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ABSTRACT

This work presents two complementary studies that propose heuristic methods to

capture characteristics of data using the ensemble learning method of random forest. The

first study is motivated by the problem in education of determining teacher effectiveness

in student achievement. Value-added models (VAMs), constructed as linear mixed

models, use students’ test scores as outcome variables and teachers’ contributions as

random effects to ascribe changes in student performance to the teachers who have taught

them. The VAMs teacher score is the empirical best linear unbiased predictor (EBLUP).

This approach is limited by the adequacy of the assumed model specification with respect

to the unknown underlying model. In that regard, this study proposes alternative ways to

rank teacher effects that are not dependent on a given model by introducing two variable

importance measures (VIMs), the node-proportion and the covariate-proportion. These

VIMs are novel because they take into account the final configuration of the terminal

nodes in the constitutive trees in a random forest. In a simulation study, under a variety

of conditions, true rankings of teacher effects are compared with estimated rankings

obtained using three sources: the newly proposed VIMs, existing VIMs, and EBLUPs

from the assumed linear model specification. The newly proposed VIMs outperform all

others in various scenarios where the model was misspecified.

The second study develops two novel interaction measures. These measures could

be used within but are not restricted to the VAM framework. The distribution-based

measure is constructed to identify interactions in a general setting where a model

specification is not assumed in advance. In turn, the mean-based measure is built to

estimate interactions when the model specification is assumed to be linear. Both

measures are unique in their construction; they take into account not only the outcome

values, but also the internal structure of the trees in a random forest. In a separate
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simulation study, under a variety of conditions, the proposed measures are found to

identify and estimate second-order interactions.
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CHAPTER 1

INTRODUCTION

Much of the debate about educational reform has centered on teacher and school

accountability. Attempts to measure teacher’s influence on student achievement have

been of interest in the scientific community for several decades (Hanushek, 1971; Bryk

and Weisberg, 1976; Hanushek, 1979). As a result, programs such as the Tennessee

Value-Added Assessment System (Sanders et al., 1997) have been implemented in specific

states or school districts to account for school and/or teacher effects since the early 1990s.

However, since the most recent reauthorization of The Elementary and Secondary

Education Act, The No Child Left Behind Act of 2001, a major emphasis has been placed

on setting standards that each teacher must meet in order to be considered highly

qualified. As a consequence, many states and school districts have adopted or are in the

process of adopting programs intended to measure teachers’ effects on student

achievement.

Somewhat more generally, decision-makers are actively pursuing an environment

where teacher accountability could be used as an instrument for promotion and retention.

In the 2012 State of the Union address, President Obama stated, “Teachers matter. So

instead of bashing them, or defending the status quo, let’s offer schools a deal. Give them

the resources to keep good teachers on the job, and reward the best ones. And in return,

grant schools flexibility: to teach with creativity and passion; to stop teaching to the test;

and to replace teachers who just aren’t helping kids learn.” This position is not new in

the research community. Goldhaber and Hansen (2010), among others, propose linking

administrative decisions related to teachers (for example, remuneration and tenure) to

measures of their contributions toward student learning, arguing that this approach

agrees with administrative decision-making based on employees’ level of productivity.
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Since teacher effectiveness cannot be measured directly, many researchers have

used value-added models (VAMs) as an indirect approach to assessing effectiveness.

These models attempt to ascribe changes in student achievement to their corresponding

teachers and/or schools. A number of models have been proposed and are currently used

for this purpose. Most of these models, henceforth called traditional VAMs, are either

special cases or extensions of a general mixed model described in McCaffrey et al. (2004)

(e.g., McCaffrey and Lockwood (2011); Mariano et al. (2010)). In these models, students’

test scores are used as outcome variables while the contributions of teachers are treated as

random effects. Hence, the value-added score for a teacher is obtained as the predicted

value of the random effect.

The appropriateness of the use of VAMs in education is an ongoing debate

(Stewart, 2006; Rothstein, 2009, 2010; Briggs and Domingue, 2011; Kinsler, 2012). This

debate could be approached in different ways. For example, we could question the validity

of VAMs in education as an appropriate instrument for decision making since we cannot

make causal inferences due to the lack of randomness in student assignment (i.e., does

teachers’ effectiveness cause students’ progress?), a problem inherent to most

observational studies. Alternatively, we could address limitations in the current VAMs by

proposing alternatives to improve them. For example, Karl et al. (2011) address problems

associated with missing data not at random, often encountered in educational settings.

This study contributes to the understanding of VAMs and seeks to enhance their

usefulness in assessing teacher’s performance by addressing issues related to the rigid

model structure they impose on data. Specifically, limitations arise because the linear

model structure only includes covariates that are explicitly included in the model;

typically, few interactions are considered and nonlinearity is generally only addressed

through quadratic terms. While it might be possible that a certain teacher is more

effective with a certain group of students, such situation can only be taken into account in
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the VAM if the corresponding interaction is modeled in advance. Otherwise, the VAM

would be misspecified.

To address VAM limitations, we work with the ensemble learning method of

random forest proposed by Breiman (2001). The advantage of using this approach is that

no structure is predetermined, as opposed to the traditional VAMs. Therefore, in

principle, any possible effect would be taken into account and discovered.

The use of data mining and statistical learning methodology is not entirely

uncommon in educational research (Baker and Yacef, 2009). For example, applications of

data mining methods in education have been employed for predicting student outcomes

such as graduation (Mendez et al., 2008) and retention (Chong et al., 2010), and some

work has been done to determine the relative contribution of different learning methods

(Beck and Mostow, 2008). However, the use of data mining techniques to measure teacher

effectiveness in students’ outcomes has yet to receive research attention.

This dissertation examines two different, yet related topics. The first part

compares the information about teacher effects obtained using traditional VAM

methodology and data mining techniques. For the former, we use two linear mixed

models: the covariate adjustment model and the gain score model. For the latter, we

work with random forest. In the linear mixed models, the teacher effects are obtained

using the empirical best linear unbiased predictors (EBLUPs). In random forest, we are

not aware of any existing methodology that directly quantifies teacher effects. Therefore,

we work with variable importance measures (VIMs) to rank teacher effects. In particular,

we develop and propose two new VIMs based on the final configuration of terminal nodes

in the regression trees that compose the random forest: the node-proportion and the

covariate-proportion VIMs. In a simulation study, under a variety of conditions, true

rankings of teacher effects are compared with estimated rankings obtained using three
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sources: the newly proposed VIMs, existing VIMs, and the EBLUPs from the assumed

linear model specification.

The second part of this dissertation introduces two novel methods to assess

interactions using characteristics of the random forest. The distribution-based measure is

constructed to identify interactions in a general setting where a model specification is not

assumed in advance. The mean-based measure is built to estimate interactions when the

model specification is assumed to be linear. Both measures are unique in their

construction; they take into account not only the outcome values, but also the internal

structure of the trees in random forest. Specifically, given two variables, we consider the

frequency of appearance of those variables in different branches in each tree as well as

their relative position with respect to each other and with respect to the root node. The

distribution-based interaction measure is used to identify potential interactions and is

based in the final configuration of the splitting variables in the trees. By contrast, the

mean-based interaction measure obtains interaction estimates using the structure of the

tree to assign weights to a linear combination of relevant node outcome means.

Chapter 2 presents the background literature for linear models, VAMs, and data

mining methods used in this study. Chapter 3 introduces the proposed VIMs and a

simulation study that compares the proposed VIMs with existent VIMs and those

obtained using the EBLUPs. Chapter 4 presents the proposed interaction measures and a

simulation study to determine the measures’ accuracy. Concluding remarks and

discussion of the limitations of the study as well as future research directions are

presented in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, we introduce a general framework that encompasses linear models, VAMs,

and data mining models. In addition, different variable importance measures and

interaction detection techniques that derive from the data mining literature are examined

and computational considerations are discussed.

2.1 A General Framework

Let X = (X1, . . . , XP ) ∈ RP be a real valued random P -vector of continuous or

categorical random variables and Y ∈ R a real valued random variable. We assume that

Y is determined by

Y = F (X) + ε, (2.1)

where F is a real valued function and ε ∼ N(0, σ2).

Given realizations of (X, Y ), {xi, yi}Ni=1, the interest is in using this information to

obtain a function F̂ (·) that predicts Y given values of X. We are also interested in some

cases in concomitant parameters estimators that may be obtained in the process of

evaluating F̂ (·).

We consider two different approaches for inference about F . In the first, we

assume that F has a given structure; i.e.,

Y = F (X; Θ) + ε, (2.2)

for Θ a vector of unkhown model parameters. Then, we use data that are realized from

(2.2) to estimate the value of Θ. Analysis based on traditional VAMs derived from this

perspective is described in Section 2.2. Our second approach is nonparametric in that it

presumes no a priori structure for F and instead employs predetermined procedures and

algorithms to estimate certain of its features. A large number of data mining methods,

including random forest, use this tactic and are described in Section 2.3.
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2.2 Linear Mixed Models in the Context of VAMs

VAMs in education are models that measure the additional value a teacher (school or

program) contributes to student achievement. In this study we center on teacher

contributions, but extensions to school or program contributions are straightforward

(McCaffrey et al., 2004).

In terms of (2.1), VAMs assume that the model specification is linear in the

parameters. Moreover, the VAMs considered here assume teacher effects are random.

This assumption, although not uncommon, is not pervasive. Some research in VAMs

treats teacher effects as being fixed. Since the choice is an assumption, in principle, both

formulations are plausible (Demidenko, 2004, p. 55).

In this study we choose to analyze teacher influence as random rather than fixed

effects based on three justifications. First, the fixed effects approach would be preferable

if the number of teachers is small and the number of students per teacher is large

(Demidenko, 2004, p. 55); in educational studies we often have the opposite situation.

Second, it seems more natural to assume that teachers are assigned to schools based on a

population of teachers with some specific distribution (Searle, 1971, p. 7). Third, by

allowing teacher effects to be random, a positive correlation among students in the same

class can be introduced in the model through the teacher effects variance-covariance

matrix.

Our interest here is not to argue that random effects are more adequate than fixed

effects, but rather to provide some arguments for our choice. In any case, the real focus of

this study is on the comparison of data mining techniques with linear model methods and

the use of random effects is satisfactory for that purpose. Similarly, for the sake of model

specificity, all other covariates in the models are considered fixed (e.g., gender, age,

ethnicity, free and reduced lunch status).
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The linear mixed model specification in the context of VAMs could allow for

multivariate teacher effects for each teacher, i.e., different teacher effects assigned to each

teacher based on course topics and/or time periods, for example, the model specification

used in Mariano et al. (2010) and McCaffrey and Lockwood (2011). Then, it is common

to assume that random effects corresponding to the same teacher are correlated while

random effects corresponding to different teachers are not. Because our objective is to

draw comparisons between VAMs and alternative methods, we present a simplified model

specification: the case of univariate teacher effects, i.e. a single teacher effect is assigned

to each teacher. A linear mixed model in this context can be represented by

y = Uβ + Zb + ε, (2.3)

where y = (y1
>, . . . ,y>N)> is an Nh-vector and yi = (yi1, . . . , yih)> is an h-vector (with h

being, e.g., the number of years) of readings from subject i for i = 1, . . . , N . The

Nh× (p1 + 1) matrix U = [U>1 , . . . ,U>N ]>, with h× (p1 + 1) matrices Ui for i = 1 . . . , N ,

represents the student-level covariates. The Nh× p2 matrix Z = [Z>1 , . . . ,Z>N ]> is the

design matrix that relates the p2 teachers to each student, and each h× p2 matrix Zi for

i = 1 . . . , N , relates the p2 teachers to student i. The (p1 + 1)-vector β = (β0, . . . , βp1)>

represents the fixed effects and b = (b1, . . . , bp2)> is an p2-vector of teacher (random)

effects where the bj’s are iid N(0, σ2
τ ) random variables for j = 1, . . . , p2. Similarly, the

Nh-vector ε = (ε>1 , . . . , ε>N)> represents the error terms, with εi = (εi1, . . . , εih)> and the

εik are iid N(0, σ2) random variables for all i = 1, . . . , N and k = 1, . . . , h. The values for

σ2
τ , σ2, and the vector β are unknown.

To relate this formulation to (2.2), we take Θ = (β>,b>)> and X = [U Z] with U

the matrix of covariates and Z a matrix of indicator variables. Then F (X; Θ) = XΘ.

The observed data {(Ui,Zi,yi)}Ni=1 (or some subset thereof) can be used to obtain

estimators σ̂2
τ , σ̂2, and β̂ of σ2

τ , σ2, and β, respectively. In order to obtain a teacher effect

prediction we can use an estimator of the conditional expectation of the random effects,
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given the observed outcome values: namely,

b̂ = Ê(b|Y = y) = σ̂2
τZ>V̂−1(y−Uβ̂) (2.4)

provides an estimator of b, where

V̂ = Z(σ̂2
τI)Z> + σ̂2I (2.5)

is the estimated covariance matrix of y. While there are different approaches that are

used to estimate the unknown parameters of the model, the most common choice is the

one we use for this study as well: the restricted maximum likelihood estimate or REML

as described in Patterson and Thompson (1971).

We next describe the two generic linear mixed models that are used in this study:

the Covariate Adjustment Model (CAM) and the Gain Score Model (GSM).

Covariate Adjustment Model

The CAM applies to a single cohort of students in two contiguous years or grades,

h = 1, 2, where h = 1 corresponds to the first grade of the study. We assume M teachers

in grade 2 and the dependent variable is students’ scores in year 2. The year 1 scores are

treated as a covariate. The model assumes that each student has only one teacher per

year and teacher effects are random.

Using the superscript c to characterize the CAM, (2.3) for each i can be expressed

as

yi2 = δcyi1 + (uci)>βc + z>i bc + εci , i = 1, . . . , N. (2.6)

Assuming p covariates, (uci) = (ui0, . . . , uip)> with ui0 = 1. Then, in (2.2), we have

ui = (yi, (uci)>)>, β = (δc, (βc)>)>, for βc = (βc0, . . . , βcp)>, the (p+ 2)-vector of fixed

effects and δc the slope that relates the year 2 scores to the year 1 scores. The vector

z>i = (zi1, . . . , ziM) in 2.6 corresponds to the Zi part of the design matrix in (2.3). Since

each student has only one teacher per year, the vector zi has only one coordinate equal to
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one and the rest equal to zero. The teacher effects are represented by the vector

bc = (bc1, . . . , bcM) and we assume that bc ∼ N
(
0, (σcτ )2I

)
. The εci in the model are iid

N
(
0, (σc)2

)
random variables that are independent of bc.

The matrix representation of (2.6) takes the form

y2 = δcy1 + Uβc + Zbc + εc. (2.7)

The y2 = (y12, . . . , yN2)>, y1 = (y11, . . . , yN1)>, the i-th row of the matrices U and Z are

u>i and z>i , respectively, and εc = (εc1, . . . , εcN)> ∼ N
(
0, (σc)2I

)
.

Because of the simple structure of the CAM, if the N observations are ordered

appropriately, it is possible to simplify (2.5). Notice that

V̂ = ˆcov(y2) = Z(σ̂2
τI)Z> + σ̂2I = (σ̂cτ )2A + (σ̂c)2I, (2.8)

where A = diag(J1, . . . ,JM) is a block diagonal matrix and Jm is a square matrix of ones

with dimensions equal to the number of students that have been taught by teacher m, for

m = 1, . . . ,M . The empirical best linear unbiased predictor (EBLUP) for teacher effects

given the observed outcome values in this case is

b̂c = (σ̂cτ )2Z′[(σ̂cτ )2A + (σ̂c)2I]−1(y2 − δ̂cy1 −Uβ̂c). (2.9)

Gain Score Model

The construction of the GSM is similar to the one for the CAM. The main difference is

that the dependent variable is now the difference of year 2 and year 1 scores. Specifically,

we have ygi = yi2 − yi1 and

ygi = u′iβg + z′ibg + εgi , (2.10)

for i = 1, . . . , N . Here the superscript g denotes that the parameters correspond to the

GSM and, apart from the δc slope parameter, the model is defined as in (2.6). The matrix

representation of (2.10) is

yg = Uβg + Zbg + εg, (2.11)
9



and the EBLUPs for teacher effects given the observed outcome values are

b̂g = (σ̂gτ )2Z′[(σ̂gτ )2A + (σ̂g)2I]−1(yg −Uβ̂g). (2.12)

Note that the teacher effects predictions b̂c and b̂g do not have to be equal, since

the different model specifications in (2.6) and (2.10) change the interpretations of these

effects. Both, the CAM and the GSM have the limitation of considering only two years of

data and produce one year of estimated teacher effects. Therefore, a different model has

to be used for each year of student data. Although the usefulness of the GSM has been

questioned, it has been shown that the information obtained with this model might still

be valid (Williams and Zimmerman, 1996).

Notice that (2.9) and (2.12) are central in the analysis of variable importance

measures, presented in Chapter 3. These equations also play a role of shrinkage

estimators, relative to the least squares estimators for b in an alternative model, where b

is instead a vector of fixed effects (Robinson, 1991). This happens because the EBLUP

for teacher effects takes into account the entire data, while the alternative least square

estimators only consider that teacher’s own students. Therefore, the EBLUP for b

shrinks toward their mean. As we describe in Section 2.4, a similar shrinkage effect is

realized from certain data mining methods.

2.3 Data Mining Methods

In the previous section we assumed that F in (2.1) had certain structure with

corresponding parameters and used realized data from the model to estimate (via REML)

the unknown parameters. This, in turn, produces a fitted model that can be used for

predictions. In this section, we go in a somewhat different direction and introduce data

mining methods. The motivation continues to be finding a function F̂ := Fα that

estimates F in (2.1) and produces model predictions. Here α represents the data mining

method or algorithm used. The approach now is to use a set of realizations of (X, Y ) to

obtain F̂ without assuming an underlying parametric structure for F . Once Fα has been
10



determined, it is often possible to describe this function using a set of parameters, Ξ; i.e.,

given a new observation x, the predicted outcome is given by ŷ = Fα(x; Ξ). Notice that

the resulting parameters Ξ are of a fundamentally different nature than the model

parameters Θ in (2.2). In particular, Ξ is dependent on the realizations of the predictor

variable X used to obtain Fα while the vector Θ has no particular meaning here because

no underlying structure is assumed for F .

We begin by describing decision trees that are the constitutive elements of various

supervised learning methods such as classification and regression trees, CART, (Breiman

et al., 1984) and random forest (Breiman, 2001). The latter method is a key component

for the developments in Chapters 3 and 4. Accordingly, we conclude the chapter with a

description of the random forest algorithm as well as specific characteristics of the

method that are relevant for our study.

Decision Trees

Although the label decision tree was not adopted at that time, one of the first

descriptions of a decision tree as a recursive method was presented by Belson (1959).

Both the dependent and independent variables were treated as being binary and the

independent variable that was selected for splitting was taken to be the one that seemed

the most associated with the dependent variable, where the strength of association was

measured by the largest difference between expected and observed frequencies in a

contingency table.

Morgan and Sonquist (1963) introduced the first known computer program to

obtain predictions using a decision tree. Their original motivation was the lack of

methods that could appropriately address the limitations of the application of

multivariate statistical techniques to survey data (Morgan and Sonquist, 1963; Sonquist

and Morgan, 1964). In particular, the authors contended that most stratified and

clustered survey samples had severe limitations in the proper applications of statistical
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tests of significance. They argued that this was due to the difficulty presented in the

construction of theoretical models that reflected chains of causation when intercorrelation

or interaction between predictors was present (Sonquist and Morgan, 1964, p. 139).

The Morgan and Sonquist algorithm is known as the Automatic Interaction

Detector (AID). It can be viewed as providing the foundation for several decision tree

algorithms that are in use today. The problem addressed by the method corresponds to

predictions of a single continuous dependent variable using one or more independent

variables or predictors. Although predictors could be continuous in nature, they must be

converted to categorical variables in order to be used in the algorithm. Then, for each

variable, splitting points that divide the data set in two subsets are determined based on

those categories.

To grow a tree, the AID algorithm proceeds as follows. Starting with the entire

data set, the data are split into two subsets based on the predictor that minimizes the

dependent variable residual sum of squares. Once the data set has been split, the

procedure continues recursively on each new subset, until some type of stopping criterion

is reached.

The methods described so far focus on categorical predictors with any continuous

variable being transformed into a categorical one prior to the analysis. CART is one of

the most popular techniques that allows for continuous independent variables. It uses

different splitting criteria for classification and regression: namely, the Gini Index and the

sum of squared deviations as in AID, respectively.

A number of alternatives to CART have also been proposed. C4.5 (Quinlan, 1993)

is similar in nature to CART with differences arising in the splitting criterion. It uses

entropy instead of the Gini Index for classification trees and techniques tested empirically

rather than cross-validation to estimate error rates.

12



We next describe decision trees grown using CART, the method used in our study.

As before, {xi, yi}Ni=1 is a set of N observations from (2.1) with xi = (xi1, . . . , xiP ) and yi

being the i-th realizations of X = (X1, . . . , XP ) and Y , respectively. The estimators of F

are based on decision trees that are obtained from binary recursive partitioning methods

or sets of rules that allow the splitting of data into different groups. These rules split the

data in terms of the values of one covariate at a time. They are called trees because they

can be represented by a collection of nodes and branches corresponding to the splits that

were made of the data. When a decision tree is used with a continuous response to

estimate F in (2.1), it is generally referred to as a “regression” tree. When Y is

categorical the term “classification” tree is used instead.

To build a tree we start with all the observations of a data set in the root node of

the tree. Then, one of the covariates is selected along with a splitting point on that

covariate. This determines which observations go to the left branch and which ones go to

the right branch. We continue this process recursively until some stopping criterion is

reached, resulting in a collection of subsets of the data. These subsets are called the

leaves or terminal nodes of the tree. By contrast, nodes that split are called non-terminal

or internal.

We denote by D and D̄ the number of internal and terminal nodes, respectively.

For example, in Figure 2.1, the tree has 8 non-terminal nodes (including the root node)

and 9 terminal nodes. In addition, ηd, d = 1, . . . , D and η̄d, d = 1, . . . , D̄ represent

individual internal and terminal nodes, respectively, for a particular tree and we will refer

to a specific node as η or η̄ when no confusion arises. When the relation between the child

nodes and their parent node is needed, we use ηL and ηR for the left and right child nodes

of η.

A graphical representation of a regression tree is shown in Figure 2.1. This

corresponds to educational data where a cohort of students in two contiguous years is
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Figure 2.1: An example of a regression tree

considered. The scores obtained in year 2 are the response variable and the covariates or

input variables are year 1 scores (pre.scores), students’ demographic information such as

gender or free or reduced luncheon indicators (FRL), and students’ teacher indicators.

The green colored node at the top is the root node. The data are split into two groups

here with those responses in agreement with the condition inside the green colored node

being assigned to the left branch of the tree. For example, students having year-1 scores

less than 79.19 are assigned to the left child node while those with values of at least 79.19

are relegated to the right child. The splitting process continues using the predictor

variables until it terminates with the terminal nodes that are represented as orange

squares.

The terminal nodes of a tree correspond to nonoverlapping regions in the range of

the predictor variable X. The predicted value for a response with covariate values in

terminal node η̄d is then taken to be some constant cd. We will use η̄d to represent both

the d-th terminal node and the region it defines in the predictor space. With that

14



convention, a regression tree may be defined in terms of the parameter vector

Ξ = (η̄1, c1, . . . , η̄D̄, cD̄) and the associated estimator of F at X = x is

Fα(x; Ξ) =
D̄∑
d=1

cdI(x ∈ η̄d). (2.13)

The goal is now to obtain an optimal choice for Ξ. If least squares is used for our

optimality criterion, we could consider using

Ξ̂ = argmin
Ξ

N∑
i=1

(yi − Fα(xi; Ξ))2. (2.14)

This may lead to a tree with a single observation in every terminal node. Thus, some

constraints are required such as an a priori choice for the minimum number of

observations in a node. Sometimes a penalty term for tree complexity is appended to the

least squares criterion in (2.14).

If for example, we restrict the minimum number of observations per terminal node,

then the constants are estimated by

ĉd = ȳd =
∑N
i=1 yiI(xi ∈ η̄d)∑N
i=1 I(xi ∈ η̄d)

. (2.15)

Thus, all that remains is the determination of the terminal nodes. This, in turn, is

determined by the splitting algorithm. A so-called greedy method is one that at each step

picks the covariate and associated split point that gives the largest reduction in the total

error sum of squares. The resulting choice for Ξ provides an approximation to Ξ̂ in (2.14).

For example, in the case of the tree in Figure 2.1, the left most terminal node

corresponds to the case of observations of students having year 1 score less than 72.96 and

a teacher other than number 12. The average value of year 2 score is 70.78 for the

response values that correspond to this particular range for the predictors. Thus, if a new

observation arrived that had a year 1 score value of 71 with any teacher but number 12,

its year 2 score value would be predicted as 70.78.

Limitations of Decision Trees and Alternative Methods
15



The AID technique suffers several shortcomings in statistical analysis. Doyle

(1973) illustrated this in an analysis of the results obtained by Heald (1972) using the

AID program. Drawbacks of the method include the need for very large sample sizes, the

risk that the tree built based on intercorrelated predictors produces spurious results, bias

created from the model-building process, bias obtained from noise, and bias produced by

skewed variables.

Doyle (1973) suggested that AID should be used primarily as an exploratory or

descriptive method to gain insight about the correct model specification (in terms of

possible non-linearities or interactions) and then only when substantial prior information

is not available. Doyle and Fenwick (1975) argued that AID could only be useful if it

produces a model specification that could be validated by traditional techniques such as

regression.

In order to address some of the problems with AID type methods, formal tests of

significance have been proposed (e.g. Messenger and Mandell (1972), Kass (1975), and

Scott and Knott (1976)). In its original formulation, AID only used a standard t-test to

assess the differences between data subsets that are obtained after a split. However, this

test gives us less information that we might like. By construction, the between group sum

of squares t-statistic is maximized and therefore irrelevant predictors can still generate

significant t-statistics.

Messenger and Mandell (1972) proposed an alternative splitting criterion which

targets the selection of the splitting variable that maximizes the number of observation in

each modal category. The algorithm based on this splitting criterion is called THAID and

is described in detail in Morgan and Messenger (1973). Kass (1980) has argued that this

criterion is missing a solid statistical foundation and there is limited knowledge about its

theoretical behavior.
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Kass (1975) developed a statistic to test the null hypothesis that a predictor is

completely unrelated to the dependent variable. It was developed for one single predictor

with C categories and a continuous dependent variable although the extension to several

uncorrelated predictors is straightforward.

Kass (1975) assumes that the predictor of interest is monotonic, so that there are

C − 1 possible splits. Let n represent the number of observations at an arbitrary node in

the tree with nL and nR being the number of observations in each of the subsets obtained

after splitting. If ȳ, ȳL, and ȳR denote the dependent variable means for the group and

both subsets, respectively, and S2 is the variance of the dependent variable, the

proportion of variance explained by the `-th split is P` = nLnR(ȳR − ȳL)2/n2S2. An

optimal split is one for which the explained proportion of variance is

K = n max
`∈{1,...,(C−1)}

{P`}. (2.16)

Let ni denote the number, Ỹi the response mean, and ri = ni/n the relative

frequency for observations that correspond to the i-th category, for i = 1, ..., C. Under the

null hypothesis of no correlation between the dependent variable and the predictor, each

observation is equally likely to belong to any category. Under this assumption, the

probability distribution of the mean Ỹi in category i with ni observations is approximately

normal with mean Ỹ , the grand response mean, and variance (1− ri)S2/ni and the joint

distribution of response means for each category is approximately C-variate normal with

mean vector Ỹ = (Ỹ , . . . , Ỹ ) and covariance matrix S2Σ/N , where Σ = (σij) for

σij =


(n− ni)/ni, if i = j,

−1, if i 6= j.

If we now take

νi = n1/2(ri/(1− ri))1/2(Ỹi − Ỹ )/S

for i = 1, ..., C, approximately, the joint probability distribution of ν = (ν1, . . . , νC) given

r = (r1, . . . , rC) is multinormal with mean 0 and covariance matrix Σν where Σν = (σνij)
17



and

σνij =


−(ri/(1− ri))1/2(rj/(1− rj))1/2, if i 6= j,

1, if i = j.

If h(·|r) denotes the corresponding normal density function, the null permutation

distribution of K = (maxi |νi|)2 is approximately

Prob(K ≤ k) =
∫
· · ·

∫
R
h(ν|r)dν1 . . . dνC−1,

where the region of integration R depends in general on ri and k.

Of particular interest for our study are predictors with 2 categories: i.e., C=2. In

that case K = ν2
1 with ν1 approximately N(0, 1) and K approximately χ2

1 distributed.

Scott and Knott (1976) give an alternative approximation for the distribution of

the Kass (1975) test statistic. Under the null hypothesis with a nominal unordered

predictor they show that, assuming C/N remains fixed as C →∞ and max ri → 0, then(√
K −

√
2(∑C

i=1

√
ri/C)2C/π

)
has an approximate N

(
0, 1− 2N+(

∑C

i=1

√
ri/C)2C

Nπ

)
distribution while K has approximately the same distribution as mχ2

ν0 where

m = 1−
2N +

(∑C
i=1 r

1/2
i

)2

Nπ
,

and χ2
ν0 is a chi-squared random variable having

ν0 =

(∑C
i=1 r

1/2
i

)2

2

π − 2 +

(∑C

i=1 r
1/2
i

)2

N


degrees of freedom. Scott and Knott (1976) suggest that this approximation could

provide guidance to determine if the results obtained at each node of the tree were

statistically significant.

Kass (1980) introduced the chi− squared Automatic Interaction Detector

(CHAID) that uses significance testing for each split. This algorithm is suitable only for
18



situations where both the predictors and dependent variable are categorical. For a given

group of observations, the chosen predictor to be used as the splitting variable is based on

the most significant test statistic obtained among predictors. For a given predictor, this

statistic is based on the χ2 statistic for contingency tables when the number of classes of

this predictor has not been reduced, or an approximation of the χ2 statistic when the

contingency table has been reduced. The reduction of the contingency table is obtained in

a stepwise manner to approximate the optimal reduction based on all the possible

combination of classes in the contingency table to obtain the optimal χ2 statistic. In

addition, CHAID introduces the possibility of having multi-way splits based on the

number of remaining classes in the reduced contingency table for the chosen predictor of

that split.

An important difference between CART and AID, THAID, or CHAID is that the

stopping criteria for growing the tree is the least restrictive in CART. This is because a

large tree is pruned based on error rates obtained from cross-validation.

GUIDE (Loh, 2002) is an algorithm developed to eliminate variable selection bias

via chi-squared analysis of residuals and bootstrap calibration of significance probabilities.

However, these analyses are not often applicable and require that continuous variables be

transformed into categorical variables (as in THAID and CHAID).

Hothorn et al. (2006) introduced methodology to construct regression trees via a

technique called unbiased recursive partitioning. What they propose is to divide the

recursive tasks of selecting a splitting variable and determining the splitting point for that

variable into two different steps in the creation of nodes for a tree.

Given a node or subset of observations, the first step is to use this set to test a

global null hypothesis of independence between the response and any of the covariates.

These tests are constructed using permutation methods (Strasser and Weber, 1999). The

global null hypothesis is the intersection of partial null hypotheses for each covariate. The
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partial hypotheses are tested via linear statistics that depend on non-random

transformations of the covariate and permutations of the subset of responses. The

intuition behind this test is that the conditional distributions of these linear statistics are

unknown. However, it is possible to estimate them using the conditional distribution of

the response variable based on permutations of the subset of response outcomes.

Once the conditional distribution of the linear statistics is estimated for each

covariate, decisions about the partial null hypotheses and therefore the global null

hypothesis can be made. Since the test statistics for each covariate might not be

measured on the same scale, to determine which covariate is chosen as a splitting variable,

P -values for the conditional distribution of test statistics for each covariate are used

thereby allowing for cross-covariate comparisons.

The second step consists of determining the splitting point in the chosen splitting

variable. Hothorn et al. (2006) proposes using a similar testing procedure to determine

the optimal splitting point. The recursive process stops when the global null hypothesis

cannot be rejected for any resulting partition.

Random Forest

Random forest is a classification or regression tree variant proposed by Breiman (2001).

It uses the basic regression tree estimator in conjunction with bootstrap aggregation or

bagging (Breiman, 1996).

The bagging premise is that one first generates T bootstrap samples B1, . . . ,BT by

sampling at random with replacement from the original data set. One then computes the

estimator of interest for each bootstrap sample and averages the result. In the case of

regression trees this translates into the computation of the parameter vector Ξ̂(Bt) using

(2.14) for t = 1, . . . , T by applying a splitting algorithm to each of the bootstrap samples.
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The resulting estimator of F at X = x is

F̂ (x) = 1
T

T∑
t=1

Fα
(
x; Ξ̂(Bt)

)
. (2.17)

The random forest method builds on this idea with an additional step that

randomly reduces the number of variables to be used for splitting at each step in the

creation of terminal nodes. Specifically, for each of the T bootstrap samples, a tree is

constructed where at each of its current terminal nodes we randomly select p ≤ P of the

covariates and use the best one of these variables to produce a binary split, until the

stopping criterion is attained.

One of the most appealing arguments for the use of random forest is that it has

been shown that the addition of more trees, however large, does not produce an overfit of

the solution, but approaches the most efficient solution. In practice, the limit is

approached with a moderate number of trees.

Random forest has obtained a large empirical success for classification and

regression problems. However, very few theoretical results have been presented (Breiman,

2004; Biau et al., 2008). Extensions to random forest that account for specific

characteristics of the educational data include, among others, clustering in individual

regression trees (Toth and Eltinge, 2011), correlated data in random forest (Strobl et al.,

2007)), and measures of variable selection and variable importance scores (Genuer et al.,

2010).

2.4 Variable Importance Measures

Variable importance measures (VIMs) or importance scores are measures used to

determine the relative contribution that each covariate has in predicting the dependent

variable. There are different VIMs that have been proposed in the literature on regression

trees and random forests. This section describes several of those measures. As an aside,

we mention here that in the VAM setting there are indicator variables that correspond to
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the random effects. This fact will be used in Chapter 3 to obtain new methods of

assessing effect importance with VIMs.

Let us now assume that the data have been split into two disjoint sets: LN and JN

that we refer to as the learning (or training) and test data, respectively. Breiman et al.

(1984) then propose an importance measure for decision trees based on the estimated

improvement in squared error loss that a variable has in the internal nodes of the tree. In

this regard we denote the estimated test error based on squared error loss at node η by

êrr(η) =
∑

(xi,yi)∈JN

(yi − ȳη)2I(xi ∈ η),

where

ȳη = 1∑
(xi,yi)∈LN

I(xi ∈ η)
∑

(xi,yi)∈LN

yiI(xi ∈ η).

That is, êrr(η) is the sum of the squared differences between the values of the outcome

variables in the test data set that arrive at node η and the mean of the outcome variables

from the training data set in node η. The estimated improvement in squared error loss is

defined as

∆̂(η) = êrr(η)− (êrr(ηL) + êrr(ηR)).

Now suppose that a decision tree has D internal nodes, η1, . . . , ηD. The

importance measure for variable Xp is

V Ip =
D∑
d=1

∆̂(ηd)φp(ηd), (2.18)

where

φp(η) =


1, if covariate Xp is used as the splitting variable in node η,

0, otherwise.

In words, the relative importance of covariate Xp is the sum of estimated improvements in

squared error loss for every node where Xp is used as the splitting variable.
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Intuitively, there are two components that influence the importance measure of a

variable. First, the covariates that are found by the splitting criterion that are closer to

the root of the tree are potentially more important than those covariates that are closer

to the leaves. This is because more observations are considered in nodes closer to the root

and therefore the estimated improvement in squared error loss tends to be greater.

Second, for a particular node, the magnitude of the difference between the child node

means determines the importance of a covariate relative to that node.

Notice that a covariate that has a large number of categories will have a larger

number of possible splitting points. If this number is large relative to the number of

categories of other covariates, the variable importance values tend to be large as well.

Therefore, this measure may be biased toward covariates with larger numbers of

categories.

Hothorn et al. (2006) shows that their recursive partitioning method is not biased

in that it does not favor the selection of covariates with larger numbers of categories.

Otherwise, they find that the method performs as well as traditional recursive

partitioning methods.

Breiman’s VIM idea extends readily to bagging and random forest based

estimators. For example, with a random forest with T trees, t1, . . . , tT , we use the average

of these measures obtained for every single tree: i.e., V Ip = 1
T

∑T
t=1 V I

t
p, with V I tp the

value of V Ip for the tth tree. For each tree, the observations in the training set not used

to generate that tree are used as the test data set. Although random forest will correct

some bias given the random selection of covariates for every node, variables with larger

numbers of categories are still favored in selection, and tend to obtain larger variable

importance measures.

For random forests the bootstrapping mechanism that is used to create the

estimators can be exploited to obtain measures of a variable’s importance. The key to
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doing so relies on extracting information from the observations that have not been

resampled. With random forest, the training set that is used to construct a tree is the

bootstrap sample from the original data set: a sample with replacement that also has N

observations, some of which are sampled more than once while others are not sampled at

all. Suppose we use T bootstrap samples B1, . . . ,BT . The training data set in the b-th

sample is indicated with a superscript as (x(b)
i1 , ..., x

(b)
iP ) for b = 1, . . . , T, i = 1, ..., N . Now,

for every tree obtained using a bootstrap sample, the observations in the original data set

that are not considered in this sample form the out-of-bag samples (OOB). For a

particular bootstrap sample B, we use Bc to denote the corresponding OOB sample.

A random forest specific VIM suggested by Breiman (2001) has been called

permutation accuracy importance (PAI). For each covariate Xp, it is obtained as the

difference in prediction accuracy between the results of predicting the original OOB data

set and its permuted version, where the permutation occurs only for covariate Xp.

Formally, let Fα
(
·; Ξ̂(B)

)
be the regression tree estimator produced by the random

forest algorithm corresponding to a particular bootstrap sample B. The associated

estimated prediction accuracy is

Λ
(
Ξ̂(B)

)
= 1
|Bc|

∑
i:(xi,yi)∈Bc

(Fα
(
xi; Ξ̂(B)

)
− yi)2, (2.19)

where |Bc| is the number of observations in the OOB sample corresponding to B. The

prediction accuracy for Xp over the entire forest of T trees is the average prediction

accuracy of all the trees: i.e.,

Λ(Xp) = 1
T

T∑
t=1

Λ
(
Ξ̂(Bt)

)
.

We now permute the values of covariate p in the OOB samples to create a new

sample for each tree. That is, the data set values are the same for all the observations

and covariates, except those corresponding to covariate Xp. Those values are randomly

reassigned in a different order. If x(p)
1 , . . . ,x(p)

N denotes the permuted covariate vectors,
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the resulting accuracy is

Λ∗(Xp) = 1
T

T∑
t=1

1
|Bct |

∑
i:(xi,yi)∈Bc

t

(
Fα
(
x(p)
i ; Ξ̂(Bt)

)
− yi

)2
.

Then, the variable importance measure based on PAI is

PAI = Λ∗(Xp)− Λ(Xp). (2.20)

The intuition behind the PAI measure is that if a covariate is important, the

permutation should produce a large gap between the prediction accuracy of the original

OOB samples and the one obtained from permuting that variable. So, large values of PAI

suggest that a covariate has predictive utility.

PAI is not reliable when covariates are of different types (e.g., continuous and

categorical, qualitative and quantitative), the variables are on a different scale of

measurement, or the variables have different numbers of categories. This happens because

a covariate with a larger number of categories relative to other covariates will tend to

have a better prediction accuracy and a larger difference with the permuted version.

Hence, it will be biased towards covariates with larger numbers of categories. Also, the

PAI overestimates the importance of correlated covariates; variables that are not

important might be considered much more relevant because they might be highly

correlated with other covariates.

The conditional variable importance concept of Strobl et al. (2008) takes into

account the correlation among covariates by using a conditional permutation to minimize

the effect of correlated variables. The method is built following a similar framework to

that used for the PAI measure. First, the OOB prediction accuracy before permutation is

obtained as before using (2.19). Then, the procedure creates a grid over the predictor

variable space by creating splits on all the covariates other than the one of interest, using

the same splitting values and variables that were originally employed to generate the tree.

The values of the focal variable are then permuted within this grid and the modified
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prediction accuracy is obtained. As with PAI, the difference between the original and

modified prediction accuracy is used to reflect the importance of the covariate in a given

tree. The average of this quantity over all the trees is the conditional variable importance

for the variable.

When testing a null hypothesis of independence between the dependent variable,

Y , and a covariate, Xp, if this covariate is correlated with others, the PAI measure would

tend to overestimate its importance. The conditional variable importance method

approximates a test of conditional independence between the dependent variable and the

covariate. Notice, however, that if the covariate is independent of other covariates, PAI

and conditional variable importance should produce similar results. In the simulation

study described subsequently, the VIMs obtained with PAI were more accurate than

those obtained with conditional variable importance.

OOBForest is a methodology introduced by Tuv et al. (2009) to determine variable

importance. It uses training samples and sums of squared differences. It takes advantage

of OOB samples by using them to select the best splitting attribute on each node with

the same information criterion as the one used in the traditional random forest. This

method reduces the bias in variable importance and is faster than the random forest

algorithm cForest implemented in the party package in the R language.

pForest Variable Importance is a partial permutation method to measure variable

importance. As described in Deng (2011), it basically compares the importance score of

Xp for each p = 1, ..., P with the importance score of X ′p, a partially permuted version of

Xp. For each tree t, let V It(Xp) and V It(X ′p) be the importance score for Xp and X ′p,

respectively. Then, take V I(Xp) = (1/T )∑T
t=1 I[V It(Xp) > V It(X ′p)]. Assuming

independence, ∑T
t=1 I[V It(Xp) > V It(X ′p)] follows a binomial distribution with probability

πp that V It(Xp) > V It(X ′p), where πp has some specified value. The value of pForest

variable importance is then defined to be the smallest fraction of rows used in the partial
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permutation of Xp that are needed to obtain V It(Xp) > V It(X ′p) with given probability

πp. The smaller this fraction, the higher the variable importance.

A number of additional algorithms have been adapted or created to address

variable importance. These include the asymptotic p-value ANOVA F-test or χ2-test (Loh

and Shih, 1997), variable importance using GUIDE (Loh, 2012), the asymptotic p-value of

conditional inference test (Hothorn et al., 2006), and the exact p-value of maximally

selected Gini Gain (Strobl et al., 2007), among others.

When obtaining VIMs based on random forest, there is a shrinkage effect similar

to the one present in the linear mixed model random effects. Intuitively, this occurs

because only a subset of variables is considered to select the splitting variable at each

node. Therefore, even when a covariate random effect is much larger than others, this

covariate can only appear on the nodes where it has been considered for selection.

Similarly to EBLUPs for teacher effects, the VIMs obtained from random forest

take into account the entire data, not just the teacher’s own students. The shrinkage

effect will be influenced by the number of students each teacher has with the consequence

that teachers with fewer students do not appear as frequently in the trees. Since each tree

is built based on a bootstrap sample, a teacher with few students might have even fewer

students or no students at all, in certain trees. Additionally, most VIMs are determined

by the number of observations affecting each node in which the covariate is used as a

splitting variable and the number of times that covariate appears in the tree. Therefore,

teachers with fewer students might not only be considered less important than teachers

with more students, but their effect estimates might be less accurate than those for

teachers with more students.

We have described several approaches to determine variable importance measures.

These approaches have advantages and limitations. The main characteristic of most

approaches is that they use the accuracy of predictions in normal and altered conditions
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to assess a covariate’s importance. While some of these methods have shown empirical

success, they are based on strong assumptions about the distribution of the covariates,

the independence between covariates, the differences in variable types among covariates,

etc. Even the conditional approach cannot fully take into account the possible correlation

between covariates.

In summary, although empirical results have shown that the accuracy of random

forest predictions is comparable to the best machine learning methods, variable

importance measures have not had the same level of success. In Chapter 3 we propose

new variable importance measures that derive from a different perspective that does not

rely on prediction accuracy.

2.5 Interactions

Interactions have been a topic of study in statistical learning for several decades. In the

literature on data mining, diverse methods have been proposed in an attempt to measure

or identify interactions. The following section describes several of those methods.

Data Mining Methods for Interaction Detection

The first attempt to capture interactions was via the AID and AID III algorithms.

Sonquist and Morgan (1964) and Sonquist et al. (1971), respectively, introduce a series of

interaction measures based on the premise that interactions are determined through the

subgroups that are affected by the predictors belonging to the same branch in the tree.

The authors also propose that interdependence could be assessed with their method; if,

for example, there are two candidate predictors that are being evaluated for splitting and

one of them is chosen, if the other predictor is no longer relevant (in terms of the

dependent variable residual sum of squares) in at least one of the resulting two subsets,

these two predictors are deemed to be highly dependent. If a predictor is not considered

as the splitting variable for any of the subsets in the tree, this predictor may not matter.

Doyle (1973) and Doyle and Fenwick (1975) found limitations with this approach.
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Friedman and Popescu (2003, 2008) introduce a method and a test statistic to

determine interactions. Assume that F in (2.1) is twice differentiable in X. If variables

Xp and Xq interact, then EX
[
∂2F (X)
∂Xp∂Xq

]2
> 0. To see this observe that if there is no

interaction between Xp and Xq, then F (X) could be expressed as the sum of a function

that does not depend on Xp and a function that does not depend on Xq and, accordingly,

the second order mixed partial derivative will vanish identically. The extension to high

order interactions is straightforward. For example, for a third order interaction when

variables Xp, Xq, and Xr do not interact we have EX
[

∂3F (X)
∂Xp∂Xq∂Xr

]2
> 0.

Friedman and Popescu (2008) then characterize interactions via partial

dependence functions. Let Xs be a subset of predictor variables corresponding to

variables with indices s = {s1, . . . , sp} ⊂ {1, 2, ..., P} for p ≤ P and use X−s to denote the

collection of variables that remain after those in Xs are removed from X. The partial

dependence of F (X) on Xs is defined by Fs(Xs) = EX−s [F (X)]. Given the set of N

observations used originally to determine and estimator F̂ of F , Fs can be estimated by

F̂s(xks) = 1
N

N∑
i=1

F̂ (x̃i), (2.21)

for k = 1, . . . , N . Here, xks is the kth realization of variables with indices in s and

x̃ij =


xkj, j ∈ s,

xij, j 6∈ s,

for j = 1, . . . , P .

If two variables Xp and Xq do not interact, the partial dependence of F (X) on Xs

with s = {p, q} could be represented as the sum of the partial dependence functions for

each variable

Fpq(Xp, Xq) = Fp(Xp) + Fq(Xq) (2.22)
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and Fpq(Xp, Xq), Fp(Xp), and Fq(Xq) can be estimated using (2.21). Similarly, if Xp does

not interact with any other variable, then

F (X) = Fp(Xp) + F−p(X−p). (2.23)

Friedman and Popescu (2008) introduce a statistic based on these partial

dependence functions that can be used to test for the presence of an interaction between

two variables Xp and Xq. It takes the form

H2
pq =

∑N
i=1[F̂pq(xip, xiq)− F̂p(xip)− F̂q(xiq)]2∑N

i=1 F̂
2
pq(xip, xiq)

, (2.24)

where xip is the i-th realization of variable Xp. It measures the fraction of the variance of

F̂pq(Xp, Xq) not accounted by F̂p(Xp) and F̂q(Xq). A related statistic for testing the

interaction of variable Xp and any other variable is provided by

H2
p =

∑N
i=1[F̂ (xi)− F̂p(xip)− F̂−p(xi,−p)]2∑N

i=1 F̂
2(xi)

(2.25)

where xi,−p is the i-th realization of variables X−p. Similarly, the third order interaction

between variables Xp, Xq, and Xr can be assessed with

H2
pq =

N∑
i=1

[
F̂pqr(xip, xiq, xir)− F̂pq(xip, xiq)− F̂pr(xip, xir)− F̂qr(xiq, xir)+ (2.26)

+ F̂p(xip) + F̂q(xiq) + F̂r(xir)
]2
/
N∑
i=1

F̂ 2
pqr(xip, xiq, xir). (2.27)

If there is no interaction, all three H statistics should be near zero. Larger values

of the H statistic correspond to stronger interactions.

Previous Attempts to Identify Interactions Using Random Forest

There have been only a few attempts to identify interactions using random forests.

Winham et al. (2012) measure interactions based on the rankings obtained from variable

importance measures in the context of genome wide association studies. The authors

work with a data set where all variables are categorical, including the dependent variable.
30



They then consider variable importance methods that are based on the mean decrease in

accuracy and Gini importance. Their study selects the k highest ranked variables, where

k is determined by the number of variables with causal effects. It uses Heritability as the

degree of genetic determination of a trait to differentiate marginal effects from interaction

effects (see Winham et al. (2012, p. 4)). The authors also compare their results to those

obtained using p-values from univariate logistic regression for different numbers of

covariates (dimension). They find that the random forest variable importance measures

fail to detect interaction effects in high-dimensional data in the absence of a strong

marginal component.

Kelly and Okada (2012) study variable interaction measures by using random

permutation of OOB samples in a random forest. This method derives directly from the

variable importance measure proposed by Breiman (2001). It exploits random data

permutations and measures the amount of information that is gained when another

variable is present based on the errors obtained when permuting OOB cases in the

random forest. It is considered to be a method prototype and is currently developed for

random forest classification problems and its extension to regression problems has not

been addressed.

2.6 Computational Methods and Software

In order to obtain regression trees, random forest, conditional trees and random forest

based on a conditional inference framework, we make use of several packages developed in

the programming language R. We conclude this chapter with a brief overview of these

software resources.

The rpart package (Therneau and Atkinson, 1997) was originally developed for the

programming language S, and then adapted to R. The package routines implement

several of the procedures developed in Breiman et al. (1984), and, in particular, the

regression trees we use in this work. The programs build regression trees using a two
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stage method. In the first stage, the tree is built by determining the covariates to be used

as splitting criteria and then determining the associated splitting points. This process

continues recursively until one of the stopping criteria is reached. These criteria include

the maximum number of observations in a terminal node, the number of nodes, and a

threshold for the improvement in prediction between the parent nodes and the child

nodes. In the second stage, the tree is pruned using cross-validation. The time and

computer power needed for the rpart routines is generally very small (just a few seconds)

even for data with a few hundred covariates and thousands of observations.

The package randomForest (Liaw and Wiener, 2002) is based on the original

Fortran code introduced by Breiman (2001) and can be used for regression and

classification problems. It implements the random forest algorithm for regression as

described in Section 2.3 and can obtain variable importance measures as described in

Section 2.4.

It is possible to modify a few parameters in the algorithm: the number of trees to

be used, the number of variables considered at each node for splitting, different types of

criteria to determine how much to grow the trees and the types of results and indicators

obtained alongside the final tree. The time and computer power needed for the

randomForest routines is dependent on these parameters. For example, for a sample of

3600 observations with about 100 covariates and 1000 trees requires about 3gb of RAM

and between 80 to 240 seconds of computing time on a modern intel core processor. When

the proximity matrix and variable importance measures are obtained, the computing time

increases three times or more, depending on the covariates numbers of categories.

The party package is built in the environment R and implements the Hothorn

et al. (2006) methodology. The function ctree carries out unbiased tree algorithms

through conditional inference trees. The package introduces the function cforest that

builds a random forest based on these unbiased trees (Strobl et al., 2009), where binary
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partitioning is used alongside conditional inference procedures to obtain conditional

inference trees.

This package has more flexibility than randomForest. The user has the ability to

change all the parameters that could be modified in randomForest, plus additional

functions, such as model − based recursive partitioning with the mob function.

The time and computer power needed for party routines is much higher than for

previous packages. In particular, when obtaining variable importance measures with the

varimp function, the program stores all the permutations necessary for the conditional

inference procedures. For example, for a sample of 400 observations with about 40

covariates and 500 trees with the default length, the varimp function requires about 16gb

of RAM and between 150 to 250 minutes of computing time on a modern intel core

processor. Furthermore, since the package only approximates uncorrelated covariates for

the variable importance results, when the covariate are effectively uncorrelated, the

results are suboptimal in comparison to those found using randomForest routines.
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CHAPTER 3

VARIABLE IMPORTANCE MEASURES

Random forest has become a popular data mining method that has been found useful in

several research fields. Its appeal lies in its predictive accuracy that is comparable to the

best machine learning methods. In particular, random forest performs well when the

structure of the underlying model is nonlinear, the number of covariates is very large,

covariates are highly correlated, and/or complex covariate interactions are present.

Random forest can also be used to produce variable importance measures (VIMs) for

variable selection purposes.

VIMs have found applications to variable ranking and selection problems in a

variety of settings during the last decade. But, as far as we know, this is the first time

they have been used to assess relative contributions from random effects such as those

from teachers in a VAM related context. In this chapter, we propose new VAM-relevant

VIMs that are employed in simulations to compare their performance with the estimated

teacher effects one obtains via linear models methodology. Comparisons of these two

approaches when the linear model is misspecified are of particular interest and relevance

for our particular avenue of research.

3.1 A New Approach to Variable Importance Measures

In this section, we propose two new VIMs that are constructed by taking into account the

final configuration of the trees’ terminal nodes in a random forest rather than just

differences in prediction accuracy. This is the point of departure for our work from other

measures that can be found in the literature.

As in the previous chapter, we presume there are N observations in the training

data set, LN = {(xi, yi)}Ni=1 with xi and yi the values for the predictors and response

variables, respectively, for the ith observation. Then, bootstrap samples Bt, t = 1, . . . , T ,

from LN are used to grow the trees in a random forest.
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A by-product of regression trees and random forests is the proximity matrix. This

is an N ×N symmetric matrix where every cell represents the proportion of ocurrences

where the observation corresponding to the row position belongs to the same terminal

node as the observation for the column position. If we consider the proximity matrix for a

single tree, it is a matrix of zeros and ones, where a coordinate with a one indicates that

two observations, the first determined by the row position and the second by the column

position, share the same terminal node.

To be a bit more precise, suppose there are T trees and the terminal nodes in tree

t are η̄td, d = 1, . . . , D̄t. The entry in the ith row and jth column for the proximity matrix

for tree t is
D̄t∑
d=1

I(xi ∈ η̄td)I(xj ∈ η̄td). (3.1)

This is zero or one depending on whether or not xi and xj are contained in some common

node of the tree. For random forests this requires a bit more explanation. Here the

sample of observations used to build the tth tree is Bt, a bootstrap sample of LN .

Nonetheless, the corresponding proximity is built with respect to LN using comparisons

only between those observations in Ln\Bct ; the entries for columns (and rows) of the

proximity matrix corresponding to observations in Bct are all set to zero. Note that the set

Ln\Bct contains the same observations as Bt but without duplicates.

The proximity matrix for the random forest (or any collection of trees) is produced

by averaging across trees as

1
T

T∑
t=1

D̄t∑
d=q

I(xi ∈ η̄td)I(xj ∈ η̄td). (3.2)

This formula provides the key insight into the VIMs we will subsequently develop. It

suggests means by which one may access information about the actual elements, rather

than just their average, that comprise the terminal nodes of a tree and we will exploit this

facility in what follows.
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Node- and Covariate-Proportions

A typical variable importance measure, for example (2.18) and (2.20), is ultimately based

on some measure of predictive ability such as

1
T

T∑
t=1

∑
i:(xi,yi)∈LN\Bc

t

 D̄t∑
d=1

I(xi ∈ η̄td)(yi − ȳtd)2

 (3.3)

with ȳtd the mean response for elements whose independent variable values fall in η̄td.

More generally, the squared error and node average could be replaced by other quantities

of possible interest. The main point is that the only feature of the terminal nodes that

enters into the performance assessment is a single summary measure and importance is

gauged by improvement in prediction.

The new VIMs we consider here differ from this standard approach in that they

are not concerned with prediction of outcomes but rather with the influence a variable

has on the composition of the terminal nodes in a tree. Our measures are tailored for use

with binary covariates such as the presence or absence of a particular variable in the

model. In particular, for a VAM set-up, the covariates of interest are the teachers and

therefore amenable to analysis using binary variables. In the discussion that follows we

make the simplifying assumption that X1, . . . , Xp are binary in nature. The case of more

complex variables represents an avenue for future study.

We define the node-proportion VIM for the covariate Xm as

Ψm = 1
T

T∑
t=1

1
N t
m

 ∑
k:(xk,yk)∈LN\Bc

t

xkm D̄t∑
d=1

I(xk ∈ η̄td)pm(η̄td)
 , (3.4)

with

N t
m =

∑
i:(xi,yi)∈LN\Bc

t

xim
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the number of observations in LN\Bct where Xm was realized as 1 (e.g., the number of

students taught by the mth teacher) and

pm(η̄td) =

∑
i:(xi,yi)∈LN\Bc

t

I(xi ∈ η̄td)xim∑
i:(xi,yi)∈LN\Bc

t

I(xi ∈ η̄td)

the proportion of observations in the dth terminal node of tree t with Xm = 1. The

expression between the brackets in (3.4),

xkm
D̄t∑
d=1

I(xk ∈ η̄td)pm(η̄td), (3.5)

can be viewed as variable Xm’s marginal importance due to the kth observation in the tth

tree. If ηtd is the terminal node containing xk and the realized value of Xm for this

observation is zero then (3.5) does not contribute to the value of Ψm. When xkm = 1, the

value of (3.5) is determined by the proportion of observations in node ηtd having Xm = 1.

Thus, Ψm is determined by these marginal importance values averaged over those

observations that themselves have Xm = 1 and across all trees. It is nonnegative and

bounded above by one.

If we focus on the teacher effect scenario, Xm = 1 if a student is taught by the mth

teacher. So, in that instance Ψm is the average over teacher m’s students of the average

(across trees) proportion of students that were also taught by teacher m in the terminal

nodes they inhabit. Values of Ψm that are closer to unity will indicate a stronger teacher

effect in the sense of producing a (relatively) more homogenous subset of terminal nodes

that can be attributed directly to the teacher.

Our other proposed measure is the covariate-proportion

Υm = 1
T

T∑
t=1

1
N t
m

 ∑
k:(xk,yk)∈LN\Bc

t

xkm D̄t∑
d=1

I(xk ∈ η̄td)qm(η̄td)
 . (3.6)

with

qm(η̄td) = 1
N t
m

 ∑
i:(xi,yi)∈LN\Bc

t

I(xi ∈ η̄td)xim
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the proportion of observations in the tth tree with Xm = 1 that inhabit the dth terminal

node. The expression between the brackets in (3.6) is again an assessment of variable

Xm’s marginal importance due to the kth observation in the tth tree. Note that the only

difference between Ψm and Υm is the proportion used to build each measure; the former

uses the fraction of observations in node ηtd that have Xm = 1 while the latter is the

fraction of observations having Xm = 1 that inhabit node ηtd. As with Ψm, Υm takes

values in [0, 1] with values closer to one suggesting that Xm has more influence on the

terminal nodes of the trees in a forest.

It is insightful to examine how our two VIM measures relate to the proximity

matrix. We illustrate this by examining the covariate-proportion measure. Assume for

simplicity that each tree was constructed with the entire training set LN rather than

bootstrap samples. Then, (3.6) could be expressed as

Υm = 1
T

T∑
t=1

1
Nm

N∑
k=1

xkm
D̄t∑
d=1

I(xk ∈ η̄td)

N∑
i=1

I(xi ∈ η̄td)xim
Nm

= 1
N2
m

N∑
i=1

N∑
k=1

ximxkm
1
T

T∑
t=1

D̄t∑
d=1

I(xi ∈ η̄td)I(xj ∈ η̄td).

It is easy to see here that we are constructing a summary measure directly from the

proximity matrix. Specifically, we average its entries over all pairs of observations that

both have Xm = 1 to obtain an empirical assessment of the chance that observations with

Xm = 1 will cohabit terminal nodes with others having that same quality.

To provide an illustration of the use of our new variable importance measures we

considered a specific data set from the simulation that we discuss in detail in Section 4.2.

Figure 3.1 shows the node-proportion VIMs for a dataset that was generated using (2.6)

with 40 teachers. Figure 3.1a) is a barplot of the absolute values of the true teacher

effects that were used to produce the data while Figure 3.1b) gives the corresponding

node-proportion VIMs. Observe first that as long as a teacher has taught some students,

his/her node-proportion VIM will be larger than zero; however, the teachers with the
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Figure 3.1: a) The absolute value of random effects, |bm|, and b) the node-proportion VIM,
Ψm, for each teacher (Xm) for data generated with 40 teachers.
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smaller random effects (in magnitude) tend to have the lowest node-proportion VIM

values. Of course, the node-proportion VIMs do not estimate the magnitude of the

teacher effects but rather the relative importance of each effect. Thus, Figures 3.1a) and

b) are comparable only in terms of the order they imply for teacher effects.

As in the next section, we can use Spearman’s correlation between the absolute

value of random effects and VIM values to provide an indication of how adequately the

VIMs order the teacher effects. For this example, Spearman’s correlation between the

absolute value of the random effects and the node-proportion VIM in Figure 3.1 is 0.95.

As another illustration, Figure 3.2 presents the results from data generated using

(2.6) with 40 teachers where in this instance only two teacher effects were different from

zero: namely, those for teacher 1 and teacher 21. The teacher effect for teacher 1 is

positive and about 50% larger in magnitude than the one for teacher effect 21, that is

negative. Observe that although the node-proportion measure adequately identifies the

teacher effects, it does not differentiate between positive and negative effects. In the next

subsection we suggest alternatives for overcoming this limitation.

Comparing VIMs with EBLUPs

We now discuss the comparisons of VIMs with other measures of variable importance

derived from the analysis of linear mixed models. These comparisons are relevant in

particular when the true relationships that are present in the data set under study

include interactions and nonlinear terms. This is because the VIMs based on random

forest are capable of capturing these characteristics while the linear mixed model will

overlook them unless they are explicitly included in the model specification. First, we

explain why this comparison is necessary and then explain the approach that we follow.

In the context of VAMs, both VIMs and EBLUPs provide information about

teacher (random) effects. The VIMs determine the relative importance of each teacher
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Figure 3.2: The node-proportion VIM for each teacher (Xm) for a data set with 40 teachers
and 2 teacher effects: the true teacher effect for teacher 1, b1 = 3, and for teacher 21,
b21 = −2

effect in the model. Simply put, the VIMs produce a ranking of teacher effects. The

EBLUPs on the other hand, provide teacher effect predictions.

It is clear that the EBLUPs provide more information than the VIMs.

Nevertheless, in the context of VAMs, the first task should be to determine the rankings

of teacher effects appropriately. Since the EBLUPs depend on the model specification,

while the VIMs do not, when the model is misspecified the VIMs might produce measures

that are more appropriate than the EBLUPs. But we can only make such determination

if we can adequately compare VIMs and EBLUPs. Specifically, we need to obtain an

EBLUP analog of our random forest VIMs.

We will use the ranking obtained from the absolute value of the EBLUPs and refer

to it as the VIM for the linear mixed model, or V IM `m. Observe also that we use the

“absolute value” of the EBLUPs, because the ranking of teacher effects obtained using

VIMs do not convey information about the direction of the effects.
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This is certainly not the only approach to measuring importance in a linear mixed

model. An alternative would be to use the t-statistics of the EBLUPs. Since the

covariates corresponding to teacher effects are all binary variables, when their class sizes

are equal the t-statistics will produce the same ranking as the EBLUPs. Hence, in this

case, the two approaches are equivalent.

When we work with simulated data in the next section we will know the true value

of all the teacher effects thereby making the comparisons between the absolute value of

these effects and all the VIMs feasible. In this case, the importance measure with the

ranking that best approaches the ranking of the true teacher effects should be considered

preferable. Hence, a statistical measure such as Spearman’s rank correlation coefficient

will provide a notion of VIM accuracy and that is what we employ for summary purposes.

On the other hand, when we work with empirical data one additional

consideration is needed. When the random effects are normally distributed with a mean

of zero, the realization of these random effects produces positive and negative values. The

VIMs produce only a ranking of influence for the covariates, and this influence could be

positive or negative.

To determine the direction of each variable effect, we suggest the use of two

methods based on the random forest outcome predictions. The first method is simple; the

direction of variable Xm’s effect would be positive if the outcome mean for observations

affected by variable Xm is at least as large as the overall outcome mean, and negative

otherwise. The second method is related to the PAI measure described in (2.19) as we

now explain.

From a given bootstrap sample B, the direction of the mth variable’s effect could

be assessed from the sign of the sum across observations with realized value Xm = 1 of

simple differences between the predicted outcome values from the original data and the
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corresponding values of the same data but without the mth factor contribution; namely,

δ̂+(B) = 1 · sgn
{ ∑
i:xim=1

[
Fα
(
xi1, . . . , xi(m−1), 1, xi(m+1), . . . , xiP ; Ξ̂(B)

)
− Fα

(
xi1, . . . , xi(m−1), 0, xi(m+1), . . . , xiP ; Ξ̂(B)

)]}
.

The direction of the mth variable effect based on the random forest is then given by

δsign(Xm) = sgn
(

T∑
t=1

δ+
m(Bt)

)
.

We have suggested only two possibilities and there are undoubtedly many

alternative methods that could be used to determine the direction of the covariate effects

using VIMs. This type of assessment is important in the context of VAMs where we need

to ascertain if a teacher effect is positive or negative. However, the focus of the current

work is on determining if the proposed VIMs accurately capture the ranking of teacher

effects. Future work will target development of methods to determine effect directionality.

3.2 Simulation Study

We now present the results of a simulation study that was undertaken to determine how

our proposed VIMs would perform relative to EBLUPs for ranking effects from random

effects models. The specific setting is a mock teacher performance assessment. So, the

dependent variable represents a “student score” associated with some random “teacher”

effect.

The factor levels that were used in our study were as follows.

1. The number of teachers was taken to be 10, 20, 40, and 100.

2. We divided the teachers into two groups of equal sizes and assigned to each

teacher within a group the same number of students, while allowing for teachers in

different groups to have different numbers of students. To express this feature in our

simulation, we used SpT` to denote the number of students per teacher in group ` for

` = 1, 2. The ratios of the number of students per teacher in group 1 to the number of
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students per teacher in group 2, SpT1/SpT2, that we considered were 12
12 ,

24
24 ,

36
36 ,

36
12 , and

30
18 . For example, if the factor level was 36

12 , the data were generated with 36 students per

teacher for all the teachers in group 1 and 12 students per teacher for all the teachers in

group 2.

Given that each student was assigned to a single teacher, the sample sizes varied

according to the factor combinations of SpT` and the number of teachers. For example, if

the total number of teachers was 20 and the number of students per teacher in group 1 to

group 2 ratio was 36
12 , then the data generated contained 480 observations (360+120).

3. The ratio of teacher effect variance (σ2
τ ) to student variance (σ2) was set at 1, 2,

5, and 20. For example, σ2
τ/σ

2 = 5 would indicate that the teacher variance was five times

as large as the student variance. For simplicity we chose σ2 = 1 so that the teacher effect

variance coincides with σ2
τ/σ

2.

4. The number of trees in random forest was chosen to be 100, 500, 1000, 2000,

and 3000. The number of randomly selected variables considered for each split was equal

to the highest integer smaller or equal to the total number of covariates square root. The

trees were allowed to grow until the terminal nodes had at most five observations.

5. Two model settings were considered: the CAM in (2.6) and the GSM in (2.10).

Then, for each setting, a family of four models was examined. The first model for each

setting is the baseline presented in (2.6) and (2.10), respectively. For the other cases

extensions of the baseline models were employed. In the CAM setting we used

yi2 = δcyi1 + (βc)>ui + (bc)>zi +
P∑
j=1

K2∑
k=1

λcjkuijzik +
∑
j 6=`

K2∑
k=1

λcj`kuijui`zik + εci2 (3.7)

while for the GSM setting the extension is

ygi = (βg)>ui + (bg)>zi +
P∑
j=1

K2∑
k=1

λgjkuijzik +
∑
j 6=`

K2∑
k=1

λgj`kuijui`zik + εgi . (3.8)

The two baseline models allow us to include simulation settings that assume no

interaction effects. For the CAM this is true when λcjk and λcj`k in (3.7) are zero for all
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j, ` = 1, ..., P and k = 1, ..., K2. Similarly, for the GSM this is true when λgjk and λgj`k in

(3.8) are zero for all j, ` = 1, ..., P and k = 1, ..., K2. In these cases, the linear mixed

model is correctly specified, and the random effects prediction are the EBLUPS.

For the simulations we consider four covariates associated with fixed effects: the

prescore is obtained from a normal distribution with mean 75 and variance 21, gender is

a binary variable obtained from a binomial distribution with probability of success equal

to 0.5, urban or rural housing is another binary variable whose realization is obtained

from a binomial distribution with probability of having urban housing 0.4, and free and

reduced lunch program is binary with probability 0.8 of being part of the program. The

associated fixed effects used in the simulations for these variables are .5, .2, 3, and −5,

respectively. An overall mean of 50 was used.

The good teacher - bad teacher model represents the family of simulations that

does not account for interactions effects and keeps most of the assumptions of the baseline

model except the one related to the distribution of b (denoted bc for the CAM and bg for

the GSM). Specifically, these models are constructed with only two teachers having large

effects in the model, one positive and one negative, while the rest of the teachers have no

effects. This model is used because it is a simple variation of the baseline model where bc

or bg are no longer random. For the simulations, the positive effect is set at 1.5 ∗ σ2
τ and

the negative effect at −1 ∗ σ2
τ . Thus, in this case, σ2

τ is used only for setting the good and

bad teacher effects and does not represent the teacher variance. We use the same set of

covariates associated with fixed effects and values used in the respective baseline model.

The simple interaction model represents the family of models that include

second-order interaction effects between one covariate associated with a fixed effect, xij,

and another covariate associated with a random effect, zik. For the CAM, this is

represented from (3.7) by having at least one λcjk 6= 0 for j = 1, ..., P and k = 1, ..., K2.

An interaction effect of 10 is considered in the simulations for half of the teachers
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randomly determined when a student, taught by one of those selected teachers, lives in

the rural area. For the GSM, simple interactions are modeled when at least one λgjk 6= 0

for j = 1, ..., P and k = 1, ..., K2 in (3.8).

The complex interaction model is the family of models that include third-order

interactions among three covariates, two of them associated with fixed effects and one

associated with random effects. For the CAM, this is represented in (3.7) by having at

least one λcj`k 6= 0 for j, ` = 1, ..., P , j 6= `, and k = 1, ..., K2. In the simulations, we

randomly determined half of the teachers to be susceptible to this interaction effect, and

the interaction that was studied corresponded to students living in an urban area,

belonging to the free and reduced lunch program, and being taught by one of these

teachers. We use an interaction effect value of 20.

In the GSM, a complex interaction occurs when at least one λgj`k 6= 0 for

j, ` = 1, ..., P , j 6= `, and k = 1, ..., K2 in (3.8). For the simulations, we have used the

same effect values as in the CAM case.

Procedures and Analysis

The fully crossed factorial design would yield a total of 3200 combinations. Initial

investigation of the influence of the number of trees suggested that using 1000 trees is

adequate. Hence, the results presented here were analyzed based on 1000 trees. In

addition, the initial investigation also showed that the combination of 100 teachers and a
36
36 ratio of number of students per teacher in group 1 to group 2 provided similar results

to the combination of 100 teachers and a 24
24 group 1 to group 2 ratio across every other

combination of factors. Thus, only the latter was included in our analysis. The partially

crossed factorial design yielded a total of 608 combinations.

Five VIMs were considered: namely,

a) the VIM based on the absolute value of the EBLUPs, V IM`m, where the

subscript “`m” stands for linear model,
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b) the VIM based on the PAI, denoted by V IM1,

c) the VIM based on the improvement in squared error loss, denoted by V IM2,

d) the node proportion, V IMΨ, and

e) the covariate proportion, V IMΥ.

In preliminary results, the VIM based on the conditional recursive partitioning was also

considered. However, since the study design did not include correlation among covariates,

V IM1 and conditional variable importance produced similar results, with V IM1 slightly

outperforming the conditional variable importance. In addition, the computing time

needed to calculate the conditional variable importance was considerably larger than for

the rest of VIMs. As a result the conditional variable importance has not been included

in this study.

For every experimental setting, 100 replicates were obtained. Then, the VIMs were

compared to the true teacher rankings. For the baseline, simple interactions, and complex

interactions models, the Spearman’s rank correlation was computed between the absolute

value of the true teacher effects and the VIMs for each replicate.

For the good teacher - bad teacher model, only two teacher effect values were

different from zero (the effects of the good and bad teachers), while the VIMs produced

rankings for every teacher effect. Spearman’s correlation in this situation seemed

inadequate to produce relevant comparisons. Hence, we introduced an alternative

measure based on the ratio of the average of the true rankings over the average of the

estimated rankings for the good and bad teachers. For example, let us assume the

estimated rankings from one of the VIMs of the good and bad teachers are (a permutation

of) 1 and 4. The true rankings for those teachers must be a permutation of 1 and 2. Our

rank based measure would then be 1+2
1+4 = .6. This association measure penalizes heavily

when the estimates produce incorrect rankings for the good and bad teachers and is

maximized at 1 when the rankings of those two teachers match their true rankings.
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For each factor combination, the results of V IMΨ for each experiment were

expressed as the average

r(Ψ) = 1
R

R∑
j=1

rj(Ψ), (3.9)

where R = 100 is the number of replicates for each factor combination in the study, rj(Ψ)

is the respective rank based comparison measure between the absolute value of the true

teacher effects and V IMΨ for the results obtained in replicate j. The averages

r(`m), r(Υ), r(1), and r(2) are similarly defined.

We determined by means of paired t-tests when the correlation of the proposed

measures were statistically better or at least no worse than the correlations for the linear

model VIMs (or association in the case of the good teacher - bad teacher model). The

associated confidence intervals with 95% confidence levels are used in the description of

the results.

Results

We now present selected results from the simulation study for the CAM and GSM

models. For several factor combinations, when the linear model did not account for

complex interactions, V IMΨ and V IMΥ significantly outperformed V IM`m, V IM1, and

V IM2. On the other hand, when the linear model was correctly specified or was

misspecified to the extent described by the simple interaction model, V IM`m

outperformed all the other measures. In this section, we summarize the most relevant

findings in the simulation study for each factor combination. This includes experimental

settings where our proposed VIMs significantly outperformed V IM`m as well as others

where they did not. In Section 3.3 we will center our attention on the former and provide

the rationale for those results.

Graphical representations will be used to allow us to observe the patterns across

different experimental conditions. In each figure that follows we plot the mean correlation

for the five studied measures (y-axis). Based on the results we obtained, the following
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discussion will be directed toward comparisons among V IM`m, V IMΨ, and V IM1, unless

otherwise noted. We use these three measures because V IMΨ generally outperformed

V IMΥ, and V IM1 outperformed V IM2.

Four different scenarios were considered for the CAM, each of which will represent

a row of graphs within a subsequent figure. The scenarios under consideration include

CAM1 as the baseline model, CAM2 as the good teacher-bad teacher model, CAM3 as a

simple interaction model, and CAM4 as a complex interaction model.

Figure 3.3 plots the mean correlation for all five VIMs across the number of

teachers (x-axis) when 12 students per teacher (left column graphs) or 24 students per

teacher (right column graphs) are considered and the ratio of teacher variance over

student variance is 2.

For the CAM baseline model, CAM1, when the number of students per teacher

was 12, V IM`m yielded significantly higher correlations than the remaining measures for

any number of teachers. As the number of students per teacher increased, the random

forest VIMs tended to improve in performance, although V IM`m still outperformed the

rest. A similar trend was obtained when the number of students per teacher was 24. In

particular, when the number of teachers was 40 and the number of students per teacher

was 12 and 24, the mean correlations were, respectively, 0.90 and 0.92 for V IM`m, 0.80

and 0.87 for V IM1, and 0.73 and 0.73 for V IMΨ. The 95% confidence intervals of the

difference between the correlations of V IM`m and V IMΨ were (.151, .184) and (.070,

.094), respectively. When the number of teachers was 100 and the number of students per

teacher was 12 and 24, the mean correlations increased slightly, respectively, to .94 and

.96 (V IM`m), .84 and .91 (V IM1), and .80 and .89 (V IMΨ). The 95% confidence

intervals of the difference between the correlations of V IM`m and V IMΨ were (.133, .147)

and (.067, .077), respectively. When the number of students per teacher was 24, all the
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Figure 3.3: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the number of teachers varies for different CAM models, the number
of students per teacher is 12 (left column) or 24 (right column), and σ2

τ/σ
2 = 2.
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VIMs based on random forest improved and reduced appreciably the gap towards V IM`m

results in comparison to the case with 12 students per teacher.

For the CAM good teacher - bad teacher model, CAM2, when the number of

students per teacher was 12, V IM`m significantly outperformed the random forest

measures for any number of teachers. Among the data mining VIM measures, V IM1

performed better. The minimum mean association among all measures was .72 ( V IMΨ)

for 20 teachers and 12 students per teacher. In the case of 24 students, all measures

yielded high mean association. The random forest measures, V IM1 in particular, was not

significantly worse than V IM`m for any number of teachers. In particular, when the

number of teachers was 100, none of the VIM measures were significantly worse than

V IM`m. For example, with a 95% confidence level, the interval for the difference between

V IM`m and V IMΨ association was (-.001, .016).

For the CAM simple interactions model, CAM3, the results were similar to the

CAM1 results. For both scenarios, 12 and 24 students per teacher, V IM`m yielded

significantly higher correlations than the remaining measures for any number of teachers.

However, as the number of students per teacher increased from 12 to 24, the random

forest VIMs tended to improve in performance and the difference in performance between

V IM`m and the random forest VIMs was reduced. Specifically, when the number of

teachers was 40 and the number of students per teacher was 12 and 24, the mean

correlations were, respectively, 0.90 and 0.92 for V IM`m, 0.77 and 0.87 for V IM1, and

0.71 and 0.83 for V IMΨ. The corresponding 95% confidence intervals of V IM`m and

V IMΨ correlations difference were (.172, .208) and (.070, .095), respectively. When the

number of teachers was 100 and the number of students per teacher was 12 and 24, the

mean correlations slightly increased, respectively, to .94 and .97 (V IM`m), .83 and .91

(V IM1), and .80 and .89 (V IMΨ). The 95% confidence intervals of V IM`m and V IMΨ

correlations difference were (.133, .149) and (.064, .074), respectively.
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For the CAM complex interactions model, CAM4, Figure 3.3 shows that V IMΨ

and V IMΥ significantly outperformed the remaining measures, including V IM`m, in

nearly all cases. V IM`m significantly outperformed the proposed measures only for the

case with 10 teachers and 12 students per teacher. In this scenario, the sample mean

correlations were .52 for V IM`m and .41 for V IMΨ and the 95% confidence intervals of

V IM`m and V IMΨ correlations difference was (.044, .176). For the cases with 10 teachers

and 24 students per teacher, and 20 teachers and 12 students per teacher, V IMΨ was not

significantly worse than V IM`m. In the remaining scenarios; namely, 20 teachers and 24

students per teacher, and 40 and 100 teachers with either 12 and 24 students per teacher,

V IMΨ and V IMΥ significantly outperformed V IM`m and any other VIM measure. As

case in point, with 20 teachers and 24 students, the sample mean correlations were 0.72

for V IMΨ and 0.65 for V IM`m and the 95% confidence interval for the Spearman’s

correlation difference of V IMΨ and V IM`m was (.041, .103). With 40 teachers and 12 or

24 students per teacher the mean correlations were, respectively, 0.70 or 0.81 for V IMΨ

and 0.59 or 0.71 for V IM`m. The corresponding 95% confidence intervals for the

correlation difference of V IMΨ and V IM`m were (.082, .130) and (.085, .119),

respectively. With 100 teachers and 12 or 24 students per teacher the mean correlations

were, respectively, 0.78 or 0.88 for V IMΨ and 0.61 or 0.74 for V IM`m. The corresponding

95% confidence intervals for the correlation difference of V IMΨ and V IM`m were (.160,

.189) and (.126, .150), respectively. When comparing the results that were obtained with

our proposed measures and other random forest VIMs, V IM1 was not significantly worse

than V IMΨ only in the case with 10 teachers and 12 students per teacher. In every other

scenario, V IMΨ and V IMΥ outperformed significantly the other two random forest

measures, V IM1 and V IM2. Finally, notice that an increase in the number of students

per teacher from 12 to 24 produced higher correlations for every VIM studied.

Figure 3.4 plots the mean correlation for the five measures across the number of

teachers (x-axis) when 12 students per teacher (left column graphs) or 24 students per
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Figure 3.4: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the number of teachers varies for different CAM models, , the number
of students per teacher is 12 (left column) or 24 (right column), and σ2

τ/σ
2 = 5.

teacher (right column graphs) are considered and the ratio of teacher variance over

student variance is 5.

For CAM1, in scenarios with 12 and 24 students per teacher, V IM`m yielded

significantly higher correlations than the remaining measures for any number of teachers.
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However, when the number of students per teacher increased from 12 to 24, all the VIMs

based on random forest improved and reduced the gap with V IM`m correlation results.

To illustrate this, we mention that when the number of teachers was 40 and the number

of students per teacher was 12 or 24, the mean correlations were, respectively, 0.93 or 0.94

for V IM`m, 0.89 or 0.90 for V IM1, and 0.85 or 0.88 for V IMΨ. The 95% confidence

intervals for the difference of V IM`m and V IMΨ correlations were (.064, .096) or (.041,

.075), respectively.

For CAM2, for every combination of number of teacher and students per teacher,

V IM`m was not significantly better or worse than any of the random forest VIMs. This

happened because all measures adequately identified the good and bad teacher effects and

placed them at the top of the ranking in almost every replicate, obtaining association

measures approaching 1 when the number of teachers was 10 or 20, and equal to 1 when

the number of teachers was 40 or 100.

For CAM3, the results were similar to the CAM1 results. For both scenarios, 12

and 24 students per teacher, V IM`m yielded significantly higher correlations than the

remaining measures for any number of teachers. As the number of students per teacher

increased from 12 to 24, the random forest VIMs tended to improve slightly in

performance. For example, when the number of teachers was 40 and the number of

students per teacher was 12 or 24, the mean correlations were, respectively, 0.932 or 0.934

for V IM`m and 0.875 or 0.886 for V IMΨ. The corresponding 95% confidence intervals of

V IM`m and V IMΨ correlations difference were (.079, .109) and (.044, .076), respectively.

The CAM4 results in Figure 3.4 for a teacher/student variance ratio of 5 were

quite different than those in Figure 3.3 when the ratio of teacher variance over student

variance was 2. In this case, the node proportion, V IMΨ, and covariate proportion,

V IMΥ, still performed well; however, they were significantly outperformed by V IM`m, in

cases with 10 teachers with 12 or 24 students per teacher, 20 teachers with 12 students
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per teacher, or 40 teachers with 24 students per teacher. In addition, they no longer

differed significantly from V IM`m in the remaining cases that were studied. On the other

hand, V IM1 was not significantly worse than V IM`m for cases with 20 or 40 teachers and

any number of students per teacher, and significantly outperformed V IM`m in those cases

with 100 teachers and 12 or 24 students per teacher. For the latter case, the 95%

confidence intervals for the Spearman’s correlation difference of V IM1 and V IM`m were

(.024, .038) and (.011, .028), respectively. In addition, observe that an increase in the

number of teacher or the number of students per teacher produced higher correlations for

every VIM studied. Although we will not discuss it in detail here, we merely remark that

similar conclusions can be drawn for conditions in which the ratio of teacher variance over

student variance was 20. The corresponding figures are presented in Appendix A.

Figure 3.5 plots the mean correlation/association for the five measures across the

ratios of the number of students per teacher in group 1 to those in group 2 (x-axis) when

teacher variances range from 1 to 20 (columns) with 40 teachers. In conditions with fewer

teachers (10 and 20, respectively) the results tended to follow a similar pattern, although

correlations/associations across conditions for all measures tended to be lower. Analogous

plots for the 10 and 20 teachers cases are provided in Appendix A.

Not surprisingly, for CAM1, V IM`m outperformed significantly the random forest

VIMs for all values of teacher variance. As seen in Figure 3.5, as teacher variance

increased, the gap between V IM`m and the random forest measures decreased. The

lowest correlations were found in conditions with group 1 to group 2 ratio equal to 36 to

12, for all measures. An illustration of the typical results is provided by the case where

the group 1 to group 2 ratio was 30 to 18. In that instance the sample mean correlations

were .94 for V IM`m and .83 for V IMΨ and the 95% confidence intervals for the difference

of V IM`m and V IMΨ correlations was (.088, .140).
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In CAM2, when teacher variances were 1 or 2, V IM`m significantly outperformed

the random forest methods in every case. When the teacher variance was 1 and the

number of students per teacher in group 1 to group 2 ratio were 30 to 18 or 36 to 12, the

mean associations were, respectively, 0.99 or 0.96 for V IM`m and 0.32 or 0.17 for V IMΨ.

The corresponding 95% confidence intervals of V IM`m and V IMΨ association differences

were (.610, .723) and (.745, .820), respectively. By contrast, when the teacher variances

were 5 or 20, the mean association in most cases was 1 or close to 1 and V IM`m were not

significantly better than any random forest VIMs.

For CAM3, Figure 3.5 suggests that results for simple interactions resemble those

for the baseline model that was previously discussed. We note here as well that,

regardless of the group 1 to group 2 ratio, V IM`m outperformed significantly all random

forest methods. The performance gap between V IM`m and the random forest measures

narrowed as the teacher variance increased and the number of students per teacher in

group 1 to group 2 ratio became balanced.

For CAM4, when teacher variance was 1, V IMΨ significantly outperformed

V IM`m in conditions where the number of students per teacher in group 1 to group 2

ratios were 30 to 12 or 24 to 24 (balanced case). Specifically, the mean correlations were

0.53 or 0.62 for V IMΨ and 0.43 or 0.42 for V IM`m, respectively. The corresponding 95%

confidence intervals for the correlation difference of V IMΨ and V IM`m were (.065, .134)

and (.176, .230), respectively. When the number of students per teacher in group 1 to

group 2 ratio was 36 to 12, V IMΨ was not significantly better than V IM`m. Similar

conclusions were obtained when the teacher variance was 2; that is, V IMΨ significantly

outperformed V IM`m when the number of students per teacher in group 1 to group 2

ratios were 30 to 12 or 24 to 24 although V IM`m outperformed signifcantly V IMΨ when

the number of students per teacher in group 1 to group 2 ratio was 36 to 12. When the

teacher variance was 5 or 20, V IM`m outperformed signifcantly V IMΨ for any

combination of the number of students per teacher in group 1 to group 2 ratio.
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Figure 3.6 plots the mean correlation/association for the five measures across the

various values of teacher variance over student variance (x-axis) with 10, 20 or 40 teachers

(columns) when the number of students per teacher in group 1 to group 2 ratio is 24
24

(balanced case). Due to the similarity of results, associated graphs for 12
12 and 36

36 have

been relegated to Appendix A.

As shown in Figure 3.6 for CAM1, V IM`m yielded significantly higher correlations

than random forest VIMs in every case that was studied. As the teacher variance

increased, the random forest measures closed the gap with V IM`m; however, in the case

of 40 teachers and teacher variance equal to 20, the random forest mean correlations were

slightly smaller than in the case of teacher variance equal to 5. Overall, the highest

correlations for all measures tended to be found in conditions with 40 teachers and

teacher variance of 5. Although not shown in Figure 3.6 the results for cases with 100

teacher were analogous to those with 40 teachers. The results for CAM3 were similar to

those for CAM1.

For CAM2, when the teacher variance was 5 or 20, V IMΨ was not significantly

worse than V IM`m for each case that was considered. On the other hand, when the

teacher variance was 1 or 2, V IM`m outperformed significantly V IMΨ in each instance.

An illustration of this is when the teacher variance was 1. A 95% confidence interval for

the difference in association measures for V IM`m and V IMΨ was (.295,0.408) in that case

For CAM4, Figure 3.6 shows that for those cases with teacher variance equal to 1

or 2, V IMΨ was not significantly worse or was significantly better than V IM`m and

V IM1. This was also the case when the number of teachers was 20 or 100 and teacher

variance is 5. In contrast, for the remaining cases with teacher variances of 5 or 20,

V IM`m was significantly better than V IMΨ. All the measures’ performances tended to

improve as the number of teachers increased. In general, that was also the trend with an
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Figure 3.6: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the teacher variance over student variance σ2

τ/σ
2 varies for different

CAM models and different number of teachers when the number of students per teacher
in group 1 to group 2 ratio is 24/24.
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increase in teacher variance except for the random forest VIM correlations when the

teacher variance increased from 5 to 20.

Figure 3.7 summarizes the mean correlation for the five measures across the

various values of teacher variance over student variance (x-axis) with 10, 20 or 40 teachers

(columns) when the number of students per teacher in group 1 to group 2 ratio is the

unbalanced case of 36
12 . For the CAM1 and CAM3 cases, V IM`m outperformed

significantly V IMΨ in every case. For CAM2, when the teacher variance was 1, 2, or 5,

V IM`m outperformed significantly V IMΨ for any number of teachers. We also considered

when the number of teachers was 100 although it is not shown in the figure. In that

instance when the teacher variance was 5, we found that V IMΨ was not significantly

worse than V IM`m. Similarly, when the teacher variance was 20, V IMΨ was not

significantly worse than V IM`m. For example, with 20 teachers and teacher variance 20,

the mean association for V IM`m was .965 and for V IMΨ was .966 and the 95%

confidence interval for V IM`m and V IMΨ association difference was (-.003, .001). For

CAM4, when the teacher variance was 2, 5, or 20, V IM`m outperformed significantly

V IMΨ for cases with 10, 20, or 40 teachers. When the number of teachers was 100 and

the teacher variance was 2, V IMΨ was not significantly worse than V IM`m. Similarly,

when the teacher variance was 1 and the number of teachers 40 or 100, V IMΨ was not

significantly worse than V IM`m. As a specific instance, with 40 teachers and teacher

variance of 1, the mean correlations for V IM`m was .385 and for V IMΨ was .360 and the

95% confidence interval for V IM`m and V IMΨ correlation difference was (-.010, .061).

Figure 3.7 also shows that in this unbalanced case, for all four CAM specifications,

the covariate proportion VIM, V IMΥ, obtained consistently low correlations/associations.

This is due to the fact that, given the construction of the measure in (3.6), it is more

sensitive to unbalanced situations. Since the unbalancedness is extreme in this case, the

covariate proportion VIM loses the ability to adequately obtain appropriate rankings.
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Figure 3.7: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the teacher variance over student variance σ2

τ/σ
2 varies for different

CAM models and different number of teachers when the number of students per teacher
in group 1 to group 2 ratio is 36/12.
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Figure 3.8 is a plot of the mean correlations/associations for the five measures

across the various values of teacher variance over student variance (x-axis) with 10, 20 or

40 teachers (columns) when the number of students per teacher is the unbalanced 30
18 case.

For CAM1 and CAM3, V IM`m outperformed significantly V IMΨ in every case. For

CAM2, when the teacher variance was 1 or 2, V IM`m outperformed significantly V IMΨ

for any number of teachers. When the teacher variance was 5 or 20, V IMΨ was not

significantly worse than V IM`m. For example, with 10 teachers and teacher variance 5,

the mean association for V IM`m was .972 and for V IMΨ was .975. The 95% confidence

interval for V IM`m and V IMΨ association difference was (-.007, .002). For CAM4, when

teacher variance was 5 or 20 for any number of teachers or when variance was 1 or 2 for

10 and 20 teachers, V IM`m significantly outperformed V IMΨ. However, when the

number of teachers was 40 or 100 and the teacher variance was 1 or 2, it was V IMΨ that

significantly outperformed V IM`m. In particular, with 40 teachers and a teacher variance

of 2, the mean correlations for V IM`m was .709 and for V IMΨ was .741. The 95%

confidence interval for V IMΨ and V IM`m correlation difference was (.015, .047). In

general, for all CAM scenarios, the mean correlation/association differences between the

data mining methods and V IM`m presented in Figure 3.8 were smaller when the

imbalance of the number of students per teacher was 30
18 than for 36

12 . Because the

unbalanced case described in Figure 3.8 is not as extreme as the one described in Figure

3.7, the covariate proportion VIM, V IMΥ, obtained somewhat low

correlations/associations, but not as low as in the previous case.

Let us now discuss our findings for the GAM simulation. For this case, four

different scenarios are also considered: GSM1 as the baseline model, GSM2 as the good

teacher-bad teacher model, GSM3 as a simple interaction model, and GSM4 as a complex

interaction model.

Figure 3.9 plots the mean correlation/association for all five VIMs across the

number of teachers (x-axis) when 12 students per teacher (left column graphs) or 24
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Figure 3.8: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the teacher variance over student variance σ2

τ/σ
2 varies for different

CAM models and different number of teachers when the number of students per teachers
in group 1 to group 2 ratio is 30/18.
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τ/σ
2 = 2.

students per teacher (right column graphs) are considered and the ratio of teacher

variance over student variance is 2.

For the GSM baseline model, GSM1, when the number of students per teacher was

12, V IM`m yielded significantly higher correlations than the remaining measures for any
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number of teachers. When the number of students per teacher increased, V IM1 tended to

improve in performance, while V IMΨ did not. V IM`m still significantly outperformed the

rest in each case. A similar trend was obtained when the number of students per teacher

was 24. For instance, when the number of teachers was 40 and the number of students

per teacher was 12 and 24, the mean correlations were, respectively, 0.61 and 0.74 for

V IM`m, 0.50 and 0.64 for V IM1, and 0.45 and 0.63 for V IMΨ. The 95% confidence

intervals of the difference between the correlations of V IM`m and V IMΨ were (.133, .178)

and (.092, .124), respectively. When the number of teachers was 100 and the number of

students per teacher was 12 and 24, the mean correlations were, respectively, .64 and .77

(V IM`m), .52 and .66 (V IM1), and .43 and .62 (V IMΨ), and the 95% confidence

intervals for the difference between the correlations of V IM`m and V IMΨ were (.199,

.231) and (.140, .159), respectively. When the number of students per teacher was 24, all

the VIMs based on random forest improved and reduced slightly the gap towards V IM`m

results in comparison to the case with 12 students per teacher.

For the GSM good teacher - bad teacher model, GSM2, when the number of

teachers increased, the mean association measure values were smaller for all VIMs. When

the number of students per teacher was 12, V IM`m significantly outperformed the

random forest measures for any number of teachers. Among the data mining VIM

measures, V IM1 and V IM2 performed better than the proposed measures. In the case of

24 students, all measures yielded high mean association. As an illustration, when the

number of teachers was 100, the 95% confidence interval for the difference between

V IM`m and V IMΨ correlations was (0.226, 0.337).

For the GSM simple interactions model, GSM3, the results were similar to the

GSM1 results. For both scenarios, 12 and 24 students per teacher, V IM`m yielded

significantly higher correlations than the remaining measures for any number of teachers.

However, as the number of students per teacher increased from 12 to 24, the random

forest VIMs tended to improve in performance and the difference in performance between
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V IM`m and the random forest VIMs was reduced. Specifically, when the number of

teachers was 40 and the number of students per teacher was 12 and 24, the mean

correlations were, respectively, 0.61 and 0.74 for V IM`m, 0.50 and 0.64 for V IM1, and

0.44 and 0.63 for V IMΨ. The corresponding 95% confidence intervals of V IM`m and

V IMΨ correlations difference were (.143, .191) and (.093, .125), respectively. When the

number of teachers was 100 and the number of students per teacher was 12 and 24, the

mean correlations were, respectively, .64 and .76 (V IM`m), .52 and .66 (V IM1), and .43

and .62 (V IMΨ). The 95% confidence intervals of V IM`m and V IMΨ correlations

difference were (.197, .228) and (.138, .157), respectively.

For the GSM complex interactions model, GSM4, Figure 3.9 shows that, when the

number of teachers was 10 or 20, V IMΨ and V IMΥ significantly outperformed the other

random forest measures and were not significantly worse than V IM`m. V IM`m

significantly outperformed the proposed measures with 10 teachers and 12 students per

teacher. In this scenario, the sample mean correlations were .43 for V IM`m and .34 for

V IMΨ and the 95% confidence intervals of V IM`m and V IMΨ correlations difference was

(.013, .156). For the cases with 10 teachers and 24 students per teacher, 20 teachers and

12 or 24 students per teacher, and 40 teachers and 24 students per teacher, V IMΨ was

not significantly worse than V IM`m. Specifically, with 10 teachers and 24 students per

teacher, the sample mean correlations were 0.52 for V IMΨ and 0.53 for V IM`m and the

95% confidence interval for the Spearman’s correlation difference of V IMΨ and V IM`m

was (-.052, .044). With 20 teachers and 12 or 24 students per teacher the mean

correlations were, respectively, 0.39 or 0.59 for V IMΨ and 0.43 or 0.57 for V IM`m,

respectively. The corresponding 95% confidence intervals for the correlation difference of

V IMΨ and V IM`m were (-.081, .015) and (-.005, .062), respectively. With 40 teachers

and 24 students per teacher the mean correlations were 0.62 for V IMΨ and 0.61 for

V IM`m and the 95% confidence interval for the correlation difference of V IMΨ and

V IM`m was (-.004, .037). When the number of teachers was 40 or 100, V IMΨ and V IMΥ
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did not outperform significantly the other two random forest measures, V IM1 and V IM2.

An increase of the number of students per teacher from 12 to 24 produced slightly higher

correlations for every VIM in the study.

Figure 3.10 plots the mean correlation/association for the five measures across the

number of teachers (x-axis) when 12 students per teacher (left column graphs) or 24

students per teacher (right column graphs) are considered and the ratio of teacher

variance over student variance is 20. Results for conditions where teacher variance over

student variance is 5 are similar and are included in the Appendix A.

For GSM1, in scenarios with 12 and 24 students per teacher, V IM`m yielded

significantly higher correlations than the remaining measures for any number of teachers.

When the number of students per teacher increased from 12 to 24, little change was

observed in the VIMs based on random forest. An illustration of this is provided by the

case where the number of teachers was 40 and the number of students per teacher was 12

or 24. There, mean correlations were found to be 0.932 or 0.937 for V IM`m, 0.847 or

0.849 for V IM1, and 0.836 or 0.834 for V IMΨ. The 95% confidence intervals for the

difference of V IM`m and V IMΨ correlations were (.071, .123) or (.077, .130), respectively.

For GSM2, for every combination of number of teacher and students per teacher,

V IM`m was not significantly better or worse than any of the random forest VIMs. Again,

this occured because all measures adequately identified the good and bad teacher effects

and placed them at the top of the ranking. This transpired in almost every replicate,

thereby producing association measures approaching 1 when the number of teachers was

10 or 20, and equal to 1 when the number of teachers was 40 or 100.

For GSM3, the results were similar to the CAM1 results. For both scenarios, 12

and 24 students per teacher, V IM`m yielded significantly higher correlations than the

remaining measures for any number of teachers. As the number of students per teacher

increased from 12 to 24, the random forest VIMs tended to improve slightly in

67



x

SPT1/SPT2 : 12/12

G
S

M
 1

0
10
30
50

ch
2.

1

SPT1/SPT2 : 24/24

.0
0

.2
0

.4
0

.6
0

.8
0

x

G
S

M
 2

x

ch
2.

1

x

G
S

M
 3

x

ch
2.

1

.0
0

.2
0

.4
0

.6
0

.8
0

G
S

M
 4

10 20 40 100

ch
2.

1

10 20 40 100

• V IM`m • V IM1 • V IM2 • V IMΨ • V IMΥ

Figure 3.10: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the number of teachers varies for different GSM models, the number
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performance. In the specific case where the number of teachers was 40 and the number of

students per teacher was 12 or 24, the mean correlations were, respectively, 0.933 or 0.936

for V IM`m and 0.841 or 0.843 for V IMΨ. The corresponding 95% confidence intervals of

V IM`m and V IMΨ correlations difference were (.065, .118) and (.067, .120), respectively.

The GSM4 results for a teacher/student variance ratio of 2 in Figure 3.9 came out

quite differently than for the case where the ratio was 20 in Figure 3.10. In this instance,

V IMΨ and V IMΥ were significantly outperformed by V IM`m in all the cases. One

instance of this was for when the number of teachers was 20 and the number of students

per teacher was 24. In that case the 95% confidence interval for the Spearman’s

correlation difference of V IM`m and V IMΨ was (.030, .092). An increase in the number

of teacher or the number of students per teacher produced higher correlations in most

cases for every VIM that was studied; the only exception was for the proposed measures

when the number of teachers increased from 40 to 100 teachers.

Figure 3.11 plots the mean correlation/association for the five measures across the

ratios of the number of students per teacher in group 1 to those in group 2 (x-axis) when

teacher variances range from 1 to 20 (columns) with 40 teachers. We should note that in

conditions with fewer teachers (10 and 20, respectively), results tended to follow similar

patterns, although correlations across conditions for all measures tended to be lower.

Associated graphs for 10 and 20 teachers are provided in Appendix A.

For GSM1, V IM`m outperformed significantly the random forest VIMs for all

values of teacher variance. As seen in Figure 3.11, as teacher variance increased, the gap

between V IM`m and the random forest measures decreased. The lowest correlations were

found in conditions with group 1 to group 2 ratio equal to 36 to 12, for all measures. For

example, when the teacher variance was 20 and the group 1 to group 2 ratio was 30 to 18,

the sample mean correlations were .94 for V IM`m and .81 for V IMΨ and the 95%

confidence intervals for the difference of V IM`m and V IMΨ correlations was (.097, .155).
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Figure 3.11: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when SpT1/SpT2 varies for different GSM models and different σ2

τ/σ
2 = 2

when the number of teachers is 40.
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In GSM2, when teacher variances were 1 or 2, V IM`m statistically outperformed

the random forest methods in every case. When the teacher variance was 1 and the

number of students per teacher in group 1 to group 2 ratios were 30 to 18 or 36 to 12, the

mean association measures were, respectively, 0.27 or 0.29 for V IM`m and 0.13 or 0.11 for

V IMΨ. The corresponding 95% confidence intervals of V IM`m and V IMΨ association

difference were (.094, .183) and (.138, .229), respectively. In contrast, when the teacher

variances were 5 or 20, the mean association in most cases was 1 or close to 1 and V IM`m

was not significantly better than any random forest VIMs.

We see from Figure 3.11 that the results for simple interactions are similar to those

for the baseline model. Beyond that, we note that regardless of the group 1 to group 2

ratio, V IM`m outperformed significantly all random forest methods. The performance

gap between V IM`m and the random forest measures narrowed as the teacher variance

increased and the group 1 to group 2 ratio became balanced.

For GSM4, when teacher variance was 1 or 2, V IMΨ was not significantly worse

than V IM`m in conditions where the number of students per teacher in group 1 to group

2 ratio was 24 to 24 (balanced case). Specifically, when the teacher variance was 1 in the

balanced case, the mean correlations were 0.31 for V IMΨ and 0.29 for V IM`m and the

95% confidence interval for the correlation difference of V IMΨ and V IM`m was (-.009,

.056). When the teacher variance was 2 in the balanced case, the mean correlations were

0.62 for V IMΨ and 0.61 for V IM`m and the 95% confidence interval for the correlation

difference of V IMΨ and V IM`m was (-.004, .037). When the teacher variance was 5 or 20,

V IM`m signifcantly outperformed V IMΨ for any combination of the number of students

per teacher in group 1 to group 2 ratio.

Figure 3.12 shows the mean correlations for the five measures across the various

values of teacher variance over student variance (x-axis) with 10, 20 or 40 teachers
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Figure 3.12: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the teacher variance over student variance σ2

τ/σ
2 varies for different

GSM models and different number of teachers when the group 1 to group 2 ratio is 24/24.

(columns) when the group 1 to group 2 ratio is 24
24 (balanced case). Due to similarity of

results, associated graphs for 12
12 and 36

36 have been placed in Appendix A.

For GSM1, V IM`m yielded significantly higher correlations than random forest

VIMs in every case studied. As the teacher variance increased, the random forest
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measures performed better. Overall, the highest correlations for all measures tended to be

found in conditions with 40 teachers and teacher variance of 20. The results for cases with

100 teachers (not shown in the figure) were slightly better than those with 40 teachers.

The results for GSM3 were similar to those described for GSM1. For GSM2, when the

teacher variance was 5 or 20, V IMΨ was not significantly worse than V IM`m for each case

studied. On the other hand, when the teacher variance was 1 or 2, V IM`m outperformed

significantly V IMΨ in each case studied. When, for example, the teacher variance was 1

and the number of teachers 40, the 95% confidence interval for the difference in

correlation of V IM`m and V IMΨ was (.060, .143). For GSM4, Figure 3.12 shows that for

those cases with teacher variance equal to 1 or 2, V IMΨ was not significantly worse than

V IM`m. This was also the case when the number of teachers was 20 and teacher variance

was 5. For the remaining cases with teacher variance 5 as well as all cases with teacher

variance 20, V IM`m was significantly better than V IMΨ. All the measures’ performances

tended to improve as the number of teachers increased although did not carry over to the

random forest measures when we considered an additional case with 100 teachers.

Figure 3.13 summarizes the mean correlations/associations for the five measures

across the various values of teacher variance over student variance (x-axis) with 10, 20 or

40 teachers (columns). The number of students per teacher in group 1 to group 2 ratio is

unbalanced at 36
12 .

For GSM1 and GSM3, V IM`m significantly outperformed V IMΨ in every case.

For GSM2, when the teacher variance was 1, 2, or 5, V IM`m significantly outperformed

V IMΨ for any number of teachers. On the other hand, when the teacher variance was 20,

V IMΨ was not significantly worse than V IM`m. For example, with 20 teachers and

teacher variance 20, the mean association for V IM`m was .965 and for V IMΨ was .966.

The 95% confidence interval for V IM`m and V IMΨ association difference was (-.003,

.001). For GSM4, V IM`m outperformed significantly V IMΨ in all cases. For example,

with 40 teachers and teacher variance 1, the mean correlations for V IM`m was .272 and
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Figure 3.13: Mean correlation/association between the VIMs and the absolute value of true
teacher effects when the teacher variance over student variance σ2

τ/σ
2 varies for different

GSM models and different number of teachers when the number of students per teacher
in group 1 to group 2 ratio is 36/12.
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for V IMΨ was .157. The 95% confidence interval for V IM`m and V IMΨ correlation

difference was (-.080, .150).

Figure 3.13 also demonstrates that in this unbalanced case, for all four GSM

specifications, the covariate proportion VIM, V IMΥ, produced consistently low

association measures. As we explained for the CAM results, this is an artifact of the way

the measure is constructed.

Figure 3.14 graphically depicts the mean correlations/associations for the five

measures across the various values of teacher variance over student variance (x-axis) with

10, 20 or 40 teachers (columns) when the number of students per teacher is unbalanced at
30
18 . For GSM1 and GSM3, V IM`m significantly outperformed V IMΨ in every case. For

GSM2, when the teacher variance was 1 or 2, V IM`m significantly outperformed V IMΨ

for any number of teachers. On the other hand, when teacher variance was 5 and number

of teachers 10 or 20, or when teacher variance was 20 for any number of teachers, V IMΨ

was not significantly worse than V IM`m. For example, with 10 teachers and teacher

variance 5, the mean association for V IM`m was .972 and for V IMΨ was .970. The 95%

confidence interval for V IM`m and V IMΨ association difference was (-.005, .011). For

GSM4, V IM`m significantly outperformed V IMΨ in nearly all cases. Only when the

number of teachers was 20 and the teacher variance was 1 was V IMΨ found not to be

significantly worse than V IM`m. In this case, the mean correlations for V IM`m was .312

and for V IMΨ was .267. The 95% confidence interval for V IM`m and V IMΨ correlation

difference was (-.004, .101).

As was true for the CAM, in all GSM scenarios, the mean correlation/association

differences between the random forest methods and V IM`m that were observed when the

group 1 to group 2 ratio was 36 to 12, were larger than in the case where this ratio was 30

to 18. This transpires for the same reason it did in the analogous CAM setting.
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Figure 3.14: Mean correlation/association between the VIMs and the absolute value of true
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2 varies for different

CAM models and different number of teachers when the number of students per teacher
in group 1 to group 2 ratio is 30/18.

76



3.3 Discussion

Based on the configuration of the terminal nodes in a random forest, we have proposed

two new measures to rank the input variables based on their influence in prediction in the

context of VAMs; namely, the node-proportion and the covariate-proportion VIMs. For

each simulation setting we compared the average across 100 replicates of the

correlation/association between the ranks produced by the absolute value of the true

(teacher) random effects and each of the different VIMs. The rank produced by V IM`m

was constructed assuming always a generic linear mixed model formulation, given by (2.6)

or (2.10). However, for certain simulation settings, we specified the model allowing

modifications and/or extensions to these linear model formulations. The purpose of this

exercise was to determine, given a model misspecification, how V IMΨ and V IMΥ

performed in comparison to V IM`m. In particular, the simulation considered models that

included third-order interactions among three covariates, two of them associated with

fixed effects and one associated with random effects. We called this formulation the

complex interaction model, and simulation results based on this formulation were

represented by CAM4 or GSM4.

In terms of the CAM models, the simulation results with CAM4 provide the
central justification for the relevance of our proposed measures. These results are
summarized in the figures in Section 3.2; particularly, in Figures 3.3 and 3.4. To better
display the cases where V IMΨ performance was at least as good as V IM`m, Table 3.1
presents all the factor combinations in the simulation study that correspond to CAM4

where V IMΨ is not significantly worse than V IM`m. In this and subsequent tables we use
Nteach to represent the number of teachers for each particular simulation setting. In
addition, recall that SpT` represent the number of students per teacher in group ` for
` = 1, 2 and r(Ψ) and r(`m) are the correlation/association averages defined in (3.9). The
paired t-test statistic with the associated lower and upper limits (CI`` and CIu`) for a
95% confidence interval and the p-values are also presented in the table.
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Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

10 12 12 1 0.26 0.19 -0.07 -1.89 -0.154 0.004 6.20E-02

10 24 24 1 0.38 0.37 -0.01 -0.21 -0.077 0.062 8.31E-01

10 36 36 1 0.40 0.44 0.04 1.19 -0.029 0.113 2.38E-01

10 24 24 2 0.61 0.59 -0.02 -0.63 -0.062 0.032 5.27E-01

10 36 36 2 0.64 0.64 -0.00 -0.17 -0.045 0.038 8.68E-01

20 12 12 1 0.31 0.30 -0.01 -0.42 -0.066 0.043 6.75E-01

20 24 24 1 0.41 0.51 0.10 4.01 0.049 0.146 1.19E-04

20 36 36 1 0.49 0.58 0.10 5.05 0.058 0.133 2.00E-06

20 30 18 1 0.42 0.38 -0.05 -1.63 -0.102 0.010 1.07E-01

20 12 12 2 0.57 0.56 -0.01 -0.55 -0.046 0.026 5.82E-01

20 24 24 2 0.65 0.72 0.07 4.68 0.041 0.103 9.28E-06

20 36 36 2 0.72 0.76 0.04 3.14 0.013 0.060 2.25E-03

20 24 24 5 0.82 0.80 -0.02 -1.66 -0.038 0.003 9.94E-02

40 12 12 1 0.29 0.41 0.12 7.36 0.091 0.158 5.39E-11

40 24 24 1 0.42 0.62 0.20 14.95 0.176 0.230 3.92E-27

40 36 36 1 0.51 0.71 0.20 16.26 0.173 0.222 1.06E-29

40 36 12 1 0.39 0.36 -0.03 -1.42 -0.061 0.010 1.58E-01

40 30 18 1 0.43 0.53 0.10 5.78 0.065 0.134 8.57E-08

40 12 12 2 0.59 0.70 0.11 8.68 0.082 0.130 8.07E-14

40 24 24 2 0.71 0.81 0.10 12.04 0.085 0.119 4.15E-21

40 36 36 2 0.76 0.85 0.09 12.48 0.073 0.100 4.95E-22

40 30 18 2 0.71 0.74 0.03 3.80 0.015 0.047 2.47E-04

40 12 12 5 0.84 0.83 -0.01 -1.82 -0.029 0.001 7.24E-02

100 12 12 1 0.30 0.53 0.23 20.21 0.206 0.251 6.47E-37

100 24 24 1 0.44 0.71 0.27 27.56 0.249 0.287 3.08E-48

100 36 12 1 0.42 0.49 0.07 7.81 0.055 0.092 6.16E-12

100 30 18 1 0.44 0.64 0.19 22.26 0.175 0.209 2.58E-40

100 12 12 2 0.61 0.78 0.17 23.84 0.160 0.189 8.32E-43

100 24 24 2 0.74 0.88 0.14 23.43 0.126 0.150 3.52E-42

100 36 12 2 0.71 0.71 0.00 0.59 -0.008 0.015 5.55E-01

100 30 18 2 0.74 0.83 0.10 18.30 0.087 0.108 1.59E-33

100 12 12 5 0.88 0.88 0.00 0.36 -0.007 0.011 7.19E-01
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Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

100 24 24 5 0.93 0.92 -0.00 -0.95 -0.014 0.005 3.42E-01

Table 3.1: All the factor combinations for the CAM complex interaction scenarios, CAM4, where V IMΨ

was not significantly worse than V IM`m. Remaining factor combinations, the mean correlations for V IMΨ

and V IM`m and the inferential study results of paired samples t-tests are shown.

Table 3.1 shows that for any number of teachers, when the teacher variance was 1 or 2

and the number of students in group 1 to group 2 ratio was balanced (12 to 12, 24 to 24,

or 36 to 36), the node-proportion is not significantly worse than the other measures,

including V IM`m. In the cases where the number of teachers was at least 20 and the

number of students per teacher was at least 24, the proposed measures outperformed

significantly all the other measures. This happens because the covariate-proportion and

node-proportion better capture the complex structure of the model. More precisely, the

random forest captures the complex structure of the model and these measures reflect

more accurately this information. Observe as well that the proposed measures better

reflect the teacher effects when the number of teachers increases or the number of student

per teacher increases.

While not unexpected, the results were completely different when simulations were

obtained using the baseline model, CAM1, or the simple interaction model, CAM3. In

each of those situations and for any factor combination, V IMΨ measure was significantly

worse than V IM`m.

Table 3.2 presents similar results to those in Table 3.1 for the good teacher - bad

teacher model, CAM2. Recall that in this model, there is no teacher variance, rather σ2
τ

represents a multiplier to obtain the magnitude of the good teacher effect (1.5 ∗ σ2
τ ) and

the bad teacher effect (−1 ∗ σ2
τ ). Table 3.2 shows that V IMΨ was not significantly worse

than V IM`m when σ2
τ was 5 or 20, or when the number of students per teacher was 36 for

all teachers and σ2
τ was 2.
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Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

10 36 36 2 0.97 0.97 0.00 0.28 -0.006 0.008 7.78E-01

10 12 12 5 0.97 0.97 0.00 1.22 -0.002 0.008 2.25E-01

10 24 24 5 0.97 0.97 0.00 0.78 -0.003 0.007 4.36E-01

10 36 36 5 0.98 0.97 0.00 1.26 -0.002 0.008 2.09E-01

10 30 18 5 0.97 0.97 0.00 1.04 -0.002 0.007 2.99E-01

10 12 12 20 0.98 0.97 0.00 1.19 -0.003 0.012 2.38E-01

10 24 24 20 0.97 0.97 0.00 1.18 -0.002 0.007 2.41E-01

10 36 36 20 0.98 0.97 0.00 1.44 -0.001 0.009 1.54E-01

10 36 12 20 0.97 0.97 0.00 1.34 -0.001 0.005 1.84E-01

10 30 18 20 0.97 0.97 0.00 1.59 -0.001 0.005 1.16E-01

20 36 36 2 0.96 0.97 -0.00 -0.91 -0.007 0.003 3.65E-01

20 12 12 5 0.96 0.96 -0.00 -0.60 -0.001 0.000 5.53E-01

20 24 24 5 0.96 0.97 -0.00 -0.74 -0.001 0.001 4.60E-01

20 36 36 5 0.97 0.97 0.00 0.37 -0.001 0.001 7.09E-01

20 30 18 5 0.96 0.97 -0.00 -0.60 -0.001 0.001 5.51E-01

20 12 12 20 0.97 0.97 0.00 0.16 -0.001 0.002 8.74E-01

20 24 24 20 0.97 0.97 0.00 0.08 -0.001 0.001 9.36E-01

20 36 36 20 0.97 0.97 0.00 0.03 -0.001 0.001 9.76E-01

20 36 12 20 0.97 0.97 0.00 1.41 -0.001 0.003 1.62E-01

20 30 18 20 0.97 0.97 0.00 0.61 -0.001 0.002 5.41E-01

40 36 36 2 1.00 1.00 0.00

40 12 12 5 1.00 1.00 0.00

40 24 24 5 1.00 1.00 0.00

40 36 36 5 1.00 1.00 0.00

40 30 18 5 1.00 1.00 0.00

40 12 12 20 1.00 1.00 0.00

40 24 24 20 1.00 1.00 0.00

40 36 36 20 1.00 1.00 0.00

40 36 12 20 1.00 1.00 0.00

40 30 18 20 1.00 1.00 0.00

100 24 24 2 0.99 1.00 -0.01 -1.75 -0.016 0.001 8.32E-02

100 12 12 5 1.00 1.00 -0.00 -1.00 -0.007 0.002 3.20E-01
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Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

100 24 24 5 1.00 1.00 0.00

100 36 12 5 1.00 1.00 0.00

100 30 18 5 1.00 1.00 0.00

100 12 12 20 1.00 1.00 0.00

100 24 24 20 1.00 1.00 0.00

100 36 12 20 1.00 1.00 0.00

100 30 18 20 1.00 1.00 0.00

Table 3.2: Factor combinations for the good teacher - bad teacher model, CAM2, where V IMΨ was at least

not significantly worse than V IM`m. Remaining factor combinations, the mean association for V IMΨ and

V IM`m and the simulation study results are shown.

As was the case for CAM, the central results for the GSM portion of our
simulation study are realized when analyzing selected factor combinations for GSM4. A
summary of those results is presented in the figures in Section 3.2; particularly, in Figure
3.9. Table 3.3 presents all the factor combinations in the simulation study that
correspond to GSM4 where V IMΨ is not significantly worse than V IM`m.

Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

10 24 24 1 0.27 0.31 -0.04 -1.11 -0.109 0.031 2.72E-01

10 36 36 1 0.33 0.31 0.02 0.54 -0.048 0.083 5.93E-01

10 24 24 2 0.52 0.53 -0.00 -0.15 -0.052 0.044 8.81E-01

10 36 36 2 0.58 0.55 0.03 1.55 -0.009 0.075 1.24E-01

20 12 12 1 0.16 0.17 -0.02 -0.52 -0.076 0.044 6.01E-01

20 24 24 1 0.31 0.28 0.03 1.50 -0.011 0.081 1.38E-01

20 36 36 1 0.42 0.38 0.04 2.00 0.000 0.086 4.78E-02

20 30 18 1 0.27 0.32 -0.05 -1.84 -0.106 0.004 6.89E-02

20 12 12 2 0.39 0.43 -0.03 -1.37 -0.082 0.015 1.73E-01

20 24 24 2 0.59 0.57 0.03 1.66 -0.005 0.062 9.94E-02

20 36 36 2 0.68 0.66 0.02 1.41 -0.008 0.045 1.62E-01

20 24 24 5 0.78 0.79 -0.01 -1.00 -0.038 0.013 3.22E-01

20 36 36 5 0.80 0.82 -0.02 -1.81 -0.052 0.002 7.37E-02

40 12 12 1 0.15 0.17 -0.02 -0.99 -0.056 0.019 3.27E-01

40 24 24 1 0.31 0.29 0.02 1.44 -0.009 0.056 1.53E-01
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Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

40 36 36 1 0.44 0.39 0.05 2.79 0.013 0.080 6.27E-03

40 24 24 2 0.62 0.61 0.02 1.59 -0.004 0.037 1.14E-01

40 36 36 2 0.72 0.68 0.04 4.34 0.024 0.064 3.41E-05

Table 3.3: All the factor combinations for GSM4, where V IMΨ was not significantly worse than V IM`m.

Remaining factor combinations, the mean correlations for V IMΨ and V IM`m and the inferential study

results of paired samples t-tests are shown.

In Table 3.3, we can observe that for 10, 20, or 40 teachers, when the teacher variance is 1

or 2 and the number of students per teacher in group 1 to group 2 ratio is balanced (12 to

12, 24 to 24, or 36 to 36), the two proposed VIMs are not significantly worse than the

other measures, including V IM`m. In the cases where the number of teachers was 40 and

the number of students per teacher was 36, the proposed measures actually outperformed

(significantly) V IM`m. As with the CAM scenarios, this happens because the random

forest captures the complex structure of the model and these measures reflect more

accurately this information. Observe again that the proposed measures better reflect the

teacher effects when the number of teachers increases or the number of students per

teacher increases.

We found that V IMΨ was significantly worse than V IM`m in any instances for the

baseline model, GSM1, or simple interaction model, GSM3. Table 3.4 presents similar

results to Table 3.3 for the good teacher - bad teacher model. Table 3.4 shows that V IMΨ

was not significantly worse than V IM`m when σ2
τ was 5 or 20, or when the number of

students per teacher was 12 for all teachers and σ2
τ was 1.

Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

10 12 12 1 0.43 0.44 -0.00 -0.02 -0.042 0.042 9.87E-01

10 24 24 5 0.97 0.97 0.00 0.78 -0.003 0.007 4.36E-01

10 36 36 5 0.98 0.97 0.00 1.26 -0.002 0.008 2.09E-01

10 30 18 5 0.97 0.97 -0.00 -0.63 -0.011 0.006 5.32E-01

10 12 12 20 0.98 0.97 0.00 1.19 -0.003 0.012 2.38E-01

82



Nteach SpT1 SpT2 σ2
τ r(`m) r(Ψ) r(Ψ)-r(`m) t CI`` CIu` p

10 24 24 20 0.97 0.97 0.00 1.18 -0.002 0.007 2.41E-01

10 36 36 20 0.98 0.97 0.00 1.44 -0.001 0.009 1.54E-01

10 36 12 20 0.97 0.97 0.00 1.34 -0.001 0.005 1.84E-01

10 30 18 20 0.97 0.97 0.00 1.59 -0.001 0.005 1.16E-01

20 24 24 5 0.96 0.97 -0.00 -0.74 -0.001 0.001 4.60E-01

20 36 36 5 0.97 0.97 0.00 0.37 -0.001 0.001 7.09E-01

20 30 18 5 0.96 0.97 -0.01 -1.80 -0.016 0.001 7.54E-02

20 12 12 20 0.97 0.97 0.00 0.16 -0.001 0.002 8.74E-01

20 24 24 20 0.97 0.97 0.00 0.08 -0.001 0.001 9.36E-01

20 36 36 20 0.97 0.97 0.00 0.03 -0.001 0.001 9.76E-01

20 36 12 20 0.97 0.97 0.00 1.41 -0.001 0.003 1.62E-01

20 30 18 20 0.97 0.97 0.00 0.61 -0.001 0.002 5.41E-01

40 24 24 5 1.00 1.00 0.00

40 36 36 5 1.00 1.00 0.00

40 12 12 20 1.00 1.00 0.00

40 24 24 20 1.00 1.00 0.00

40 36 36 20 1.00 1.00 0.00

40 36 12 20 1.00 1.00 -0.00 -1.00 -0.007 0.002 3.20E-01

40 30 18 20 1.00 1.00 0.00

100 12 12 20 1.00 1.00 -0.00 -1.00 -0.007 0.002 3.20E-01

100 24 24 20 1.00 1.00 0.00

100 30 18 20 1.00 1.00 0.00

Table 3.4: Factor combinations for the GSM2, where V IMΨ was at least not significantly worse than

V IM`m. Remaining factor combinations, the mean correlations for V IMΨ and V IM`m and the t-statistics

are shown.
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CHAPTER 4

INTERACTIONS

One of the advantages of the random forest method is its ability to perform well when the

data exhibit interactions among input variables. In the literature, “performance” has

generally been assessed in terms of predictive ability. The results in the previous chapter

represent an attempt to extend the notion of performance to include the ability to detect

important variables. The present chapter proceeds in a similar vein except now the goal is

the explicit identification of the variables that interact using a random forest approach.

In what follows we propose methods, based on random forest, that identify and/or

measure interactions among input variables. We begin by developing a new statistic that

can be used to identify variable interactions based on unique patterns observed in the

structure of the trees under limited modelling specification. We consider the specific case

of data from a linear model and explore the properties of our measure in that context.

While still under the linear model specification, we restrict our statistic in a way that not

only identifies but also estimates the interaction effects. To conclude, the results of a

simulation study are presented that provide evidence of both the reach and limitations of

our methodology.

Subsequent mathematical developments require a refinement of the notation laid

out in Chapter 2. Figure 4.1 provides a simple illustration that we will use to explain the

new ideas that are involved.

As in Chapter 2 a tree is a representation of partitions corresponding to some data

set, LN . A typical internal node in a tree is denoted as η. When necessary, we write ηk

for the k-th internal node or even ηtk for the k-th internal node in the t-th tree. The root

node η1 corresponds to the entire set of observations. Any other node is a subset of LN

given by partitions that are determined by subsets corresponding to categories obtained
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η1 ≡ LN

Sc7 S7

η2 ≡ η1(Sc7)

Sc3 S3

η3

Sc4 S4

η4 η5 ≡ η2(S3) ≡ η1(Sc7, S3) η6 η7

Figure 4.1: A graphical representation of a tree showing 7 non-terminal nodes and im-
plicitely 3 splitting variables, X7, X3, and X4. Their corresponding subsets of categories
are shown explicitely. The root node is equal to the entire set of observations used to grow
the tree, LN . For nodes η2 and η5, alternative representations using the parent nodes are
also shown.

by splitting the range of a predictor variable. We will use T (η) to indicate the subtree

that arises from viewing a particular η as a root node.

To describe the splitting idea let Cp be the set of categories of Xp for p = 1, . . . , P .

Then, a split on Xp can be represented as a set Sp ⊂ Cp with observations being assigned

to the right child node if its value of Xp is in Sp and to the left child node if it is in Scp.

For example, in Figure 4.1, the splitting variable in the root node is X7 and S7, S
c
7 ⊂ C7

are the subsets of values for X7 that are used to partition the data into the two

observation subsets that represent the nodes η2 and η3.

A branch is the unique path or history of partitions that produces a subset of

observations (i.e., a node) in the tree. We denote the branch corresponding to node η by

H(η). This branch can be described via an ordered list of the form

H(η) = (S1p1 , S2p2 , . . . , SLpL
). (4.1)

Here L is the number of nodes on the branch and {p1, . . . , pL} are all variable indices in

{1, . . . , P} with S`p`
the subset of values for Xp`

that was used to create the `-th
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partition. Note that a variable index can appear more than once. For example, if pi = pj

and i < j then Sjpj
, Scjpj

⊂ Sipi
. When each variable appears at most once in a branch we

alternatively express the branch in the simpler notation

H(η) = (Sp1 , Sp2 , . . . , SpL
). (4.2)

In particular, in the next Section we will focus on binary variables which, by their

dichotomous nature, can only be used in a single split. As an illustration, the branch

corresponding to node η6 in Figure 4.1 is H(η6) = (S7, S
c
4).

If no confusion arises, we will treat the list H(η) as being synonymous with the set

that contains the subsets in the list and we write Sp ∈ H(η) only if two conditions are

satisfied: Xp splits at least one of the nodes in H(η) and after that node, the resulting

partition keeps only the observations having realized values of Xp in Sp. Because of that,

if Sp ∈ H(η) then Scp /∈ H(η); on the other hand, when the variable Xp has not been used

as a splitting variable in H(η), Sp /∈ H(η) and Scp /∈ H(η). For example, in Figure 4.1,

Sc4 ∈ H(η6), S7 /∈ H(η4), and S2, S
c
2 /∈ H(η6).

We will use φ(η) to represent the function that indicates the variable used to

create η’s child nodes; for example in Figure 4.1, φ(η3) = X4.

Somewhat more generally, we will denote by η(Sp) the subset of η given by those

observations with realized values of Xp in Sp, for any arbitrary partition that need not be

one in the tree. However, if φ(η) = Xp and Sp is the corresponding subset of Xp used to

split the observations, there is a node η̃ with η̃ = η(Sp); i.e., η(Sp) is a child node of η. In

the instance where no variable has been used for more than one split, we can represent

this by writing

H(η̃) ≡ H(Sp; η) ≡ H(η) ∪ Sp ≡ (Sp1 , Sp2 , . . . , SpL
, Sp).

On the other hand, when η(Sp) is not a child node of η, the resulting subset of

observations is η(Sp) = η if Sp ∈ H(η), η(Sp) = ∅ if Scp ∈ H(η), or any subset of
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observations in between when Sp, Scp /∈ H(η). Similarly, in the case of more than one

partition, η(Sp1 , . . . , SpM
) ⊆ η is the subset of the elements in η that satisfy the conditions

for the predictor variable values determined by Sp1 , . . . , SpM
where the Sj may or may not

be partitions that were used to create η. Figure 4.1 illustrates this idea with alternative

node representations for nodes η2 and η5.

Finally, we will use |η| to represent the number of observations in a node η and

ȳ(η) = 1
|η|

∑
i:(xi,yi)∈η

yi

to denote its mean output value. These representations extend to any partition of η when

this partition exists. For example, if η(Sp, Sq) is not empty we have

ȳ(Sp, Sq; η) = 1
|η(Sp, Sq)|

∑
i:(xi,yi)∈η(Sp,Sq)

yi.

On the other hand, when η(Sp, Sq) is the empty set, we take ȳ(Sp, Sq; η) to simply be

undefined.

4.1 A New Approach to Interaction Identification

We now introduce a new approach to identifying interaction effects. The method uses the

random forest estimator F̂α in (2.17) for the regression function F in (2.1). Given a data

set LN = {xi, yi}Ni=1 consisting of N realizations of the random vector (X, Y ), the random

forest procedure returns an estimator that is an average of regression tree estimators

Fα
(
·; Ξ̂(Bt)

)
for t = 1, . . . , T , corresponding to trees created from bootstrap samples

B1, . . . ,BT of LN . We will use the resulting trees to construct a method to identify

interactions among input variables.

Our basic premise is that, since random forest performs well when data exhibit

interaction effects, it is expected that the tree structure will reflect the presence of

interactions. We illustrate this idea in a simple setting. Assume momentarily that for each

tree in the random forest the root nodes have all used the same splitting variable Xp and

partition the data with the same subset of categories, Sp and Scp, as in Figure 4.2. If there
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η1
Scp Sp

T
(
η1(Scp)

)
T
(
η1(Sp)

)

Figure 4.2: A tree having the root node partitioned by variable Xp and generating two
subtrees.

are no interaction effects, there are no a priori influences to make the subtrees T
(
ηt1(Sp)

)
and T

(
ηt1(Scp)

)
consistently different with ηt1 being the root node for the t-th tree. We are

not implying that the structure of both subtrees will look alike or even similar in any

given tree. This is highly unlikely for two reasons. First, different (random) groups of

potential splitting variables are evaluated at each node; therefore, the variable chosen to

split a node in one subtree might not even be considered for splitting in the corresponding

node in the other subtree. Second, even if the same group of variables is considered on

each equivalent node in both subtrees, the unaccounted differences in the bootstrap

samples may generate different subtrees. What we are suggesting is that, under the

assumption of no interaction effects, if we were to grow T trees, each time with a different

bootstrap sample, the collective or ensemble structure of the subtrees {T
(
ηt1(Sp)

)
}Tt=1

should be similar to that of the subtrees {T
(
ηt1(Scp)

)
}Tt=1, for T sufficiently large.

To analyze the structure for particular variables Xp and Xq in a specific tree we

might use the distance between the nodes that used these variables to create splits. This

distance can be measured in various ways. For example, it can simply be the number of

internal nodes between the nodes where the two splits occur. For now, however, we will

leave our choice of distance measure unspecified and use the word “distance” in a generic

sense. Notwithstanding the specific choice, when the values of this measure are

accumulated across bootstrap samples we will then obtain an approximation for the

distribution of the distance. If the collection of tree structures is similar, the distribution

of distances between Xp and Xq in {T
(
ηt1(Sp)

)
}Tt=1 should be similar to the analogous
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distribution in {T
(
ηt1(Scp)

)
}Tt=1. Clearly, if Xp and Xq do not interact, we would expect

the two distribution to coincide in an asymptotic sense.

On the contrary, if Xq interacts with Xp, we would expect the distribution of

distances between Xp and Xq in each collection of subtrees to differ. Moreover, the

specific differences in the distribution of distances between collections of subsets might

also give an indication of the strength of the interaction effect. This may happen because,

if T is large enough, the proportion of times Xq is part of the subset of variables

considered for splits is similar at each node in both collections of subtrees. If the

interaction effect is strong enough, Xq would be chosen more often in the first few nodes

of one collection of subtrees than in the other. Hence, if shorter distances between Xp and

Xq in {T
(
η1t(Sp)

)
}Tt=1 differ from the corresponding shorter distances in {T

(
η1t(Scp)

)
}Tt=1,

stronger interaction effects might be present. Our proposed measure takes into account

this characteristic.

We fixed φ(η1) = Xp in the previous discussion for clarity in exposition. This is

not necessary and for large enough T , we could perform the same analysis for any

locations of Xp and Xq in the tree, provided the comparisons are made for the same

specific subsets Sp and Scp of categories for Xp. That is, for any node η, if φ(η) = Xp, then

we apply the same ideas to the subtrees given by η(Sp) and η(Scp). Note that in the case

where Xp is binary, Sp and Scp will always coincide. Hence, the problem is to determine if

the distribution of the distances between Xp and Xq in subtrees given by

{T
(
ηtk(Sp)

)
: ∀k s.t. φ(ηtk) = Xp, t = 1, . . . , T} (4.3)

is different than that in

{T
(
ηtk(Scp)

)
: ∀k s.t. φ(ηtk) = Xp, t = 1, . . . , T}. (4.4)

In this general situation, we also need to consider the relative location of both variables in

the trees. When both variables are closer to the root node, this would also suggest the

presence of stronger interactions.
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The actual comparison of distance distributions can be based on summary

measures. For example, if there are no interactions, we would expect the sum of distances

between Xp and Xq in (4.3) to be very similar to the corresponding sum in (4.4). This is

precisely what we do to obtain our proposed measure. The distribution-based interaction

identification measure between Xp and Xq is given by

Γ(p, q) = 1
ω1

T∑
t=1

Dt∑
k=1

(
I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)
γ(p, q, ηtk)

)

− 1
ω2

T∑
t=1

Dt∑
k=1

(
I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)
γ(p, q, ηtk)

)
(4.5)

with Dt the total number of interior nodes in the t-th tree. In each sum, the first

indicator function in (4.5) allows the measure to keep only those nodes with

corresponding splitting variable Xq. The second indicator function keeps those nodes

where Sp is part of ηtk’s branch in the first sum or those nodes where Scp is part of ηtk’s

branch in the second sum. Effectively, it separates the expressions corresponding to sums

of those nodes in (4.3) from those in (4.4). The values for ω1 and ω2 provide us with the

flexibility of being able to weight each sum differently.

The function γ(p, q, ηtk) in (4.5) assigns a weight to each selected node based on

different criteria. Following the discussion above, we will use this function to consider

weights based on the distance between Xp and Xq as well as the relative location of the

node in the tree, i.e. the distance from this node to the root node. The function

γ(p, q, ηtk) need not be restricted only to distance measures. It can represent any

additional information related to variables Xp, Xq, and the node ηtk. For example, in the

following section we will propose a second measure derived from (4.5) that includes the

outcome means of ηtk’s child nodes. We will postpone giving choices for γ(·, ·, ·) until the

next section. For now, it suffices to observe that any formulation that includes distances

should assign at least as much weight to shorter distances or nodes closer to the root node

as to other distances and nodes. When such is the case, we expect Γ(p, q) to be close to

zero if there is no interaction between Xp and Xq and nonzero otherwise.
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Finally, notice that this analysis has accounted for cases where Xp splits a node

before Xq. To account for situations where Xq splits a node before Xp we need to analyze

the results obtained with Γ(q, p) simultaneously with Γ(p, q).

At this point it becomes expedient to analyze how the splitting variable is chosen

in a particular node η for some given tree. Recall that at any given node, the random

forest algorithm selects the splitting variable from a random subset of variables. There

are then different criteria that are employed to choose an “optimal” splitting variable. A

common criterion, and the one used in this analysis, is to select the variable that produces

the largest reduction in error sum of squares between a node outcome and its potential

child nodes’ outcomes. Let P ⊆ {1, 2, . . . , P} be the index subset of potential splitting

variables for node η. The chosen splitting variable, Xp with p ∈ P , is then determined by

p = arg max
q∈P

{ ∑
i∈η

(
yi − ȳ(η)

)2

−
[ ∑
i∈η(Sq)

(
(yi − ȳ(Sq; η)

)2
+

∑
i∈η(Sc

q)

(
yi − ȳ(Scq ; η)

)2
]}
. (4.6)

This allows us to make comparisons between the outcome means of potential splitting

variables. The following theorem provide certain necessary conditions for a variable to be

used in a split.

Theorem 1. Let P and η be as defined above and for any q ∈ P , let Sq be the

subset such that ȳ(Sq; η) ≥ ȳ(η). If the splitting variable Xp with p ∈ P is obtained using

(4.6) and for any fixed but arbitrary q ∈ P , |η(Sp)|
|η(Sc

p)| ≤
|η(Sq)|
|η(Sc

q)| , then

ȳ(Sp; η) ≥ ȳ(Sq; η). (4.7)

Conversely, if |η(Sp)|
|η(Sc

p)| ≥
|η(Sq)|
|η(Sc

q)| ,

ȳ(Scp; η) ≤ ȳ(Scq ; η). (4.8)

In particular, if |η(Sp)|
|η(Sc

p)| = |η(Sq)|
|η(Sc

q)| , ȳ(Scp; η) ≤ ȳ(Scq ; η) ≤ ȳ(Sq; η) ≤ ȳ(Sp; η).

Theorem 1 has the implication that, when ȳ(Sp; η) > ȳ(η) at least one of

ȳ(Sp; η) ≥ ȳ(S∗q ; η) or ȳ(Scp; η) ≤ ȳ(S∗q ; η) holds for any q ∈ P with S∗q being either Sq or
91



Scq . It allows us to use outcome means of potential splitting variables as an alternative to

expressions such as (4.6) to determine the best splitting variable and the best splitting

point. The theorem is used in the next section to further analyze the properties of our

proposed interaction measure.

Proof of Theorem 1. It is convenient to express (4.6) as

p = arg max
q∈P

{
|η(Sq)|

(
ȳ(Sq; η)

)2
+ |η(Scq)|

(
ȳ(Scq ; η)

)2
− |η|

(
ȳ(η)

)2
}
. (4.9)

Note that |η| and ȳ(η) do not depend on the choice of q, since they are the number of

observations and outcome in the node where we evaluate alternative splitting variables.

Therefore, (4.9) shows that the chosen variable Xp produces the largest sum of the child

nodes outcome mean squares, weighted by their respective node sizes.

Now, (4.9) can also be written as

p = arg max
r∈P

{
|η| |η(Sq)|
|η(Scq)|

(
ȳ(Sq; η)− ȳ(η)

)2
}
. (4.10)

Since Xp is the chosen variable this implies that

|η(Sp)|
|η(Scp)|

(
ȳ(Sp; η)− ȳ(η)

)2
≥ |η(Sq)|
|η(Scq)|

(
ȳ(Sq; η)− ȳ(η)

)2
, ∀q ∈ P . (4.11)

Let

Rq =
(
|η(Sq)|
|η(Scq)|

) 1
2

, ∀q ∈ P .

Then, when (4.11) holds,

|ȳ(Sp; η)− ȳ(η)| ≥ Rq

Rp

|ȳ(Sq; η)− ȳ(η)|, ∀q ∈ P . (4.12)

But, by assumption, ȳ(Sq; η) ≥ ȳ(η) and, hence,

ȳ(Sp; η) ≥ ȳ(Sq; η) +
(
Rq

Rp

− 1
)

(ȳ(Sq; η)− ȳ(η)), ∀q ∈ P , (4.13)

giving (4.7) when Rp ≤ Rq.
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To show (4.8), observe that we can rewrite (4.10) in terms of Scp and Scq as

p = arg max
r∈P

{
|η|
|η(Scq)|
|η(Sq)|

(
ȳ(Scq ; η)− ȳ(η)

)2
}
. (4.14)

Thus, if ȳ(Sq; η) ≥ ȳ(η), it is also the case that ȳ(Scq ; η) ≤ ȳ(η). An analogous argument

for ȳ(Scq ; η) leads to

ȳ(Scp; η) ≤ ȳ(Scq ; η) +
(
Rp

Rq

− 1
)

(ȳ(Scq ; η)− ȳ(η)), ∀q ∈ P (4.15)

and (4.10) holds when Rp ≥ Rq. Finally, when Rp = Rq the result holds by combining

(4.13) and (4.15). �

The conditions on ȳ(Sp; η) and ȳ(Scp; η) are necessary for p to be chosen as the

splitting variable but not sufficient. Inequalities (4.13) and (4.15) provide necessary and

sufficient conditions that we can use to extract some additional information about the

outcome mean corresponding to the optimal splitting variable. For example, (4.13) could

be written as

ȳ(Sp; η) ≥ Rq

Rp

ȳ(Sq; η) +
(

1− Rq

Rp

)
ȳ(η), ∀q ∈ P . (4.16)

Now if |η(Sp)|
|η(Sc

p)| >
|η(Sq)|
|η(Sc

q)| so that Rp > Rq, then ȳ(Sp; η) is greater than the weighted average

of ȳ(Sq; η) and ȳ(η), with weight Rq

Rp
. When Rq

Rp
is close to 1, it is still possible to have

ȳ(Sp; η) ≥ ȳ(Sq; η). On the other hand, if Rp � Rq, the value of ȳ(Sq; η) has less influence

on the optimization criterion because its weight in (4.16) is very small. What this means

is that when the proportion of observations in the node η(Sp) with respect to η(Scp) is

much larger than the corresponding proportion given by q, the variable Xp could be

chosen even when ȳ(Sq; η) ≥ ȳ(Sp; η).

Analysis with a Linear Model Specification

In this section we specialize to an explicit form for F in (2.1); namely, a linear model with

interactions. This allows us to further explore our measure’s ability to idenfify

interactions in a setting where the variable interactions take a specific, common form.
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The model we will study has a continuous output variables and binary input

variables. We restrict our analysis to the case of binary variables for two reasons. First,

we are interested in understanding how the structure of the tree works in simple settings.

The random forest algorithm handles two optimization problems at each stage of the

iterative process; it chooses the best splitting variable among those randomly selected and

determines the best split point for this variable. When dealing with binary variables, the

split point is predetermined and the selection process is based only on one optimization

problem. It is simpler to track the effect of one optimization problem and relate it to the

structure of the tree. Second, the results obtained using variables with two categories are

useful in a variety of settings; for example, in situations like those studied in Chapter 3.

We represent the two categories with Cp = {1, 0}, Sp = {1}, Scp = {0} for

p = 1, . . . , P . A variable can only appear in a branch once and the length of a branch in

the tree can be at most equal to the number of input variables in the data set. For

example, let P = 4 and H(Sc3; η) = (S1, S
c
4, S2, S

c
3) in which case η(Sc3) is a terminal node.

Variable X1 splits the root node with the first subset of observations (right child node)

being determined by those observations with X1 = 1. Variable X4 splits this subset of

observations keeping those with X4 = 0, and so on. The leaf of this branch is composed of

observations with covariate vectors of the form x = (1, 1, 0, 0).

The model is now defined explicitely by

Y = β0 +
P∑
p=1

βpXp +
P−1∑
p=1

P∑
q=p+1

βpqXpXq + ε (4.17)

for binary variables X1, . . . , Xp. As before, we use yi and xip to denote the observed

values of Y and Xp with associated random errors ε1, . . . , εN that are independent copies

of the random variable ε that is assumed to be N(0, σ2).

For any arbitrary but fixed tree that is constructed using data from model (4.17),

we can now express the outcome mean in node η by means of the coefficients of the
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model; namely,

ȳ(η) = 1
|η|

∑
i:(yi,xi)∈η

yi

= 1
|η|

∑
i:(yi,xi)∈η

β0 +
P∑
p=1

βpxip +
P−1∑
p=1

P∑
q=p+1

βpqxipxiq + εi


= 1
|η|

 ∑
i:(yi,xi)∈η

β0 +
P∑
p=1

βp
∑

i:(yi,xi)∈η
xip +

P−1∑
p=1

P∑
q=p+1

βpq
∑

i:(yi,xi)∈η
xipxiq +

∑
i:(yi,xi)∈η

εi


= β0 +

P∑
p=1

|η(Sp)|
|η|

βp +
P−1∑
p=1

P∑
q=p+1

|η(Sp, Sq)|
|η|

βpq + ε̄(η), (4.18)

where ε̄(η) = 1
|η|
∑
i:(yi,xi)∈η εi. Recall that if Sq ∈ H(η), then |η(Sq)| = |η| and |η(Scq)| = 0.

Using this fact, we can rewrite the last equality in (4.18) as

ȳ(η) = ∆1(H(η)) + ∆2(H(η)) (4.19)

with

∆1(H(η)) =β0 +
∑

p:Sp∈H(η)
βp +

∑∑
p,q:Sp,Sq∈H(η)

p<q

βpq

and

∆2(H(η)) =
∑

p:Sp /∈H(η)

|η(Sp)|
|η|

βp +
∑∑
p:Sp∈H(η)
q:Sq /∈H(η)

|η(Sq)|
|η|

βpq+

+
∑∑

p,q:Sp,Sq /∈H(η)
p<q

|η(Sp, Sq)|
|η|

βpq + ε̄(η).

In (4.19) we have disaggregated each sum in the last equality in (4.18) based on its

characteristics: the sums in ∆1(H(η)) correspond to those variables used for partitions in

H(η) while the sums in ∆2(H(η)), that we also refer to as off-sums, correspond to those

with at least one variable not used for partitions in H(η).

At this point it will be useful to consider an example of (4.19) for that simple case

of P = 4 covariates. Figure 4.3 provides a graphical representation of the situation. Here,

the nodes where all the covariates are included are easier to interpret. For example,
95



η1
Sc2 S2

η2
Sc4 S4

η3
Sc1 S1

η4
Sc3 S3

η5 η6 η7

η8
Sc1 S1

η9
Sc1 S1

η̄1 η̄2 η̄3 η̄4

Figure 4.3: Partial outcome of a regression tree with four covariates. The set of observations
at the terminal node η̄1 is obtained following the branch H(η̄1) = (Sc2, Sc4, Sc3, Sc1). The
resulting set of observations is a subset of LN having the value (0, 0, 0, 0) for X.

H(η̄1) = (Sc2, Sc4, Sc3, Sc1) fully describes the branch of the tree corresponding to the first

terminal node. Observe that H(η̄1) ≡ H(S1; η8).

Because all the input variables have been used in H(η̄1) all the sums in ∆2(ȳ(η̄1))

are equal to zero. In addition, observe that

{p : Scp ∈ H(Sc1; η1)} = {1, 2, 3, 4} and {p : Sp ∈ H(η̄1)} = {p : Scp /∈ H(Sc1; η1)} = ∅,

i.e., the subsets of indices used for the sums in ∆1(ȳ(η̄1)) are empty sets because the

observations included in η̄1 have all realized values for Xp = 0 for p = 1, . . . , 4. Therefore,

(4.19) reduces to

ȳ(η̄1) = β0 + ε̄(η̄1).

Similarly, the η̄4 branch is given by H(η̄4) = (Sc2, Sc4, S3, S1) and

{p : Sp ∈ H(η̄4)} = {1, 3}, {p : Scp ∈ H(η̄4)} = {2, 4}, {p : Sp /∈ H(η̄4)} = ∅.

The outcome mean given by (4.19) in this case reduces to

ȳ(η̄4) = β0 + β1 + β3 + β13 + ε̄(η̄4).
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For branches that do not account for all the variables, the representation is more

intricate. For example, for the η7 branch, H(η7) = (S2, S1), we have

{p : Sp ∈ H(η7)} = {1, 2}, {p : Scp ∈ H(η7)} = ∅, {p : Sp /∈ H(η7)} = {3, 4}

By (4.19), the outcome mean is

ȳ(η7) = β0 + β1 + β2 + β12 + |η7(S3)|
|η7|

β3 + |η7(S4)|
|η7|

β4+

+ |η7(S3)|
|η7|

β13 + |η7(S3)|
|η7|

β23 + |η7(S4)|
|η7|

β14

+ |η7(S4)|
|η7|

β24 + |η7(S3, S4)|
|η7|

β34 + ε̄(η7)

= β0 + β1 + β2 + β12 + |η7(S3)|
|η7|

(β3 + β13 + β23)

+ |η7(S4)|
|η7|

(β4 + β14 + β24) + |η7(S3, S4)|
|η7|

β34 + ε̄(η7). (4.20)

Let us now return to the interpretation of (4.19). Assume that a new observation

is assigned to a terminal node η̄ of a particular tree. Then ȳ(η̄) is the tree’s predicted

value for the new observation’s outcome. While the true parameter values for each βp or

βpq for p, q = 1, . . . , N in (4.19) are, of course, unknown, the functional form for ȳ(η̄) is

exactly what we would expect from model (4.17); namely, the expected value for

responses in η̄. Now, as seen from our example, if H(η̄) were to include every single input

variable, the sums in ∆2(H(η̄)) would be zero and the estimation would then be off from

the true mean value only by the magnitude of ε̄(η).

In contrast, if the number of partitions in H(η̄) is not equal to P , the terms

included in ∆2(H(η̄)) would be nonzero and this would have two potential effects in the

prediction. To see why this is so, let us work with a particular predictor Xp and assume

that Sp, Scp /∈ H(η̄). If the new observation’s value for Xp is 1, we would like for βp to be

accounted for in the prediction. However, it is possible that |η̄(Sp)| < |η̄| and only a

fraction of βp would appear in the prediction. On the other hand, if the observed value is

in 0, we would prefer for βp not to be considered in the prediction and in this instance, it
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is possible that |η̄(Sp)| > 0. So a fraction of the value βp would still be employed in the

prediction. Both scenarios correspond to cases where the realizations of Xp for some of

the observations in η̄ are different than the observed value of Xp in the new observation.

The random forest predicted value at a given value X = x is

Fα(x) = 1
T

T∑
t=1

ȳ(η̄tk) (4.21)

with ηtk corresponding to the k-th terminal node in the t-th tree such that if Sp ∈ H(η̄tk)

then xp = 1 and if Scp ∈ H(η̄tk) then xp = 0 for p = 1, . . . , P . We know from our

discussions in Chapter 2 that (4.21) provides accurate predictions even when the trees

that appear in the average are restricted to a limited size and the sums in ∆2(H(η̄tk)) for

each tree are nonzero. Intuitively, we can provide some reasons why this result is possible.

First, for a variable to split a node, it needs to be preselected and then chosen over the

other preselected variables. As long as the trees are not too small, the most important

effects would be included in ∆1(H(η̄tk)) as soon as the corresponding variables are

preselected in a node. Important variables mostly appear in ∆2(H(η̄tk)) if they have not

been preselected in any node. Second, ∆2(H(η̄tk)) is a sum of fractions of effects that

should have been considered entirely and fractions of effects that should not be considered

at all. It is possible that the latter contributes to reduce the missing part in the former.

Finally, observe that the larger the number of observations considered to obtain ε̄(η̄tk), the

lower its variability. Therefore, there is a tradeoff between the magnitude of ∆2(H(η̄tk))

and ε̄(η̄tk). If a tree is built allowing a large number of nodes, the number of coefficients

only partially considered in any prediction is small; however, the prediction is made using

only a few observations, affecting ε̄(η̄tk). In any event, if the random forest solution is

adequate one must conclude that the average of ∆2(H(η̄tk)) across trees does not

adversely influence prediction in a substantial way.
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The Distribution Based Measure in the Linear Model Specification

One motivation for the distribution-based interaction measure was that because the

random forest prediction performs well when interactions among variables are present, the

interactions should influence the structure of the constitutive trees in very specific ways

that make it possible to identify interactions via the analysis of the trees’ structure. We

are now interested in providing evidence of the plausibility of this premise and to do so

we will show that the structure of the trees in random forest provides evidence of

interactions explicitely when the model specification is given by (4.17). It is clear in this

situation that the existence and strength of the interaction between two variables, Xp and

Xq, is entirely determined by βpq. We will show that once Xp has been chosen as a

splitting variable in a node and, as a consequence, has generated two subtrees from that

node, the difference between choosing Xq as a splitting variable in one subtree or the

other can be tied directly to the value of βpq.

Figure 4.4 describes how variables Xp and Xq might relate to each other in a

particular tree. The first node shown in the figure is ηo. The splitting variable in this case

is Xp and the path from the root node to ηo is given by H(ηo). This node partitions the

overall tree into two subtrees, T
(
ηo(Scp)

)
and T

(
ηo(Sp)

)
. In both subtrees, nodes are

then shown where the other variable of interest, Xq, is selected as a splitting variable: at

η′ for the left subtree and at η for the right subtree. The broken lines represent different

paths thereby suggesting potential asymmetries.

Thus, in terms of Figure (4.4) our immediate task is to find an expression where

variable Xq is chosen among all preselected variables in η, and compare it with the

corresponding representation when Xq is chosen among others in η′. To proceed in that

direction observe that when a tree is formed, e.g., the one in Figure 4.4, subsets of

variables are randomly selected and compared to determine the splitting variable in nodes

η and η′. Let these subsets be described by index sets P and P ′, respectively. In the case
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H(ηo)

ηo

Scp = {0} Sp = {1}

T
(
η(Scp)

)
T
(
η(Sp)

)
η′

Scq Sq

η′(Scq) η′(Sq) η
Scq Sq

η(Scq) η(Sq)
Figure 4.4: A section of a tree showing two variables and their relationship. The first node
shown, ηo, has splitting variable Xp and the history of ηo’s branch is given by H(ηo). Xm

partitions the data in two subtrees represented by T
(
ηo(Scp)

)
and T

(
ηo(Sp)

)
. One node in

each subtree indicated by η′ and η represent points where Xq is the splitting variable.

of node η, let q ∈ P such that Xq is the chosen splitting variable in η with ȳ(Sq; η) > ȳ(η)

and assume that
|η(Sq)|
|η(Scq)|

≈ |η(Sr)|
|η(Scr)|

,

for r in P . Then, according to Theorem 1,

ȳ(Scq ; η) ≤ ȳ(S∗r ; η) ≤ ȳ(Sq; η) (4.22)

holds, where S∗r is either Sr or Scr . Similarly, for node η′, let q ∈ P ′ such that Xq is also

the chosen splitting variable in η′ with ȳ(Sq; η′) > ȳ(η′) and

|η′(Sq)|
|η′(Scq)|

≈ |η
′(Sr)|
|η′(Scr)|

,

for r in P ′. Then

ȳ(Scq ; η′) ≤ ȳ(S∗r ; η′) ≤ ȳ(Sq; η′). (4.23)

In order to compare (4.22) and (4.23) we assume that η and η′ are symmetrical

with respect to Xp, P = P ′ and the ratios of number of observations for symmetrical
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H(ηo)
ηo

Scp Sp

η′

Scq Sq

η
Scq Sq

η′(Scq) η′(Sq) η(Scq) η(Sq)
Figure 4.5: A symmetrical part of a tree consisting of two branches, both with the initial
branch H(ηo). In node ηo the splitting variable is Xp and the variable splitting both child
nodes is Xq.

groups are similar, so that
|η(S`, Sq)|
|η(Sq)|

≈ |η
′(S`, Sq)|
|η′(Sq)|

,

for ` ∈ P . We say that η and η′ are symmetrical when the only difference between the

branches of these nodes is Sp ∈ H(η) and Scp ∈ H(η′) or alternatively

{` : S` ∈ H(η)\H(η′)} = {` : Sc` ∈ H(η′)\H(η)} = {p}.

A simple example of symmetry is shown in Figure 4.5, when Xp splits the parent node

and Xq splits both child nodes. Under these assumptions, comparison of (4.22) and (4.23)

is tantamount to consideration of

[ȳ(Sq; η)− ȳ(S∗r ; η)]− [ȳ(Sq; η′)− ȳ(S∗r ; η′)]. (4.24)

To show that (4.24) is a function of βpq we express each ȳ(·; ·) as in (4.19) and

start by comparing ȳ(Sq; η) and ȳ(S∗r ; η). Note that H(Sq; η) represents an existent path

in the tree while H(S∗r ; η) is a hypothetical path that could have existed if Xr was chosen

over Xq to split η. Rearranging and expanding those terms associated with Xq and Xr we
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obtain

ȳ(Sq; η) =β0 +
∑

`:S`∈H(η)
β` + βq + |η(Sr, Sq)|

|η(Sq)|
βr+

+
∑∑

`,m:S`,Sm∈H(η)
`<m

β`m +
∑

`:S`∈H(η)
β`q + |η(Sr, Sq)|

|η(Sq)|
βrq +

∑
`:S`∈H(η)

|η(Sr, Sq)|
|η(Sq)|

β`r

+
∑

`:S` /∈H(r;η)∪{Sr}

[
|η(S`, Sq)|
|η(Sq)|

β`q + |η(S`, Sr, Sq)|
|η(Sq)|

β`r

]

+ ∆
(
H(Sq; η) ∪ {Sr}

)
, ∀r ∈ P , (4.25)

where

∆
(
H(Sq; η) ∪ {Sr}

)
=

∑
`:S` /∈H(Sq ;η)∪{Sr}

|η(S`, Sq)|
|η(Sq)|

β` +
∑∑
S`∈H(η)

Sm /∈H(Sq ;η)∪{Sr}

|η(Sm, Sq)|
|η(Sq)|

β`m+

+
∑∑

S`,Sm /∈H(Sq ;η)∪{Sr}
`<m

|η(S`, Sm, Sq)|
|η(Sq)|

β`m + ε̄(Sq; η).

A similar expression holds for ȳ(S∗r ; η). However, if S∗r = Scr , the terms containing

βr and βr` are zero. We account for that with an indicator function and multiply such

terms by I(S∗r = Sr) that is “1” only when S∗r = Sr. In addition, since Sp ∈ H(η), we

want to explicitely display the terms associated with Xp. After cancelling common terms

and rearranging some expressions, we obtain

ȳ(Sq; η)− ȳ(S∗r ; η) =
(

1− I(S∗r = Sr)
|η(Sq, S∗r )|
|η(S∗r )|

)βq + βpq +
∑

`:S`∈H(η)\{Sp}
β`q


−
(
I(S∗r = Sr)−

|η(Sr, Sq)|
|η(Sq)|

)βr + βrp +
∑

`:S`∈H(η)\{Sp}
β`r


+

∑
S` /∈H(Sq ;η)∪{Sr}

(
|η(S`, Sq)|
|η(Sq)|

− I(S∗r = Sr)
|η(S`, Sq, S∗r )|
|η(S∗r )|

)
β`q

+
∑

S` /∈H(Sq ;η)∪{Sr}

(
I(S∗r = Sr)

|η(S`, S∗r )|
|η(S∗r )|

− |η(S`, Sr, Sq)|
|η(Sq)|

)
β`r

+ ∆(H(Sq; η) ∪ {Sr})−∆(H(S∗r ; η) ∪ {Sq}), ∀r ∈ P , (4.26)

where the set of subindices {r : Sr ∈ H(η)\{Sp}} accounts for each subindex in

{r : Sr ∈ H(η)} except p. To simplify the analysis we subsequently assume that the
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remainder term

∆(H(Sq; η) ∪ {Sr})−∆(H(S∗r ; η) ∪ {Sq})

is negligible and can be ignored.

The analogous representation of the differences in outcome means in node η′ is

similar. However, recall that Scp ∈ H(η′). That is, the variable Xp partitions some node in

branch H(η′) keeping the observations with Xp ∈ Scp. With this in mind we obtain

ȳ(Sq; η′)−ȳ(S∗r ; η′) =
(

1− I(S∗r = Sr)
|η′(Sq, S∗r )|
|η′(S∗r )|

)βq +
∑

`:S`∈H(η′)\{Sp}
β`q


−
(
I(S∗r = Sr)−

|η′(Sr, Sq)|
|η′(Sq)|

)βr +
∑

`:S`∈H(η′)\{Sp}
β`r


+

∑
`:S` /∈H(Sq ;η′)∪{Sr}

(
|η′(S`, Sq)|
|η′(Sq)|

− I(S∗r = Sr)
|η′(S`, Sq, S∗r )|
|η′(S∗r )|

)
β`q

+
∑

`:S` /∈H(Sq ;η′)∪{Sr}

(
I(S∗r = Sr)

|η′(S`, S∗r )|
|η′(S∗r )|

− |η
′(S`, Sr, Sq)|
|η′(Sq)|

)
β`r

+ ∆(H(Sq; η′) ∪ {Sr})−∆(H(S∗r ; η′) ∪ {Sq}), ∀r ∈ P ′. (4.27)

As we did in (4.26) we will assume that the remainder term

∆(H(Sq; η′) ∪ {Sr})−∆(H(S∗r ; η′) ∪ {Sq})

can be ignored.

The difference between (4.26) and (4.27) provides the representation for (4.24) and

is given by

[ȳ(Sq; η)− ȳ(S∗r ; η)]− [ȳ(Sq; η′)− ȳ(S∗r ; η′)] =

=
(

1− I(S∗r = Sr)
|η(Sq, S∗r )|
|η(S∗r )|

)
βpq −

(
I(S∗r = Sr)−

|η(Sr, Sq)|
|η(Sq)|

)
βrp, (4.28)

for all r ∈ P . Clearly (4.24) is a function of βpq, as we wanted to show. Observe that

(4.24) is also a function of βrp. However, a different βrp is considered for each choice of

r ∈ P . Hence, (4.24) will be consistently positive or negative only due to βpq.
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The Mean-Based Interaction Measure

The outcome mean representations given by (4.28) allow us to discern the influence of the

interaction effect between Xp and Xq. This result serves as motivation to propose a

second measure that is based on linear combinations of outcome means at nodes that are

affected by Xp and Xq.

We call our new measure the mean-based interaction measure for Xp and Xq. It is

a weighted sum of the difference of differences of the outcome means, where the weights

take into consideration the existence of symmetrical sections and the location of Xq (and

therefore Xp) from the root node. The mean-based interaction measure is defined as

Ω(p, q) = 1
ω1

T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)δ(p, q, ηtk)
µ(ηtk)

(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)
− 1
ω2

T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)δ(p, q, ηtk)
µ(ηtk)

(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)
, (4.29)

where

ω1 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)δ(p, q, ηtk)
µ(ηtk)

,

and

ω2 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)δ(p, q, ηtk)
µ(ηtk)

.

The value of ω1 is the weight of all the nodes that split with Xp = 1 first and then Xq,

while ω2 is the corresponding value of nodes that split with Xp = 0 first and then Xq.

The value of δ(p, q, ηtk) for each node ηtk and each tree t, is a weight that represents the

distance between Xp and Xq. Similarly, µ(ηtk) represents the weight of node ηtk and

depends on its relative location. The value of δ(p, q, ηtk) and µ(ηtk) could also depend on

the existence of symmetry of H(ηtk) with any other branch in tree t or any other tree.

An estimator for βpq is

β̃(p, q) = 1
2
(
Ω(p, q) + Ω(q, p)

)
, (4.30)
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i.e., the value of (4.30) is the average of Ω(p, q) and Ω(q, p), where Ω(p, q) provides an

estimate for βpq when Xp splits a node in a branch before Xq and Ω(q, p) provides that

estimate when Xq splits a node in a branch before Xp.

It is noteworthy that (4.29) is a special case of (4.5) with

γ(p, q, ηtk) =
δ
(
p, q, ηtk

)
µ(ηtk)

(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)
. (4.31)

Although the distribution-based measure in (4.5) provides only an interaction

identification measure in the general case, the connection between (4.5) and (4.30)

suggest the possibility that, given a model specification, an estimation measure could be

obtained from (4.5).

Note that we have not explicitely defined δ(·, ·, ·) and µ(·). As an illustration, if we

let δ(·, ·, ·) = 1 and d(·) = 1, (4.29) could be expressed as

Ω(p, q) = 1
ω1

T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)

− 1
ω2

T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)
. (4.32)

Observe also that in general, when all the trees are added together, we would expect to

have a comparable number of branches with Sm ∈ H(ηtk) as with Scm ∈ H(ηtk), and

therefore ω1 ≈ ω2. If this is the case, (4.32) is just the unweighted sum of difference of

differences of outcome means.

We now show why (4.30) is an estimate of βpq. We start the analysis with a

symmetrical case such as the one presented in Figure 4.5: namely, Xp splits node ηo and

Xq splits both child nodes, η and η′. We rearrange the terms in (4.19) and expand those

terms associated with Xq to obtain

ȳ(Sq; η) =β0 +
∑

`:S`∈H(η)
β` + βq +

∑∑
`,m:S`,Sm∈H(η)

`<m

β`m +
∑

`:S`∈H(η)
β`q + ∆2

(
H(Sq; η)

)
, (4.33)
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with ∆2(·) as described in (4.19). Using a similar expression for ȳ(Scq ; η) and expanding

the terms associated with Xp, the difference of ȳ(Sq; η) and ȳ(Scq ; η) is given by

ȳ(Sq; η)− ȳ(Scq ; η) = βq +
∑

`:S`∈H(η)\{Sp}
β`q + βpq

+ ∆2
(
H(Sq; η)

)
−∆2

(
H(Scq ; η)

)
. (4.34)

Similarly, for node η′, we have

ȳ(Sq; η′)− ȳ(Scq ; η′) = βq +
∑

`:S`∈H(η′)\{Sp}
β`q

+ ∆2
(
H(Sq; η′)

)
−∆2

(
H(Scq ; η′)

)
. (4.35)

Recall that Scp ∈ H(η′). In the symmetric case H(η)\{Sp} = H(η′)\{Sp} and the

difference of (4.34) and (4.35) is given by

[
ȳ(Sq; η)− ȳ(Scq ; η)

]
−
[
ȳ(Sq; η′)− ȳ(Scq ; η′)

]
=

= βpq + ∆2
(
H(Sq; η)

)
−∆2

(
H(Scq ; η)

)
−∆2

(
H(Sq; η′)

)
+ ∆2

(
H(Scq ; η′)

)
. (4.36)

We can understand (4.36) as indicating that β̃(p, q) is an estimator of βpq with the

difference of differences of the ∆2(·) terms as its bias. When considered in the context of

a collection of trees, the difference of differences of the average of those ∆2(·) terms will

determine the quality of our βpq estimator in (4.30).

Our intuitive random forest argument suggest that the average of the off-sums in

each ∆2(·) have a small influence in the outcome prediction in (4.19). However, the

random forest prediction of an observation is always determined using one and only one

terminal node from each tree: namely, the one that corresponds to the tree’s prediction of

that observation in (4.19). In contrast, the subset of nodes considered to find the random

forest interaction estimation between two variables is comprised of all the nodes in each

tree whose branches include the two variables from which the interaction is to be

estimated. For binary variables there are four different partitions of realized values among
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those two variables that can be realized; therefore, four different type of nodes can be

part of this subset. When a node of any of these four types is part of this subset, none of

its subsequent nodes (child nodes) in the rest of the tree are considered. For any given

tree, any of the four partitions could be represented by none, one, or several nodes.

In other words, the effect of the off-sums inside the ∆2(·) terms in (4.36) is

different than the analogous effect in (4.19), in the context of random forest. Hence, the

average of each ∆2(·) term in (4.19) might not be as small as the average of ∆2(·) term in

(4.36). Nevertheless, there are additional arguments that support the contention that the

effect of the difference of difference of ∆2(·) terms in (4.36) is small in the context of

random forest. In the symmetrical case, we have

{` : S` /∈ H(Sq; η)} = {` : S` /∈ H(Scq ; η)} = {` : S` /∈ H(Sq; η′)} = {` : S` /∈ H(Scq ; η′)}

which has the consequence that

∆2
(
H(Sq; η)

)
−∆2

(
H(Scq ; η)

)
−∆2

(
H(Sq; η′)

)
+ ∆2

(
H(Scq ; η′)

)
=

=
∑

`:S` /∈H(Sq ;η)}

(
|η(S`, Sq)|
|η(Sq)|

−
|η(S`, Scq)|
|η(Scq)|

− |η
′(S`, Sq)|
|η′(Sq)|

+
|η′(S`, Scq)|
|η′(Scq)|

)
β`

+
∑∑

S`∈H(Sq ;η)
Sm /∈H(Sq ;η)

(
|η(Sm, Sq)|
|η(Sq)|

−
|η(Sm, Scq)|
|η(Scq)|

− |η
′(Sm, Sq)|
|η′(Sq)|

+
|η′(Sm, Scq)|
|η′(Scq)|

)
β`m

+
∑∑

S`,Sm /∈H(Sq ;η)
`<m

(
|η(S`, Sm, Sq)|
|η(Sq)|

−
|η(S`, Sm, Scq)|
|η(Scq)|

−|η
′(S`, Sm, Sq)|
|η′(Sq)|

+
|η′(S`, Sm, Scq)|
|η′(Scq)|

)
β`m

+ ε̄(Sq; η)− ε̄(Scq ; η)− ε̄(Sq; η′) + ε̄(Scq ; η′). (4.37)

The sums involve coefficients of at least one variable not included in H(Sq; η) or H(Sq; η′).

First consider the influence of a variable X` for some ` : S` /∈ H(Sq; η). In that case, the

coefficient multiplying β` in (4.37) is

|η(S`, Sq)|
|η(Sq)|

−
|η(S`, Scq)|
|η(Scq)|

− |η
′(S`, Sq)|
|η′(Sq)|

+
|η′(S`, Scq)|
|η′(Scq)|

. (4.38)
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For any given ` such that S` /∈ H(Sq; η), the first term in the coefficient gives the

proportion of observations in η(Sq) with X` = 1 while the second term provides the

proportion of observations in η(Scq) with X` = 1. The only difference between the first

and second terms is that the former has observations with Xq = 1, while the latter with

Xq = 0. So, one would expect these proportions to be similar, unless there is a strong

relationship between Xq and X`. And even then, the third and fourth terms in (4.38) are

the proportion of observations in η′(Sq) and η′(Scq), respectively, with X` = 1. If a strong

relationship exists between Xq and X`, it should also be reflected in these two terms,

making the difference of differences in (4.38) small.

Similarly, if Xp and X` are related, the number of observations in the first two

terms in (4.38) might be very different from the number of observations in the last two

terms. However, the difference of the first and second terms would be small, as would the

difference between the third and fourth term.

An analogous argument can be made for the other two off-sums in (4.37). Notice

however that the second summation is given by

∑∑
S`∈H(Sq ;η)
Sm /∈H(Sq ;η)

(
|η(Sm, Sq)|
|η(Sq)|

−
|η(Sm, Scq)|
|η(Scq)|

− |η
′(Sm, Sq)|
|η′(Sq)|

+
|η′(Sm, Scq)|
|η′(Scq)|

)
β`m =

=
∑∑
S`∈H(η)

Sm /∈H(Sq ;η)

(
|η(Sm, Sq)|
|η(Sq)|

−
|η(Sm, Scq)|
|η(Scq)|

− |η
′(Sm, Sq)|
|η′(Sq)|

+
|η′(Sm, Scq)|
|η′(Scq)|

)
β`m

+
∑

`:S` /∈H(Sq ;η)}

(
|η(S`, Sq)|
|η(Sq)|

− |η
′(S`, Sq)|
|η′(Sq)|

)
β`q. (4.39)

For the factor in the last summation, the difference of only two ratios of observations are

considered. This difference also contributes to make the effect of the last summation in

(4.39) small. However, if there is a strong relationship between Xp and X` for some

` : S` /∈ H(Sq; η) this off-sum could have a bigger effect in (4.36), because there are no

third and fourth terms to regulate this difference.
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Finally, as we observed previously, the value of (4.37) seems to be the result of a

trade off in the influence of the off-sums and the expression with error terms. Fewer

elements in the set {` : S` /∈ H(Sq; η)} imply fewer extra terms considered in (4.37); but,

fewer observations are used to calculate the outcome means leading to more variability in

the error terms expression. On the other hand, more elements in the set

{` : S` /∈ H(Sq; η)} imply more extra terms in (4.37) with a larger number of observations

and less variability in the error terms expression.

Our analysis so far has assumed the symmetrical situation described in Figure 4.5.

We have done this, because the random forest solution, on average, approaches the

symmetrical case. However, we deem it important to also analyze additional

characteristics in the asymmetrical scenario. If we can characterize the additional effects

of asymmetries, we could try to adjust our measure to account for these effects.

In the asymmetrical case, the number of variables that partition the data and do

not overlap in H(η) and H(η′) is larger than {Sp}. The expression for the difference of

differences of the corresponding outcome means is given by

[
ȳ(Sq; η)− ȳ(Scq ; η)

]
−
[
ȳ(Sq; η′)− ȳ(Scq ; η′)

]
=

= βpq +
∑

p∈H(η)\[H(η′)∪{m}]

(
1− |η

′(p, r)|
|η′(r)|

)
β`q

−
∑

p∈H(η′)\H(η)

(
1− |η(p, r)|

|η(r)|

)
β`q + ∆5, (4.40)

where ∆5 has a larger number of different summation terms in comparison to (4.36)

because fewer variables used in partitions for H(η) and H(η′) overlap and a larger

number of different summation terms do not cancel. Nevertheless, each term in each

summation in ∆5 is a linear combination of two ratios of observations (a difference) or a

linear combination of four ratios of observations (a difference of differences). Hence the

arguments presented for (4.37) and (4.39) are still valid here. The explicit expression in
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(4.40) as well as the parallel expressions of (4.19), (4.33), and (4.36) for the asymmetrical

case can be found in Appendix C.

In (4.40) we still are able to separate the effect of βpq; however, we have additional

terms that have a larger impact, those corresponding to the interactions of Xq with those

other variables that do not overlap in H(η) and H(η′). Observe that, the closer we are to

the symmetrical case, the smaller influence these additional terms have. More specifically,

the closer the variables Xp and Xq are from each other in node η (or η′), the smaller the

number of terms in the first summation (or second summation) in (4.40). Similarly, in

∆5, the closer Xp and Xq are to each other, the smaller will be the number of summations

with terms composed by only two ratios (a difference), and the larger will be the number

of summations with terms composed of four ratios (a difference of differences). In both

situations we obtain a smaller net effect, but the former could be more sensitive to strong

relationships.

4.2 Simulation Study

We now present the results of a simulation study that was conducted to evaluate the

performance of the interaction measures that were introduced in the previous sections of

this chapter. For that purpose we now consider several formulations for the mean-based

interaction measure in (4.30) and the distribution-based interaction identification measure

in (4.5).

The mean-based interaction measure involves the functions δ(·, ·, ·) and µ(·) that

measure distance between variables and distance from the root node, respectively. Here

we consider some specific choices for these weight functions and corresponding interaction

measures that will be used in the simulation.
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Our first choice for the mean-based measure weights is to use δ(·, ·|·) = 1 and

µ(·) = 1. With this choice, (4.29) becomes

Ω1(p, q) = 1
ω1

T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)

− 1
ω2

T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)(
ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)

)
, (4.41)

with

ω1 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)

and

ω2 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)
.

From Ω1(p, q) we obtain the estimator

β̃1(p, q) = 1
2
(
Ω1(p, q) + Ω1(q, p)

)
. (4.42)

The second choice again has δ(·, ·, ·) = 1 but now µ(η) = |H(η)|, the number of nodes

from η to the root node. This produces the measure

Ω2(p, q) = 1
ω1

T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)(ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)
)

|H(ηtk)|

− 1
ω2

T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)(ȳ(Sq; ηtk)− ȳ(Scq ; ηtk)
)

|H(ηtk)|
, (4.43)

ω1 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

) 1
|H(ηtk)|

,

and

ω2 =
T∑
t=1

Dt∑
k=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

) 1
|H(ηtk)|

.

with

β̃2(p, q) = 1
2
(
Ω2(p, q) + Ω2(q, p)

)
. (4.44)
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the estimator of βpq. Yet another option is provided by taking µ(η) = |H(η)| as for Ω2 but

with

δ(p, q, ηtk) =


1

|H(ηt
k
)| , if ∃j : H(ηtk)\H(ηtj) = {Sp} or {Scp},

1, otherwise;
(4.45)

i.e., δ(p, q, η) = |H(η)|−1 only if there is another node symmetric to η in the same tree.

This produces the measure Ω3(p, q) and corresponding estimator β̃3(p, q).

Our last choice for the mean-based measure weights uses µ(η) = |H(η)| and

δ(p, q, ηtk) =


1

|H(ηt
k
)| , if ∃j, r : H(ηtk)\H(ηrj ) = {Sp} or {Scp}, j = 1, . . . , Dr, r = 1, . . . , T,

1, otherwise.
(4.46)

This weight considers a weaker condition of symmetry wherein δ(·, ·, ·) takes into account

whether the branches are symmetric not only in the same tree but anywhere in the

collection of trees in the random forest. The resulting measure will be denoted by Ω4(p, q)

with β̃4(p, q) the associated estimator of βpq.

Intuitively, our first mean-based measure representation could be understood as

the unweighted mean difference of differences, while the weights in the other measure

representations are given by the branch length (distance) for the second mean-based

measure, and a combination of the branch length and symmetry for the third and fourth

mean-based measures.

The distribution-based interaction measure involves the functions γ(p, q, η), ω1,

and ω2. We let

γ(p, q, η) = δ(p, q, η)
µ(η)

and ω1 = ω2 = 1 where both δ(·, ·, ·) and µ(·) will represent distance measures as in the

case of the mean-based measure. For the distribution-based measure, our first option is to
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use δ(·, ·|·) = 1 and µ(·) = 1. Relation (4.5) simplifies to

Γ1(p, q) =
T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Sp ∈ H(ηtk)

)

−
T∑
t=1

Dt∑
kt=1

I
(
φ(ηtk) = Xq

)
I
(
Scp ∈ H(ηtk)

)
. (4.47)

The second measure denoted by Γ2(p, q) uses

δ(p, q, η) = 1
|H(η)\H(ηo)| ,

where H(ηo) ⊂ H(η) and φ(ηo) = Xp with µ(η) = |H(η)|. Finally, the third measure

Γ3(p, q) employs µ(η) = |η| and δ(p, q, η) = |ηo|.

Observe that all three distribution-based measures are obtained as the difference of

two sums. Both sums account for all the nodes whose splitting variable is Xq. The

branches of the nodes in the first sum include Xp ∈ Sp while the branches in the second

sum include Xp ∈ Scp. The Γ1(p, q) measure is the difference of two unweighted sums while

the weights in Γ2(p, q) are the branch lengths and the distance from the node with

splitting variable Xq to the node with splitting variable Xp. The weights in Γ3(p, q) are

the number of observations in node η and the ratio between the number of observations in

ηo and η where ηo is the node with splitting variable Xp.

Data Structure and Design

The data for the simulation study is generated from model (4.17) with P = 10, 20, or 40

and N = 400. The binary variables are independently Bernoulli distributed random

variables with success probability P(Xp ∈ Sp = {1}) for variable Xp. The error terms

were simulated as a random sample from the N(0, 1) distribution.

For the regression coefficients in (4.17) we considered three cases. The first two are

simple constants: either βp = 1 for all p = 1, . . . , P , or βp = 5 for all p = 1, . . . , P . The

third option has β = (β1, . . . , βP ) obtained as a random sample with replacement from

(−5,−4, . . . , 4, 5).
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We considered interactions between X1 and X2, X1 and X5, and X6 and X7,

respectively. Five levels were produced by taking. βpq =0, 1, 5, 10, or 20, for (p, q) or

(q, p) = (1,2), (1,5), and (6,7).

Two levels were used for the success probability. Either P(Xp = 1) = 0.5 or

P(Xp = 1) = 0.75 for all p = 1, . . . , P .

The tuning parameters for the random forest method are the number of

(bootstrap) trees to be grown, the number of variables that are used at each node to

determine a split and the number of terminal nodes for each tree. In this regard, the

number of trees was taken to be either 500, 1000, or 2000, either 4, 5, or 7 potential

splitting variables were used for the nodes in a tree, and the number of terminal nodes in

each tree was set at 8, 16, 32, 64, or 128.

Procedures and Results

The full factorial design would yield a total of 4050 combinations. However, based on

partial results and arguments that we present below, we have chosen unique factor levels

for the number of trees to be grown, the number of random variables used at each node to

determine the splitting variable, and the number of final nodes obtained at each tree.

With these simplifications the experiment reduces to a factorial design yielding a total of

90 combinations, each one used to generate 100 replicates. Each interaction measure is

then calculated. The results are presented in two parts. First, we discuss the selection

process and rationale for both the mean-based and distribution-based interaction

measures, as well as the arguments for the selection of parameters in the random forest

algorithm. Second, the outcome of the simulation is summarized.

Selecting The mean-based Interaction Measure. As a preliminary step we analyzed

the results for each replicate in our simulation and each factor combination to determine

which of the four mean-based measures had the most desirable properties. To illustrate

the idea, consider the information in Table 4.1 concerning the first mean-based measure.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4.36 -0.32 -0.37 5.84 0.88 -0.03 -0.10 0.79 -0.39
X2 4.86 0.54 1.04 0.10 0.19 -0.82 -0.81 0.11 0.32
X3 0.27 0.17 -0.59 -0.74 0.82 -0.14 0.31 0.11 0.24
X4 -0.62 1.17 0.68 0.37 0.29 -0.48 0.81 -0.26 0.10
X5 4.18 -0.95 1.28 0.07 -2.29 0.27 0.07 0.47 -0.50
X6 -0.30 -0.16 0.51 -0.27 -1.27 4.34 -0.08 -1.00 -1.19
X7 -0.33 -0.70 -0.06 -0.61 0.14 5.97 0.63 0.58 0.32
X8 -0.19 -0.10 -0.11 0.61 0.18 0.34 0.37 -0.33 0.58
X9 0.85 0.24 0.07 -0.26 -0.12 -0.76 0.44 -0.28 0.25
X10 -0.57 0.30 0.86 -0.16 -1.24 -1.81 -0.02 0.17 0.36

Table 4.1: Values of Ω1(p, q) for p, q = 1, . . . , 10, p 6= q, when the true values are βpq = 5 for
(p, q) = (1,2), (2,1), (1,5), (5,1), (6,7), and (7,6) and βpq = 0 otherwise. The coordinates
represent the estimated interaction between Xp and Xq. The row indicates which of the
two variables appears first in the branch.

The results in the table are for data generated using model (4.17) with 10 variables,

success probability P(Xp = 1) = .5 for all p = 1, . . . , 10,

β = (β1, . . . , β10) = (3, 1, 0, 2,−4,−4, 2,−2,−4, 3)

obtained as a random sample with replacement from the vector (−5,−4, . . . , 4, 5), and

βpq = 5 for (p, q) or (q, p) = (1,2), (1,5), and (6,7). Using this data set, the random forest

solution is obtained based on 1000 trees. In each tree, 4 covariates are randomly selected

at every node to determine the splitting variable, and each tree could grow up to 32

terminal nodes. Once the trees are grown, the values of Ω1(p, q) and Ω1(q, p) were

obtained. They are shown in Table 4.1. Recall that in (4.17) we assume that βpq = βqp

because we are interested in a unique interaction effect between Xp and Xq. The values

presented in Table 4.1 correspond to (4.41) or (4.29). The interaction estimates, β̃1(p, q),

are given by (4.30) as the average of Ω1(p, q) and Ω1(q, p). They are shown in Table 4.2.

The values shown in boldface correspond to the estimates of βpq for (p, q) = (1, 2), (1, 5),

and (6, 7) that estimate the true interaction coefficient βpq = 5.

The corresponding results for β̃i(p, q), i = 2, 3, and 4 are presented in Tables 4.3,

4.4, and 4.5, respectively. From this we see that the estimates obtained with all four
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4.61 -0.02 -0.49 5.01 0.29 -0.18 -0.14 0.82 -0.48
X2 0.36 1.10 -0.43 0.01 -0.76 -0.46 0.17 0.31
X3 0.05 0.27 0.67 -0.10 0.10 0.09 0.55
X4 0.22 0.01 -0.54 0.71 -0.26 -0.03
X5 -1.78 0.20 0.12 0.17 -0.87
X6 5.16 0.13 -0.88 -1.50
X7 0.50 0.51 0.15
X8 -0.30 0.38
X9 0.30

X10

Table 4.2: Values of β̃1(p, q) for p = 1, . . . , 9, q = (p + 1), . . . , 10, when the true values are
βpq = 5 for (p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. The coordinates represent
the estimated interaction.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4.63 -0.06 -0.52 5.08 0.25 -0.22 -0.19 0.87 -0.46
X2 0.35 1.10 -0.42 0.04 -0.76 -0.52 0.17 0.31
X3 0.06 0.31 0.68 -0.11 0.09 0.08 0.54
X4 0.22 0.03 -0.57 0.71 -0.27 -0.02
X5 -1.79 0.22 0.14 0.20 -0.83
X6 5.16 0.14 -0.91 -1.54
X7 0.52 0.57 0.16
X8 -0.35 0.41
X9 0.28

X10

Table 4.3: Values of β̃2(p, q) for p = 1, . . . , 9, q = (p + 1), . . . , 10, when the true values are
βpq = 5 for (p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. The coordinates represent
the estimated interaction.

measures are very similar. However, these results correspond to a single replicate given a

unique combination of factor levels. Figure 4.6 shows the boxplots for all 100 replicates

for β̃1(p, q).

The boxplots for all 100 replicates for β̃i, i = 2, 3, and 4 are similar to those

presented in Figure 4.6. It is difficult to identify by simple inspection any relevant

difference between all four mean-based interaction representations. We therefore introduce

a notion of efficiency of our estimators. We compare the sum across all 100 replicates and
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4.61 -0.08 -0.46 5.02 0.29 -0.29 -0.11 0.86 -0.43
X2 0.53 1.11 -0.23 0.05 -0.75 -0.53 0.14 0.37
X3 0.31 0.50 0.58 -0.02 0.18 -0.33 0.23
X4 0.20 -0.00 -0.59 0.82 -0.25 -0.06
X5 -1.74 0.19 0.04 0.32 -0.78
X6 5.06 0.13 -0.92 -1.42
X7 0.55 0.51 0.16
X8 -0.23 0.43
X9 0.28

X10

Table 4.4: Values of β̃3(p, q) for p = 1, . . . , 9, q = (p + 1), . . . , 10, when the true values are
βpq = 5 for (p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. The coordinates represent
the estimated interaction.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 4.60 0.13 -0.42 5.03 0.17 -0.21 -0.19 0.84 -0.47
X2 0.50 1.00 -0.37 -0.24 -0.83 -0.38 0.14 0.41
X3 0.60 0.65 1.32 -0.01 0.21 -0.19 0.29
X4 0.29 0.28 -0.61 0.72 -0.35 -0.04
X5 -1.99 0.15 0.11 0.23 -0.75
X6 5.10 0.06 -1.07 -1.31
X7 0.53 0.45 0.14
X8 -0.23 0.38
X9 0.34
X10

Table 4.5: Values of β̃4(p, q) for p = 1, . . . , 9, q = (p + 1), . . . , 10, when the true values are
βpq = 5 for (p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. The coordinates represent
the estimated interaction.

across all (p, q) for p, q = 1, . . . , P , p 6= q of the squared errors between the values

obtained with β̃i(p, q) for i = 1, . . . , 4 and the true values βpq, for each measure. For this

particular combination of factor levels, the sums are 47.92, 45.98, 47.25, and 50.60, for the

first, second, third, and fourth mean-based measures, respectively. The double sum for

the second mean-based measure is slightly smaller than for the other three measures.

When this same calculation is carried out for each combination of factor levels in

the study, we found that in 78.15% of the cases the second mean-based measure had the
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Figure 4.6: Boxplots of β̃1(p, q) for p = 1, . . . , 9, q = (p + 1), . . . , 10. The true interaction
values are βpq = 5 for (p, q) = (1, 2), (1, 5), and (6, 7) and βpq = 0 otherwise, P = 10, βp is
sampled from (−5, . . . , 5), and P (Xp = 1) = .5 for all p = 1, . . . , 10.

smallest sum of squared errors. Similarly, in 15.19%, 6.30%, and 0.04% of the cases, the

third, first, and fourth measures had the smallest sum of squared errors. Based on these

considerations, the second mean-based interaction measure seems more effective and

accordingly, we will focus subsequent discussions only in its direction.

Recall that the weights used in β̃2(p, q) were based exclusively on the branch

length, i.e., the number of nodes between the second variable node and the root node.

The weights considered in β̃3(p, q) and β̃4(p, q) also accounted for the existence of

symmetric branches. Based on the simulation study results, it seems that accounting for

symmetry with the weights given by (4.45) and (4.46) does not improve the interaction

estimation. In what follows, we refer to β̃2(p, q) simply as β̃(p, q).

Selecting The Distribution-Based Interaction Measure. The procedure we used to

select from among our three distribution-based interaction measures is similar to what we
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 1069 -43 -236 -1307 -75 122 88 5 309
X2 46 -11 313 -10 -123 -15 3 -7 -223
X3 15 13 12 -4 -16 -7 -19 8 -11
X4 -9 36 57 -20 -51 -44 -8 2 20
X5 11 -46 -27 37 109 -29 -16 -13 12
X6 -6 7 4 -74 25 95 -33 -33 40
X7 -64 42 91 16 130 -710 7 184 241
X8 32 -43 4 35 11 29 11 -9 -34
X9 43 7 11 42 -89 144 -22 76 -164
X10 11 -77 22 0 21 119 10 -37 -29

Table 4.6: Values of Γ1(p, q) for p, q = 1, . . . , 10, p 6= q, when the true values are βpq = 5 for
(p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. Numbers of large magnitude, positive
or negative, provide evidence of interaction.

used for the mean-based measure. The distribution-based measure, rather than producing

interaction estimates, are only designed to detect the presence of variable interaction.

Using the data for the same specific replication as before we produced the values of

Γ1(p, q) for this case. These values are shown in Table 4.6. Analogous results for Γ2(p, q)

and Γ3(p, q) are presented in Tables 4.7 and 4.8, respectively.

It is interesting to observe that the results are very different than the ones for the

mean-based measures. In this respect, we are not surprised to see markedly different

values for the two different measures. What might seem unexpected, however, is the lack

of symmetry in each matrix of results of Γj(·, ·) for j = 1, 2, 3: i.e., the large difference

between Γj(p, q) and Γj(q, p) for j = 1, 2, 3 particularly for those values that correspond

to βpq 6= 0. In addition, some of the results corresponding to pairs of variables with

positive interaction are negative (coordinates (1,5) and (7,6) in Table 4.6).

Small values in the matrix that produce asymmetries or negative values are the

result of the presence of error terms or off sums such as the ones in (4.37). These are

actually consistent with the meaning of our measure and provide additional information

that is relevant. Recall that both coordinates (p, q) and (q, p) measure the number of
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branches with paths containing both variables Xp and Xq, where the row coordinate

indicates the variable that appears first in the branch. Thus, large asymmetries indicate

the presence of interactions, particularly when the interaction effect, βpq, is much larger or

acts in the opposite direction than the second direct effect. In addition, the sign of the

value in the measure is not directly related to the sign of the interaction value

corresponding to those coordinates. Rather, it indicates that there are more branches

splitting with Xp = 0 somewhere in their path and ending in Xq than branches splitting

with Xp = 1 in their path and ending in Xq. This behavior is present when the sign of βpq

is opposite to the sign of βq. In our example, β15 = 5 and β5 = −4.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 236.3 -3.1 -33.5 -244.5 -2.4 8.9 36.0 -46.1 44.8
X2 7.1 -1.9 45.3 -2.2 -11.8 -15.2 10.7 -5.9 -28.1
X3 2.8 2.7 2.5 -1.2 -2.2 -1.1 -3.7 0.6 -1.6
X4 -3.1 8.8 9.8 -2.2 -7.7 -11.3 -1.8 0.3 4.9
X5 3.8 -8.3 -1.1 2.8 18.9 -1.7 -2.7 -9.0 1.4
X6 -4.3 0.2 1.7 -13.9 5.7 18.5 -8.3 -7.2 9.8
X7 8.4 7.2 11.4 2.2 17.6 -109.4 5.6 13.1 40.6
X8 -1.4 -7.4 1.8 6.6 -4.1 2.2 5.5 3.9 -3.2
X9 0.3 -7.5 0.9 9.9 -19.5 22.1 3.0 15.5 -22.3
X10 0.5 -5.0 3.0 -2.8 4.4 22.1 6.2 -13.5 -10.8

Table 4.7: Values of Γ2(p, q) for p, q = 1, . . . , 10, p 6= q, when the true values are βpq = 5 for
(p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. Numbers of large magnitude, positive
or negative, provide evidence of interaction.

Next, we select the distribution-based measure that performs the best. Unlike with

the mean-based measures, where all the weighted mean difference of differences are

adjusted to preserve the magnitude of the outcome mean, the distribution-based measures

are entirely defined by weights. We purposely do not adjust the weights prior to

comparison with all the pairs on variables in each random forest. As a consequence, it is

not possible to directly determine which distribution-based measure is the most adequate.

We do not have a reference to determine which numbers are more adequate than others

for the values (p, q) where βpq 6= 0. Therefore, we compare our measures only considering
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
X1 72.03 2.88 4.06 -34.33 5.42 20.35 18.81 5.21 23.21
X2 5.16 0.34 9.69 0.85 0.09 -0.16 5.08 2.86 -0.36
X3 0.26 0.47 0.20 0.02 -0.29 0.05 -0.28 0.05 -0.07
X4 -1.35 -0.45 0.50 -0.17 -1.89 -3.14 -1.27 -1.73 -0.28
X5 1.05 -1.20 -0.09 -0.12 2.87 0.65 -0.35 -2.07 -0.31
X6 -1.99 -1.01 -0.48 -2.65 -0.66 1.60 -2.42 -2.34 0.73
X7 12.10 11.04 3.04 3.56 3.60 -13.42 5.60 8.14 16.14
X8 -0.81 -1.64 0.32 0.76 -0.46 0.39 1.42 1.24 -0.45
X9 -1.59 -4.11 -0.21 2.11 -2.72 2.96 -0.00 2.83 -2.88
X10 0.29 0.58 0.24 0.01 1.32 3.59 1.52 -2.85 -1.65

Table 4.8: Values of Γ3(p, q) for p, q = 1, . . . , 10, p 6= q, when the true values are βpq = 5 for
(p, q) =(1,2), (1,5), and (6,7) and βpq = 0 otherwise. Numbers of large magnitude, positive
or negative, provide evidence of interaction.

the pairs (p, q) with βpq = 0. We standardize the measures and obtain the sum of squared

errors. The sums corresponding to Tables 4.6 to 4.8 equal 0.45, 0.57, and 1.85, for the

first, second, third distribution-based measures, respectively.

When this comparison is obtained for each combination of factor levels in the

study, there is a weak preference for Γ2(p, q) over Γ1(p, q), while Γ3(p, q) is almost never

chosen as the preferred option. As a result we decided to use only Γ2(p, q) in our

subsequent empirical investigation. In what follows, we refer to Γ2(p, q) simply as Γ(p, q).

Results for Different Combinations of Random Forest Conditions.

In terms of the results from our experiments, we found that the outcomes for 500,

1000 or 2000 trees were similar. When comparing measure performance between 500 and

1000 trees, in some instances more accuracy was achieved with 1000 trees when

considering larger numbers of variables. By contrast, almost no improvement was

observed when comparing results between 1000 and 2000 trees. Thus, in what follows, all

the random forest results were obtained using 1000 trees.

Subsets of 4, 5 and 7 potential splitting variables were considered based on the rule

of thumb that the subsets of potential splitting variables for regression trees should be
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approximately equal to the square root of the total number of variables. When studying

our proposed interactions measures, slightly smaller numbers of subsets seem to work just

as well and using subsets with 4, 5 or 7 variables led to similar conclusions about the

interaction measures. In what follows, we present an example where we compare results

using subsets of 4 and 7 potential splitting variables. All the remaining results of the

study use subsets of 4 potential splitting variables.

We first considered 8, 16, 32, 64, and 128 terminal nodes in each tree. The number

of terminal nodes is one method to control for the tree size and therefore the complexity

of each tree. While there are alternative methods that are employed to regulate tree size,

using the number of terminal nodes is a natural option for our setting since it allows us to

think in terms of the length of branches.

In principle, it is more convenient to account for a large number of terminal nodes

in each tree, as it allows us to consider more branches with any pair of variables. Even

when a random forest produces several trees, some of the variables might not be used in

the first few nodes if the direct effect, βp, and interaction effect, βpq, are small relative to

other variables effect. However, the number of potential splitting variables also

determines how often variables with small effects could appear in the first few nodes.

Hence, when using a small subset of splitting variables, it is possible to obtain accurate

results even for trees with few terminal nodes, especially with multiple replicates.

A Specific Example. Before we present the results for the entire simulation study it

will be useful to examine the application of our interaction measures in the context of a

single replicate data set that was used in our experiments. This will allow us to see some

of the effects of different choices for the random forest tuning parameters as well as what

might be important to analyze when all the replicates are taken into account.

The data we will examine was obtained using 40 variables, success probability

P(Xp = 1) = .5, βp = 1 for all p = 1, . . . , 40, βpq = 20 for (p, q) or (q, p) = (1,2), (1,5), and
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(6,7), and 1000 trees to obtain the random forest solution. We first describe the results

for when the number of preselected variables at each node was either 4 or 7 while 8

terminal nodes were used in each tree.

We could try to analyze the results using tables or matrices such as Tables 4.1 to

4.8. However, a matrix of 40 rows and 40 columns has 1600 potential numbers to

consider, and understanding the patterns of the interaction effects for all pairs of variables

becomes challenging. It is more convenient to try to visualize these patterns and Figure

4.7 provides one possible graphical representation of the values in the matrices for Ω(p, q)

and Γ(p, q). The individual values for each coordinate are represented by colors based on

a graded scale that has the largest numbers represented by bright yellow and the smallest

by bright blue. This figure corresponds to a random forest solution with 4 preselected

variables compared at each node and 8 terminal nodes.

Notice that in Figure 4.7, some of the cells in the mean-based interaction results

(left matrix) are white in color which indicates that they are empty. This occurs because

with 8 terminal nodes for each tree, only selected branches are generated and some

combinations of variables do not appear in any of those branches.

Since the mean-based measure produces the estimated interaction effects for each

pair of variables we would expect Figure 4.7 to consist of six bright yellow cells, each

corresponding to those coordinates with βpq 6= 0, while the rest of the cells with colors

around zero. While this is certainly the case for those cells that correspond to nonzero

interactions several other cells are also bright yellow or blue. These results are not

unexpected and occur because not enough branches are provided by the trees to

effectively identify and estimate the interactions. The mean-based measure is a weighted

average of difference of differences of outcome means. To effectively estimate interactions

two different types of branches are necessary: one connecting the first and second

variables with the first variable equal to one, and the other branch connecting the first
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Figure 4.7: The values of Ω(p, q) and Γ(p, q) for p, q = 1, . . . , 40, for one replicate obtained
from a random forest output with 1000 trees, 8 terminal nodes in each tree, and a subset
of 4 potential splitting variables. The data set was generated using 40 variables, βp = 1
for all p = 1, . . . , 40, βpq = 20, for (p, q) = (1, 2), (1, 5), and (6, 7), and P (Xp = 1) = .5.
White cells in the left figure correspond to variable combinations that did not arise in the
tree and are viewed as being empty.

and second variables with the first variable equal to zero. When the trees in a random

forest do not produce any of these two branches, the resulting cell is empty. When only

one branch is produced, the results are based only on one of the differences producing

poor estimation results such as the ones presented in the left matrix of Figure 4.7.

In contrast to the mean-based estimator, the graphical representation of the

matrix for the distribution-based measure does not contain any empty cells. Although the

same branches are used here as in the mean-based case, the corresponding values for

non-existent branches is zero. More importantly, the figure detects the presence of the

specific interactions that are present in the data, at least in one of the corresponding

coordinates for each interaction.

Figure 4.8 shows the analogous results for a case where the subset of potential

splitting variables used is 7. The results are similar to those presented in Figure 4.7. In

the matrix of Ω(p, q) values, the number of empty cells is larger than in Figure 4.7. Since
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Figure 4.8: The values of Ω(p, q) and Γ(p, q) for one replicate obtained from a random forest
output with 1000 trees, 8 terminal nodes in each tree, and a subset of 7 potential splitting
variables. The data set was generated using 40 variables, βp = 1 for all p = 1, . . . , 40,
βpq = 20, for (p, q) = (1, 2), (1, 5), and (6, 7), and P (Xp = 1) = .5.

more variables are used at each node to select the splitting variable, cases with a small

direct effect are selected less often. The matrix of Γ(p, q) values is similar to that in

Figure 4.7. As expected, coordinates (1,2), (1,5), and (6,7) are bright yellow, and (2,1)

and (7,6) are pale yellow. Although most other coordinates contain values that are

around zero, there are few cells that show larger negative values such as in coordinates

(1,6), (1,7) and (1,11). This can be attributed to a sort of interaction spread effect that

occurs when an interaction effect is very large relative to the direct effects or other

interaction effects as we now explain.

If an interaction exists between Xp and Xq, the number of branches with Xp ∈ Sp

and Xq is different than the number of branches with Xp ∈ Scp and Xq. If the interaction

effect is large relative to other interaction effects and direct effects, the proportion of

these branches with respect to the total number of branches in the random forest is also

high. Therefore, the difference in the number of branches will spread to other variables

that do not interact with Xp but appear in those branches, thereby producing a difference

in the number of branches containing Xp and those variables.
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Figure 4.9: The values of Ω(p, q) and Γ(p, q) for one replicate obtained from a random forest
output with 1000 trees, 32 terminal nodes in each tree, and a subset of 7 potential splitting
variables. The data set was generated using 40 variables, βp = 1 for all p = 1, . . . , 40,
βpq = 20, for (p, q) = (1, 2), (1, 5), and (6, 7), and P (Xp = 1) = .5.

On the other hand, the spread effect has no direct influence in the mean-based

measure. The mean-based estimates for coordinates (1,6), (1,7) and (1,11) are all close to

zero. We observed the same pattern in a number of other specific replicates that we

examined individually. It is noteworthy to point out that the two measures seemed to

complement each other in the sense that only potential interactions that were correctly

predicted simultaneously by both measures were precisely those with true interaction

effects.

Figure 4.9 depicts the corresponding mean-based and distribution-based

interaction results when the subset of potential splitting variables is 7 and the number of

terminal nodes is 32. Most of what we see in this case is similar to what was found in

Figure 4.7 and 4.8. However, notice that when 32 terminal nodes are used, the matrix

with mean-based values no longer contains empty cells. The values for coordinates (2,1)

and (5,1) in the right hand figure are also more visible than before.
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Figure 4.10: The values of Ω(p, q) and Γ(p, q) for one replicate obtained from a random
forest output with 1000 trees, 128 terminal nodes in each tree, and a subset of 7 potential
splitting variables. The data set was generated using 40 variables, βp = 1 for all p =
1, . . . , 40, βpq = 20, for (p, q) = (1, 2), (1, 5), and (6, 7), and P (Xp = 1) = .5.

Figure 4.10 shows the corresponding mean-based and distribution-based

interaction results when the subset of potential splitting variables is 7 and the number of

terminal nodes is 128. Although the conclusions obtained are similar to those for previous

figures, it is worth noting that since the matrix of mean-based values now takes into

account many more branches, fewer coordinates are producing false positives and the

matrix is approaching the ideal representation.

At least in terms of this replication with these specific factor level combinations,

the mean-based and distribution-based interaction measures seem to adequately

determine both the presence of interactions and the estimated interaction effects. When

considering both interaction measures simultaneously, even a small subset of potential

splitting variables and a small number of terminal nodes produced potentially satisfactory

results. However, when using a small number of terminal nodes, the results using only the

mean-based estimates would be inadequate and similarly, the distribution-based measure

by itself incorrectly identified interactions due to spread effects.
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Results for Data Generated With Different Combinations of Factor Levels. In

order to present results of the comprehensive study in a manageable manner, we

examined first the patterns of the interaction measure results within each studied factor.

Then, based on these patterns, we discuss in detail selected cases of interest. Additional

results are presented in Appendix B. For what follows, we use the chosen mean-based and

distribution-based interaction measures, random forest with 1000 trees, subsets of 4

potential splitting variables, and 8 terminal nodes.

For each factor combination, we obtain the average of 100 replicates for both the

mean-based and distribution-based measures. To show variability, we report the range of

the β̃(p, q) averages for coordinates p, q with βpq 6= 0 and the range for coordinates p, q

with βpq = 0. We view the range as being somewhat more informative in our setting.

We first analyze the impact that the magnitude of the true interaction effects has

on our proposed measures. Figure 4.11 shows matrices corresponding to the mean of 100

replicates for the mean-based (left column) and distribution-based (right column)

measures, when the interaction effects are βpq = 0, 1, 5, and 20 for (p, q) = (1, 2), (1, 5),

and (6, 7). In this instance, P = 10, P (Xp = 1) = .5, and βp = 1 for p = 1, . . . , 10. The

measures perform well for these combinations of factor levels. In terms of the mean-based

measure, when βpq = 0, the matrices present no particular patterns with all the

coordinate values around zero ranging from -0.05 to 0.03. When βpq 6= 0, all three

interaction effects are clearly identified, with the estimated mean-based interaction effects

ranging from 0.70 to 0.82 when βpq = 1, from 4.32 to 4.55 when βpq = 5, and from 17.85

to 19.36 when βpq = 20. Hence, in these situations, the mean-based estimator reflects the

true values of the interaction effects but appears to be biased toward smaller values. The

range of estimated values for coordinates without interaction effects is -0.03 to 0.18, -0.49

to 0.48, and -1.43 to 1.55, respectively. In terms of the distribution-based measure, the

ranges for the identification values are -3.69 to 2.97 when βpq = 0 for all p, q. When

βpq 6= 0, at least one relevant cell, (p, q) or (q, p), has values that range from 37.02 to
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68.23 when βpq = 1, 56.82 to 107.02 when βpq = 5, and 57.63 to 106.75 when βpq = 20.

The range of values for coordinates without interaction effects is -30.08 to 1.12, -59.23 to

1.59, and -58.60 to 2.00, respectively. The large negative values correspond to the spread

effect for most variables paired with X1 as indicated by the light blue color of the

corresponding cells. This effect is particularly strong for X6 and X7.

Figure 4.12 presents the output for data generated with 20 variables, but otherwise

the same combination of factor levels as in Figure 4.11. The results are very similar. The

measures perform well for these combinations of factor levels. For the mean-based

measure, when βpq = 0, the matrices present no particular patterns and all the cell values

range from -0.15 to 0.11. When βpq 6= 0, the interaction effects range from 0.66 to 0.74

when βpq = 1, from 4.43 to 4.68 when βpq = 5, and from 19.09 to 19.72 when βpq = 20.

Again, the estimated interaction effects are in the neighborhood of the true interaction

effects, but appear to be biased toward smaller values. The ranges of estimated values for

cells without interaction effects are -0.17 to 0.20, -0.58 to 0.58, and -1.83 to 2.24,

respectively. For the distribution-based measure, the ranges for all cell values are -1.07 to

1.18 when βpq = 0, while in the case of βpq 6= 0, at least one relevant cell, (p, q) or (q, p),

have values that range from 11.14 to 17.05 when βpq = 1, 24.19 to 33.62 when βpq = 5,

and 25.42 to 34.71 when βpq = 20. The range of values for cells without interaction effects

is -2.71 to 0.72, -13.21 to 0.98, and -13.40 to 0.90, respectively. There is also a spread

effect for most variables (particularly X6 and X7) paired with X1 represented by the large

negative values.

Figure 4.13 summarizes the output for data generated with 40 variables, but

otherwise the same combinations of factor levels as found in Figures 4.11 and 4.12. The

results are again similar. In terms of the mean-based measure, when βpq = 0, the matrices

present no particular patterns and all the cell values range from -0.27 to 0.35. When

βpq 6= 0, the estimated interaction effects range from 0.60 to 0.79 when βpq = 1, from 4.14

to 4.63 when βpq = 5, and from 19.19 to 20.02 when βpq = 20. The bias toward smaller
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Figure 4.11: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp = 1 for all p =
1, . . . , 10, and P (Xp = 1) = .5.
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Figure 4.12: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp = 1 for all p =
1, . . . , 20, and P (Xp = 1) = .5.
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values for the mean-based estimator continues for these factor combinations. The range of

estimated values for coordinates without interaction effects is -0.42 to 0.41, -1.05 to 0.99,

and -4.17 to 3.97, respectively. In terms of the distribution-based measure, the ranges of

values when βpq = 0, for all p, q, are -0.38 to 0.41. When βpq 6= 0, at least one relevant

cell, (p, q) or (q, p), has values that range from 2.01 to 3.83 when βpq = 1, from 7.53 to

9.55 when βpq = 5, and from 8.23 to 9.76 when βpq = 20. The range of values for cells

without interaction effects was -0.76 to 0.61, -3.06 to 0.47, and -2.71 to 0.48, respectively.

Figure 4.14 corresponds to the case with 40 variables and βp = 5 for p = 1, . . . , 40.

Otherwise the data is generated using the same combinations of factors as the data

presented in Figures 4.11 to 4.13. When βpq = 0, the matrices present no particular

patterns and all the mean-based cell values range from -1.42 to 1.54. When βpq = 1, both

measures failed to determine the presence of the interaction effects. The values in the

mean-based matrix range from -1.66 to 1.52. When βpq = 5, all three interaction effects

are identified; however, the mean-based measure underestimates the true value with

estimates ranging from 2.86 to 3.69, while the range of estimated values for coordinates

without interaction effects is from -2.66 to 2.07. When βpq = 20, the estimates of all three

interactions measures are underestimated ranging from 16.51 to 18.87 for cells with

interactions and from -4.72 to 5.03 for cells with no interactions. In terms of the

distribution-based measure, when βpq 6= 0, at least one relevant cell, (p, q) or (q, p), has

values that range from 2.17 to 3.97 when βpq = 5, and 7.30 to 9.91 when βpq = 20. The

corresponding range of values for coordinates without interaction effects is -0.68 to 0.38,

and -2.43 to 0.50, respectively. The spread effect was less noticable than before.

Figure 4.15 presents the output corresponding to data generated with 40 variables

when βp is sampled from the vector (−5, . . . , 5) for p = 1, . . . , 40. Otherwise, the data is

generated using the same combinations of factor levels as before. The results are very

similar to those found in Figure 4.14. When βpq = 0 or 1, the matrices presented no

particular patterns and neither measure could detect any interaction effects. In terms of
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Figure 4.13: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp = 1 for all p =
1, . . . , 40, and P (Xp = 1) = .5.
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Figure 4.14: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp = 5 for all p =
1, . . . , 40, and P (Xp = 1) = .5.
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the mean-based measure, the cell values ranged from -1.87 to 1.86 when βpq = 0 and from

-1.86 to 1.61 when βpq = 1. When βpq = 5 or 20, all three interaction effects are identified.

When βpq = 5, the estimates range from 4.25 to 7.26 for cells with interactions and from

-1.71 to 1.89 for cells without interactions. When βpq = 20, the estimates range from 18.10

to 22.32 for cells with interactions and from -4.46 to 4.37 for cells without interactions.

For the distribution-based measure, the ranges for all cell values are -0.31 to 0.51 when

βpq = 0, and -0.31 to 0.46 when βpq = 1. In the case of βpq = 5 or 20, at least one relevant

cell, (p, q) or (q, p), have values that range from .64 to 1.12 when βpq = 5 and 6.92 to

11.59 when βpq = 20. The range of values for cells without interaction effects is -0.32 to

0.46, and -1.24 to 0.79, respectively. The spread effect was less noticable than before.

Results for different combinations of interaction coefficients and success

probabilities. Figure 4.16 shows the means across 100 replicates of the mean-based

interaction measures for three combinations of interaction effects and two success

probabilities. The data is generated with 20 variables, βp sampled from the vector

(−5, . . . , 5) for p = 1, . . . , 20. The interaction effects are βpq=0, 5, and 20, for

(p, q) = (1, 2), (1, 5), and (6, 7), and the success probabilities are P (Xp = 1) = 0.5 and

0.75 for p = 1, . . . , 20. All interaction effects are correctly identified for both success

probabilities when the interaction effects are 5 and 20. When P (Xp = 1) = 0.5 for all p

and β12 = β15 = β67 = 5, the mean-based estimates range from 4.02 to 6.73 for cells with

interactions and from -1.48 to 1.72 for cells without interactions. When P (Xp = 1) = 0.5

for all p and β12 = β15 = β67 = 20, the mean-based estimates range from 19.19 to 22.39

for cells with interactions and from -2.63 to 2.28 for cells without interactions. When

P (Xp = 1) = 0.75 for all p and β12 = β15 = β67 = 5, the mean-based estimates range from

3.66 to 7.33 for cells with interactions and from -2.00 to 1.73 for cells without

interactions. Finally, when P (Xp = 1) = 0.75 for all p and β12 = β15 = β67 = 20, the

mean-based estimates range from 18.51 to 23.41 for cells with interactions and from -4.74

to 3.02 for cells without interactions.
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Figure 4.15: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 40, and P (Xp = 1) = .5.
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Figure 4.16: Estimated interaction effects for mean-based interaction measure when Xp

success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 20
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 20.

Figure 4.17 contains analogous results to those in Figure 4.16 for the

distribution-based measure. Observe that all interaction effects are identified in at least

one of the corresponding cells, (p, q) or (q, p), for both success probabilities when the

interaction effects are 5 and 20. These values could be positive or negative; therefore, we

report absolute values in the following description of ranges. When P (Xp = 1) = 0.5 for

all p and β12 = β15 = β67 = 5, the distribution-based absolute values range from 11.85 to

38.89 for at least one of the corresponding cells with interactions and from 2.31 to 4.50 for

cells without interactions. When P (Xp = 1) = 0.5 for all p and β12 = β15 = β67 = 20, the

distribution-based absolute values range from 21.58 to 41.45 for at least one of the

corresponding cells with interactions and from 1.21 to 10.27 for cells without interactions.

When P (Xp = 1) = 0.75 for all p and β12 = β15 = β67 = 5, the distribution-based absolute

values range from 12.13 to 35.04 for cells with interactions and from 2.47 to 6.67 for cells
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Figure 4.17: Estimated interaction effects for distribution-based interaction measure when
Xp success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 20
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 20.

without interactions. Finally, when P (Xp = 1) = 0.75 for all p and β12 = β15 = β67 = 20,

the distribution-based absolute values range from 20.09 to 37.76 for at least one of the

corresponding cells with interactions and from 1.59 to 6.90 for cells without interactions.

4.3 Discussion

Based on the structure of the trees in random forest, we have proposed two new measures

to identify and estimate interaction effects: the distribution-based and the mean-based

measures, respectively. Four versions of the mean-based and three of the

distribution-based measure were formulated and one representation for each measure was

selected.

The selected distribution-based and mean-based interaction measures were able to

identify and estimate the interaction effects in most of the scenarios we studied. When

looking at the interaction measure for specific data sets, we found the mean-based
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interaction estimates to be sensitive to the number of terminal nodes obtained for each

tree in random forest. When a small number of terminal nodes was considered, several

pairs of variables could be identified as having interactions when in reality no interaction

effect existed between them. Increasing the number of terminal nodes improved the

accuracy of the mean-based estimates. On the other hand, the distribution-based

identification measure did not demonstrate sensitivity to the number of terminal nodes.

The proposed interaction measures were capable of identifying and estimating

interactions even when the interaction effects were as small as the variance of the error

terms in the model and when these effects were about the same size of the variables direct

effect. However, all the mean-based interaction estimates were biased toward smaller

values than the true interaction effects. Only when the interaction effect was as small as

the error term variance and the direct effects were considerably larger did the proposed

measures fail to detect the presence of interactions.

The binary variables in the study were generated from a Bernoulli distribution. In

this respect, our interaction measures were able to identify and estimate interactions for

different success probabilities that were used to create the data.

In some scenarios, the distribution-based measure incorrectly identified interactions

between two variables. We called this unintended result a spread interaction effect. This

occured when an interaction effect was large relative to other interaction effects or direct

effects. The mean-based interaction measure was not sensitive to the spread effect.

Overall, it appears there may be some merit to using both measures in tandem for

estimation of interaction effects. The distribution-based measure would be employed to

identify the interactions and the mean-based measure could then be used for the

corresponding point estimator. By doing so, it may be possible to obtain interaction

estimates even when spread effects are present and the number of terminal nodes is small.
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The interaction estimates obtained with the mean-based measure produced

estimates that were biased toward smaller values; a problem that will be investigated in

future research. Table 4.9 presents the average bias for those pairs of variables that

interact, Bias(βpq 6= 0), and those that do not interact, Bias(βpq = 0), for all the factor

combinations with βp = 1 for p = 1, . . . , P . The results when βp = 5 or sampled from

(−5, . . . , 5) for p = 1, . . . , P , are presented in Appendix B.

βp Num. Variables (P ) Prob(Xp = 1) βpq β̃pq Bias(βpq 6= 0) Bias(βpq = 0)

1 10 0.50 0 -0.02 -0.02 -0.01

1 20 0.50 0 0.01 0.01 -0.00

1 40 0.50 0 0.03 0.03 0.00

1 10 0.75 0 -0.06 -0.06 -0.10

1 20 0.75 0 -0.05 -0.05 -0.08

1 40 0.75 0 -0.12 -0.12 -0.09

1 10 0.50 1 0.76 -0.24 0.06

1 20 0.50 1 0.71 -0.29 0.02

1 40 0.50 1 0.69 -0.31 0.01

1 10 0.75 1 0.63 -0.37 -0.05

1 20 0.75 1 0.61 -0.39 -0.07

1 40 0.75 1 0.59 -0.41 -0.07

1 10 0.50 5 4.43 -0.57 0.11

1 20 0.50 5 4.54 -0.46 0.09

1 40 0.50 5 4.34 -0.66 0.04

1 10 0.75 5 4.53 -0.47 0.05

1 20 0.75 5 4.44 -0.56 0.01

1 40 0.75 5 4.41 -0.59 0.03

1 10 0.50 10 9.19 -0.81 0.13

1 20 0.50 10 9.50 -0.50 0.12

1 40 0.50 10 9.29 -0.71 0.06

1 10 0.75 10 9.40 -0.60 0.10

1 20 0.75 10 9.36 -0.64 0.01

1 40 0.75 10 9.43 -0.57 0.01
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βp Num. Variables (P ) Prob(Xp = 1) βpq β̃pq Bias(βpq 6= 0) Bias(βpq = 0)

1 10 0.50 20 18.84 -1.16 0.17

1 20 0.50 20 19.49 -0.51 0.20

1 40 0.50 20 19.54 -0.46 0.11

1 10 0.75 20 19.17 -0.83 0.09

1 20 0.75 20 19.23 -0.77 -0.13

1 40 0.75 20 19.13 -0.87 -0.15

Table 4.9: Average interaction estimation bias for those pairs of covariates that interact, Bias(βpq 6= 0),

and those that do not interact, Bias(βpq = 0), when P = 10, 20, or 40, βp = 1, Prob(Xp = 1) = 0.5 or 0.75

for p = 1, . . . , P , and βpq varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), or (6, 7).
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CHAPTER 5

CONCLUSION

Summary of Methods and Results

The original motivation for the topics studied in this dissertation was to expand the scope

and usefulness of VAMs in education. As a result, we proposed new methods to determine

characteristics of the underlying models based on the random forest procedure. We

focused on two such characteristics: the variable importance measures and interactions.

The novelty of the proposed methods is that they were constructed by taking into

account not only the final outcome values, as is traditionally done, but also characteristics

of the structure of the random forest, i.e., patterns found in the constitutive trees.

The contributions of this work are contained in two central chapters of this

dissertation: Chapters 3 and 4. In both chapters, we present the formulation and

development of measures and evaluate their potential usefulness via simulation studies. A

brief summary of the key contributions from each chapter is provided next, followed by a

discussion of the limitations of the current study. We conclude with a discussion of future

research directions.

In Chapter 3, we proposed two novel VIMs. These measures were determined by

the final configuration of the terminal nodes on each tree. The first VIM we proposed, the

node-proportion, was formulated as follows. The importance measure for a particular

covariate was obtained by the average of relative importance of that covariate on each

terminal node in each tree. For a given terminal node in a given tree, a covariate’s

relative importance was measured as the proportion of observations affected by this

covariate in that terminal node versus observations affected by it in the entire tree. The

second new VIM, the covariate-proportion, was constructed similarly to the first with the

exception of the relative importance formulation. Here, the covariate’s relative

importance was assessed by the proportion of observations affected by this covariate in
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that terminal node versus the total number of observations in that terminal node. In

order to examine the usefulness of the proposed VIMs, using a simulation study, under a

variety of conditions, we produced a ranking of random effects from data generated based

on the covariate adjustment and gain score models. We also obtained the corresponding

rankings based on existent VIMs and EBLUPs. We compared whether the VIM rankings

were more accurate than the EBLUP rankings based on the Spearman’s correlation with

the true random effects rankings. These comparisons were made when the linear mixed

model was correctly specified and when it was misspecified. The correctly specified

models showed that the EBLUP rankings were more accurate, although the VIM rankings

were often nearly as accurate. On the other hand, VIM rankings were sometimes more

accurate than the EBLUP rankings when the model was misspecified, particularly when

third-order interaction effects were present that were not included in the assumed model.

In these situations, the proposed VIM rankings outperformed both the EBLUP and

traditional VIM rankings.

The main contribution of the proposed VIMs to the VAM literature is that these

measures can be used as a complementary tool to determine if the assumptions about the

underlying model are adequate when obtaining the EBLUPs. If the EBLUP rankings are

similar to those produced by the VIMs, then we might conclude that the underlying

model used to obtain the EBLUPs is adequate; otherwise, important effects might be

unnaccounted for in the model specification.

In Chapter 4, we studied interaction effects. We proposed two measures to identify

and/or estimate second-order interaction effects: the distribution-based and the

mean-based interaction measures. The rationale for the proposed measures relies on the

assumption that, independently of the nature of the unknown model specification, certain

patterns in the structure of the resulting trees in a random forest provide information

about the existence of variable interactions. The proposed measures were constructed

precisely with the goal of capturing those patterns. Specifically, given any two variables,
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the distribution-based interaction measure was built taking into account the frequency of

their appearance in different nodes in each tree as well as their relative position with

respect to each other and to the root node.

In order to study this further, we restricted our analysis to a linear model as

presented in (4.17). The mean-based measure was constructed as a special case of the

distribution-based measure also taking into account the response values obtained in each

tree. This additional consideration allowed the mean-measure not only to identify the

interaction effects, as was the case with the distribution-based measure, but also to

estimate the interaction effects.

As with our new VIMs, the interaction measures we devised were evaluated in a

simulation study under a number of conditions. The results suggested that the

distribution-based measure identified the interaction effects in most of the scenarios that

were studied and the mean-based measure produced estimates of the true interaction

effects that approached the true values but were biased toward smaller values.

Furthermore, the interaction measures were affected by the random forest characteristics,

largely by the constitutive trees’ size and the number of variables used to select the

splitting variable at each node. Larger branches in trees and a relatively small number of

variables used to select the splitting variable yielded more accurate results for the

proposed interaction measures. Finally, the study found that by using both measures

simultaneously, the distribution-based measure to identify and the mean-based measure

to estimate the interaction effects, we could obtain useful interaction estimates even when

spread effects are present and the number of terminal nodes is small.

The main contribution of the proposed interaction measures is that they could be

used as a self-standing mechanism to determine interaction effects or as a complementary

tool to improve traditional methods of statistical modeling. For example, we could use
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these measures to identify potential interaction effects and include those effects in the

model specification, that in turn could be used to estimate the interaction effects.

Limitation of the Study

The current study has several limitations. While the parameters chosen in the

simulation studies were made to correspond to a realistic scenario, the generalizability of

the conclusions is limited to the particular choices. Specifically, in Chapter 3, we used the

covariate adjustment and gain score models to obtain comparisons between the proposed

VIMs and the EBLUPs. Although these models allowed us to draw conclusions about

comparisons between the traditional approach and the data mining approach, additional

considerations are needed when studying generalized linear mixed models, as the one

described in McCaffrey et al. (2004): namely, the extent by which multimembership

random effect structure of these models could be captured by regression trees in the

random forest procedure. In addition, alternative scenarios should be studied in order to

examine the usefulness of the proposed VIMs, including additional nonlinearities in the

model specification and correlation among covariates.

Based on the study design in Chapter 4, we considered a linear model that used

binary variables or categorical variables with two categories. Hence, the proposed

interaction measures were only evaluated within this framework. It is unknown how well

the measures will perform when the variables are continuous or categorical with several

categories. Variables with several categories could potentially appear multiple times in

the same branch of a tree and/or could appear before or after another covariate for which

the interaction measure is studied. Furthermore, as mentioned previously, the proposed

measures were constructed based on a linear model; i.e., trees in random forest were built

based on data generated from a linear model, and patterns on those trees were considered

to produce the proposed measures. The mean-based interaction measure, in particular,

was devised using unique attributes of the linear model and should be used with caution

to estimate interactions if the underlying model is unknown or assumed nonlinear. Even
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when the underlying model is linear, this measure produces an estimator that is biased

toward smaller values. The distribution-based interaction measure, on the other hand,

might still be adequate beyond linear model specifications; however, additional work is

needed to investigate this possibility.

Future Research

Given these limitations and the novelty of the proposed methods, we believe that

future research on the use of data mining methods to gain insights into the structure of

an underlying model is warranted. Some of this work should address the limitations of

the current work rather directly, for example, expanding on the study design choices to

include scenarios that were not studied here. Other work may require additional

considerations and modifications to the proposed measures or the data mining methods to

allow for more generalizable results. Finally, as suggested below, future research may

depend on the results of those additional investigations and conclusions obtained.

With respect to the proposed VIMs, the immediate future work will focus on

proposing alternative random forest formulations that take into account the

multimembership structure of the value-added models, in particular for the complete

persistence model described by Mariano et al. (2010). To consider this model, we should

study not only the presence or absence of a variable in each observation, but also a range

of possible values that this variable could adopt. Hence, the proposed VIMs need to

consider variables with different numbers of categories. Consequently, selection bias

problems for the random forest method need to be addressed.

With respect to the proposed interaction measures, the first task for future

research is to determine how to effectively correct the bias in the mean-based measure. In

addition, a larger range of values for the true interaction effects relative to the direct

effects and the variance of the error terms need to be considered. In particular, the

proposed interaction measures were able to identify interaction effects that in magnitude
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were as small as the direct effects and the error term variances; however, interaction

effects as small as the error term variance and five times smaller than the direct effects

were not identified. Additional ranges of comparisons need to be studied to determine the

threshold for interaction identification. Furthermore, extensions for the interaction

measures that take into account different variable types, e.g., continuous or with different

number of categories, are needed. The following discussion indicates some specific avenues

of inquiry that might be followed in relation to this latter problem.

To account for a variable with several categories, we can express each variable as a

set of binary (dummy) variables and analyze the accuracy of the proposed interaction

measures in this modified data set. An alternative approach comes from the random

forest construction. Regardless of the original variable type, the chosen splitting variable

could also be considered a binary variable, albeit this classification is a result of an

optimization process that locates an optimal split point. The proposed measures might

still yield meaningful results provided they take into account the additional information

produced by those splits.

Once we start considering variables with several categories, we need to determine

if variables with different numbers of categories produce selection bias in the interaction

measures. As mentioned previously, the interaction measures are based on the assumption

that because random forest produces an accurate prediction model, the constitutive trees

contain information about the underlying model specification. However, if random forest

does not produce adequate results, the tree structure may no longer be useful. Future

research is needed to better understand whether the tree structure may still reflect

interactions adequately, even in the presence of variable selection bias. There is a reason

to hope that such might be the case because selection bias affects the tree structure in

ways different than interactions. For instance, a covariate with a larger number of

categories will be chosen more often than covariates with fewer categories. However, the
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proposed interaction measures are not directly affected by the frequency with which

variable is chosen in the tree.

The problem of selection bias can also be addressed from a different perspective.

In the last few years alternative methods have been developed to solve the limitations of

random forests in terms of variable selection bias and correlation. Two such methods are

GUIDE (as in Loh (2002)) and Unbiased Recursive Partitioning (due to Hothorn et al.

(2006)). Hence, a potential area of research is to study if the proposed interaction

measures are still adequate when used on trees based on these alternative methods.

Notice that we have used unbiased recursive partitioning (Hothorn et al., 2006) in

Chapter 3, but the potential selection bias was restricted to a unique continuous variable

(pre-scores) that was not part of the VIM rankings. In that case, we found that the

results obtained by the traditional random forest algorithm were preferable.

Model specifications that are truly nonlinear present another potential area for

future research. The simulations studies presented here are restricted to model

specifications where the nonlinearity is expressed only through the introduction of

interactions.

An important addition to this research would be developing a statistical

framework that would allow us to formalize the inferential aspects of our methodology. A

starting point would be to develop tests of significance for the interaction measures and

VIMs. In terms of interaction measures, we could start by attempting to determine if

there is a relationship between the accuracy of the interaction measure estimate and the

prediction estimate for the corresponding variables. For example, an interval estimation

upper bound could be determined if the off-sums in (4.24) and (4.36) could be expressed

in terms of the off-sums in (4.19). Hence, the interaction estimates could be bounded by

the accuracy of the prediction estimates of the random forest solution.
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Taken all together, should our avenues of current and future study produce results

that validate the type of measures proposed in this dissertation, it may be feasible to

expand the underlying premise to produce a general new methodology. This methodology

would center on developing statistical learning and/or data mining techniques that take

into account not only the final outcome, but also the resulting estimator structures that

correspond to the methods that are used.
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Figure A.1: Mean correlation between the VIMs and the absolute value of true teacher
effects when the number of teachers varies for different CAM models and different student
per teacher ratios. σ2
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2 = 20.
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Figure A.2: Mean correlation between the VIMs and the absolute value of true teacher
effects when the ratio of the number of students per teacher, SpT1/SpT2, varies for different
CAM models and different σ2
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2 = 2 when the number of teachers is 10.
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Figure A.3: Mean correlation between the VIMs and the absolute value of true teacher
effects when the ratio of the number of students per teacher, SpT1/SpT2, varies for different
CAM models and different σ2
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157



x

10 Teachers

C
A

M
 1

x

ch
1.

1

20 Teachers

x

ch
1.

1

40 Teachers

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

C
A

M
 2

x

ch
1.

1

x
ch

1.
1

x

C
A

M
 3

x

ch
1.

1

x

ch
1.

1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C
A

M
 4

    1  2 5 20

ch
1.

1

    1  2 5 20

ch
1.

1

    1  2 5 20

• V IM`m • V IM1 • V IM2 • V IMnp • V IMtp

Figure A.4: Mean correlation between the VIMs and the absolute value of true teacher
effects when the teacher variance over student variance σ2
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Figure A.5: Mean correlation between the VIMs and the absolute value of true teacher
effects when the teacher variance over student variance σ2

τ/σ
2 varies for different CAM

models and different number of teachers when the number of students per teacher ratio is
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Figure A.7: Mean correlation between the VIMs and the absolute value of true teacher
effects when the ratio of the number of students per teacher, SpT1/SpT2, varies for different
GSM models and different σ2

τ/σ
2 = 2 when the number of teachers is 10.
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Figure A.8: Mean correlation between the VIMs and the absolute value of true teacher
effects when the ratio of the number of students per teacher, SpT1/SpT2, varies for different
GSM models and different σ2

τ/σ
2 = 2 when the number of teachers is 20.
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Figure A.9: Mean correlation between the VIMs and the absolute value of true teacher
effects when the teacher variance over student variance σ2

τ/σ
2 varies for different GSM

models and different number of teachers when the number of students per teacher ratio is
12/12.
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Figure A.10: Mean correlation between the VIMs and the absolute value of true teacher
effects when the teacher variance over student variance σ2

τ/σ
2 varies for different GSM

models and different number of teachers when the number of students per teacher ratio is
36/36.
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Figure A.11: Mean correlation between the VIMs and the absolute value of true teacher
effects when the teacher variance over student variance σ2

τ/σ
2 varies for different GSM

models and different number of teachers when the number of students per teacher ratio is
30/18.
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Figure B.1: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp = 5 for all p =
1, . . . , 10, and P (Xp = 1) = .5.
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Figure B.2: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 10, and P (Xp = 1) = .5.
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Figure B.3: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp = 5 for all p =
1, . . . , 20, and P (Xp = 1) = .5.
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Figure B.4: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 20, and P (Xp = 1) = .5.
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Figure B.5: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp = 1 for all p =
1, . . . , 10, and P (Xp = 1) = .75.
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Figure B.6: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp = 1 for all p =
1, . . . , 20, and P (Xp = 1) = .75.
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Figure B.7: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp = 1 for all p =
1, . . . , 40, and P (Xp = 1) = .75.
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Figure B.8: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp = 5 for all p =
1, . . . , 10, and P (Xp = 1) = .75.
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Figure B.9: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp = 5 for all p =
1, . . . , 20, and P (Xp = 1) = .75.
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Figure B.10: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp = 5 for all p =
1, . . . , 40, and P (Xp = 1) = .75.
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Figure B.11: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 10, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 10, and P (Xp = 1) = .5.
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Figure B.12: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 20, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 20, and P (Xp = 1) = .5.
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Figure B.13: The values of Ω(p, q) and Γ(p, q) when the true interaction values, βpq, varies
from 0 to 20, for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). P = 40, βp is sampled from
(−5, . . . , 5) for all p = 1, . . . , 40, and P (Xp = 1) = .5.
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Figure B.14: Estimated interaction effects for mean-based interaction measure when Xp

success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 10
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 10.
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Figure B.15: Estimated interaction effects for mean-based interaction measure when Xp

success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 40
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 40.
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Figure B.16: Estimated interaction effects for distribution-based interaction measure when
Xp success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 10
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 10.
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Figure B.17: Estimated interaction effects for distribution-based interaction measure when
Xp success probability, P (Xp = 1), is either .5 or .75 for all p = 1, . . . , 20, and the true
interaction effect, βpq, varies from 0 to 20 for (p, q) or (q, p) = (1, 2), (1, 5), and (6, 7). 40
variables are considered, βp is sampled from (−5, . . . , 5) for all p = 1, . . . , 40.
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βp Num. Variables (P ) Prob(Xp = 1) βpq β̃pq Bias(βpq 6= 0) Bias(βpq = 0)
5 10 0.50 0 -0.10 -0.10 -0.04
5 20 0.50 0 -0.00 -0.00 0.03
5 40 0.50 0 -0.05 -0.05 0.03
5 10 0.75 0 -0.41 -0.41 -0.54
5 20 0.75 0 -0.52 -0.52 -0.58
5 40 0.75 0 -0.80 -0.80 -0.53
5 10 0.50 1 0.73 -0.27 0.10
5 20 0.50 1 0.64 -0.36 0.04
5 40 0.50 1 0.50 -0.50 0.03
5 10 0.75 1 0.05 -0.95 -0.45
5 20 0.75 1 -0.17 -1.17 -0.53
5 40 0.75 1 0.39 -0.61 -0.49
5 10 0.50 5 3.66 -1.34 0.19
5 20 0.50 5 3.62 -1.38 0.13
5 40 0.50 5 3.22 -1.78 0.08
5 10 0.75 5 3.56 -1.44 -0.38
5 20 0.75 5 2.98 -2.02 -0.46
5 40 0.75 5 2.68 -2.32 -0.46
5 10 0.50 10 8.20 -1.80 0.33
5 20 0.50 10 8.09 -1.91 0.27
5 40 0.50 10 7.57 -2.43 0.11
5 10 0.75 10 8.21 -1.79 -0.12
5 20 0.75 10 7.75 -2.25 -0.23
5 40 0.75 10 7.43 -2.57 -0.29
5 10 0.50 20 17.56 -2.44 0.52
5 20 0.50 20 17.82 -2.18 0.42
5 40 0.50 20 17.61 -2.39 0.23
5 10 0.75 20 17.80 -2.20 0.18
5 20 0.75 20 17.49 -2.51 0.06
5 40 0.75 20 17.20 -2.80 -0.06

Table B.1: Average interaction estimation bias for those pairs of covariates that interact,
Bias(βpq 6= 0), and those that do not interact, Bias(βpq = 0), when P = 10, 20, or 40, βp = 5,
Prob(Xp = 1) = 0.5 or 0.75 for p = 1, . . . , P , and βpq varies from 0 to 20 for (p, q) or
(q, p) = (1, 2), (1, 5), or (6, 7).
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βp Num. Variables (P ) Prob(Xp = 1) βpq β̃pq Bias(βpq 6= 0) Bias(βpq = 0)
(-5:5) 10 0.50 0 -0.00 -0.00 0.02
(-5:5) 20 0.50 0 -0.03 -0.03 0.00
(-5:5) 40 0.50 0 -0.24 -0.24 -0.01
(-5:5) 10 0.75 0 -0.02 -0.02 -0.00
(-5:5) 20 0.75 0 -0.12 -0.12 0.07
(-5:5) 40 0.75 0 0.31 0.31 0.01
(-5:5) 10 0.50 1 0.92 -0.08 0.02
(-5:5) 20 0.50 1 0.71 -0.29 -0.05
(-5:5) 40 0.50 1 0.87 -0.13 0.02
(-5:5) 10 0.75 1 0.82 -0.18 -0.08
(-5:5) 20 0.75 1 0.76 -0.24 0.03
(-5:5) 40 0.75 1 1.73 0.73 -0.03
(-5:5) 10 0.50 5 5.45 0.45 0.01
(-5:5) 20 0.50 5 4.99 -0.01 0.01
(-5:5) 40 0.50 5 5.48 0.48 0.00
(-5:5) 10 0.75 5 5.59 0.59 -0.12
(-5:5) 20 0.75 5 5.06 0.06 -0.12
(-5:5) 40 0.75 5 5.21 0.21 -0.12
(-5:5) 10 0.50 10 9.80 -0.20 0.00
(-5:5) 20 0.50 10 9.92 -0.08 0.04
(-5:5) 40 0.50 10 10.07 0.07 -0.01
(-5:5) 10 0.75 10 9.98 -0.02 -0.12
(-5:5) 20 0.75 10 10.04 0.04 -0.18
(-5:5) 40 0.75 10 10.30 0.30 -0.16
(-5:5) 10 0.50 20 19.02 -0.98 -0.02
(-5:5) 20 0.50 20 20.20 0.20 0.06
(-5:5) 40 0.50 20 20.10 0.10 0.06
(-5:5) 10 0.75 20 19.58 -0.42 -0.09
(-5:5) 20 0.75 20 20.14 0.14 -0.36
(-5:5) 40 0.75 20 17.59 -2.41 -0.29

Table B.2: Average interaction estimation bias for those pairs of covariates that interact,
Bias(βpq 6= 0), and those that do not interact, Bias(βpq = 0), when P = 10, 20, or 40, βp is
sampled from (−5, . . . , 5), Prob(Xp = 1) = 0.5 or 0.75 for all p = 1, . . . , P , and βpq varies from 0
to 20 for (p, q) or (q, p) = (1, 2), (1, 5), or (6, 7).
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APPENDIX C
THE ASYMMETRICAL CASE
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In what follows, we group summation terms based on the partitions in η and η̃. As
an illustration,

{`,m : S`, Sm ∈ H(η) ∪H(η̃)} = {`,m : S`, Sm ∈ H(η)\H(η̃)}
∪ {`,m : S`, Sm ∈ H(η̃)\H(η)} ∪ {`,m : S`, Sm ∈ H(η) ∩H(η̃)}
∪ {`,m : S` ∈ H(η)\H(η̃) and Sm ∈ H(η̃)\H(η)}
∪ {`,m : S` ∈ H(η)\H(η̃) and Sm ∈ H(η) ∩H(η̃)}
∪ {`,m : S` ∈ H(η) ∩H(η̃) and Sm ∈ H(η̃)\H(η)} (C.1)

We rewrite ȳ(q; η) as ȳ(q; η) = ∆3(H(q; η)) + ∆4(H(q; η)) where

∆3(H(q; η)) = β0 + βq + βp + βpq

+
∑

`∈H(η)\[H(η̃)∪{p}]
β` +

∑
`∈H(η̃)∩H(η)

β` +
∑

`∈H(η̃)\H(η)

|η(`, q)|
|η(q)| β`

+
∑

`∈H(η)∩H(η̃)
β`q +

∑
`∈H(η)\[H(η̃)∪{p}]

β`q +
∑

`∈H(η̃)\H(η)

|η(`, q)|
|η(q)| β`q

+
∑∑

`,m∈H(η)∩H(η̃)
`<m

β`m +
∑∑

`,m∈H(η)\H(η̃)
`<m

β`m +
∑∑

`∈H(η)∩H(η̃)
m∈H(η)\H(η̃)

β`m

+
∑∑

`∈H(η)\H(η̃)
m∈H(η̃)\H(η)

|η(m, q)|
|η(q)| β`m +

∑∑
`∈H(η)∩H(η̃)
m∈H(η̃)\H(η)

|η(m, q)|
|η(q)| β`m

+
∑∑

`,m∈H(η̃)\H(η)
`<m

|η(`,m, q)|
|η(q)| β`m (C.2)

and

∆4(H(q; η)) =
∑

`/∈H(q;η)∪H(q;η̃)

|η(`, q)|
|η(q)| β`

+
∑

`/∈H(q;η)∪H(q;η̃)

|η(`, q)|
|η(q)| β`q +

∑∑
`∈H(η)∩H(η̃)

m/∈H(q;η)∪H(q;η̃)

|η(m, q)|
|η(q)| β`m

+
∑∑

`∈H(η)\H(η̃)
m/∈H(q;η)∪H(q;η̃)

|η(m, q)|
|η(q)| β`m +

∑∑
`∈H(η̃)\H(η)

m/∈H(q;η)∪H(q;η̃)

|η(`,m, q)|
|η(q)| β`m

+
∑∑

`,m/∈H(q;η)∪H(q;η̃)
`<m

|η(`,m, q)|
|η(q)| β`m + ε̄(q; η). (C.3)
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The difference of differences for ∆3(·) and ∆4(·) are given by

∆3
(
H(q; η)

)
−∆3

(
H(qc; η)

)
−∆3

(
H(q; η̃)

)
+ ∆3

(
H(qc; η̃)

)
= βpq+

+
∑

`∈H(η)\[H(η̃)∪{p}]

(
1− |η̃(`, q)|

|η̃(q)|

)
β`q −

∑
`∈H(η̃)\H(η)

(
1− |η(`, q)|

|η(q)|

)
β`q

+
∑

`∈H(η)\H(η̃)

(
−|η̃(`, q)|
|η̃(q)| + |η̃(`, qc)|

|η̃(qc)|

)
β`

+
∑

`∈H(η̃)\H(η)

(
|η(`, q)|
|η(q)| −

|η(`, qc)|
|η(qc)|

)
β`

+
∑∑

`∈H(η)∩H(η̃)
m∈H(η)\H(η̃)

(
−|η̃(m, q)|
|η̃(q)| + |η̃(m, qc)|

|η̃(qc)|

)
β`m

+
∑∑

`∈H(η)∩H(η̃)
m∈H(η̃)\H(η)

(
|η(m, q)|
|η(q)| −

|η(m, qc)|
|η(qc)|

)
β`m

+
∑∑

`∈H(η)\H(η̃)
m∈H(η̃)\H(η)

(
|η(m, q)|
|η(q)| −

|η(m, qc)|
|η(qc)| −

|η̃(m, q)|
|η̃(q)| + |η̃(m, qc)|

|η̃(qc)|

)
β`m

+
∑∑

`,m∈H(η)\H(η̃)
`<m

(
−|η̃(`,m, q)|
|η̃(q)| + |η̃(`,m, qc)|

|η̃(qc)|

)
β`m

+
∑∑

`,m∈H(η̃)\H(η)
`<m

(
|η(`,m, q)|
|η(q)| − |η(`,m, qc)|

|η(qc)|

)
β`m, (C.4)

∆4
(
H(q; η)

)
−∆4

(
H(qc; η)

)
−∆4

(
H(q; η̃)

)
+ ∆4

(
H(qc; η̃)

)
=

=
∑

`/∈H(q;η)∪H(q;η̃)

(
|η(`, q)|
|η(q)| −

|η(`, qc)|
|η(qc)| −

|η̃(`, q)|
|η̃(q)| + |η(`, qc)|

|η(qc)|

)
(β` + β`q)

+
∑∑

`∈H(η)∩H(η̃)
m/∈H(q;η)∪H(q;η̃)

(
|η(m, q)|
|η(q)| −

|η(m, qc)|
|η(qc)| −

|η̃(m, q)|
|η̃(q)| + |η(m, qc)|

|η(qc)|

)
β`m

+
∑∑

`∈H(η)\H(η̃)
m/∈H(q;η)∪H(q;η̃)

(
|η(m, q)|
|η(q)| −

|η(m, qc)|
|η(qc)| −

|η̃(m, q)|
|η̃(q)| + |η(m, qc)|

|η(qc)|

)
β`m

+
∑∑

`∈H(η̃)\H(η)
m/∈H(q;η)∪H(q;η̃)

(
|η(`,m, q)|
|η(q)| − |η(`,m, qc)|

|η(qc)| − |η̃(`,m, q)|
|η̃(q)| + |η(`,m, qc)|

|η(qc)|

)
β`m

+
∑∑

`,m/∈H(q;η)∪H(q;η̃)
`<m

(
|η(`,m, q)|
|η(q)| − |η(`,m, qc)|

|η(qc)| − |η̃(`,m, q)|
|η̃(q)| + |η(`,m, qc)|

|η(qc)|

)
β`m

+ ε̄(q; η)− ε̄(qc; η)− ε̄(q; η̃) + ε̄(qc; η̃). (C.5)
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