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ABSTRACT  
   

Two critical limitations for hyperspatial imagery are higher imagery variances and large 

data sizes. Although object-based analyses with a multi-scale framework for diverse object sizes 

are the solution, more data sources and large amounts of testing at high costs are required. In 

this study, I used tree density segmentation as the key element of a three-level hierarchical 

vegetation framework for reducing those costs, and a three-step procedure was used to evaluate 

its effects. A two-step procedure, which involved environmental stratifications and the random 

walker algorithm, was used for tree density segmentation. I determined whether variation in tone 

and texture could be reduced within environmental strata, and whether tree density 

segmentations could be labeled by species associations. At the final level, two tree density 

segmentations were partitioned into smaller subsets using eCognition in order to label individual 

species or tree stands in two test areas of two tree densities, and the Z values of Moran's I were 

used to evaluate whether imagery objects have different mean values from near segmentations 

as a measure of segmentation accuracy. The two-step procedure was able to delineating tree 

density segments and label species types robustly, compared to previous hierarchical 

frameworks. However, eCognition was not able to produce detailed, reasonable image objects 

with optimal scale parameters for species labeling. This hierarchical vegetation framework is 

applicable for fine-scale, time-series vegetation mapping to develop baseline data for evaluating 

climate change impacts on vegetation at low cost using widely available data and a personal 

laptop. 
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INTRODUCTION 

Vegetation mapping is required for biological conservation and forest inventory; especially 

time series mapping is commonly used to detect transformations of species or suitable habitats 

(e.g. Egbert et al., 2002; Loh et al., 2005; Hill et al., 2010) and evaluate impacts of climate 

change on species (e.g. Pettorelli et al., 2005; Donohue et al., 2009). Species distribution models 

(SDMs, also called habitat suitability models), which correlate environment variables with species 

sampling data to map species occurrences (Franklin, 2010), have been used for vegetation 

mapping, because field-based approaches are cost and labor-consuming, and pure remote 

sensing imagery interpretations are lacking in ability to detect individual species (Franklin, 1995). 

Furthermore, variables which are derived from remotely sensed imagery and used as predictors 

provide more accurate species predictions (Kerr & Ostrovsky, 2003). However, SDMs are viewed 

as static and equilibrium models capturing species-environment relations at large scales, and 

ignoring dynamic biological interactions, such as dispersal, migration, facilitation, competition, 

mutualism and predation at local scales (Pearson & Dawson, 2003). Predictors, which mainly 

apply climate models, are often in very coarse resolutions and may not capture topoclimatic-

controlled species habitats, specifically in rugged mountains (Sekercioglu et al., 2007; Thuiller et 

al., 2008; Seo et al., 2009; Chazal & Rounsevell, 2009; Franklin et al., 2013; Mateo et al., 2013). 

One solution is to downscale climate models to finer spatial resolutions (Flint & Flint, 2012), and 

those studies showed better species predictions at finer scales (Randin et al., 2009; Franklin et 

al., 2013). The other solution is to map species directly using hyperspatial remotely sensing data 

(1 to 2 m), and track vegetation transformations over time through repeated mapping.  

With advances of sensors, spatial resolutions of remotely sensed data have been improved 

to centimeter levels and provide more spatial information on species distributions. For example, 

WorldView-1, which was launched on September 18, 2007, collects Panchromatic imagery at 

0.5m, and WorldView-2, which was launched on October 8, 2007, collects Panchromatic imagery 

at 0.46m and Multispectral imagery at 1.84m. GeoEye-1, which was launched on September 6, 

2008, collects Panchromatic imagery at 0.41m and Multispectral imagery at 1.65m. As Nagendra 

& Rocchini (2008) indicated, hyperspatial imagery provides more accurate locations of tree 



2 

canopies, than hyperspectral imagery. However, higher spatial resolutions may not have higher 

classification accuracies, due to higher variances within classes (Woodcock & Strahler, 1987) 

(also called H-resolution problem, which is defined that land cover elements are larger than pixel 

sizes (Strahler et al., 1986), so each land cover elements have more pixels with higher variances). 

In addition, hyperspatial imagery with large data sizes increases loadings of computer hardware 

requirements (i.e. segmentation procedures have very high memory and CPU requirements), so 

most studies only test in small areas, because of memory limitations of personal computers and 

long processing times. Object-based image classifications can be an alternative on account of 

improving salt and pepper effects and increasing classification accuracies over pixel-based image 

classifications, which ignore similarity of near pixels (Shandley et al., 1996; Huang et al., 2003; 

Yan et al., 2006; Yu et al., 2006; Budreski et al., 2007; Varela et al., 2008; Blaschke, 2010). Also, 

imagery can be stratified into smaller subsets (Strahler, 1981) within the processing capabilities of 

personal computers.  

Object-based image classification includes a two-step procedure, image segmentation and 

image classification. Image segmentation gathers several similar neighbor pixels together as 

objects, and image classification categorizes or labels land cover types for each object. In theory, 

image objects have equal internal variances at a common scale (Woodcock & Harward, 1992), 

and hyperspatial imagery is helpful to derive detailed objects. However, each class with varying 

sizes needs different scales to define appropriate objects (Woodcock & Harward, 1992; Hay et al., 

2003; Huang et al., 2003), and multispectral bands are helpful to labeling or classification 

procedures.  

The appropriate scale for identifying objects can be found by an iterative workflow (Baatz et 

al., 2008) using hierarchical semantic models or knowledge (Benz et al., 2004). In other words, 

there is no single optimal scale parameter, but a spatially-nested (multi-scale) structure 

(Woodcock & Harward, 1992; Baatz & Schäpe, 2000; Hay et al., 2003; Benz et al., 2004) can be 

used to identify objects with different sizes and describe the object traits, especially in poor 

imagery. For example, Yu et al. (2006) pointed out vegetation alliances, which are more general 

than species types, are also critical to define tree species segmentation, and the similarity of near 
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objects may decrease classification accuracies. Kim et al. (2011) indicated that multiscale image 

classification involving both spectral and texture traits can increase classification accuracies. 

Nevertheless, those hierarchical-segmentation applications in hyperspatial imagery are still 

limited to classify primary land cover categories (Kim et al., 2011) or estimate forest parameters 

(Chen & Hay et al., 2011; Chen et al., 2012) in small test areas, and there is lacking in a general 

framework for specific species in large areas.  

Previous vegetation mapping frameworks have taken two approaches, the data-based 

orientation and vegetation-type orientation. In the data-based approach, involving new data 

resources can increase interpretations of vegetation traits (Xie et al., 2008; Kim et al., 2011; Chen 

& Hay et al., 2011; Chen et al., 2012). In one example, Xie et al. (2008) used this approach to 

identify exotic Australian pine with three-level segmentations: NDVI to distinguish vegetation from 

non-vegetation, tree heights, derived from LIDAR, to distinguish trees from short trees, shrubs 

and grasses, and shape/color and smooth/compactness weighting parameters for target objects. 

However, higher data requirements raise costs, and may not be extensively adapted to other 

regions. In the vegetation-type approach, vegetation nested structures from tree, stands, forest 

types (e.g. pine, oak and red fir) and vegetation types (e.g. wetland, forest and grassland) are 

another solution (Woodcock & Harward, 1992). This framework, incorporating object-based 

image classifications (Woodcock & Harward, 1992) and labeling procedures (Franklin et al., 

2000), can be used to identify more general vegetation life form or land-cover types (e.g. conifer 

forest, hardwood forest, chaparral, soft chaparral) and within them, more specific vegetation types, 

for example at the level of Associations (e.g. Jeffrey pine, black oak and coast live oak) in the US 

National Vegetation Classification Systems (http://usnvc.org). However, the labeling procedures 

used for vegetation types, based on multispectral classification and image interpretation, may not 

reach very high accuracies for specific species (e.g, accuracies for conifer types ranged from 

23% to 100 % in Franklin et al., 2000).  
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PROBLEM STATEMENT AND LITERATURE REVIEW  

The goal of this study was to implement a hierarchical framework for mapping specific tree 

species using RGB (red, green blue; visible) bands (widely available as historical aerial photos) 

derived from 1 m digital orthophoto quadrangles (DOQ) and an evaluative framework to assess 

the results. A further goal was to evaluate methods that can be implemented on personal 

computers (with conventional amounts of memory). Although lots of algorithms and classifiers, 

especially machine learning methods, were extensively used in identifying individual species (e.g. 

Foody et al., 2005), the hyperspectral and/or hyperspatial imagery (less than 0.5 m) that these 

methods relied on is not always available. Thus, the hierarchical framework, which was built on 

widely available data and computing capabilities, and incorporated ecological knowledge of the 

study area, provided the ability to label segements within specific species types, even if imagery 

data were not able to support species identifications.  

Partitioning the image based on tree density was a key part of the natural vegetation 

framework used in this study (Figure 1), but previous segmentation studies (reviewed by Fu & 

Mui, 1981; Pal & Pal, 1993; Jain et al., 1999; Pham et al., 2000; Sonka et al., 2008; Ma et al., 

2010) have not been extensively applied to natural vegetation using a robust approach. Among 

those segmentation methods, which were classified by Fu & Mui (1981), edge-based algorithms 

were the most vulnerable to noise (i.e. heterogeneous pixels with higher variances, especially in 

sparse tree stands) (Fu & Mui, 1981), and threshold-based algorithms cannot deal with imagery 

complexities, even using local threshold approaches (Trier & Taxt, 1995; Sezgin & Sankur, 2004). 

In contrast, region-based algorithms were widely incorporated with other algorithms, including the 

Woodcock & Harward (1992) region growing algorithm, eCognition’s imagery merging and fractal 

net evolution approach (Baatz et al., 2000; Hay et al., 2003; Benz et al., 2004), and multiscale 

object-specific segmentation (MOSS) using size constrained region merging (Hay et al., 2003; 

Hay et al., 2005). Those algorithms could better deal with noise and avoid over-segmentation, 

compared to other algorithms, such as the watershed algorithm and the region growing algorithm 

(Wang, 1997; Sonka et al., 2008; Ma et al., 2010). However, two-step labeling procedures 

(Franklin et al., 2000) or repetitive testing on parameters (e.g. scale, compact and shape in 
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eCognition) to construct hierarchical frameworks (Baatz et al., 2000; Hay et al., 2003; Benz et al., 

2004; Baatz et al., 2008) were still time-consuming and data-intensive. Therefore, a robust 

alternative using tree density segmentation was necessary. 

Furthermore, tree density was the main trait of the hierarchical vegetation framework for two 

reasons (Figure 1). Tree density reflected different species types (e.g. shade-intolerant species 

and shade-tolerant species) (King et al., 1996; van Gelder et al., 2006; Poorter et al., 2012; Lines 

et al., 2012). Additionally, different tree densities also mean different image objects, which 

required two processing procedures at species levels and landscape levels, according to previous 

studies. One type of study focused on delineating individual tree crowns and labeling species by 

multispectral bands using classifiers, whereas the other type of study concentrated on 

decomposing landscapes into smaller objects (vegetation stands, a group of trees) and label 

species by the majority classified pixels within segmentations (Shandley et al., 1996), vegetation 

gradient model adding spectral mixture analysis (Franklin et al., 2000) or non-parametric 

classifiers (e.g. Benz et al., 2004; Yu et al., 2006).  

The first approach, tree crown delineation, was effective at interpreting species counts and 

types, which can almost substitute for field-based surveys (Haara & Haarala, 2002; Leckie et al., 

2003; Leckie et al., 2005; Gougeon & Leckie, 2006; Katoh et al., 2009). This approach mainly 

applied a series of algorithms to tree crown delineation, such as valley-following, region growing 

and watershed segmentation (Culvenor, 2003; Li et al., 2008; Ke & Quackenbush, 2011a; Ke & 

Quackenbush, 2011b; Larsen et al., 2011). Nevertheless, the fundamental assumptions were that 

tree crowns should be clearly separated in space (not overlap) and should be in regular shapes 

and similar sizes, according to algorithm functions (Ke & Quackenbush, 2011a; Ke & 

Quackenbush, 2011b). Practically, this approach was less effective in heterogeneous and denser 

hardwood stands than conifer landscapes. The other type of studies were more effective at 

segmenting dense or heterogeneous tree stands at landscape scales into smaller and more 

homogeneous segmentations (e.g. Yu et al., 2006; Laliberte et al., 2007; Myint et al., 2008; 

Mallinis et al., 2008; Heumann, 2011), but segmentations in sparse tree stands may not be 

partitioned well, due to effects of non-vegetation areas or shadows. As a result, two tree densities 
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represent different ecological conditions and image processing challenges, and require different 

segmentation parameters (or algorithms).  

 

 

Figure 1. Vegetation hierarchical framework. The text on the left indicates the vegetation attribute 
discriminated at each stage of stratification and segmentation. Tree density patterns were use as 
the intermediary between nature vegetation and species as a three-level framework.  

 

Specifically, the hypotheses tested in this study were:  

1. Environmental stratification could reduce the variation in tone and texture among strata. I 

assumed that reducing variance in image tone and texture indices simplified species 

composition based on studies showing that texture indices (local variances and second 

order textures) have high correlations with forest structural parameters (e.g. standard 

deviation of diameters and basal area) (Ozdemir & Karnieli, 2011; Klobučar et al., 2011) 

clearly distinguish different forest parameters (e.g. stand ages) (Franklin et al., 2001).  

2. Identifying tree-density patterns could be used to simplify species types in a given area where 

there was no recent disturbance. This hypothesis was based on assumptions that shade 

tolerance was related to variations in tree architectural parameters, such as stem and 

crown dimensions (King et al., 1996; van Gelder et al., 2006; Poorter et al., 2012; Lines 

et al., 2012), and species life history traits (e.g. different seedling time between oaks and 

pines) and environmental conditions (e.g. topographic and climatic conditions), which 

constrained species regenerations, resulting in different species dominances (pine 
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dominance and oak-pine codominance) in stands with different tree densities (Gracia et 

al., 2002; Zavala & Zea, 2004).  

3. Different tree density distributions had different optimal scale parameters for image 

segmentation where the optimal scale parameter was that with the lowest segmentation 

variances and spatial autocorrelations (Kim et al., 2008; Kim et al., 2009; Johnson & Xie, 

2011). The hypothesis was based on studies indicating that different image structures, 

such as sizes of tree crowns or clumps are a function of different spatial scales 

(Woodcock & Strahler, 1987). 
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MATERIALS AND METHODS 

A two-step procedure, which involved environmental stratification using the global Otsu’s 

method and image segmentation using the random walker algorithm, was used to identify two 

tree densities, and in the third step, object-based classification using eCognition was used to 

extract species objects (Figure 2). Environmental stratification, based on elevation, slope or 

aspect, was used to partition the whole image into smaller subsets. Large images needed to be 

subset in order to reduce processing time and variation partitioning can help to statistically 

characterize certain components by increased stationarity or homogeneity within strata (Osborne 

& Suárez-Seoane, 2002; Peres-Neto et al., 2006). A non-parametric test applied to local means 

and variances in image tone was used to see which terrain variable was most effective at 

reducing variation in local tone and texture measures within strata. The reasons for basing 

stratification on one environmental variable, rather than all three, were that one of goals in this 

study was to build a parsimonious procedure for reducing computations, and stratification based 

on a single variable was simple to implement. Then, the random walker algorithm was applied 

within the environmental strata to partition imagery into smaller subsets based on tree density 

patterns. The segmentation was evaluated using species types based on independent vegetation 

maps (the Timber survey and CALVEG) and evaluating whether the segmentation distinguishes 

image regions associated with particular species or species associates (Figure 2). Finally, the 

segmentation of tree densities was further partitioned using eCognition with different scale 

parameters and evaluated whether the detailed species segmentation related to specific 

guidelines of scale parameters on identifying species objects (Figure 2). So as to minimize costs, 

this study mainly used open source python libraries, scikit-image and other free software, and 

free DOQ imagery, to achieve the above goals. 
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Figure 2. Procedures for Vegetation hierarchical framework. The text on the left indicates the 
vegetation attribute discriminated at each stage of stratification and segmentation. At the first 
level, the global Otsu’s method and the random walker algorithm were used to partition nature 
vegetation into two tree density segmentations, dense tree stands and sparse tree stands. At the 
second level, the two tree density segmentations were tested by species association labeling. In 
theory, shade-tolerant species tend to occur in dense tree stands, while shade-intolerant species 
tend to occur in sparse tree stands. At the final level, eCognition was used to partition the two 
tree density segmentations into smaller subsets for vegetation stands or individual species.  
 

Study Targets And Data Sources 

Tejon Ranch, which belongs to Tejon Ranch Company, is located in the convergence of four 

eco-regions: the Mojave Desert, the Central Valley, the Sierra Nevada, and the Transverse 

Ranges (Bailey, 1995). The research area is located in the Tehachapi Mountains, elevation 

ranging from 368 to 2,360 meters (Jarvis et al., 2008) (Figure 3). Based on the only climate 

station within Tejon Ranch, 434.3 meters elevation, the average yearly temperature is 59.61℉ 

(1895-2011) and yearly rainfall is 11.29 inches (1899-2011) (Menne et al., 2013). This area has a 

typical Mediterranean climate. The main rainfall season concentrates in the winter from October 

to March of the next year, while the dry season is in the summer from July to September. The 

main vegetation type is oak woodlands, including canyon live oak, interior live oak, blue oak, 

California black oak, scrub oak, and others along with ponderosa pine and gray pine (United 

States Department of Agriculture Forest Service: CALVEG, 2010).  
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Figure 3. Elevation model of the study area showing the boundary of the Tejon Ranch in red and 
the Research Area (used in this study) as a blue rectangle 

 

This study focused on two hardwood species, blue oak and California black oak, and two 

conifer species, ponderosa pine and grey pine. The four species are shade-intolerant (Burns & 

Honkala, 1990), which tended to occur in sparse tree stands. Nevertheless, the shade tolerance 

of California black oak varies with age (higher shade-tolerance in sapling and growing taller to the 

top as less shade-tolerance), so it can sustain in denser tree stands (Burns & Honkala, 1990). 

More importantly, owing to the long-term fire disturbance history, tree density does not always 

achieve its maximum possible value, and local adaptations to microenvironments and 

regeneration played more important roles in determining tree density. For example, ponderosa 

pines in Southwestern United States were often found in dense stands changing from a range of 

49-124 trees ha-1 at the time of Euro-American settlement to a range of 1235-2470 trees ha-1 now 

(Habeck, 1992; Fitzgerald, 2005; DeGomez, 2008), due to high density of seedlings and saplings 

and fast growth near burned areas (Zavala & Zea, 2004). To sum up, species successions were 

not clearly identified in previous literatures and records and any rules about determinants of tree 

densities were not extensively applied to regions (Burns & Honkala, 1990), so I only assumed 

that species have similar tree density patterns within a given area.  
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Data sources included a one-meter DOQ, SRTM 30m Digital Elevation Data v.4 and two 

archived vegetation type maps, referred to in this study as Timber survey and the CALVEG. The 

DOQ was imagery with three 8-bit bands, which was rectified by digital terrain models and ground 

position points to remove terrain relief and camera tilt (United States Geological Survey, 2001), 

so every land element was in corrected ground position. This imagery is freely available from 

United States Department of Agriculture: Natural Resources Conservation Service Geospatial 

Data Gateway (http://datagateway.nrcs.usda.gov/GDGOrder.aspx) or United States Geological 

Survey: The National Map Viewer and Download Platform (http://viewer.nationalmap.gov/viewer/). 

The SRTM 30m Digital Elevation Data, which were produced by National Aeronautics and Space 

Administration (NASA), were created by collecting elevation points from SRTM3 and a series of 

auxiliary digital terrain models for the purpose of interpolating voids to create seamless 

topography (Jarvis et al., 2008). The data provided not only elevation information in 30 m spatial 

resolution but also slope and aspect gradients by calculating the rates of maximum change and 

their directions (ESRI ArcGIS 10.0 help, 2011). The Timber survey was a field-surveyed map 

generated in 1980 for distributions of oak woodlands on Tejon Ranch (Hoagland et al., 2011), and 

the CALVEG was produced by the USDA Forest Service using Landsat Thematic Mapper to 

construct a vegetation database across California (Franklin et al., 2000). 

 

Environmental Stratification 

To create environmental stratifications, a global Otsu’s method was used to separate 

elevation, slope and aspect images into smaller areas using scikit-image. The goal of this 

approach was to find an optimal global threshold in image histogram (one-dimension intensity 

measurements) to partition imagery into two groups by maximizing the intra-group variances and 

minimizing within-group variances (Otsu, 1979) in order to categorize objects from backgrounds, 

such as tree crowns from barren lands. Preliminary analyses determined optimal thresholds; the 

three stratifications were partitioned by thresholds of 1169 m for elevation, 41˚ for slope and 149˚ 

for aspect (Figure 4).  
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The global Otsu’s method has been shown to be more effective than other binarization 

methods (Pal & Pal, 1993; Trier & Taxt, 1995) with low computational time. Although those 

binarization methods produced image subsets that were not spatially separated (Fu & Mui, 1981; 

Pal & Pal, 1993), and needed to be delineated by hand, spatial distributions of strata showed 

diverse patterns to reflect tree covers.  

 

 
   (a)                                                                       (b) 

 
   (c)                                                                       (d) 
Figure 4. Spatial distributions of two-group separations by global Otsu’s method: the green 
regions represented the environmental layers were above the optimal thresholds. (To visualize 
clearly and eliminate some salt and pepper effects, the maps applied a majority filter using focal 
statistics in ArcGIS 10.0) The orange lines showed manual strata of three environmental 
variables, and blue lines showed boundaries of the study area. Maps showed (a) Original imagery 
(b) Aspect stratification (c) Slope stratification (d) Elevation stratification 
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Image Segmentation On Tree Density 

In this study, the random walker algorithm was used for image segmentation. Segmentation 

was based on single red band.  The random walker algorithm, which was proposed by Grady 

(2006), was used to partition imagery into smaller subsets more robustly using scikit-image. The 

random walker algorithm originated from the graph theory to view the whole imagery as the 

combinations of vertexes (nodes) and edges (arcs), and the random walkers, which represented 

each individual pixel, were trying to formulate a path to their neighbors randomly as the 

probabilities. Therefore, the algorithm started from defining the markers, a group of seeds as the 

sampling of desired imagery objects. Then, this algorithm would assign each unseeded pixel a 

probability, which those unseeded pixels reach the nearest seeds based on absolutely distances 

and assign a piecewise weight by the image intensity. Finally, the algorithm would assign a seed 

class to those unseeded pixels for cuts, mainly according to the probability, and the cuts might be 

adjusted by the weights to avoid crossing sharp image intensities. For example, if three out of 

four neighbors belong to one class, then the focal pixel is assigned to this class. Thus, the 

random walker algorithm can keep locally consistent boundaries, regardless of spatial extents 

and attribute ranges.  

However, how to define the markers was not described in details in the original paper, and 

few studies have used the random walker algorithm to identify vegetation types, because the 

random walker algorithm was under the assumptions (also called supervised segmentation 

algorithms) that a series of pixels for desired objects and backgrounds were known and nearby 

pixels between desired objects and backgrounds can evolve to desired boundaries. To handle 

this issue, the grey-level image tones, which were assumed to be a function of tree densities, 

were used in the marker designs. The higher image tones were, the lower tree densities were. 

The map classification using natural break optimizing, which was to reduce within-group 

variances, in three classes was utilized to derive the thresholds for desired objects and 

backgrounds. As a result, barren lands or individual trees over the highest threshold were viewed 

as the desired objects, and denser tree stands below the lowest threshold were treated as the 

background (Figure 5; Figure 6). Then, the random walker algorithm could produce the correct 
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boundaries between desires objects and backgrounds. In the second segmentation, the same 

procedures were applied to separate lower tree density stands from higher tree density stands 

(Figure 5; Figure 6). Finally, barren lands or individual trees and lower tree density stands were 

combined as lower tree density stands for species association labeling (Figure 5; Figure 6).  

 

 

Figure 5. Tree density segmentation framework using the random walker algorithm and combined 
results: grey squares represent combined results for species association labeling 

 

 

  (a)                                               (b)                                              (c) 
Figure 6. Tree density distributed patterns: (a) Barren lands and individual tree stands (b) Lower 
tree density stands (c) Higher tree density stands 

 

 

Species Segmentation 

Detailed vegetation objects were further partitioned following the tree density segmentation 

using eCognition, which has been extensively used in studies of object-base image classification 

for vegetation inventories (e.g. Yu et al., 2006; Laliberte et al., 2007; Mallinis et al., 2008). 

Segmentation was based on 17 attributes or features: RGB; first-order textures: mean, standard 
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deviation, kurtosis, mean Euclidean distance, skewness, variance; second-order textures: mean, 

variance, homogeneity, contrast, dissimilar, entropy, second moment, and correlation (Haralick, 

1973; Haralick, 1979). Nevertheless, the segmentation using eCognition was neural (without 

meanings), and the meanings counted on classifiers to label after segmentation procedures. 

Therefore, as a prior framework, the eCognition segmentation cannot be implemented with 

appropriate parameters beforehand, but optimal scale parameters needed to be identified.   

 

Segmentation Evaluations 

To test the hierarchical vegetation framework and the three hypotheses, a series of 

evaluations were used. First, image local tone and texture, mean and standard deviation in digital 

number (DN) of the red band, were used to see which terrain variable could be used to stratify the 

image  most effectively, because image tone and texture correlates with forest structure 

parameters. A non-parametric test, Kruskal-Wallis test was applied using SPSS Statistics 20.0 to 

test whether variances were equal among groups.  

Second, four focal species were chose to examine the effectiveness of the random walker 

algorithm by determining whether the two tree density patterns (Figure 5), which were combined 

from three tree density types (Figure 6), reflected different species type distributions as 

determined by the archival vegetation maps (reference data). Indices of map agreement, 

including the kappa value, overall accuracies, user’s accuracies and producer’s accuracies, are 

based on the values in a confusion matrix (Lillesand et al., 2004; Franklin, 2010) (Table 1). 

Sampling the maps in order to calculate those indices were based on a stratified random 

approach accomplished using a “plug-in” sampling design tool in ArcGIS 10.0 to allocate 100 

points proportionally by class areas. The strata were based on the three tree density 

segmentations (Figure 6), where larger segmentation areas had more sampling points.  
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Table 1  
Confusion Matrix And Evaluative Indices 

Reference data 
 
Segmentation results 

Ponderosa 
pine 

&California 
black oak 

Blue oak 
& Grey pine  

Row total 
User’s 

accuracy 

Higher tree density stands a b e a/e 

Barren land and very few tree 
stands & lower tree density 

stands 
c d f d/f 

Column total g h i  

Producer’s accuracy a/g d/h   

Overall accuracy = (a+d) / i 

kappa value = 

 
������������	�∗�����������∗�	����/�

�������	�∗�����������∗�	����/�
 

 

In order to evaluate the scale parameters used in the eCognition segmentation, this study 

applied an objective (unsupervised) evaluation approach by using Moran’s I (Kim et al., 2008; 

Kim et al., 2009) as a measure of spatial autocorrelation to measure the similarity of segment-

averaged attributes as a function of the distance between segments. Supervised evaluations 

cannot be used as it was in most previous studies because the two reference maps were created 

at different scales (Hoagland et al., 2011), so it would not be possible to distinguish inaccuracies 

of vegetation segmentations from boundary errors in maps made at other scales. Another reason 

was that pixels within segmentations were not spectral homogeneous (Ryherd & Woodcock, 

1996).The basic idea of unsupervised evaluation was that attributes of optimal segmentations 

with clear boundaries (such as average spectral or texture values) should have low between-

segment spatial autocorrelation, whereas over-segmentation (many small polygons), and under-

segmentation (where the polygons are larger than the optimal segmentations), yielded segments 

whose attributes had higher between-segment spatial autocorrelation (Figure 7). Kim et al. (2009) 

pointed out that the optimal scale parameters can contribute to better classification accuracies. 

Therefore, the segmentations based on different scale parameters were evaluated based on 

Moran’s I in two test areas, lower tree density stands and higher tree density stands (Figure 8). 
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The goal was to see whether there were different optimal scale parameters for segmentation of 

two tree density patterns, because each has different sizes of individual trees and tree stands. 

Moran’s I was calculated using the open software, GeoDa (Anselin et al., 2006) 

 

 

Figure 7. Examples for evaluations of segmentation results: the black circle represents the tree 
crown object, and the color regions represent the segmentation results 

 

 

Figure 8. Test areas with two tree densities for detailed vegetation segmentation 
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RESULTS 

Environmental Stratification 

The aspect stratification had the best performance in terms of increasing stationarity within 

strata. Both tone and texture, mean and standard deviation of red-band digital number (DN) for 

different window sizes, showed significantly reduced variance within strata based on aspect, and 

the slope strata had the second best performance (Figure 9). Visually, the aspect stratification 

was most effective in separating tree crowns from barren lands, and the slope stratification again 

had the second performance (Figure 4). The slope stratification could be used to identify parts of 

barren lands, which had less steep slopes, but the elevation stratification was not useful for 

distinguishing woodland cover strata in this study area.  Therefore, the aspect and slope variables 

produced strata that reduced variance in local measures of tone and texture, supporting the first 

hypothesis. 

 

  
(a)                                                                       (b) 

Figure 9. Local tone and texture evaluations for environmental stratifications showing the p-
values of the K-W test as a function of window size. (a) mean image tone (digital number; DN), 
and  (b) standard deviation in DN, for each window size. 

 

Image Segmentation On Tree Density 

The two tree density segmentations based on the random walker algorithm effectively 

separated the two species types. Ponderosa pines and California black oaks tended to occur in 

dense tree stands, while grey pines and blue oaks tended to occur in sparse tree stands within 

the study area. Agreement of species types with tree density segmentations reached about 80% 

overall accuracies and 0.6 kappa values. There was no significant difference between two maps, 
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the Timber survey and CALVEG, but using the aspect stratification for the thresholds of desired 

objects (firstly, for barren lands or individual tree stands and secondly for lower tree density 

stands) by natural break optimizing did perform the best to produce tree density segmentations 

using the random walker algorithm (Table 2). Visually, the two-step procedure was effective to 

separate tree density patterns into three tree density categories, barren lands or individual trees, 

lower tree density stands and higher tree density stands, and the two selected regions of two tree 

densities had similar performances on separations of tree densities (Figure 10).  

 

Table 2  
Agreements Between Species Types And Tree Density Segmentations, measured by comparing 
two existing vegetation maps (Timber Survey, CALVEG) with the segmentations using Kappa, 
overall accuracy (percent correct classification), user’s accuracy (1-commission error), and 
producer’s accuracy (1-omission error). 

Kappa value 
Elevation 

Stratification Slope Stratification Aspect Stratification 

Timber Survey 0.52 0.56 0.65 

CALVEG 0.61 0.64 0.65 

Overall accuracies 
Elevation 

Stratification 
Slope Stratification Aspect Stratification 

Timber Survey 0.76 0.78 0.83 

CALVEG 0.80 0.82 0.82 

Users’ accuracies 
Elevation 

Stratification 
Slope Stratification Aspect Stratification 

Timber 
Survey 

Barren land 0.72 0.8 0.88 
High 

density 0.81 0.76 0.76 

CALVEG 
Barren land 0.64 0.76 0.72 

High 
density 0.96 0.88 0.92 

Producers’ accuracies 
Elevation 

Stratification 
Slope Stratification Aspect Stratification 

Timber 
Survey 

Blue-oak & 
grey pine 0.82 0.8 0.81 

Black oak & 
ponderosa 

pine 
0.71 0.76 0.84 

CALVEG 

Blue-oak & 
grey pine 0.94 0.86 0.9 

Black oak & 
ponderosa 

pine 
0.74 0.79 0.77 
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   (a)                                                                       (b) 
Figure 10. Results of the random walker algorithm for subimages of two tree densities: Pink 
regions represented segmentations of barren lands or individual tree stands, and green regions 
represented segmentation of lower tree density. Other segmentations without colors showed 
higher tree density stands (appearing dark green as dense tree canopy appears in RGB imagery). 
(a) lower tree density area (b) higher tree density area  

 

Species Segmentation 

The evaluation of scale parameters suggested that eCognition may not be appropriate for 

detailed vegetation segmentation based on this imagery. Neither lower tree density stands nor 

higher tree density stands had an optimal scale parameter, which would be indicated by a 

minimum spatial autocorrelation measure. The Z values of Moran’s I continuously declined as the 

scale parameters increase, showing no local minimum (Figure 11). The difference between 

results for lower tree density stands and higher tree density stands was the magnitude of Z 

values of Moran’s I. The lower tree density stands had higher values, while the higher tree density 

stands had lower values (Figure 11). High variances of sparse tree stands, especially in large 

areas of barren lands, dominated the patterns of segmentations, while mixed species and 

overlapping tree crowns in dense tree stands resulted in similarity among segmentations.  

 



21 

  

 (a)                                                                           (b) 

 

                                     (c) 
Figure 11. Unsupervised evaluation of object-based segmentations from eCognition using the Z 
values of Moran’s I for each of the 17 features: (a) lower tree density stands (b) higher tree 
density stands (c) average Z values of Moran’s I on two test areas 

 

Visually, the larger scale parameters (400-700) did not work well to produce homogeneous 

segmentations for the final-level segmentations, nor did the smaller scale parameters (50-300) 

perform well, either in denser tree stands or sparse tree stands (Figure 12). Segmentations with 

smaller scale parameters showed more homogeneous segmentation results, but even scale 

parameter 50 was still not adequate to identify vegetation stands or tree crowns. For example, 

segmentations of barren lands were often mixed with near denser tree density stands, and tree 

crowns were often mixed with near barren lands (Figure 12). 
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     (a)                                                                      (b) 

 
       (c)                                                                      (d) 
Figure 12. Segmentation examples from eCognition: segmentations with smaller scale 
parameters were nested or overlapped under segmentations with larger scale parameters (a) 
larger scale parameters in dense tree stands (b) smaller scale parameter in dense tree stands (c) 
larger scale parameters in sparse tree stands (d) smaller scale parameter in sparse tree stands.  
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DISCUSSION 

Implications Of Tree Density Segmentations 

Under the limitations of long-term available data and computation abilities of personal 

computers, tree density segmentations demonstrated in this study provided an alternative 

framework for vegetation mapping, instead of data intensive analyses. The approach involved 

both the environmental stratification and the random walker algorithm using terrain variables and 

1 m hyperspatial imagery with only RGB bands as limited inputs, and those procedures can be 

carried out in Window 7 64-bit operating system using Intel(R) Core(TM) i7-2860QM CPU with 12 

GB memory. The concrete goals were to add environmental variables, which were correlated with 

by tree cover, and reduce variances within environmental strata and image segmentations. 

Specifically, those segmentation results reflected the applications of ecological understandings. 

For one thing, water availability, which west-side slopes, confronting the ocean, had more 

precipitations than east-side slopes, might be the reason for the best performances of the aspect 

stratification, although no high-density climate stations can be used to validate. For another thing, 

because species associations are correlated with forest density in the study area, tree density 

segmentations could be labeled by specific species associations, even though the third-step 

procedure of detailed species segmentations did not work well at identifying or labeling individual 

species, due to inappropriate algorithm selections or coarse spatial resolutions.  

In this study area, although four target species are shade-intolerant, they do not all occur in 

early-successional or low density stands expected for shade-intolerant species, because of their 

varying shade tolerance at different ages (i.e. California black oak) and the human management 

history (i.e. ponderosa pine). Ponderosa pines occur in dense tree stands as do California black 

oaks, while blue oaks and grey pines occur in sparse tree stands. The agreements between tree 

density segmentations and species types reached about 80%. Further testing of alternative 

species labeling strategies in different ecosystems is needed.  

Indices summarizing the confusion matrix were used to examine the hypothesis 2, species 

labeling. However, those common indices, especially the kappa value, have confronted harsh 

challenges in recent decades. The main criticism was that the kappa value was constructed by 
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comparisons between the reference map and classification map, but the two maps may not be 

meaningfully comparable. Overall, the kappa value requires that both maps followed some 

assumptions, such as fitting normality and not being affected by other covariates, so adjustments 

on each map were the key, such as the weighted kappa coefficient (Banerjee et al., 1999). In 

remote sensing cases, the kappa value was only a summary statistics through randomness 

sampling as a baseline, not a meaningful index to indicate quantity disagreement and location 

disagreement (Pontius & Millones, 2011). This study applied the kappa values and the overall 

accuracy as indices, because the stratified random approach using environmental variables, 

instead of wholly random sampling was effective to emphasize species locations (e.g. Franklin et 

al., 1999), and tree density focused on whether species type (multi-species) labels were in 

specific tree density segmentations, rather than improving detailed land use mapping or species 

mapping. Thus, simple indices were adequate for comparing the effects of environmental 

stratifications and assess the correctness of species type locations.  

As image structures can be understood by the correlations between spatial resolution and 

the sizes of the objects in the scene (Woodcock & Strahler, 1987), selection of appropriate scale 

parameters for image objects, which combine similar neighbor pixels together, is required to 

match image segments with the objects in the scene more exactly. In particular, natural 

vegetation composes complex scene models, which consist of more than one land cover class 

(Woodcock & Strahler, 1987), including shrubs, grasses, oaks woodlands, conifers, barren lands 

and so forth, and do not have one optimal scale parameter. My study applied tree density 

segmentations to partition lower density tree stands from denser tree stands for objects of 

individual tree crowns and vegetation stands separately in two test areas.  

 

Evaluations Of Species Segmentations 

Accuracy assessments in object-based image classifications are challenging, compared to 

accuracy assessments in pixel-based image classifications, which apply sampling points to 

evaluate agreements (Morgan et al., 2010; Liu & Xia, 2010; Heumann, 2011), because both 

heterogeneous segmentations and geometric errors are not easy to be assessed by simple 
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indices. Also, some of segmentation tools are proprietary software, such as Berkeley Image 

Segmentation (BIS) (http://www.berkenviro.com/berkeleyimgseg/) and eCognition 

(http://www.ecognition.com/), although they have been described in the literature (e.g. Baatz & 

Schäpe, 2000; Benz et al., 2004; Baatz et al., 2008; Clinton et al., 2010). Therefore, instead of 

supervised evaluations, goodness of fit measures (unsupervised evaluations) are an alternative 

for evaluating over-segmentation and under-segmentation errors, and scale parameters play a 

central role in defining object sizes and segmentation accuracies (Liu & Xia, 2010). One 

goodness of fit measure is to compare training objects to objects at different hierarchical levels 

(e.g. Clinton et al., 2010), while another approach is to evaluate whether object extractions are 

appropriate (e.g. Kim et al., 2008; Kim et al., 2009; Johnson & Xie, 2011). Both approaches 

require evaluating under a hierarchical framework, since imagery objects with different sizes have 

different optimal scale parameters. In other words, a semantic framework for delineating objects 

is more important than selected goodness measures.  

My study applied an unsupervised evaluation (the Z values of Moran’s I under 999 

permutations) to this vegetation hierarchical framework for designing detailed species 

segmentations at the level of species associations and assessing the applicability of eCognition. 

Although this approach only assessed one band at a time, evaluations of individual bands for the 

segmentations, which were created based on multiple bands, including RGB and texture indices, 

did not make very significant differences, all showing decreases of the Z values of Moran’s I with 

increases of the scale parameters (Figure 11). In other words, every band reflected consistence 

on evaluations, so the Z values of Moran’s I can be used to evaluate segmentation quality for 

multi-band segmentations. However, the results suggested that image objects in two test areas 

both violated the object assumption with equal internal variances (Woodcock & Harward, 1992), 

and imagery objects could not be successfully identified using eCognition in this study.  

The poor performance of eCognition resulted from two aspects of object definitions. In 

higher tree density stands, individual tree crowns could not be delineated, since the 1 m spatial 

resolution imagery was still too coarse. The result was similar to the outcomes of Woodcock & 

Strahler (1987), which the coarse spatial resolutions did not have an optimal peak to reflect tree 
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crown sizes (30 m imagery presented an asymptote, which local variances decreased as spatial 

resolutions increased, while 0.75 m imagery showed a local peak). The Z values of Moran’s I also 

showed an asymptote, which the Z values of Moran’s I decreased as scale parameters increased. 

Moreover, the segmentations using eCognition in the lower tree density stands could not derive 

correct tree crown objects, due to inappropriate algorithm selections, although individual tree 

crowns were clearly separated visually. As a result, in sparse tree stands, other algorithms of tree 

crown delineations, as the example in Baatz et al. (2008), may improve segmentation, whereas in 

the dense tree stands, higher spatial resolution data, especially for oak woodlands, which often 

have lower classification accuracies (e.g. Katoh, 2004), may be a better alternative.  

Although the results showed that eCognition was not effective for detailed species 

segmentations based on the study imagery and region, the third calibration still provided 

guidelines to select appropriate algorithms or data sources for specific levels. As Fu & Mui (1981) 

pointed out, region-based algorithms may differ in segmentation results, according to the order of 

region-merging, even if region-based algorithms were widely used and had higher classification 

accuracies than pixel-based imagery classifications. As a result, applying global information as 

nested models within certain classes is necessary. In other words, a single algorithm may not 

apply to whole hierarchical frameworks, even with the multi-scale concept. As previous literature 

indicated, in higher tree density stands, it is adequate to apply landscape-level procedures using 

region-based segmentations, while in lower tree density stands, species-level tree crown 

delineations are required.  

 

Applications Of Hierarchical Vegetation Framework 

The hierarchical vegetation framework, developed in this study, is more time- and cost-

saving for species association labeling and hierarchical imagery segmentations than object-based 

imagery classification.  For one thing, data can be collected and automatically processed at lower 

costs. Hyperspatial imagery in the form of digital photography is widely available, and 

environmental variables help to improve imagery processing for broad-area investigations. For 
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another thing, the approach can incorporate current imagery processing methods, and does not 

require repetitive testing, like procedures in eCognition.  

Concretely, aerial photos with single imagery tones are more available data sources for 

vegetation mapping, and sometimes, aerial photos with hyperspatial resolutions are in archives, 

either national-level imagery datasets (e.g. USDA: Natural Resources Conservation Service 

Geospatial Data Gateway or ASO Taiwan Image supplier and services System) or international-

level imagery datasets (e.g. EarthExplorer). For example, Corona Lanyard (1963) and Corona 

KH-4B (from 1967 to 1972) both provided 1.8 m imagery worldwide, and Corona imagery can be 

bought through EarthExplorer website (http://earthexplorer.usgs.gov/) with very small costs. 

Meanwhile, SRTM, a digital terrain dataset has worldwide coverage in 90 m spatial resolution, 

and can be used to assist image processing.  

In contrast, Landsat imagery with coarser spatial resolutions has been widely used in long-

term land use/ land cover mapping and monitoring (Cohen & Goward, 2004), because of its long-

term consistent platforms, since 1972 and multiple bands, which reflect vegetation distributions 

(near-infrared) and temperature (thermal-infrared). Nevertheless, except in the United States, 

Landsat satellites may not offer enough imagery with continuous or regular time intervals and 

good imagery qualities, such as low cloud covers in wetter tropical areas. Furthermore, other 

detailed ancillary data, which were helpful to assist imagery interpretations, may be available at 

national-level datasets, such as U.S. National Elevation Dataset 10 Meter 

(http://datagateway.nrcs.usda.gov/GDGOrder.aspx), U.S. General Soil Map (STATSGO) 

(http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx), or LiDAR Topography Data 

(http://opentopo.sdsc.edu/gridsphere/gridsphere?cid=datasets).  However, those datasets cannot 

reflect temporal changes of species distributions and are limited in survey areas.  

Future studies should focus on two aspects. One is method for species labeling in different 

ecosystems. Although the separation of species types on different tree density patterns was 

successful in this study, species associations do not correlate so strongly with tree density in 

many forest and woodland ecosystems. Disturbance frequencies and intensities may violate the 

second hypothesis, especially confronting large, infrequent disturbances, which may result in 
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more heterogeneous species distributions (Turner & Dale, 1998). Thus, ecological knowledge 

should be applied in vegetation mapping. The other focus of future research should be the 

techniques themselves. Algorithms of tree crown delineations can be tested at lower tree density 

stands and appropriate object definitions should be established for higher tree density stands. In 

particular, individual tree density patterns reflect different biological interactions over times. For 

example, at the species spreading front, reduced intra-specific competition in dense populations 

may increase population growth rates and migrations, but sparse populations may suffer 

decreased migrations (Thuiller et al., 2008). However, highly overlap tree crowns make it difficult 

to detect changes in density of individual species (e.g. Tyler et al., 2006), and tree crowns in 

sparse tree stands cannot be identified using eCognition. Therefore, more precise and 

meaningful object definitions can be helpful not only for individual species information but also for 

species life history estimations.  
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CONCLUSION 

The three-level hierarchical segmentations and the three-level evaluative approach, based 

on the available data, SRTM and RGB hyperspatial imagery, partly supported the three 

hypotheses:  

1. The aspect stratification was the most effective to reduce variation in local tone and texture and 

gather similar components of tree covers within strata.  

2. The four target species, when grouped into two species associations, showed about 80% 

overall agreement between segmentations based on the random walker algorithm and 

existing vegetation maps.  

3. The two tree density distributions did not have an optimal scale parameter using eCognition for 

detailed species segmentations, but results provided improving guidelines.  

Those results showed that identifying tree density segmentations for constructing a 

hierarchical vegetation framework provided the potential to produce vegetation mapping at finer 

scales by labeling species associations and evaluating algorithm fits for species segmentations.  
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