a need to determine the 

parameters that impact the magnitude and timing of the CO2 flows to minimize the CRF 

impacts. 

Magnitude of CO2 emitted and avoided over PV lifecycle  
 

 The following figure depicts the PV supply chain and technology parameters that impact 

the magnitude of the CO2 flows over the PV lifecycle 

 

 
 

Figure 2 PV supply chain and technology parameters that impact the magnitude of 

CO2 emitted and avoided over the PV lifecycle 
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The annual PV target (“Yr Trgt”) can be fulfilled through a mix of mono crystalline 

Silicon, poly crystalline Silicon and thin film CdTe (“PV mix”, “CdTe kWp”, “Mono Si 

kWp” , “Poly Si kWp”).  These three PV technologies have different manufacturing 

energy requirements. The manufacturing energy requirements per square meter of the 

Mono Si and CdTe module are the highest and lowest, respectively [9]. The CO2 emitted 

over the manufacturing phase of the PV lifecycle (“CO2 Manf”) is dependent on the 

primary energy mix at the manufacturing location (“PE Mix ML”) and the manufacturing 

energy requirements of the PV technology.  Mono Si is the most CO2 intensive to 

manufacture (MCIchina mono si in Table 2) as the manufacturing energy requirements are the 

highest and mono Si modules are primarily manufactured in China where coal contributes 

to around 67% of the primary energy mix. Similarly, CdTe is the least CO2 intensive to 

manufacture (MCI Malaysia CdTe in Table 2) as the manufacturing energy requirements  are 

the lowest [9] and they are primarily manufactured in Malaysia which has lower CO2 

footprints for the primary energy than China. The environmental benefit of PV 

deployments is determined by the CO2 emissions avoided annually (“CO2 avd”) as PV 

electricity offsets grid electricity generated from fossil fuels. “CO2 avd” is dependent on 

the CO2 intensity of the electricity grids at the deployment location (“Elec Mix DL”) and 

the efficiency of the modules deployed (“Eff”). For a fixed deployment area, the 

electricity generated by the PV system is directly proportional to the module efficiency 

and this determines the grid CO2 that is displaced at the deployment location.  The CO2 

emitted while maintaining, decommissioning and recycling PV modules (“CO2 Oper”, 

“CO2 EoL”)  is assumed to be 10% of the overall CO2 emitted to manufacture PV 
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modules [23]. The magnitude and timing of “CO2 Manf”  and “CO2 avd” determine the 

net CRF impact  (“PV CRF”) over the policy time frame. 

 

Timing of CO2 emitted and avoided over PV lifecycle  
 

The decision to increase PV deployments earlier on during the policy time frame or to 

postpone (or stagger) deployments to a later date will determine the timing of the CO2 

emitted and avoided. For example, consider the following strategies that can be adopted 

to meet a target of 1 GW over a 10 year time period 

Strategy 1: 0.4 GW in year 1 and 0.1 GW over the next 6 years   

Strategy 2: 0.1 GW over the first 6 years and 0.4 GW during the 7
th

 year 

Strategy 1 leads to larger upfront manufacturing emission as a higher PV capacity is 

deployed earlier on when compared to the staggered approach in strategy 2. In strategy 1, 

earlier and larger upfront PV manufacturing emissions not only increase the initial CRF 

cost (as explained in Figure 1) but also increase the CRF benefits by displacing more 

fossil fuel electricity during the PV module’s use phase. 

 In case of strategy 2, upfront PV manufacturing emissions are comparatively lower as 

only 0.1 GW is deployed from year 1 to 6. Thus, manufacturing emissions occurring later 

in time decreases the PV manufacturing CRF cost of Strategy 2. However, Strategy 2 also 

incurs a “waiting cost” as the delayed deployment implies that grid electricity, which 

would have been offset by PV electricity, continues to be generated and used.  

At any given point of time, the decision to deploy a larger PV capacity upfront ('Front 

Load') or postpone PV capacity additions to a future date ('Back Load') will determine the 

timing of the CO2 emitted and avoided and therefore influence the CRF impacts. The 
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CO2 trade-off, which influences the CRF impacts, for the front loading and back loading 

strategy are shown in Figure 3 and Figure 4.  

Timing of CO2  emissions for Front Loading strategy   
 

 
 

Figure 3 CO2 flows for the Front Loading Strategy. The positive Y axis represents 

CO2 benefits and the negative Y axis the CO2 costs of deploying PV systems. The PV 

system is deployed in year 1 and the corresponding PV manufacturing CO2 emission 

is represented by the solid red bar. Every year, a portion of this emitted CO2 is 

sequestered in the atmosphere (refer equation(1)) and this is represented by the 

pink bar. The solid green bars from year 2 onwards (e.g. b1, b2, b3) represent the 

CO2 emissions avoided as PV electricity offsets grid electricity. The CO2 emissions 

avoided are deducted from the red bar and this represented by the solid brown 

bars. The deductions are cumulative, for example in year 4,  the decayed values of 

year 1 and 2 benefits (b1 and b2) and year 3 benefits (b3) is deducted from the CO2 
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emitted in year 1.The hashed brown line represent the decay the avoided CO2 would 

have undergone had it been emitted. The hashed red arrows represent the gradual 

decrease in the initial PV manufacturing CO2 emission. In year 8, when the solid red 

bar reduces to zero, the total CO2 emitted in year 1 is “paid back” through the CO2  

avoided. 

The PV system is deployed in year 1 and the PV manufacturing CO2 emission is 

represented by the red bar and is assumed to be emitted at the point of deployment in year 

1. The height of this red bar is the product of the PV capacity deployed and the CO2 

intensity of the manufactured PV modules.   

 t t _ i t _ i

i monoSi,PolySi,CdTe

mCO2 W MCI


 
   

 (4) 

 

where  

 m CO2 t = PV manufacturing CO2 emissions in year ‘t’  (grams) 

 i = PV technology deployed. Three types of PV technology are considered: Mono 

Si, Poly Si, CdTe  

 Wt_i=  capacity of a particular PV technology ‘i’ deployed in the year ‘t’ (Wp) 

 MCIt_i = CO2 intensity of the manufactured PV modules in the year ‘t’ for 

technology ‘i’ (grams/kWp) 

Once emitted, the manufacturing CO2 emission is gradually sequestered (defined by 

equation(1)) and this sequestered CO2 is represented by the pink bar. The environmental 

benefit of deploying a PV module is the CO2 avoided every year as PV electricity 
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displaces electricity generated from fossil fuels. The avoided CO2 is represented by the 

solid green bars and can be mathematically defined as  

t

t k _ i t _ i

i monoSi,PolySi,CdTe k 1

aCO2 W pr irr (1 op) (1 tl) DGI apd
 

 
         

 
         (5) 

where 

 a CO2 n = CO2 emissions avoided in year ‘t’  (grams) 

 Wk_i=cumulative PV capacity addition till the year t (Wp) 

 pr = performance ratio, the ratio between the AC power generated to the rated DC 

power.  

 Irr = solar irradiation at the deployment location (kWh/Wp/year) 

 op= ratio of energy spent on the operations and maintenance of the PV module to 

the total energy generated by the PV module.  

 tl = transmissions losses during electricity distribution.  

 DGIt_i = CO2 intensity of the grid at the deployment location, .i.e. CO2 emitted 

per unit of electricity generated at the deployment location in the year ‘t’ for 

technology ‘i’ (grams/kWh) 

 apd=annual performance degradation in the PV module 

 Every year the avoided CO2 is deducted from the initial CO2 emitted and this is depicted 

using solid brown bars.  The CO2 benefits of a PV module accrue over a period of time 

and it is only in the 8
th

 year that there is a net benefit when the magnitude of the solid red 

bar becomes zero. 
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Timing of CO2 emissions for Back Loading strategy   

 

The timing of the CO2 emitted and avoided for the “back loading” strategy is depicted in 

Figure 4 

 

 
 

Figure 4 CO2 flows for the Back Loading Strategy. The PV system is deployed in 

year 3 and the grey bars in year 1 and 2 represent the CO2 emissions due to 

continued reliance on grid electricity. The other depictions are similar to Figure 3. 

 

In this example, the PV capacity ‘C’ is deployed in year 3 and there is an additional CO2 

emission in year 1 and 2 due to the continued generation of electricity from fossil fuels. 

This is depicted by grey bars in year 1 and 2.  The magnitude of  year 1 and 2 emissions 

are equal to the magnitude of the CO2 emissions avoided from year 3 onwards as these 

are equal to the electricity that the PV capacity ‘W3’ displaces every year (equation (5)). 

The benefit of back loading is that PV technology improves over this wait period and this 
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is modeled by increasing module efficiencies and reduced manufacturing energy 

requirements. The remaining aspects of Figure 4  are similar to Figure 3. CO2 emissions 

due to back loading can be mathematically defined as  

  
t

t k _ i t _ i

i monoSi,PolySi,CdTe k 1

bCO2 C W pr irr (1 op) (1 tl) DGI apd
 

 
          

 
           (6)

 

 

The terms in equation  (6) are similar to the terms defined in equation (5) 

Optimization framework for PV deployment 

This study has built an optimization framework which incorporates the PV supply chain 

and technology factors that impact the magnitude of CO2 emissions and the deployment 

strategy (Front loading and Back loading) that determines the timing of the CO2  

emissions. The optimal PV deployment has the minimal CRF impacts measured over a 

ten year time frame that is defined in California’s solar initiative [24]. The optimization 

framework used the following CRF categorization of  to determine the optimal PV 

deployment strategy  

 

 Avoided CRF (CRFav(t)): CRF avoided in a year due to PV electricity displacing 

electricity generated from fossil fuels. This is the CRF associated with the 

avoided CO2 emissions (solid green bars in Figure 4) that is defined in 

equation(5). The optimization framework will treat this as a CRF benefit that has 

to be maximized. CRFav(t) can be mathematically defined as   

                          
n

av t c t t

t 1

CRF a (aCO2 k )



                        (7) 
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where kt  is discussed in Figure 1, ac is defined in equation (3),  aCO2 t  is defined 

in equation (5). 

 PV manufacturing CRF (CRFmnf(t)): CRF due to manufacturing the PV capacity 

that was deployed in a particular year. This is the CRF associated with the PV 

manufacturing CO2 (solid red bar in Figure 4) that is defined in equation(4).  The 

optimization framework will treat this as a CRF cost that has to be minimized. 

CRFmnf(t) can be mathematically defined as   

                                     
n

mnf t c t t

t 1

CRF a mCO2 k



               (8) 

            where mCO2 t  is defined in equation (4). 

 Backloading CRF (CRFbl(t)): CRF that was not avoided due to the back loading  

of PV deployments. This is the CRF associated with the solid grey bars in Figure 

4 that is defined in equation(6). The optimization framework will treat this as a 

CRF cost that has to be minimized. CRFbl(t) can be mathematically defined as 

                                    
n

bl t c t t

t 1

CRF a bCO2 k



                  (9) 

            where bCO2 t is defined in equation (6) 

The CRF impacts of PV deployment can be minimized by maximizing the following 

objective function which is dependent on the three CRF categories 

                    
n

mnf (t) bl(t )av(t )

t 1

Z CRF CRF CRF


      (10) 

 

 

CRFav(t), CRFmnf(t) and CRFbl(t) are dependent on CO2 emitted and avoided every year 

which is determined by the annual PV capacities deployed every year (Wt in equations 
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(4), (5) and (6)). Therefore, Wt is the decision variable that is optimized. Changing Wt 

will affect the three categories of CRF and will thus change Z. 

The only constraint on Wt is that it should be less than the total PV target set by policy 

         
1

n

tW C                                  (11) 

 

The California Solar Initiative (CSI) has set a goal of adding 1940 MW of PV capacity 

between 2007 and 2016 [24]. 81 MW and 169 MW were deployed in  2007 and 2008 and 

therefore these values will be fixed [25]. The deployment of the remaining 1690 MW 

(‘C’) will be optimized between 2009 and 2016. 

If the optimization results in a greater share of the total policy targets being deployed 

within the first five years (out of a total 10 years) then front-loading is the optimal 

strategy. Similarly, if a greater share of the total policy targets is deployed over the last 

five years then back-loading is the optimal strategy. The data assumptions for the 

optimization framework are explained in Appendix C. 
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CHAPTER 3 

RESULTS  

 

Optimal PV deployment strategy and CO2 and CRF impacts 
 

Along with California, the model was run for Arizona and Wyoming. These three states 

were chosen to study the change in the optimal deployment strategy for different grid 

CO2 intensities at the PV deployment location. The share of fossil fuels in the electricity 

mix determines the grid CO2 intensities in these states. China is assumed to be the 

manufacturing location for Mono and Poly Si modules as around 60% of the world’s Si 

PV modules are manufactured in China and 11 among the top 15 PV module 

manufacturers are Chinese [2].  First solar is the only thin film PV manufacturer in the 

top 10 PV manufacturers  worldwide [26].  Malaysia is assumed to be the manufacturing 

location for CdTe modules as 70% of First Solar’s modules are produced in Malaysia 

[27]. The results for the optimal PV deployment strategy that minimizes the CRF impacts 

of deploying a PV capacity of 1940 MW across three states - California, Arizona and 

Wyoming-  is  depicted in Figure 5. Front loading is the optimal strategy across all the 

three states for any technology mix that is chosen when the CRF impacts are considered 

from 2007 to 2017.  
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Figure 5 Optimal PV deployment strategy for minimized CRF impact. The Y-axis 

represents the CO2 intensity (g/kWp) of manufacturing PV modules and X-axis 

represents the grid CO2 intensity (g/kWh) at the deployment location. Frontier lines 

separate the plot into two optimal deployment strategy zones. The optimal 

deployment strategy is decided by plotting the CO2 intensity of manufacturing 

energy (Y value) and the grid CO2 intensity at the deployment location (X value) on 

the graph. If the plotted point is above the frontier line then back loading is the 

optimal strategy else front loading is the optimal strategy. The three blue lines 

depict the CO2 intensity of manufacturing mono Si, Poly Si (in China) and CdTe (in 

Malaysia). For example, consider a scenario where PV targets in California are met 

by importing only mono Si modules from China. The intersection is at the point 

‘P1’. The frontier line for this scenario is the solid green line. This corresponds to a 

front loading strategy as this point lies below the solid green frontier line. Front 

loading is the optimal strategy for when modules manufactured in China (mono and 
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poly Si) or Malaysia (CdTe) are  deployed in California, Wyoming or Arizona. 

These are depicted by the nine points 

 

Since Mono Si is the most CO2 intensive and CdTe is the least CO2 intensive to 

manufacture among the three technologies, the CO2   intensity of manufacturing a PV 

deployment mix that relies on all the three technologies will be represented by a 

horizontal line lying between the blue lines for Mono Si and CdTe, respectively.  Front 

loading will be the preferred strategy across all the three states for any technology mix 

since the PV manufacturing CO2   intensity line for the technology mix will lie below the 

blue line for Mono Si. The frontier line for Arizona is above that of California and 

Wyoming as the solar irradiation in Arizona is the highest (assumptions in Table 2) and 

this increases the PV electricity generation and the grid electricity CO2 that is displaced.  

Therefore, for the same PV capacity that is deployed, the probability of Front Loading 

being the favorable strategy in Arizona is higher when compared to the other two states. 

This is reflected in the increased area covered by the front loading region for Arizona 

when compared to the other 2 states. 

 The results in Figure 5 depicts only the optimal deployment strategy and does not depict 

CO2 flows and corresponding CRF impacts for the optimal front loading strategy. Five 

scenarios were created for each of the three states and the results were plotted to depict 

the difference in the net CRF benefits and CO2 flows for PV deployments in Arizona, 

Wyoming and California for different deployment strategies with different technology 

mixes. Figure 6 and Figure 7 contain only seven scenarios that sufficiently explain all the 
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trends observed in CO2 flows and the corresponding CRF impacts. These trends are 

applicable to all the fifteen scenarios depicted in Figure 9 and Figure 10 

 

 
 

Figure 6 CO2 benefits of PV deployments in California and Wyoming. This graph 

plots CO2 benefits of PV deployments over the deployment time horizon (2007 - 

2017).  The manufacturing emissions and emissions due to the continued reliance on 

fossil fuels (in the case of sub-optimal strategy) are the CO2 costs of PV 

deployments. The CO2 avoided when PV electricity offsets grid electricity represents 

the CO2 benefit. If the curve is below the X axis then CO2 costs exceed CO2 benefits. 

If the curve is above the X axis CO2 benefits exceed the CO2 cots. In optimal 

deployment (front loading for all the three states), 81MW and 169 MW are deployed 

in 2007 and 2008 and the remaining capacity of 1689 MW is deployed in 2009. For 

sub-optimal deployment, 81MW and 169 MW are deployed in 2007 and 2008 and 

the remaining capacity of 1689 MW is equally deployed between 2009 and 2016.  

Carbon payback occurs when the curve crosses the X axis. For example, in the “CA: 

100% Mono Si – Opt Depl” scenario CO2 payback occurs between 2014 and 2015. 
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Figure 7 CRF benefits of PV deployments in California and Wyoming. This graph 

plots the CRF benefits of PV deployments over the deployment time horizon (2007 - 

2017). CRF impacts of manufacturing emissions and emissions due to the continued 

reliance on fossil fuels (in the case of sub-optimal strategy) represent PV CRF costs. 

The CRF impacts that are avoided when PV electricity offsets grid electricity 

represent the CRF benefits.  If the curve is below the X axis then CRF costs exceed 

CRF benefits of deploying the PV module. If the curve is above the X axis then CRF 

benefits exceed CRF costs of deploying the PV module.  The optimal and sub-

optimal deployment strategies are the same as in Figure 6. CRF payback occurs 

when the curve crosses the X axis. For example, in the “CA: 100% Poly Si – Opt 

Depl” scenario CRF payback occurs in 8 years. In case of sub-optimal staggered 

deployment scenarios (“CA: 35% Mono Si, 55% Poly Si, 100% CdTe – Sub Opt 

Depl”), the CRF costs increases as the grid continues to rely on fossil fuel based 
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electricity. This increases the CRF payback time when compared to the 

corresponding optimal deployment strategies 

 

From Figure 6 and Figure 7 it can be observed that CRF payback times greater than CO2 

payback times. For example, “WY: 35% Mono Si, 55% Poly Si, 100% CdTe – Opt Depl” 

WY has a CO2 pay-back time of 4 to 5 years (Figure 6) and a CRF payback time of 9 

years (Figure 7). CO2 payback times are calculated based on the magnitude of CO2 

emitted and avoided whereas CRF payback is sensitive to both the magnitude and the 

residence time of CO2 in the atmosphere. While calculating the CRF payback time, 

earlier manufacturing emissions are weighted more than the later emissions that are 

avoided (refer Figure 1). For CO2 payback times, the same weights are allocated to 

manufacturing CO2 emissions irrespective of the timing. Therefore, the impact attributed 

to manufacturing emissions is higher when calculating the CRF payback time than when 

calculating the CO2 payback time. This increases the payback time required to offset the 

CRF impacts of manufacturing CO2 emissions. Also, only 2 scenarios have a net positive 

CRF benefit within 10 years in spite of 5 scenarios having a net positive CO2 benefit 

within 10 years in Figure 6.  

The CO2 flows and CRF impacts are dependent on the CO2 intensity of the grid 

electricity being displaced at the deployment location. For higher grid CO2 intensities   at 

the deployment location PV electricity will displace more CO2 from the grid. This 

increases the avoided CO2 benefits and therefore decreases CO2 and CRF payback times. 

The CO2 and CRF payback times for Wyoming are less than California (“WY” and “CA” 

scenarios in Figure 6 and Figure 7) as the CO2 intensity of the avoided electricity in 
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Wyoming is higher than in California (DGI California and DGI Wyoming in Table 2).  

An earlier CO2 and CRF payback implies that the CO2 and CRF benefits for all the 

Wyoming strategies are higher than the corresponding strategies in California for a 10 

year time frame.  

The choice of PV technology to meet targets influences the CO2 and CRF impacts.  

Among the three strategies “CA: 100%  Mono Si – Opt Depl”, “CA: 100% Poly Si – Opt 

Depl”, “CA: 100% CdTe  – Opt Depl” for California, the 100% CdTe mix has the  

highest CO2 and CRF benefits and the earliest CO2 and CRF break even time because 

CdTe has the lowest upfront manufacturing CO2 emissions among the three technologies 

(MCImalayisa cdte, MCIchina poly Si, MCIchina mono Si in  Table 2). Thus, in the 

current state of technology PV mixes that rely more on thin film CdTe and poly Si will 

have lower environmental impacts when compare to mono Si modules. 

The CO2 displaced and CRF impacts are dependent on the optimal rate of PV capacity 

addition. For the sub-optimal staggered deployment strategy, the grid continues to rely on 

electricity that is generated from fossil fuels. The CO2 emissions due to continued 

reliance on fossil fuel electricity are greater than benefits of reduced CO2 emissions 

resulting from manufacturing process improvements overtime. The optimal front-loading 

strategy yields greater CRF benefits as it avoids grid electricity emissions. This can be 

inferred from Figure 5 and  Figure 6 as optimal PV deployment strategies have a shorter 

CO2 and CRF payback time than sub-optimal PV deployment strategies.   
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Sensitivity Analysis 
 

To analyze the changes in net CRF impacts when the factors depicted in Figure 2 are 

varied, this study conducted a sensitivity analysis. The relative impacts of various supply 

chain and PV technology factors on CRF is depicted in the results shown in Figure 8 

 

 
 

Figure 8 Sensitivity analysis for the factors influencing CRF impacts. For the base 

scenario, capacities of 81, 169 and 1690 MW were deployed in California in 

2007,2008 and 2009 respectively with a technology mix of 35% Mono Si, 55% Poly 

Si and 10% CdTe. This technology mix is based on a worldwide market share of 30 

to 40% for mono Si, 50 to 60% for Poly Si and 6 to 10% for CdTe from 2004 to 2010 

[28]. China was the manufacturing location for Si technologies and Malaysia for 

CdTe and the CRF was measured over a 10 year period. The base scenario’s CRF 

value is represented by the vertical line passing through zero. After recording the 

base scenario CRF, 9 runs were conducted by increasing and decreasing each 

variable by 10% of it’s base condition value while keeping the other 8 variables 
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constant. CRF values for each of the 9 runs were recorded and plotted as a 

percentage change from the base condition CRF.  

 

CRF impacts are most sensitive to the CO2 embedded in the manufacturing energy in 

China and the manufacturing energy requirements of Poly and Mono Si modules.  This is 

due to the 90% share of poly and mono Silicon technology in the PV capacity deployed 

and China’s current dominant position in the crystalline PV manufacturing sector. The 

grid CO2 intensity at the deployment location is the second most significant factor 

influencing CRF impacts. This implies that the choice of deployment location and the 

CO2 intensity of the grid electricity avoided significantly influence the net environmental 

impacts. The third and fourth most significant factors that influence CRF imply that the 

use of less energy intensive PV manufacturing processes and increasing the energy and 

material efficiencies of manufacturing Si modules will reduce CRF impacts. The energy 

required to manufacture a unit area of  Mono Si models has decreased by only 6% from 

2006 to 2011 ([29],[30]). A decrease in the energy requirements of upstream 

metallurgical refining processes that contribute around 60% an 79% of the total energy 

footprint for mono Si modules [30] will reduce CRF impacts and manufacturing costs.   
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Discussion 

 

Future deployments of PV modules, manufactured predominantly in coal dependent 

China, will have significant manufacturing CO2 emissions. PV capacity additions have 

shown a steep increase  and two-thirds of the all the historical PV capacity ever deployed 

were added only after  January 2011 [31]. PV system production has increasingly shifted 

to China which is dependent on fossil fuels for manufacturing activities.  China’s share in 

the world poly-silicon and module manufacturing markets has increased to 30% and 

63%, respectively [32] and coal contributes to around 67% of China’s primary energy 

mix [33].  Existing PV LCAs do not provide methods to measure time sensitive short-

term CRF impacts of large scale PV manufacturing in CO2 intense grid locations and 

therefore cannot evaluate the warming potential of rapid PV deployments over 30 to 50 

year time frames defined by climate policy to prevent a global temperature increase. This 

study has provided a framework evaluate the time sensitive warming impacts of CO2 

flows during the PV lifecycle and has also demonstrated that CRF payback times are 

longer than CO2 payback times. Also, under certain scenarios CRF increases over a 

period of 10 years in spite of the benefits of CO2 avoided being greater than the PV 

system’s life cycle CO2  footprint. 

The results have shown that dynamic CRF impacts can be minimized by the choice of PV 

technology, energy mixes at the deployment and manufacturing locations and the rate of 

deployment. The environmental benefits over a period of ten years increase with 

aggressive deployment strategies when higher PV capacities are deployed earlier on in 

California, Wyoming and Arizona. The benefits are higher in states that have a greater 
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reliance on fossil fuels for their electricity mix as PV displaces more CO2 intense 

electricity. Also, PV mixes that have higher shares of CdTe and Poly Si PV modules have 

increased CRF benefits as these technologies have lower manufacturing energy 

requirements when compared to Mono Si. 

The novel framework contained in this study informs policy makers and PV 

manufacturers on strategies to minimize radiative forcing impacts and identify 

environmental hot-spots in the PV manufacturing lifecycle.  A reduction in the energy 

requirements for upstream metallurgical processes for solar grade silicon and a reduction 

in poly-Silicon wastage while manufacturing PV cells will significantly decrease the CRF 

impacts over the PV life-cycle for future capacity additions.  

While this framework was applied to PV system deployments, it can also be extended to 

evaluate the short term CRF impacts for other renewable energy (RE) systems. RE 

systems are essentially CO2 offsetting mechanisms with initial CO2 invested in 

manufacturing being recovered gradually over time when the RE systems displaces 

electricity generated from fossil fuels. After identifying the relevant supply chain and 

technology parameters for the RE system, this framework can be integrated with LCAs to 

provide the time sensitive CO2 and CRF impacts  
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APPENDIX A 

CALCULATION OF CRF WEIGHTS FOR CO2 EMISSIONS 

 



  42 

 

A B C D E 

Atmospheric 

residence 

time (years) 

CO2 remaining in 

the atmosphere after 

sequestration (Kgs) 

Radiative 

Forcing 

(watt/m2) 

CRF 

weight 

(watt/m2) 

CRF weight 

allocated to 

emission 

occurring in year  

1 0.874774431 1.24E-05 1.24E-05 10 

2 0.810850811 1.15E-05 2.38E-05 9 

3 0.773796358 1.09E-05 3.48E-05 8 

4 0.748767683 1.06E-05 4.53E-05 7 

5 0.729352906 1.03E-05 5.57E-05 6 

6 0.712769869 1.01E-05 6.57E-05 5 

7 0.697799641 9.86E-06 7.56E-05 4 

8 0.683897154 9.67E-06 8.53E-05 3 

9 0.670808408 9.48E-06 9.47E-05 2 

10 0.658405688 9.31E-06 1.04E-04 1 

Table 1 Calculation of CRF weights for CO2 emissions 

Column B values are calculated by substituting ‘t’ (in equation (1)) with the 

corresponding Column A values. Column C values are calculated by multiplying the 

corresponding column B values by ac, the radiative efficiency of CO2 (assumed to be 

constant at 1.4135×10
-5 

) . Column D values are the cumulative sum of column C values 

until that year.  The weights in column D are assigned to CO2 emissions according to the 

residence time in the atmosphere. For example, over a 10 year horizon an emission in 

year 7 has an atmospheric residence time of 3 years and is therefore assigned a CRF 

weight of 4.53E-05. This allocation of weighting factors is shown in column E. 
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APPENDIX B 

CO2 AND CRF PAYBACK TIMES IN CALIFORNIA, ARIZONA AND WYOMING 
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       Figure 9 CO2 payback times for all scenarios in CA, AZ and WY. In 

optimal deployment, 81MW and 169 MW are deployed in 2007 and 2008 

and the remaining capacity of 1689 MW is deployed in 2009. For sub-

optimal deployment, 81MW and 169 MW are deployed in 2007 and 2008 

and the remaining capacity of 1689 MW is equally deployed between 

2009 and 2016.   
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Figure 10 CRF payback times for all scenarios in CA, AZ and WY. Optimal 

deployment and sub-optimal deployments are the same as in Figure 9 
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APPENDIX C 

DATA ASSUMPTIONS 
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The MCIchina value for Mono and Poly Si  PV technologies  in 2011 is the base value. 

MCI is directly proportional to the manufacturing energy (ME) embedded in the PV 

module (MJ/m2) and inversely proportional to the efficiency (eff) of the module. To get 

the MCIchina values for any other year  ‘t’ between 2007 and 2017, the base MCIchina 

value is multiplied by the ratios (MEt/ME2011) and (eff2011/efft) . The degradation in the 

module performance over time is assumed to be 0.7%/year [30]. The following are the 

values used in the optimization framework  
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Parameter Value Used in 

Equation 

Source 

MCIchina mono Si 

in 2011 
2870000 

(g/kWp) 

(4) [30].  

 

MCIchina poly Si 

in 2011 

1590000 

(g/kWp) 

(4) [30] 

MCImalayisa for 

CdTe in 2011 

498000 

(g/kWp) 

(4) [30] has reported a value of 

630000 g/ kWp based on 

manufacturing conditions in 

China. This value has been 

multiplied by a ratio of the 

current grid mixes in Malaysia 

(909 g/kWh from [34]) and 

China (1148 g/kWh from [34]) 

as CdTe is assumed to be 

manufactured in Malaysia. 

DGI California 481 (g/kWh) (5),(6) [34] 

DGI Arizona 644(g/kWh) (5),(6) [34] 

DGI Wyoming 1105 (g/kWh) (5),(6) [34] 

pr 0.75 (5),(6) [15] 

Irr Arizona 2200 (kwh/m2 

year) 

(5),(6) [35] 

Irr California 2000 (kwh/m2 

year) 

(5),(6) [35] 

Irr Wyoming 1700 (kwh/m2 

year) 

(5),(6) [35] 

op .1 (5),(6) [23] 

tl .07 (5),(6) [36] 
 

Table 2 Values of parameters used for optimizing PV deployment 

strategy for minimal CRF impacts 

The CO2 emissions per kWh of electricity produced at California, Arizona and 

Wyoming have not shown a consistently increasing or decreasing  trend from 

2001 to 2009 [37]. An annual decrease of 2% has been assumed for the period 

from 2007 to 2016 for these three destination locations. This annual decrease is 
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comparable to the  17% GHG emission reductions mandated  by the American 

Climate and Energy Security Act for the period between 2005 and 2020 [38].  


