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ABSTRACT

Magnetic Resonance Imaging using spiral trajectories has many advantages

in speed, efficiency in data-acquistion and robustness to motion and flow related ar-

tifacts. The increase in sampling speed, however, requires high performance of the

gradient system. Hardware inaccuracies from system delays and eddy currents can

cause spatial and temporal distortions in the encoding gradient waveforms. This

causes sampling discrepancies between the actual and the ideal k-space trajectory.

Reconstruction assuming an ideal trajectory can result in shading and blurring arti-

facts in spiral images.

Current methods to estimate such hardware errors require many modifications

to the pulse sequence, phantom measurements or specialized hardware. This work

presents a new method to estimate time-varying system delays for spiral-based tra-

jectories. It requires a minor modification of a conventional stack-of-spirals sequence

and analyzes data collected on three orthogonal cylinders. The method is fast, robust

to off-resonance effects, requires no phantom measurements or specialized hardware

and estimate variable system delays for the three gradient channels over the data-

sampling period. The initial results are presented for acquired phantom and in-vivo

data, which show a substantial reduction in the artifacts and improvement in the

image quality.
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Chapter 1

INTRODUCTION

Magnetic Resonance Imaging (MRI) is a versatile, tomographic modality which offers

superior contrast and sensitivity in soft-tissue imaging. It is a non-invasive, multi-

planar technique which can provide high resolution images of the human body. MRI

is used extensively in anatomical, functional, vascular and real-time imaging for di-

agnosis of many neural and cardiovascular diseases [25]. Due to its unique ability to

achieve flexible contrast, it can be used to measure physical parameters such as diffu-

sion, flow, temperature, chemical-shift and physiological processes such as functional

activation and perfusion in the brain [23]. Compared to other imaging modalities

like Computed Tomography (CT), Positron Emission Tomography (PET) and Sin-

gle Photon Emission Computed Tomography (SPECT) which use ionizing radiation,

MRI uses low energy radio-frequency (RF) waves and magnetic fields to create im-

ages of the biological tissue [40]. The image represents the spatial distribution of the

magnetization of the resonant nuclei in the target volume.

The resonance signal is sampled at discrete time points and stored in spatial

frequency space, also known as k-space. Conventionally, the data are sampled along a

cartesian trajectory to fill a uniformly spaced grid in k-space. If sampled at Nyquist,

the image can be reconstructed rapidly by applying an inverse Fourier transform [19].

Cartesian trajectories allow faster image reconstruction but can be slow and inefficient

in data-acquisition. Longer scans affect not only the operational costs, but also the

patient comfort during the exam. Much effort has been made in the recent years to

design alternative “Non-Cartesian” trajectories to increase the speed and efficiency of

a MRI exam.
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Several Non-Cartesian trajectories have been proposed of which spiral has

gained a lot of attention. Spiral trajectories have many advantages in speed, SNR effi-

ciency, low gradient moments, robustness to motion and flow-related artifacts [14] [9].

They are also used in many dynamic applications to study cardiac motion, blood

velocity, chemical-shift measurements, functional activation in brain and for faster

acquisition of 3D volumetric data sets [14], [20]. Spiral scans require high gradient

amplitudes and slew rates to reduce the data-acquisition period. The increase in

sampling speed requires fast switching amplifiers and high accuracy of the gradient

system. Hardware inaccuracies from system delays and eddy currents can cause spa-

tial and temporal distortions in the desired gradient waveforms [3] . If not corrected,

these errors can cause sampling discrepancies between the actual and the ideal k-

space trajectory. Reconstruction assuming an ideal trajectory can result in ghosting,

blurring, or shading artifacts in spiral images [9] [1].

Spiral sequences are more sensitive to hardware imperfections than conven-

tional Cartesian scans. Modern scanners use active shielding and waveform pre-

emphasis [2] to reduce the effects of long term eddy currents, primarily for conven-

tional Cartesian scans. Any short term gradient errors that may remain and still

cause severe distortions in spiral trajectories. Such errors are difficult to character-

ize since they can either be system dependent, sequence specific or could even be

time-varying. Several methods have been proposed to characterize the MR gradient

system or measure the actual k-space trajectory on the scanner [10]. Generally, such

methods require phantom measurements, specialized hardware or many modifications

to the pulse sequence.

This work presents a new method to estimate variable time-varying delays

for spiral-based trajectories. The delays are measured along the sampling period for
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the three gradient channels. The spiral k-space data are acquired and analyzed on

three orthogonal overlapping cylinders. The method can be used a quick calibration

run before the actual data collection. It can work with all gradients on, requires

no phantom measurements, additional hardware, is immune to off-resonance effects,

requires just a minor modification of the pulse sequence [7]. Further, it has been tested

on simulated data and acquired data and validated using the method proposed by

Alley et. al [2] and Robison et. al method [39].

The thesis will introduce the principles of MRI, spin dynamics, MR signal

generation, localization and image formation. The basics of spiral imaging, image

reconstruction and artifacts is discussed. This work addresses the problem of the

accuracy of spatial encoding in spiral MRI. A new method is proposed to estimate

time-varying system delays for spiral k-space trajectory. The thesis includes the

theory, methods, results and analysis of the proposed method.
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1.1 Background

MRI is based on the physical principles of Nuclear Magnetic Resonance (NMR) which

were developed simultaneously by Bloch and Purcell in 1945 [29]. NMR, at the

time, was used in spectroscopy to study the physical and chemical properties of

organic compounds. The application of encoding the NMR signal using spatially

varying gradients was found by Paul Lauterbur, who published the first NMR image

in 1973 [24]. In the late 1970s, Peter Mansfield developed Echo Planar Imaging (EPI),

a fast scanning technique to generate MR images within a few seconds. Since then,

MRI has evolved continuously with advances in hardware, faster acquisition methods,

new contrast mechanisms and enhanced reconstruction techniques.

This section gives a classical description of the physics of MRI and is followed

by a discussion of spiral imaging and system delay correction.

1.2 Spin Dynamics

Nuclei of elements with an unpaired number of protons, electrons or neutrons have in-

teresting properties in NMR. The subatomic particles contain a quantum mechanical

property spin, which is intrinsic in nature [26]. Classically, the spin can be described

as a particle rotating about its axis. A positively charged particle spinning about

its axis induces a magnetic dipole moment µ. In addition to magnetism, the spin-

ning charge also have mass which gives it an angular momentum J. The magnetic

dipole moment is related to the angular momentum by the rate of precession or the

Gyromagnetic ratio which is given by
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µ = γ J (1.1)

where γ is Gyromagnetic ratio, measured in units of Hz/T and is specific for

a given nucleus [8]. Among others, hydrogen nuclei are of most clinical relevance to

MRI due to their natural abundance in the human body and sensitivity to magnetic

field.

Figure 1.1: Magnetic dipole moment of hydrogen nuclei are randomly oriented in
absence of a magnetic field. When an external magnetic field is applied, the nuclei
have a preferred orientation relative to the applied field.

The nucleus of a hydrogen atom contains a single proton which exhibits a

non-zero spin. In absence of an external magnetic field, the magnetic moments of the

hydrogen nuclei are randomly oriented and have no preferred direction [29]. When

placed in an external magnetic field B0, the nuclei tend to align themselves relative

to the direction of the applied field as shown in Fig.1.1. The B0 exerts a torque to

the magnetic moments changing the angular momentum, given by

dJ

dt
= µ×B0 (1.2)

whereB0 is in units of Tesla (T). 1 Tesla is approximately 20,000 times stronger

than the earth’s magnetic field [38]. In hydrogen nuclei, two discrete energy states are
5



generated in the presence of B0 due to Zeeman splitting [26]. The nuclei in the low

energy state N↓ align parallel with the B0 field while those in the high energy state

N↑ align anti-parallel with the main field. The difference in the two energy states is

given by Boltzmann distribution

N↓
N↑

= e−
γ~B
kT (1.3)

where T is absolute temperature in Kelvin, ~ is the Planck’s constant (1.05372

x 10−34Joules seconds)and κ is the Boltzmann constant (1.38054 x 10−23 Joules/Kelvin)

[30]. At room temperature, there are always more nuclei in the low energy state. The

slight excess of the magnetic moments aligned in the parallel direction produce a net

magnetization vector M. The B0 field applies a torque to the spinning nuclei such that

M gets“tipped” and precesses about the axis of the applied field. This is analogous

to the precession of a spinning gyroscope in the influence of the earth’s gravitational

field. The rate of precession ω is measured in cycles/second can be calculated using

ω = γB0 (1.4)

The precessional frequency is known as the Larmor frequency and is directly

proportional to the strength the B0 field. In hydrogen nuclei, the γ is 42.57 MHz/T.

Hence, at 1.5T, the Larmor frequency is approximately 64 MHz for a hydrogen proton.

The net magnetization can be divided into the transverse and the longitu-

dinal components as shown in Fig.1.2. The transverse component Mxy represents

the component of the magnetization which is perpendicular to B0. The longitudinal

component Mz is the component of the magnetization in the longitudinal direction

with B0.
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Figure 1.2: Net Magnetization vector has components in the longitudinal and the
transverse plane and precesses about the total applied field.

M = Mxy +Mz (1.5)

The magnetization is further manipulated using a radio frequency pulse (RF)

tuned to the Larmor frequency of the precessing nuclei. The amplitude and duration

of the RF pulse or B1 determines the angle with which M gets tipped away from the

z-axis to the transverse plane [38]. The flip angle α or the angle with which the net

magnetization gets tipped is given by the

α(τ) = γ
∫ τ

0
B1(t)dt, (1.6)

where τ is the duration of the RF pulse. The rotating magnetization in the

transverse plane induces an electromagnetic force or voltage in the nearby receiver

coils due to Faraday’s law of induction. The signal is directly proportional to the

number of resonant spins tipped in the transverse plane due to application of the

RF pulse. The number of protons that contribute to the MR signal is a very small

number, only 1 in 100,000 protons at 1.5T.
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Once the RF pulse is turned off, the net magnetization returns to its equilib-

rium state through the process of relaxation [11]. As the nuclei return to their low

energy state, the signal decays exponentially which is referred to as Free Induction

Decay or FID. The time-dependent behavior of net magnetization M can be described

by the Bloch equation.

dM

dt
= γM ×B − Mxy

T2
− Mz −M0

z

T1
(1.7)

The transverse component of the magnetization Mxy decays due to spin-spin

interaction is given by the T2 relaxation time. The net magnetization recovers in

the longitudinal direction Mz back to its equilibrium state M0
z due to spin-lattice

interaction is described by the time constant T1. Both T1 and T2 relaxation times

are characteristic of the tissue [26]. Different tissues have different T1 and T2 times

depending on their physical and chemical properties. At 1.5T, the T2 values of bio-

logical tissues is approximately in the range of 10-100 milliseconds and T1 between

100-5000 milliseconds [30].

1.3 Spatial Encoding

The signal sampled in the coil is the total sum of the contribution of all the excited

nuclei in the imaging volume. To localize the signal from different spins, spatial

encoding is performed using magnetic field gradients as shown in Fig.1.3. The gradi-

ents change the total magnetic field as a function of position so that the precessional

frequency of the spins are directly proportional o their position.

To select a slice, the RF and gradient are applied simultaneously to excite

the spins in the region of interest. The excited magnetization has larmor frequencies
8



Figure 1.3: The three orthogonal gradients, X, Y and Z change the total magnetic
field linearly in the applied direction.

within a certain bandwidth resonant with the applied band-limited RF pulse [30].

The location and the width of the slice can be carefully controlled by the gradient

amplitude and the RF bandwidth as shown in as shown in Fig.1.4.

To acquire a slice thickness of ∆z, the amplitude of the gradient Gz and RF

bandwidth BW is calculated using

∆z = BW

γGz

(1.8)
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Figure 1.4: MRI uses a combination of RF and gradient fields to select a slice.
Stronger gradients can be used to select a thin slice.

The gradient Gz causes a spatial variation in the frequencies and the precessing

spins acquire a phase φ based on their position along z. The phase of a spin at a

certain z position is the integral of the gradient and is given by

∆φ(~z) = −~z[γ
∫ t

0
Gz(t)dt] (1.9)

After slice selection, subsequent gradients perform phase and frequency en-

coding of the spins in the imaging slice. Spatial encoding can be applied in multiple

directions to acquire 2D and 3D images of a given volume [8]. The time between each

excitation pulse is known as repetition time (TR). The period between the RF pulse

and the signal acquisition is the echo time (TE). The sequences are designed so that

two parameters (TE and TR) can generate contrast between different tissue. The
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resonant signal is acquired repeatedly using a sequence of RF pulses and gradient

fields, also called a pulse sequence [29].

With developments in gradient hardware, there is also an increasing demand

for faster pulse sequences. The standard Spoiled Gradient Recalled echo (SPGR)

sequence uses smaller flip angles and stronger gradients to reduce both the TR and

TE times of the acquisiton. It is mainly used to acquire T1 weighted MR images where

the contrast is primarily dependent on the flip angle. The steady state condition for

the SPGR sequence is given by

S = S0sin(α) 1− e
−TR
T1

1− cos(α)e
−TR
T1

e
−t
T∗

2 (1.10)

where S0 the equilibrium magnetization, and T ∗2 is shorter than T2 and repre-

sents the spin-spin relaxation time due to field inhomogeneities. The signal equation

gives the relationship between the imaging parameters and the MR properties of the

tissue to generate contrast in the images.

The acquired signal s(t) at a time t is the Fourier Transform of the transverse

magnetization distribution given by m(x,y)

s(t) =
∫
y

∫
x
m(x, y)ei[2πkx(t)x+2πky(t)y]dxdy, (1.11)

where kx(t) and ky(t) are the spatial frequencies given by

kx(t) = γ

2π

∫ t

0
Gx(τ)d(τ), (1.12)
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ky(t) = γ

2π

∫ t

0
Gy(τ)d(τ), (1.13)

The data in k-space are collected at specific values kx and ky, or spatial fre-

quencies of the object m(x,y). The fourier transform of the signal requires accurate

knowledge of the k-space sampling locations kx(t) and ky(t). Any timing error in the

gradient waveform can cause a discrepancy between the prescribed and the actual

k-space sampling locations. Such gradient errors can be a results of time-varying

system delays and eddy currents which can vary over the sampling period. For a

given gradient axis with the time delay ∆t, the resulting k-space trajectory is

k̂(t) = γ

2π

∫ t

0
G(τ −∆t)d(τ) (1.14)

The timing error in k-space is then ∆k = k̂(t) - k(t) = γG∆t.
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1.4 Fast Imaging

The MR signal is sampled at discrete time points along a trajectory S(k(t)) traced

by the gradients Gx, Gy and Gz. The k-space trajectories are designed to reduce the

scan time and reduce the number of sequence repetitions. Ideally, the trajectories to

sample k-space uniformly, meet the Nyquist criterion and the hardware limitations.

Spiral trajectories offer an intrinsic advantage as they can cover k-space effi-

ciently, and thereby, reducing the data-acquisition period. The trajectories are gen-

erally center-out and designed to trace an Archimedian spiral given by eq.1.15 [17].

k = Aθeiθ (1.15)

where k(t) = kx(t) + iky(t) is the complex k-space vector and A = N
D
, where

N is the total number of interleaves and D is the FOV and θ is the azimuthal angle

function of the spiral k-space trajectory.

The spiral radius is directly related to the angle in k-space as shown in Fig.1.5.

In a single shot, the trajectory can acquire the strongest signal and highest spatial

frequency at the center and at the maximum radius in k-space, respectively.

Spiral encoding methods use the gradients efficiently but are sensitive to the

imperfections of the gradient hardware. Hardware limits of the maximum gradient

amplitude and slew rate constrain the velocity and acceleration - design parameters

of k-space trajectory. An important consideration in spiral acquisitions is the image

reconstruction process since the k-space samples are acquired in a discrete, non-

uniform spiral pattern.
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Figure 1.5: Spiral K-space trajectory and Gradient Waveform.

1.5 Image Reconstruction

The data in MR are acquired in k-space. The function f(x,y) represents the image,

it Fourier Transform can be given by

m(x, y) =
∫
M(kx, ky)ei2π[kxx+kyy] (1.16)

For the spiral k-space data which lie on Non-Cartesian grid, cannot be inverted

using a standard FFT to reconstruct the image. Gridding-based image reconstruction

has been proposed to address this problem. The reconstruction is performed in three

main steps, sampling density correction, convolution and inverse Fourier Transform.

Common method used for sampling density correction are iterative, proposed by [36]

and [37]. The data compensated for sampling density are convolved using a finite

kernel and resampled onto a Cartesian grid. Once the data are space uniformly, the

inverse FFT can be applied to reconstruct the image. The effect of convolving the

data using a gridding kernel can be removed by applying a rolloff correction filter.

This operation can be mathematically represented by
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Mc = [(M · S ·W )⊗ C] ·R (1.17)

where Mc is the gridded k-space data after the reconstruction process [21] .

S are the series of discrete k-sampling locations, W is the weight applied for sample

density correction and C is the gridding kernel to convolve the data and resample

onto a uniformly spaced rectilinear grid R.

Gridding algorithms are designed to be computationally fast and free of re-

construction artifacts [5]. Optimization of the reconstruction process requires proper

choice of the sample density function and the gridding kernel. The standard method

used in image reconstruction of non-Cartesian data was developed by Jackson et.

al [21] and the gridding process was optimized by Beatty et. al [5]. Inaccuracies

in the reconstruction process can reduce the image quality and the Signal-to-Noise

ratio (SNR). Accuracy of image reconstruction relies on precise knowledge of the ac-

tual sampling locations in k-space. The sampling locations in k-space can be altered

due to system imperfections in the form of system delays and gradient amplitude

distortions.

1.6 Gradient Imperfections

k-space sampling deviations can occur due to system delays, gradient amplifiers non-

linearities, coil heating, switching delays, eddy currents or concomitant field gradi-

ents [1]. Gradient delay is a time delay between the actual and the prescribed start

time of the gradient waveform. Another source is the timing error between gradi-

ent transmission and the data-acquisition [15]. Such timing errors can occur be due

to poor system characterization, non-linearities of the system or poor eddy current
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supression. The delays can change due to variation of the coil resistance with tem-

perature [10]. Further, the delays in the three physical channels are independent of

each other [13]. A system delay in spiral trajectories can cause more complex errors

than a simple linear phase in case of Cartesian trajectories [1].

Fast pulsing magnetic fields produce transient eddy currents in the conducting

system of the magnet and can substantially degrade the uniformity of the gradients.

Precompensation is generally designed for a specific waveform for the MR system [28].

For spiral waveform, the gradient waveforms change continuously and therefore, the

pre emphasis filters can sometime under or overcompensate the eddy currents induced

deviations [10] .

1.7 State-of-the-Art

Modern scanners use active gradient shielding and waveform pre-emphasis, which

mitigate, but do not completely eliminate the short-term gradient errors from system

delays and eddy currents [10]. Several methods estimate these errors by measuring the

actual k-space trajectory or characterizing the behavior of the gradient system. The k-

space measurement techniques generally require phantom measurements, specialized

hardware, or pulse sequence modifications.

The actual k-space trajectory can be measured directly using a so-called “self-

encoding” method, originally proposed by Onodera et al. [31] and later extended by

Takahashi and Peters [31] , Papadakis et al. [32] and Alley et al. [2]. This method can

provide highly accurate results but requires many repetitions of the pulse sequence.

Other methods examine the signal-phase accrual due to multiple off-center

excitations. Mason et al.’s approach [28] utilizes small test phantoms, placed at
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different off-isocenter locations in the magnet system. The measurements can be

acquired with a few repetitions of pulse sequence but requires precise knowledge of

the test phantom locations. The slice-selection methods ( [16], [41], [6]) are relatively

simple, easy-to-implement and can be applied to any arbitrary test object. The

accuracy of these methods, particularly for measurements at high spatial frequencies,

depend mainly on the chosen slice thickness.

Recent methods use dedicated NMR probes [4], to measure the dynamic

changes in magnetic fields. The probes can monitor the gradient fields in real-time

and can provide a precise measurement of the actual k-space trajectory with each

acquisition. These methods can be used directly on the test subject but requires

specialized hardware.

Several methods estimate the k-space trajectory by characterizing the MR

gradient system. Some of these model the behavior of the system delays ( [18], [13],

[34]) or eddy currents ( [3], [27]), or directly use the system frequency response to

correct different k-space trajectories used on the scanner ( [1], [12]). These methods

provide reasonable estimates assuming the gradient system errors are linear and time-

invariant [10]. Robison et al. [39] estimates a single delay for each gradient channel

using correlation-based estimates.

This work introduces a new method that extends Robison’s approach by es-

timating continuous delays, with all gradients turned on. The measurements can be

acquired for any spiral based trajectory with just a minor modification of the pulse

sequence. The method includes gradient coupling effects, requires no phantom mea-

surements and estimates the delays simultaneously for the three gradient channels

over the data-sampling period [7].
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1.8 Technique Description

The proposed method estimates time-varying system delays for stack-of-spirals based

trajectories. It requires data-collection on three orthogonal cylinders, which overlap

on the three orthogonal physical axes, as shown in Fig.1.6a. These delays occur in

the direction of the trajectory, causing orthogonal shifts in the overlapping data at

any given radius in k-space. In spiral trajectories, the radius increases monotonically

as a function of the sampling period. The overlapping (orthogonal) data at any given

radius correspond to the same time-of-acquisition and hence are affected similarly

by off-resonance. These data are approximately the same, except for some noise

effects and the shifts in the two orthogonal directions, which are estimated using a

Fourier-based cross-correlation [7].

The estimated shifts are then decoupled and used to calculate the delay in

the corresponding orthogonal gradients. Fig.1.6b illustrates a rectangular region of

overlap and the corresponding data are seen in Fig.1.6c. The region of overlap for

each plane was calculated at all radii of the trajectory, as shown in Fig.1.6d,e. For

a given k-space radius kr, the overlapping region on a plane is indicated by the blue

shaded area (Fig.1.6d). The width x of this region is determined by the radius which

allows a 50 percent overlap with the data of a given spiral interleaf shown by the gray

shaded region. This width can be calculated by the following equation

x =
√
k2
r − y2, (1.18)

where y = kr-d and d equals one half the total thickness of the plane, which gives

x =
√
k2
r − (kr − d)2, (1.19)
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Figure 1.6: Orthogonal ”stack-of-spirals” cylinders (a) are compared in (b) regions
of overlap. The illustrated (yellow) plane in (b) has data from two cylinders (green
and blue), each affected by delays from orthogonal gradients and hence shifted (c) in
corresponding orthogonal directions (indicated by the green and blue arrows). For
example, if this plane is normal to the X axis, the delays from the Y and Z gradients
will shift the data (c) in the ky and kz directions, respectively. The color map in 1(c)
indicates the signal phase of the k-space data. At a k-space radius of kr, the width x
illustrates the region of overlap shown by the blue shaded area in (d) for a given plane
of thickness 2d. If θ is the angle between the radius and the vector normal to the
plane of the overlap, then x can be determined by the radius at which there is a 50
overlap with the data of a spiral arm (shown in gray). For a grid matrix supporting
a diameter of size 240, plot (e) shows the total width of the overlapping region (2*x)
increases with radius in k-space.

For a grid supporting a matrix diameter of 240, equation [2] was used in the

plot (Fig.1.6e) to calculate the total width of the overlapping region (2*x) versus the

k-space radius. The plot shows the width of the overlap increases with the radius

in k-space. The 2D correlation and subsequent delay estimation are described in the
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Methods section. Similar pairs of overlapping data are compared at different radii of

the trajectory for a continuous delay measurement through the sampling period.
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Chapter 2

METHODS

This section describes the synthesis of data used for simulation, as well as experi-

mental data collection. It then explains the data analysis and processing required

for the proposed delay correction. The implementation of Alley’s method [2] is also

described for validation of experimental data.

2.1 Data Synthesis

System delays were simulated in the three gradient channels for a known k-space

trajectory (described below in the Data Collection section). The delays were varied

for each time-point of the sampling period, as shown in Fig.3.1. The altered (time-

shifted) k-space coordinates were calculated using quadratic interpolation. Data were

synthesized from a 3D image volume using the altered k-space trajectory. The pro-

posed data analysis (discussed later) was then applied to estimate the delays for the

altered trajectory set.

2.2 Data Collection

All experiments were performed on a 3.0T GE Signa Excite HDx system (General

Electric, Milwaukee, WI), using an eight-channel head coil. Three cylindrical vol-

umes (corresponding to Fig.1.6a), were collected from a GE phantom using a 3D

SPGR stack-of-spirals sequence with relevant parameters FOV/res = 240/1mm, 64

interleaves, 24 planes, 10mm slice thickness, (TR/TE) of (20ms/4ms), flip angle of

20◦, readout bandwidth of ± 250kHz, sampling period of 2.54ms and a total scan
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time (for three cylinders) of 1.7 minutes. The experiment was repeated with 16 and

48 interleaves using the above parameters for a total sampling period of 9.53ms and

3.31ms, respectively. In-vivo data were also collected for 64 interleaves with the rest

of the parameters kept the same.

2.3 Data Analysis

The following analysis was applied to both acquired and synthesized data sets in

k-space. Data for each cylinder were corrected for sampling density [42] and gridded

[5] on 3D Cartesian grid. The three Cartesian data sets were generated using an

oversampling factor of 2 for the in-plane matrix. A roll-off correction was applied to

the data in image-space, which were then cropped, and inverse Fourier transformed

so that the final grid for each cylinder supported a 240 x 240 x 24 matrix in k-

space. Planes corresponding to overlapping data on each grid were compared for

shift estimation. The shift in the two orthogonal directions of overlapping data on

each plane was estimated using a Fourier based cross-correlation.

2.4 Fourier-based Cross-Correlation

In a rectangular region of overlap (Fig.1.6b), system delay from a given cylinder

comes from a single gradient and shifts the data in the direction of that gradient.

If the plane is normal to the X axis, the delays from the Y and Z gradients will

shift the overlapping data by ∆ky and ∆kz respectively. Let f1(ky -∆ky, kz) and

f2(ky, kz - ∆kz) correspond to the overlapping data from two orthogonal cylinders

on the plane normal to the X axis as shown in Fig. 1c. The 2D correlation method

in Ref. [22] was used to estimate these (translational) shifts in the k-space data
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from the corresponding cylinders. The method is briefly explained here, and more

implementation details can be found in Ref. [22]. These shifts in the two orthogonal

directions were estimated from the location of the maximum correlation peak (p) of

the functions f1 and f2, where

p = max|(∆ky ,∆kz)[
∫
f1(ky −∆ky, kz)f ∗2 (ky, kz −∆kz)dkydkz] (2.1)

Using the Fourier shift property and Parseval’s theorem,

p = max|(∆ky ,∆kz)[
∫
F1(y, z)F ∗2 (y, z)e−i(∆kyy−∆kzz)dydz] (2.2)

where F1 and F2 are the Fourier Transforms of the functions f1 and f2 re-

spectively, and * represents a complex conjugate. Equation [4] was used for the

overlapping data on the other two spatial axes and the correlation peak was then

used to estimate the k-space shifts for the respective data sets. For the planes normal

to the Y and Z axes, the maximum peak was calculated for the shifts in (∆kx, ∆kz)

and (∆kx, ∆ky), respectively.

2.5 System Delay Correction

For the proposed method, the system delay for a given axis is defined as the difference

between the theoretical and the actual time when the integral of the gradient (i.e the

k-space location) equals zero. Measurements are acquired for multiple spiral inter-

leaves and at multiple zero-crossings to estimate the delay over the entire sampling

period. At a given radius in k-space, the estimated shift (∆k) was used to calculate

the system delay (∆t) using the approximation given in Ref. [39]
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∆k
∆t = γGsinθ, (2.3)

where γ is the gyromagnetic ratio, G is the gradient amplitude and θ is the

angle between the gradient and a vector describing the k-space location, shown in

the inset of Fig.2.1b. If a plane is normal to the k-space vector, then the product

|G|sinθ is the component of the gradient in this plane of the overlapping data, i.e

in the angular direction. The measured shifts were used to calculate the delay in

corresponding (orthogonal) gradient channels. Continuous delays were acquired by

comparing overlapping planes along the entire length of each spatial axis. The cor-

relation maps were averaged across data sets from eight coils prior to estimating the

peak [max (p( ∆ky, ∆kz)] for each delay measurement.

At a given radius in k-space, a total of four delays were estimated for each

gradient channel. For example, the delays for the X gradient were acquired by com-

paring overlapping planes normal to the +Y and -Y axes and +Z and -Z axes. The

absolute delay for each physical gradient was calculated by averaging the estimates

obtained on the four corresponding axes. The final averaged delays were used for each

radius in k-space to correct the coordinates of the altered trajectory. The method was

iterated by 1) re-gridding the data with the newly corrected trajectory, 2) using the

same data-analysis and 3) estimating the residual delays. The delays for each of the

three gradient channels were interpolated to obtain an estimate for each time-point

of the sampling period.

The estimated delay was added to the k-space trajectory using polynomial

interpolation. Let function k represent the uncorrected k-space coordinates, the new

delay-corrected coordinates (i+∆(i)) was generated using three neighboring sample
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points k(i-1), k(i) and k(i+1), where i indicates the index of the sample and ∆ is the

delay added to each sample point. The new corrected k-space coordinate for a given

time point t was calculated using the samples at the two endpoints a and b and the

midpoint m = (a+b)/2, which gives the expression

k(t) = k(a) (t−m)(t− b)
(a−m)(a− b) + k(m) (t− a)(t− b)

(m− a)(m− b) + k(b) (t− a)(t−m)
(b− a)(b−m) (2.4)

where t = (i+∆(i))D, a =((i-1)D), m = ((i)D), b = ((i+1)D) and D is the

sampling dwell time. Equation [6] was used to the estimate the delay-corrected k-

space coordinates for each time point of the sampling period for the three gradient

channels. To evaluate the effects of variable delays, a constant delay correction was

applied using different constant delay values estimated by (i) averaging the constant

part of the variable delays for each gradient channel (ii) using constants corresponding

to the peaks of the variable delay curves and (iii) using the constant delays proposed

by Robison et. al [22]. The method proposed by Robison et. al [39] was implemented

on the same MR scanner as used for this work and the estimated delays in Ref. [22]

were used here for sake of comparison. For acquired data, images were reconstructed

without delay correction, using the first values of constant delays (i) and the (pro-

posed) variable delay correction. Only the constant delays using (i) were used because

they produced the image with the lowest root mean square (rms) error with respect

to the reference image (discussed later as “Alley’s method”) compared to (ii) and (iii).
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2.6 LSI model

The estimated delays for the proposed method are less reliable at the smaller radii

in k-space as seen in Fig.2.1a (solid line). This is due to the radial nature of the

trajectory as examined in Fig.2.1b, a plot of θ versus the data-sampling time. The

trajectory starts out radially at θ = 0◦ and later becomes angular as θ approaches

90◦. This method analyzes the angular component of the trajectory and hence fails in

the initial regions of k-space. To estimate the delays in these regions, a Linear-Shift

Invariant (LSI) model was used, assuming that the system delays are a function of

the gradient angular frequency, (the measured data are plotted in Fig.2.1d). For a

given k-space radius kr, the gradient angular frequency is defined as

dα

dt
= γGsinθ

kr
, (2.5)

where α is the angle of the gradient vector. The plot of the gradient angular

frequency (Fig.2.1c) showed a single peak in the beginning of the frequency curve.

The delays prior to the peak were calculated from the estimated delays corresponding

to similar angular frequencies after this peak.

2.7 Validation with Alley’s method

The method proposed by Alley [2] can provide an accurate measure of the actual

k-space trajectory, estimating both system delays and eddy currents effects. The

method was implemented (for acquired data only) both to estimate the “true” k-

space trajectory as well as to independently estimate system delays (only). Note the

same trajectory was used as described in the data-collection section. The k-space
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Figure 2.1: The uncorrected delays (a) estimated for a single gradient channel are
less reliable in the more radial part of the trajectory (b), since this method measures
the angular component of the delays in k-space. The gradient angular frequency (c)
and an assumption that systematic delays are a function of that frequency (d) allows
one to take measured delays to the right of the dotted line in (c) (i.e. magenta) and
calculate a corresponding delay for times to the left of that dotted line (i.e. green).
The final, corrected delays are shown (dashed line) in (a).

trajectory was measured separately for each spiral interleaf of the 64-interleaved set.

To estimate the system delays, both the measured and the theoretical trajectory were

plotted as a function of the data-sampling time [7].

The delays were measured at the zero-crossings in k-space (as illustrated in

Fig.??), assuming the amplitude deviations are negligible in these regions. The delays

for all 64 interleaves were combined to create a finely sampled delay estimate over

the data-sampling time. The process was repeated for all three gradient channels.
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Figure 2.2: The delay (∆t) measured at the zero-crossing in k-space (exaggerated
for clarity) by comparing the measured (using Alley’s method) and the theoretical
trajectory for each spiral interleaf.

Images were reconstructed using the fully measured k-space trajectory and using

the measurements for system delays (only). The image reconstructed using the full

measurement of the k-space trajectory was used as a reference image to analyze the

performance of the proposed method. The total acquisition time for Alley’s method

was approximately 4 hours 48 minutes.
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Chapter 3

RESULTS

3.1 Simulation

The estimated delays from the first and second iteration of the proposed method are

shown in Fig.3.1 are in close agreement with the simulated delays.

Figure 3.1: Variable system delays applied to synthesized stack-of-spirals data in
the three gradient channels. The estimated delays from the first (X1, Y1, and Z1)
and second (X2, Y2 and Z2) iterations illustrate the performance of the method in
estimating the applied delays. The results show that the second iteration improves
the accuracy of the estimates.

3.2 Experiments

The results of the two iterations of the proposed method are quite similar for 16,

48 and 64 interleaves as shown in Fig.3.2a-c respectively. Figure 3.3a-c shows the

dependence of the estimated delays to the gradient angular frequency for the X, Y
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and Z gradients, respectively. The X gradient shows a greater frequency dependence

compared to the Y and Z gradients. The method proposed was by Robison et. al [39]

was implemented on the same MR system as used for this work. The estimated

delays for the X and Y gradients shown in Fig.3.4 of (Ref. [39]) were also plotted

here for sake of comparison, (Fig.3.3a,b). A 1µs delay was subtracted from Robison’s

estimates for the X and Y gradients to account for the differences in dwell times used

between the two methods (i.e. 4µs in [39] versus 2µs used for the proposed method,

respectively). For a dwell time of 2µs or 4µs, the actual sampling starts at 1 or 2µs,

respectively, resulting in a 1µs discrepancy between the measured delays between the

two methods. Figure 3.4 shows a good agreement between the estimated delays for

the proposed method and those acquired for Alley’s method [2]. The estimates are

within 1µs of the reference delays, which in our experience do not result in visible

changes in the reconstructed images [7].

Axial and coronal images for acquired data using a GE phantom are shown

in Figures3.5 and 3.6 , respectively. The reconstruction using any of these delays

showed a substantial reduction in artifacts (Fig.3.5 and Fig.3.6 c-e) compared to the

uncorrected image (Fig. 3.5and Fig. 3.6a). Full use of the measured trajectory

using Alley’s method Fig. 3.5 and Fig. 3.6b showed slightly better artifact reduction

than the sole use of delays. The apparent increased noise (speckle artifact) (Fig.

3.5 and Fig. 3.6b) may be a result of insufficient filtering of the k-space coordinates

generated using the fully measured Alley’s trajectory. The correction using single

constant delays 0.75µs, 2.23µs and 2.82µs for the X, Y and Z gradients, respectively,

resulted in substantially more artifacts than when using a variable delay, (Fig. 3.5

and Fig. 3.6f).
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Figure 3.2: . The estimated delays using the first (X1, Y1, and Z1)and second (X2,
Y2, and Z2) iteration of the proposed method are compared for a (a) 16, (b) 48 and
(c) 64 interleaf trajectory. The results of the two iterations are quite similar.

Table 3.1: RMS error for Correction Methods
Proposed Alley’s Constant Robison’s Variable Peak

0.52 0.53 0.60 0.61 0.75

Assuming a maximum residual error of 1 for the uncorrected image (Fig. 3.5a),

the relative root mean square error of the difference images (Fig. 3.5g-i) was 0.52,

0.53 and 0.60 respectively as shown in table3.1. For constant delays using Robison’s

estimates (X: 2µs and Y: 4µs) given in Ref. [39] and for those corresponding to peaks

of the variable delay estimates (X: 4µs and Y: 3µs) shown in Fig. 3.2c, the relative

root mean square error was 0.61 and 0.75, respectively. Figure 10 shows an example

of using the correction on in-vivo data. The blurring artifacts in Fig. 3.7a were

reduced greatly by using the proposed correction, (Fig. 3.7b). This method has also

been tested on a 3D center out spiral-based trajectory “FLORET” [35] presented in

Ref. [33].
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Figure 3.3: Estimated delays for the (a) X, (b) Y and (c) Z gradients are plotted for
different number of interleaves (16, 48 and 64) as a function of the gradient angular
frequency. The delay estimates shown in Fig. 7 of Ref 20 for the X and Y gradients
are plotted for sake of validation. A delay of 1µs was subtracted from Robison et.
al’s [39] estimates in (a) and (b) to account for the discrepancy in the dwell times of
4µs and 2µs used in Ref. 20 and the proposed method, respectively.
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Figure 3.4: The estimated delays using a second iteration of the proposed method are
compared to the delay measurements for Alley’s method. The results for the three
gradient channels are within 1µs of the reference delays.
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Figure 3.5: Axial images of acquired phantom data are reconstructed (a) with no
correction, (b) with the full k-space trajectory measured using Alley’s method, using
delays estimated from the (c) first and (d) second iteration of the proposed method,
(e) using delays measurements from Alley’s method and (f) using constant delays for
(X: +0.75µs, Y: +2.23µs and Z: +2.82µs) gradients. The images in (g-i) represent
the magnitude of the difference between the respective images in (d-f) and (b), which
is assumed to be closest to the truth. The difference images (g-i) are scaled by a
factor of 10 compared to the images (a-f) which are windowed the same.
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Figure 3.6: Coronal images of acquired phantom data are reconstructed (a) with no
correction, (b) with the full k-space trajectory measured using Alley’s method, using
delays estimated from the (c) first and (d) second iteration of the proposed method,
(e) using delays measurements from Alley’s method and (f) using constant delays for
(X: +0.75µs, Y: +2.23µs and Z: +2.82µs) gradients. The images in (g-i) represent
the magnitude of the difference between the respective images in (d-f) and (b), which
is assumed to be closest to the truth. The difference images (g-i) are scaled by a
factor of 10 compared to the images (a-f) which are windowed the same.
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Figure 3.7: Axial images of in-vivo data are reconstructed (a) with no correction,
(b) using a second iteration of the proposed variable delay correction. The difference
image (c) of (b) and (a) illustrates the differences before and after delay correction.
The difference image (c) is scaled by a factor of 10 compared to images (a and b)
which are windowed the same.
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Chapter 4

DISCUSSION

The proposed method estimates the delays in the three physical gradients. It was

tested using different number of interleaves (16, 48 and 64) keeping the same FOV and

resolution on (acquired) phantom data. Figure 3.3a-c for the X, Y and Z gradients

respectively shows the delays vary approximately linearly with the gradient angular

frequency. Assuming the delays are a function of the gradient angular frequency,

the proposed method can be used as a calibration scan for spiral-based trajectories.

This assumption may not apply to all MR scanners, as the delays can be system-

dependent. Reference [1] determines the system frequency response of two different

gradient systems using LTI-based characterization.

The frequency response of the gradients shown in Fig.2.1 of Ref. [1] suggest

that time-varying delays can be modeled as the non-linear phase of the LTI transfer

function. Given the data for these systems, the delay can be calculated by taking

the derivative of the phase with respect to the frequency. This can be used as a

method to compare the results of the proposed work. The total acquisition time for

the proposed method was 1.7 minutes compared to 4 hours 48 minutes for Alley’s

method [2]. The slice selection methods are also much faster than Alley’s method

and can be used as a practical alternative in certain cases.

At present, this method has been tested for axial, sagittal and coronal planes

and is yet to be implemented for oblique planes. The method does not account for

residual errors from amplitude non-linearity of the gradients. [39] shows the majority

of the trajectory error results from system delays, however, some residual error may
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still remain from incorrect k-space scaling due to amplitude changes of the gradient

waveform [7].
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Chapter 5

CONCLUSION

Spiral trajectories are sensitive to the effects of system delays and eddy currents,

which can vary over the data-sampling period. These errors can alter the desired

sampling locations in k-space, which can result in artifacts in the final reconstructed

images. The proposed method was implemented for both synthesized and acquired

data, which, when used to correct the trajectory used for reconstruction, resulted

in a substantial reduction in these artifacts. The simulation results indicated high

accuracy in estimating the applied delays. For acquired data, the implementation

of Alley’s method [2] further validated the proposed method. The results show the

method works well with an assumption of a LSI or similar model for an accurate

delay estimate in the initial regions of k-space. Overall, the method is fast, simple

and can easily be extended to other spiral based sequences [7].
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FUTURE WORK

The work can be extended to other spiral-based trajectories. The method can be

further analyzed to estimate errors from gradient non-linearities and concomitant

fields. The speed of delay estimation can be increased by futher threading the code

to increase the computational efficiency.
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