Arizona Foodshed: Estimating Capacity to Meet Fresh Fruit and Vegetable

Consumption Needs of the Arizona Population

by

Nicole Vaudrin

A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Approved April 2013 by the Graduate Supervisory Committee:

Christopher Wharton, Co-Chair Meg Bruening, Co-Chair Punam Ohri-Vachaspati Rene Villalobos

ARIZONA STATE UNIVERSITY

May 2014

ABSTRACT

Fruit and vegetable (FV) consumption continues to lag far behind US Department of Agriculture (USDA) recommendations. Interventions targeting individuals' dietary behaviors address only a small fraction of dietary influences. Changing the food environment by increasing availability of and excitement for FV through local food production has shown promise as a method for enhancing intake. However, the extent to which local production is sufficient to meet recommended FV intakes, or actual intakes, of specific populations remains largely unconsidered. This study was the first of its kind to evaluate the capacity to support FV intake of Arizona's population with statewide production of FV. We created a model to evaluate what percentage of Dietary Guidelines for Americans (DGA) recommendations, as well as actual consumption, state-level FV production could meet in a given year. Intake and production figures were amended to include estimates of only fresh, non-tropical FV. Production was then estimated by month and season to illustrate fluctuations in availability of FV. Based on our algorithm, Arizona production met 184.5% of aggregate fresh vegetable recommendations, as well as 351.9% of estimated intakes of Arizonans, but met only 29.7% of recommended and 47.8% of estimated intake of fresh, non-tropical fruit. Much of the excess vegetable production can be attributed to the dark-green vegetable sub-group category, which could meet 3204.6% and 3160% of Arizonans' aggregated recommendations and estimated intakes, respectively. Only minimal seasonal variations in the total fruit and total vegetable categories were found, but production of the five vegetable sub-groups varied between the warm and cool seasons by 19-98%. For example, in the starchy vegetable

group, cool season (October to March) production met only 3.6% of recommendations, but warm season (April to November) production supplied 196.5% of recommendations. Results indicate that Arizona agricultural production has the capacity to meet a large proportion of the population's FV needs throughout much of the year, while at the same time remaining a major producer of dark-green vegetables for out-of-state markets.

TABLE OF CONTENTS

	Page
LIST OF	TABLEvii
LIST OF	FIGURESviii
CHAPTE	R
1	INTRODUCTION1
2	REVIEW OF LITERATURE
	American Fruit and Vegetable Intake9
	Fruit and Vegetable Consumption Associated with Decreased Chronic
	Disease Risk10
	Factors Associated with Fruit and Vegetable Intake
	Creating Healthy Environments
	Local Food Movement
	Local Foods to Improve Fruit and Vegetable Consumption
	Defining and Describing Foodsheds
	Practical Application of the Foodshed Concept
	Arizona: Geography, Climate, Agriculture41
3	METHODS
	Recommended AZ Fresh FV Intake (Step 1)44
	Estimated AZ Fresh FV Intake (Step 2)51
	AZ Fresh FV Production (Step 3)54
	Seasonal Production (Step 4)57
	Comparing Recommendations to Production and Intake (Step 5)59

4	RESULTS61
	Recommended AZ Fresh FV Intake (Step 1)61
	Estimated AZ Fresh FV Intake (Step 2)64
	AZ Fresh FV Production (Step 3)65
	Seasonal Production (Step 4)67
	Comparing Recommendations to Production and Intake (Step 5)68
5	DISCUSSION74
6	CONCLUSION
REFEREN	NCES
APPEND	IX
А	2010 ARIZONA POPULATION98
В	PHYSICAL ACTIVITY LEVEL102
C	MYPLATE VEGETABLE RECOMMENDATIONS104
D	MYPLATE FRUIT RECOMMENDATIONS107
E	ESTIMATED CALORIE NEEDS PER DAY BY AGE, GENDER, AND
	PHYSICAL ACTIVITY109
F	USDA FOOD PATTERNS111
G	ARIZONA FEMALES' FRESH FRUIT AND VEGETABLE
	RECOMMENDATIONS113
Н	ARIZONA MALES' FRESH FRUIT AND VEGETABLE
	RECOMMENDATIONS126
Ι	SERVING WEIGHTS FOR FRESH VEGETABLES

Page

J

Κ

L

Μ

Ν

0

Р

Q

R

S

Т

U

V

W

SERVING WEIGHTS FOR FRESH FRUIT141
FRUIT AND VEGETABLE PRICES143
FRESH VEGETABLE CONVERSION FACTORS AND LOSS
ESTIMATES FOR ARIZONA GROWN CROPS145
FRESH FRUIT CONVERSION FACTORS AND LOSS ESTIMATES
FOR ARIZONA GROWN CROPS147
ACTUAL INTAKE: VEGETABLES149
ACTUAL INTAKE: FRUIT
ESTIMATED ARIZONA FEMALES' FRUIT AND VEGETABLE
INTAKE155
ESTIMATED ARIZONA MALES' FRUIT AND VEGETABLE
ESTIMATED ARIZONA MALES TROTT AND VEGETABLE
INTAKE
INTAKE164
INTAKE

Page

APPENDIX

Y	ARIZONA FRESH VEGETABLE LOSS ADJUSTED YIELD
	ESTIMATES188
Z	ARIZONA FRESH FRUIT LOSS ADJUSTED YIELD
	ESTIMATES191
AA	ARIZONA HARVEST CALENDAR193
BB	ROMAINE LETTUCE HARVEST DATES195
CC	CARROT HARVEST DATES197
DD	PEAR AND PLUM HARVEST DATES199
EE	ARIZONA MONTHLY FRESH VEGETABLE PRODUCTION201
FF	ARIZONA MONTHLY FRESH FRUIT PRODUCTION
GG	ARIZONA FRESH VEGETABLE MONTHLY PRODUCTION
	CALENDAR
HH	ARIZONA FRESH FRUIT MONTHLY PRODUCTION
	CALENDAR
II	ARIZONA WARM CLIMATE FRESH DARK-GREEN VEGETABLE
	PRODUCTION CALENDAR

LIST OF TABLES

Tał	Pable Pa	
1.	Physically Active Arizona Females' Fresh Fruit and Vegetable	
	Recommendations	65
2.	Arizona Fresh Fruit and Vegetable Recommendations	66
3.	Arizona Females' Fresh Fruit and Vegetable Intake	68
4.	Arizona Fresh Fruit, Vegetable, and Vegetable Sub-Groups Intake	69
5.	Arizona Fresh Vegetable Loss Adjusted Yield Estimates	70
6.	Arizona Loss Adjusted, Fresh Total Vegetable, Dark-Green Vegetable, and	
	Red-Orange Vegetable Monthly Production by Climate	72
7.	Arizona Fresh Fruit and Vegetable Needs Theoretically Met by Arizona	
	Fresh Produce Yields	73
8.	Arizona Loss Adjusted Fresh Fruit and Vegetable Monthly and Seasonal	
	(Warm/Cool) Production Compared to Recommendations	75
9.	Arizona Loss Adjusted, Fresh Dark Green Vegetable Monthly and Seasonal	
	Production Compared to Recommendations	76
10.	Average Arizona Adults (18 years old or older) Per Capita Intake of Fruits	
	and Vegetables	77

LIST OF FIGURES

Figure		Page
1.	Steps to Evaluate the Arizona Foodshed's Capacity to Meet the	
	Fruit and Vegetable Needs of the Arizona Population	45

Chapter 1

INTRODUCTION

In 2009, only 23.5% of the U.S. population and 24.1% of Arizonans met the 2005 USDA Dietary Guidelines for Americans recommendation for fruit and vegetable (FV) consumption (Grimm et al., 2010; Li et al., 2011) a disturbing statistic given that diets high in FV are associated with decreased risks of cardiovascular disease, stroke, and some cancers (He, 2007; He, et al., 2006; Rautianen et al., 2012; Hung et al., 2004; Riboli and Norat, 2003). Antioxidant components, like carotenoids, vitamins C and E, polyphenols, and flavonoids; fiber content; and generally high nutrient density of FV may together explain some of the reductions in chronic disease risk through synergistic processes (Jacobs et al., 2011). Antioxidants, for example, inhibit the formation of, and neutralize existing, harmful free radicals in the body (Chang et al., 2010). Fiber acts to lower cholesterol (Veldman et al., 1997; Haskell et al., 1992), decrease cardiovascular heart disease risk (Rimm et al., 1996), reduce colorectal (Murphy et al., 2012) and renal cell carcinoma cancers (Daniel et al. 2013), and improve markers of glycemic control in diabetics (Chandalia et al., 2000). Other nutrients, such as potassium, calcium, and magnesium may also play a role in lowering blood pressure (Joffers et al. 1987) and risk of stroke (Ascherio et al., 1998).

Given the variety of beneficial health outcomes associated with FV intake, researchers have sought improvements in FV intake through a variety of interventions. Among them are individual-centered school nutrition education programs (Howerton et al., 2007; te Velde et al., 2008) for children and teens, as well as a variety of health behavior change theory-based programs targeting adults (Thomson and Ravia, 2011; Ammerman et al., 2002; Pomerleau et al., 2005). However, interventions focusing on behavior change primarily through influencing individual choice produce only limited (Thomas and Ravia, 2011) and short-lived (Chapman, 2010), as well as put the burden of change on the individual, possibly leading to victim-blaming (McLeroy et al., 1988). The socio-ecological model (SEM) includes factors that influence food choice, but moves beyond the individual to include interpersonal, institutional, community, and public policy factors (McLeroy et al., 1988). With this broadening of focus, researchers have begun evaluating approaches that introduce changes in the food environment in which people make food-purchasing decisions, with the hope that this strategy might facilitate more effective behavior change interventions in the future (Lucan and Mitra, 2011; Blitstein et al., 2012; Svasticalee et al., 2012; Whaley et al., 2012; Slusser et al., 2007; Backman et al., 2007; Robinson, 2008; Abusabha et al., 2011). The National Cancer Institute describes the food environment as including food stores, restaurants, schools, and worksites (National Cancer Institute, 2012). As such, interventions at the level of the food environment have the potential to reach broader swaths of the population.

Existing data already suggest that aspects of the food environment are associated with dietary outcomes, specifically FV consumption. In a study of the perceived food environments of Philadelphia neighborhoods, 33.8% of respondents reported poor supermarket access and 22.2% reported poor grocery quality (Lucan and Mitra, 2011). People who perceived their food environments negatively had lower FV intakes and higher fast food consumption than those who did not (Lucan and Mitra, 2011). A similar study in six low-income, primarily minority neighborhoods in Chicago found that individuals who strongly agreed or agreed that they had adequate and convenient access

to a variety of reasonably priced FV were significantly more likely (OR=4.42 and 2.13, respectively) to consume three FV servings per day than those who were not happy with their shopping options (Blitstein et al., 2012). Children are also affected by their food environments. In a Danish cross-sectional study of health and health behaviors in 11-, 13-, and 15-year-old children, middle- and low-income students attending schools with a combined high fast food outlet and low supermarket exposure were most likely to report low fruit intake; low vegetable intake was reported most frequently among low-income children (Svasticalee et al., 2012).

Intervention studies focused on altering the food environments of both children and adults have also demonstrated impacts on dietary outcomes. Providing elementary school children from low-income households with a salad bar for lunch, for example, has been shown to increase FV consumption (Slusser et al., 2007). Likewise, Backman et al. (2007) found significant increases in both fruit and vegetable intake among low-wage employees following a 12-week trial, when enough fruit to provide one serving per workers was delivered to their worksite three times a week. Researchers in Troy and Albany, NY, evaluated the Veggie Mobile, a traveling vegetable truck selling produce to seniors in neighborhoods with limited produce availability at costs, on average, 48% lower than grocery stores (Abusahba et al., 2011). Seniors in this study showed a trend of increased FV consumption, but this increase was not statistically significant (Abusabha et al., 2011).

A more recent and trending strategy to improve healthy food access and food environments is the development and promotion of local foods programs and retail venues. Community gardens, farmers' markets, and community supported agriculture,

among other programs, have been associated with increased FV consumption by improving the local food environment, as well as through cultivating positive attitudes towards FV (Alaimo et al., 2008; Ohri-Vachaspati and Warix, 1995; Evans et al., 2012; McCormack et al., 2010; Johnson et al., 2004; Harris et al., 2012; Izumi et al., 2010). Cross-sectional data from the National Cancer Institute's Food Attitudes and Behaviors (FAB) Survey conducted between October and December 2007 indicated that 27% of grocery shoppers utilized farm-to-consumer venues (e.g., farmers' markets, roadside stands, pick-your-own produce farms, or community-supported agriculture programs) at least weekly during summer months (Blanck et al., 2011). These sites have the potential to reach a growing number of Americans. The number of farmers' markets, for example, increased by 78% between 1994 and 2012 (Agriculture Marketing Service [AMS], 2012). Given the focus on the sale of whole, healthy foods, local food markets can augment the food environment of neighborhoods by offering fresh, quality foods direct to consumers, or perhaps through supplementing grocery stores' stocks with local produce (Blanck et al., 2011).

Local foods programs also have the potential to change attitudes in a variety of populations. In a review by McCormack et al. (2010), women enrolled in the Women, Infants, and Children (WIC) supplemental Farmers' Market Nutrition Program (FMNP) placed a higher value on FV and viewed FV preparation and price more favorably compared to non-FMNP participating WIC women. Individuals taking part in the Senior Farmers' Market Nutrition Program (SFMNP) had more positive attitudes towards FV preparation and had increased FV consumption compared to baseline data as well (McCormack et al., 2010). WIC FMNP and SFMNP participants perceived the quality of

produce to be just as good as, or better than, that found at the grocery store (McCormack et al., 2010). Similarly, college students in Twin Cities, MN, who placed high importance on local, sustainable, and organic food production, consumed 1.3 more servings of FV combined, compared to those who placed low importance on these practices (Pelletier et al., 2013).

Despite the growing interest in local foods and associations with increased intake of FV, a generally accepted definition of the term 'local' does not exist. 'Local' may indicate a specific distance travelled from farm to table or in terms of markets, such as farmers' markets, community supported agriculture (CSA) programs, and farm-to-school or farm-to-institution arrangements (Martinez et al., 2010). On a theoretical level, 'local' is often described in terms of foodsheds. Foodsheds define the flow of food into and out of an area and differ from conventional food systems in that they must have the following characteristics: they are embedded in a moral economy; are used to build a commensal community; employ the concepts of self-protection, secession, and succession; use nature as a measure; and lastly bring together producers and consumers within close proximity (Kloppenburg et al., 1996).

A number of researchers have developed models to evaluate the production capacity of various foodsheds (Desjardins et al., 2010; Colsanti and Hamm, 2010; Peters et al. (b), 2009; Morrison et al., 2010; and Giobolini et al., 2011). In these circumstances, however, 'local' is defined in more practical, spatial terms, delineated by political boundaries (Desjardins et al., 2010), regions, or miles from a specific location (Clancy and Ruhf, 2010). Recommended (Giobolini et al., 2011), or recommended and current (Colsanti and Hamm, 2010; Peters et al. (b), 2009; Desjardins et al., 2010), intakes of FV (Colsanti and Hamm, 2010) or other food groups (Globolini et al., 2011; Peters et al.(b), 2009; Morrison et al., 2010; Desjardins et al., 2010) of particular populations can be compared to the amount and type of food produced in the area (Morrision et al., 2010; Peters et al.(a), 2009; Desjardins et al., 2010; Gioboilini et al., 2011; Colsanti and Hamm, 2010). For example, Peters et al.(a), 2009, found that New York State could meet 34% of its population's total FV needs locally, while the agricultural production of Willamette Valley, Oregon, can supply 67% grain, 10% vegetable, 24% fruit, 59% dairy, 58% meat and beans, and none of the daily oil requirements for its citizens (Giobolini et al., 2011). If low biointensive farming techniques (i.e., those that limit external inputs of nutrients and water) are used to grow and store field crops without using season extension tools, 65% of fresh vegetables and 39% of non-tropical fruits consumed by Detroiters could be produced on half of the available vacant lots in the city, during the growing season (Colasanti and Hamm, 2011). Although such studies provide insight into localized agricultural capacity, the results of foodshed analyses are unique to the specific location studied and cannot be extrapolated to other areas. This is due to differences in local natural and human environments, as well as in spatial distances evaluated.

Meanwhile, the local food movement is gaining in popularity with the writings of Kingsolver et al., (2007), Smith and MacKinnon (2007), and Pollan (2006), without the benefit of understanding the viability of such systems in specific locations. In addition, estimates of production or potential production, like those made by Desjardin et al. (2010) that determined ~10% shift in a region's production of commodity crops to underconsumed foods like FV would be meaningful nutritionally and have limited agricultural impact, could influence food policy decisions. In light of very low FV intake levels

(Guenther et al., 2006; Lorson et al., 2009; Michels Blanck et al., 2008) and the related incidence and cost of chronic disease (He, 2007; He et al., 2006; Rautianen et al., 2012; Hung et al., 2004; Riboli and Norat, 2003), it is important to understand the extent to which local food production can contribute to the overall demand for FV of a community or region, a prerequisite for improving healthy food access, consumption, and health outcomes.

No such analyses have been conducted for the state of Arizona. We therefore developed a model to estimate fresh FV production capacity of the Arizona foodshed. Arizona includes geographically diverse production regions, with the most productive agricultural region lying in the desert lowlands ("Climate of Arizona," n.d.). Yuma county, for example, supplies the United States with 94% of its winter leaf vegetables ("Farming and Ranching," n.d.), but this production is limited by seasonality. Similarly, the amount and timing of production for other vegetables or fruits has not been estimated. Thus, the primary objectives of this study are to determine the following:

- 1. What percentage of the fresh portion of recommended fruit and vegetable intake of Arizona's population can be met through the state's current agricultural production?
- 2. What percentage of the fresh portion of estimated fruit and vegetable intake by Arizona's population can be met through the state's current agricultural production?

To answer these questions, we developed an algorithm to estimate production and consumption of FV in Arizona. This analysis progressed in five broad steps: 1)

calculating aggregated, yearly fresh FV recommendations for the Arizona population; 2) estimating total yearly fresh FV intake for the Arizona population; 3) estimating yearly fresh FV production in the state; 4) assessing fresh FV production by season; and 5) calculating the percentage of recommendations and estimated intake that could be met by production. Only fresh FV were considered in the model because the origins of processed products can be difficult to define and long shelf lives complicate determining the amount available at a given time. Tropical fruits were also excluded since they cannot be grown locally. Estimates of losses that occur from production to consumption were accounted for, so all FV data are compared at the consumption level. USDA does not provide FV recommendations for infants (0-2 years old), so these individuals were omitted from both the recommendations and estimated intakes for the Arizona population.

Chapter 2

REVIEW OF LITERATURE

American Fruit and Vegetable Intake

Americans do not consume adequate amounts of fruits and vegetables (FV). The most current Centers for Disease Control and Prevention (CDC) data from 2009 showed that 32.5% of the U.S. population ate fruit at least twice a day and only 26.3% consumed vegetables at least three times a day (Grimm et al., 2010). The 2010 Dietary Guidelines for Americans are more personalized, taking into account age, gender, and physical activity level. Based on these factors, suggested intakes range from four to 13 servings of FV per day. USDA has also broken the vegetable group down into five subgroups: dark green, red/orange, beans and legumes, starchy, and other (U.S. Department of Agriculture [USDA] (b), 2010). Based on the new standards, and using National Health and Nutrition Examination Survey (NHANES) 1999-2000 24hr diet recall data, less than 11% of individuals in most sex-age groups met their FV needs (Guenther et al., 2006). A third or less of the population consumed adequate amounts of dark green, red/orange, or beans and legumes, while nearly 75% of individuals across sex-age groups consumed excess starchy vegetables, mostly white potatoes (Guenther et al., 2006).

These disappointing statistics do not seem likely to improve soon. NHANES 1999-2002 data on children two to 18 years old found that children's diets seem to deteriorate with age. Two- to five-year-olds were 2.7 times more likely to meet fruit recommendations and 1.5 times more likely to meet vegetable standards than six- to 11-year-olds. Adolescents were four times more likely to consume inadequate amounts of

fruit and 2.5 times less likely to consume an adequate amount of vegetables when compared to two- to five-year-olds (Lorson et al., 2009). Michels Blanck et al. (2008), using the CDC Behavioral Risk Factor Surveillance System (BRFSS) data from 1994-2005, found that FV consumption in adults has remained fairly constant over recent years, with no statistical difference in intake between 1994 and 2005. In 1994, Americans consumed 3.43 servings per day on average, but that figure dropped slightly to 3.24 servings per day by 2005 (Michels Blanck et al., 2008). The small decline was due to a lower intake of fruit juice and non-fried potatoes (Michels Blanck et al., 2008).

Fruit and Vegetable Consumption Associated with Decreased Chronic Disease Risk

Poor FV intake among Americans of all ages is an important issue in relation to combating chronic diseases and related expenses. In fact, the CDC cites poor nutrition and limited numbers of individuals meeting FV recommendations as one of the four modifiable health risk behaviors linked to chronic disease (Centers for Disease Control and Prevention [CDC], 2012). Chronic disease causes the majority of death and disability in the United States. In 2005, eight out of 10 American deaths were from chronic diseases, with heart disease, cancer, and stroke accounting for greater than 50% of all deaths (CDC, 2012). Meanwhile, kidney failure, non-traumatic lower-extremity amputations, and blindness among adults, aged 20-74 years were most commonly caused by diabetes (CDC, 2012). A Milken Institute study (2007) conducted in 2003 found the cost of treatment for the seven most common chronic diseases (cancer, diabetes, hypertension, stroke, heart disease, pulmonary conditions, and mental disorders) to be

\$277 billion for non-institutionalized individuals. Absenteeism, loss of productivity, and other indirect costs related to these diseases totaled \$1.1 trillion (DeVol et al., 2007).

FV provide protection against common and costly chronic disease through multiple mechanisms. Specific components of FV; such as antioxidants, potassium, magnesium, calcium, and fiber; serve varying defensive functions against chronic diseases. These FV constituents, along with other bioactive elements and nutrients, may also work together to create a greater impact on health outcomes than any individual component, a concept known as food synergy (Jacobs et al., 2011). FV have been linked to decreased risk of cancer, coronary heart disease, stroke, and type 2 diabetes.

Antioxidants: Antioxidants can interrupt the oxidative process, preventing the endogenous formation of free radicals, as well as scavenging and neutralizing free radicals formed though metabolism or from environmental contaminants like ultraviolet rays (Chang et al., 2010). Free radicals can damage cells and even DNA. Unrepaired DNA can lead to replication errors and mutations that promote disease. Examples of antioxidants commonly found in FV include carotenoids, vitamins C and E, polyphenols, and flavonoids. Trace minerals required for the endogenous synthesis of antioxidative enzymes, like superoxide dismutase, are also found in FV (Chang et al., 2010). The resulting oxidative stress has been linked to insulin resistance, the metabolic syndrome (a set of risk factors for heart disease, stroke, and type 2 diabetes), and diabetes (Avignon et al., 2012).

Potassium, magnesium, and calcium: Research has shown that the minerals potassium, magnesium, and calcium (PMC) are linked to lowered stroke risk and blood pressure. Many of the foods highest in these nutrients are FV. Green leafy vegetables and

beans contain high levels PMC; tomatoes are high in potassium and magnesium; and orange juice, raisins, date, and grapefruit are high in potassium (Agriculture Research Service (ARS), 2012). Potassium, calcium, and vegetables were significantly associated with a decreased risk of additional stroke in a study population of single stroke survivors for those in the upper quartile of intake compared to the lowest (Park, 2010). In this same study, however, fruit intake was not correlated to stoke risk (Park, 2010). The Ascherio et al. (1998) multivariate analysis of collected Health Professionals Follow-up Study data found that hypertensive men in the top quintile of dietary potassium consumption, as compared to the lowest quintile, had a significant reduction in stroke risk; similar results were found with magnesium, but not calcium. Potassium and magnesium supplements, conversely, were not associated with stroke risk (Ascherio et al., 1998).

PMC also affects blood pressure. Potassium is the most abundant intracellular ion, and is part of the sodium/potassium pump in cellular membranes that generate energy for the cell. The pump also produces an electrical charge that leads to a reduced movement of calcium into the smooth muscle cells. When this process occurs in vascular smooth muscles, it leads to relaxation and dilatation of the vessel. A wider vessel facilitates increased blood flow and decreased blood pressure. Low concentrations of potassium in the blood results in vasoconstriction and increased blood pressure (Haddy et al.,2005). Although the mechanisms are not entirely understood, magnesium may participate in vasodilation by inhibiting the movement of calcium into cells. Low magnesium levels may also cause an increase in extra-cellular calcium and vasoconstriction (Sontia and Touyz, 2007).

While calcium channel blockers lower blood pressure, so do calcium supplements. Calcium may lower blood pressure by modulating the relationship between sodium and potassium. Using NHANES data, Gruchow et al. (1988) derived estimated nutrient intakes from 24-hour diet recall interviews. When calcium intake was low (<400miligrams/day in men and <800milligrams/day in women), the ratio of sodium to potassium was significantly related to blood pressure, but at higher calcium intakes, there was no relationship (Gruchow et al.,1988). The main source of calcium in Western diet is dairy (Ganmaa et al., 2002), but there are FV sources and a greater percentage of the calcium from beans and most greens is absorbed than from dairy products (Keller et al., 2002).

Data from the prospective study of coronary heart disease and stroke, the Honolulu Heart Program, provides epidemiological evidence for the effect of PMC on blood pressure. Structured interviews and 24 hour recall were used to gather diet data, which were then analyzed for individual nutrient content and calculated and arranged into quartiles. Based on the difference between the highest and lowest quartiles of consumption, magnesium was significantly associated with both systolic and diastolic blood pressure (Joffers et al., 1987). Dietary calcium was also correlated with both systolic and diastolic blood pressure, as was potassium (Joffers et al., 1987)

Fiber: Fiber has been associated with a decreased risk of cardiovascular disease (CVD), certain cancers, and diabetes. Epidemiological evidence supports the link between dietary sources of fiber, including that from FV, and a reduced risk of CVD. Using data collected in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) study in Finland, researchers evaluated the correlation between dietary fiber and the risk

of stroke in male smokers 50 to 69 years of age. Participants were separated into quintiles of fiber consumption. Those in the highest quintile had a significantly lower risk stroke than those in the lowest fiber consuming quintile (Larsson et al., 2009). Rimm et al. (1996) examined the relationship between fiber and coronary heart disease based on data collected from the Health Professionals Follow-up Study of 51529 male health professionals 40 to 75 years of age. Fiber was analyzed based on source, with total fiber, fruit fiber, vegetable fiber, and grain fiber tested separately. Vegetable fiber, but not fruit fiber was significantly correlated with a decreased risk of myocardial infarction (Rimm et al., 1996).

A clinical study by researchers in Germany examined the effects of fiber on cholesterol levels and fibrinogen in relation to mechanisms for the nutrient's risk reduction properties. Twenty hyperlipidemic, but otherwise normal weight and healthy men 25 to 60 years old were randomly assigned to the control group or the pectin, a soluble fiber found in citrus, apples, and other fruits, supplement group. After four weeks of consuming a 15 gram pectin supplement, significant positive changes were seen in total cholesterol, LDL-cholesterol, and HDL-cholesterol (Veldman et al., 1997). Fibrinogen is a pre-cursor to fibrin, important in blood clotting, and elevated levels have been linked to increased risk of atherosclerosis, cardiovascular heart disease and stroke. Participants consuming the pectin experienced significant changes in fibrinogen conversion to fibrin, as well as in a shift in fibrin networks believed to be less atherosclerotic (Veldman et al., 1997). A previous study conducted by Haskell et al. (1992) had also established a link between water-soluble dietary fibers (pectin, psyllium husks, guar gum, and locust bean gum) and cholesterol levels through an eight-week cross-over randomized control trial of men and women with hypercholerolemia. Fifteen grams of fiber supplement a day for four week led to significant reductions from baseline for total cholesterol and LDL-cholesterol (Haskell et al., 1992).

Dietary fiber has also been shown to improve metabolic markers in people with diabetes. Data gathered from the European Prospective Investigation into Cancer and Nutrition, an on-going prospective cohort study with 521,448 participants (of which roughly 70% are women), were analyzed for a connection between fiber from cereals, fruits, and vegetables, and colorectal cancers. Based on information from a diet and lifestyle questionnaire and a computer-based 24-hour diet recall, participants were organized into quintiles of fiber consumption. When comparing the highest and lowest quintiles, total fiber showed a significant reduction in colorectal cancer risk (HR 0.76) (Murphy et al., 2012). When fiber was separated into cereals and FV, those from the highest quintile of FV fiber intake had a significant reduction in total colorectal cancer s and colon cancer alone, but not rectal cancer (Murphy et al., 2012).

Similarly, the National Institutes of Health and the American Association of Retired Persons prospective study of people aged 50 to 71 years compared dietary fiber intake with renal cell carcinoma. Based on a food frequency questionnaire, participants were split into quintiles of fiber intake. Participants in the highest vs. lowest quintiles for total fiber intake and fiber from legumes had a 15–20% lower risk of renal cell carcinoma (Daniel et al., 2013). Total fruit and vegetable intake of fiber did not affect risk, but there were significant reductions when cruciferous vegetables and whole citrus fruit were considered separately (Daniel et al., 2013).

Dietary fiber has also been shown to improve metabolic markers in people with diabetes. Chandalia et al. (2000) tested the standard American Diabetes Association diet, composed of eight grams soluble fiber and 16 grams insoluble fiber to a high fiber diet of 25 grams soluble fiber and 25 grams insoluble fiber. All meals were provided for the 12-week cross-over trial. Sources of soluble fiber were mostly FV, such as cantaloupe, citrus, zucchini, okra, and sweet potatoes. After the six-week high fiber diet, patients had lower mean plasma glucose concentration, mean daily urinary glucose excretion, and plasma insulin, as well as lower fasting plasma total cholesterol concentration plasma triglyceride concentration, and a lower plasma VLDL cholesterol concentration (Chandalia et al., 2000). The high-fiber diet also limited the amount of cholesterol absorbed during digestion (Chandalia et al., 20000).

Food synergy: The protective benefits of FV against chronic disease may be attributed to food synergy, a process comprising multiple beneficial effects of a variety of components of FV. Food synergy assumes that the combination of nutrients and bioactive components in whole foods work together to influence health outcomes. Isolated nutrients are important in treating nutrient deficiency, but often cannot explain the full impact of foods or account for the effects of some supplements (Jacobs et al., 2011). Studies from Roswall et al. (2010) and Al Solaiman et al. (2010) compared whole diets to supplements in prevention of chronic disease. Roswall et al. (2010) used data from the Diet, Cancer and Health prospective study (1993 to 1997) of 57,053 Danes 50–64 years old to study the effects of diet and supplements on lung cancer risk. Based on data from a food frequency questionnaire that included questions on supplements, researchers found that dietary vitamin E, but not supplemental vitamin E, provided a significant protective

effect against lung cancer (incidence rate ratio=0.55). By contrast, risk of lung cancer was significantly higher when respondents took supplemental beta-carotene (incidence rate ratio=1.64) (Roswall et al., 2010).

Similarly, a cross-over trial was conducted comparing the effects of the Dietary Approaches to Stop Hypertension (DASH) diet and a usual diet supplemented with the same amount of potassium, magnesium, and fiber on blood pressure in 15 obese hypertensives and 15 normal weight normotensives. Participants were asked to follow a usual low fruit and vegetable diet for three weeks, then were randomized to either the usual diet with supplement or DASH diet for three weeks, and finally switched treatment diets for an additional three weeks. Blood pressure did not significantly change across diets in the normal weight normotensive group, but was significantly decreased in the overweight hypertensive group following the three-week DASH diet as compared to the usual diet and the usual diet plus supplement (Al Solaiman et al., 2010). Researchers indicated the possibility that the potassium, magnesium, and fiber found in the high amount of FV in the DASH diet may be interacting with other components in FV to produce a greater effect than the nutrients alone (Al-Solaiman et al., 2010).

Cancer: No matter what the mechanism, however, there is evidence to support a relationship between FV intake and cancer, stroke, heart disease, and diabetes, as discussed below. Cancer is a collection of disorders caused by the abnormal and uncontrolled division of cells, with different etiologies. FV intake was associated with a decrease in risk of developing certain cancers, according to a Riboli and Norat (2003) meta-analysis of case control and cohort studies. The effect of increases of 100 grams per day of fruit or vegetables was evaluated in relation to various types of cancer and yielded

disparate results. For instance, a 100-gram-per-day increase of fruit and vegetables was correlated with a decreased risk of esophageal cancer and gastric cancer, but only fruit was associated with a decreased risk of bladder cancer (Riboli and Norat, 2003). The cohort studies included in the analysis showed weaker associations between different cancers and FV intake than the case control studies illustrated. The prospective cohort studies may not be as strong due to only minor differences in intakes between individuals in the cohorts, imprecise measures of diet used, and accidental misclassification of individuals as not having cancer when they actually did. Case control studies may overestimate association due to potentially unreliable diet recall and participant selection bias (Riboli and Norat, 2003).

The Riboli and Norat (2003) meta-analysis did not include ovarian cancers, but there does appear to be a significant link between FV intake and the prognosis of women with the disorder. A four-year follow-up longitudinal study of women diagnosed with ovarian cancer found that women with pre-diagnosis diets rich in fruits and vegetables had significantly higher survival rates, while those consuming diets rich in red and processed/cured meats and dairy had more than double the hazard ratio for death (Dolesek et al., 2010).

Coronary Heart Disease (CHD) and Stroke: FV intake also has been shown to provide a reduction in relative risk (RR) for patients with CHD and stroke. He et al. (2007) completed a meta-analysis of 12 prospective studies describing 13 cohorts comparing CHD RR with FV intake levels. FV intake was standardized into three groups: those who consumed <three servings per day, three to five serving per day, or more than five servings per day. Researchers found a dose response to FV intake. Individuals who

consumed three to five servings of FV a day had a 7% decrease in RR of CHD, and those eating more than five serving of FV a day had ~17% decrease in RR compared to the group that had fewer than three servings a day (He, 2007). Another meta-analysis of eight studies on nine cohorts linking FV consumption and stroke by He et al. (2006) similarly showed a dose response effect. There was an 11% drop in RR for stroke between those who consumed three to five servings of FV a day and those who ate fewer than three servings a day. Those who ate more than five servings of FV a day had a 26% lower RR than the three-servings-per-day group (He, et al., 2006). Combining stroke and CHD into cardiovascular disease (CVD) generally, Nurses' Health Study and Health Professionals Follow-Up Study data showed a 28% drop in RR for CVD in participants consuming more than five servings a day of FV compared to those consuming <1.5 servings per day (Hung et al., 2004). Just one serving of leafy green vegetables resulted in an 11% decrease in CVD RR (Hung et al., 2004).

Type 2 Diabetes: Consumption of fruits, vegetables, or FV combined had no impact on the incidence of type 2 diabetes, according to the Carter et al. (2010) meta-analysis. Green leafy vegetables, however, may be effective, as some data have shown that an increase of 1.15 servings a day was associated with a 14% decrease in incidence of type 2 diabetes (Carter et al., 2010). Similarly, the Cooper et al. (2012) meta-analysis comparing the highest and lowest categories for FV intake did not find a statistically significant relationship between risk of type 2 diabetes and fruits or vegetables separately, with only a minimal effect of combined FV intake (RR=0.93) and a significant inverse relationship with green leafy vegetables (RR=0.84) (Cooper et al., 2012).

Factors Associated with Fruit and Vegetable Intake

In light of the multiple potential health benefits, as well as the high cost of treatment of chronic diseases, efforts should be made to improve FV intake. As such, the possible causes of low intake must be considered. The perceived benefits and barriers to FV intake were analyzed in a qualitative study of Canadian women 20-49 years of age (Maclellan et al., 2004). Barriers included: lack of knowledge about a variety of FV and how to prepare them, lack of familiarity with recommendations and serving sizes, excessive effort required to prepare FV, disinterest among family members about FV consumption, lack of or negative childhood experience with FV, lack of availability due to seasonality, limited offerings in restaurants, and cost (Maclellan et al., 2004). The following factors increased consumption: making FV part of a routine diet, mood, guilt, knowing certain foods "should" be eaten, being pregnant or having children, being diagnosed with a health condition, and moving away from home (Maclellan et al., 2004).

Individuals' reasoning behind food choices may be influenced by demographic factors and be indicative of FV intake levels. Differences in many of these factors occur between demographic groups but, in general, when choosing what to eat people value taste the most, followed by, in descending importance, cost, nutrition, convenience, and weight control (Glanz et al., 1998). Cost and convenience were more important to younger people with lower incomes. Nutrition and weight control were more important to older women. Older people living "healthy" lifestyles (e.g., good diet, adequate exercise, moderate alcohol, and no smoking) consumed the most FV. Younger people, African Americans, and low-income individuals ate the most fast food. Those who most valued convenience ate fewer FV and more fast food (Glanz et al., 1998). Socio-economic status

(SES) can also affect FV intake. For every one standard deviation above the reference value in SES, FV intake was increased by 0.24 servings per day (Dubowitz et al., 2008). Even after controlling for SES, negative perceptions of the food environment, including supermarket accessibility and poor grocery quality, were correlated with lower FV intake and more fast food consumption (Lucan and Mitra, 2012)

Since children do not regularly purchase food, the factors driving their consumption are different from those of adults. For children, home and school environments strongly influence their level of FV intake. In children six to 11 years of age, parental intake and modeling were most strongly associated with increased FV and fruit juice consumption, while home availability, family rules, and parental encouragement were also important (Pearson et al., 2009). For adolescents 12 to 18 years of age, parental intake was also linked to FV intake, as well as parental occupation status and parents' education (Pearson et al., 2009). In review of school-based nutrition education programs by Howerton et al. (2007), researchers found increases FV intake of 15-36%. Youth's likelihood to identify, taste, and enjoy the flavor of vegetables, especially when a garden component is included were also improved through school nutrition education (Morgan et al., 2010). Total vegetable consumption has also been correlated to a child's predilection for commonly eaten vegetables. Because children have an innate taste preference for sweetness, improving fruit intakes has been shown to be easier (Blanchette and Brug, 2005). Based on data from Pro Children interventions in the Netherlands, Spain, and Norway, free or subscription fruit and vegetables provided as snacks or as part of the school meal have shown promise. Newsletters and computer

programs targeting parents and encouraging positive role modeling and providing nutrition information were also found to be effective (te Velde et al., 2008).

Creating Healthy Food Environments

Traditionally, interventions designed to increase FV intake have targeted individual behavior change. Several studies evaluated the effectiveness of theory-based individual behavior change intervention trials and programs in adults to improve FV intake. A systematic review by Thomson and Ravia (2011) of interventions based on a variety of behavior change theories in healthy adults showed that such interventions result in an average increase in FV of 1.1 servings per day, while Ammerman et al. (2002) found only a 0.6 servings per day improvement in FV intake. In another review of behavioral interventions, researchers found an average of 1.1 and 0.39 servings-per-day improvement in FV consumption for healthy adults and children, respectively (Thomson and Ravia, 2011), while another review showed increases across studies of 0.13-0.7 servings per day (Pomerleau et al., 2005). Programs targeting individuals with health conditions had the greatest improvements; with a review of individuals with pre-existing conditions finding increases of 0.27-4.9 servings per day (Pomerleau et al., 2005), and the Ornish program for CVD patients has produced a 24.1% increase in FV intake (Ammerman et al., 2002).

Behavioral interventions, however, have their critics. It is difficult to motivate people to begin changing unhealthy behaviors, like a diet low in FV, even when they plan to do so. Effective clinical interventions often may not translate well into real-life situations or continue to be successful when scaled-up to reach more individuals. Maintenance in the long-term is even more challenging (National Institutes of Health [NIH], 2013). In a review by Chapman (2010), all but one intervention resulted in statistically significant increases in FV intake for the treatment vs. control group. The improvements in FV intake, however, were maintained for a year, but progressively decreased thereafter (Chapman, 2010).

Even in effective interventions, the results tend to be fairly modest. In the previously mentioned Thomas and Ravia (2008) review, researchers found that while the change in FV intake was, in most studies, statistically significant compared to baseline or the control group, it was still not enough to reach recommended levels of intake. For adults, FV intake ranged between 0.29 servings/day to 2.74 servings/day, so the 1.13 servings/day average increase in intake could not bring FV consumption rates up to the average five FV servings per day recommended (Thomas and Ravia, 2008).

In response to the relatively short-lived and modest results of individual focused interventions, some researchers have chosen to concentrate on the many underlying social and environmental factor influencing health behavior choices. For example, McLeroy et al. (1988) proposed a socio-ecological model (SEM) that includes an intrapersonal level focused on individual behaviors, but also interpersonal, institutional, community, and public policy layers to capture social and environmental influences.

Changing the food environment, using means available at all levels of the SEM, may be an effective alternative or supplement to individual behavior change education and counseling to generate more sustainable results. Utilizing pre-collected data from the 2004 Southeastern Pennsylvania Household Health Survey, perception of food environments in Philadelphia neighborhoods was analyzed (Lucan and Mitra, 2011).

Individual-level data were aggregated at the level of census tracts. Of all survey respondents, 33.8% reported poor supermarket access and 22.2% described having poor grocery quality. Perceived poor supermarket accessibility, poor grocery quality, and poor produce availability were all significantly associated with both low FV consumption and high fast food intake (Lucan and Mitra, 2011). A similar study in Chicago, IL, used data collected from the 5-4-3-2-1-Go! Campaign, a program designed to change parental behaviors in low-income neighborhoods to combat childhood obesity. Satisfaction with food environments was based on convenience, quality, and selection. Researchers found that participants who did not feel they had adequate and convenient access to a variety of reasonably priced quality foods, compared to those who agreed or strongly agreed that they had convenient access, were 2.13 times and 4.42 times less likely to eat three FV servings per day, respectively (Blitstein et al., 2012).

It is not only adults, but also children's diets that can be impacted by their food environments. A Danish study used data collected from Danish students who participated in the international Health Behavior in School-aged Children study (HBSC) of health and health behaviors in 11-, 13-, and 15-year-old children. Researchers mapped supermarkets and fast food restaurants within a 300-meter radius of schools and compared those data to food frequency data from the HBSC. Students from low- to middle-income households were more likely to report low fruit intake if they attended schools with both a high concentration of nearby fast food outlets and low supermarket exposure. Low-income children who attended schools surrounded by a low supermarket and high fast food restaurant density reported low vegetable intake most frequently (Svasticalee et al., 2012).

The public policy, institutional, and community components of the SEM model can address food environment issues such as these, but they can also go beyond food outlet density. Interventions designed to affect change at each level have been undertaken. An example of a public policy initiative to increase FV intake is the recent set of changes to the Special Supplemental Nutrition Program for Women, Infants and Children (WIC). WIC food packages now include cash value vouchers (CVV) for FV that are worth six dollars for children and \$10 for women and can be used to purchase fresh, canned, or frozen fruits and vegetables (Whaley et al., 2012). A survey of a random sample of California WIC participants, after adjusting for the socio-demographic variables, found a significant increase in the percentage of families that reported eating more vegetables compared to six months prior to the WIC food package changes, but there was no significant change in the proportion of families eating more fruit (Whaley et al., 2012). The other measure of FV consumption used (mean frequency of intake) yielded the opposite results, with fruit intake rising significantly while vegetable intake did not. In both cases, however, there was a trend toward higher total FV intake (Whaley et al., 2012).

At the institutional level, providing elementary school children from low-income households with a salad bar for lunch has been shown to increase FV consumption. Second to 5th graders at three Los Angeles Unified School District schools were given 24-hour food recall questionnaires in 1998 before salad bars were introduced and again in 2000 after they had been put in place. After the salad bars were installed, frequency of FV intake was significantly increased (2.97 to 4.09), with 84% of the rise due to higher lunch FV intake (Slusser et al., 2007). The workplace is also an institution that can be utilized to improve FV intake. Backman et al. (2007) conducted an intervention in six low-wage apparel manufacturing and food processing worksites and three control worksites in Los Angeles. Enough fruit was delivered to each intervention worksite for each worker to receive one serving three times a week for 12 weeks. Participants were asked to fill out validated questionnaires with a 30-day recall period at baseline, and again at four, eight, and 12 weeks that covered FV intake and shopping habits, as well as other criteria like workplace satisfaction. Even though the intervention only included fruit, significant increases in total FV intake were noted (Backman et al., 2007).

At the community level, studies have been conducted to assess the impact of grocery store density on FV intake, in addition to the impacts of alternative shopping venues, like mobile markets. Robinson (2008) reviewed articles on FV consumption in low-income African Americans. Women with access to supermarkets ate more FV than those with only access to independently owned stores. According to a focus group, local stores may not have specific products and produce, so the women would have to travel across town, usually to the suburbs, to purchase these items. With a limited income, travel can be prohibitive (Robinson, 2008). In Troy and Albany, NY, researchers evaluated the 'Veggie Mobile.' The Veggie Mobile is a traveling vegetable truck that sells produce to seniors in neighborhoods with limited produce availability at costs, on average, 48% lower than grocery stores. Participating seniors showed a trend of increased FV consumption, but only the change in vegetable intake was significant (Abusabha et al., 2011).

Local Food Movement

Another possible method of improving access to FV may be the emerging local food movement. There is no universally accepted definition of 'local,' but the U.S. Congress in the 2008 Food, Conservation, and Energy Act defined a product as 'local' if it travelled less than 400 miles from origin to consumer. Often, 'local' is seen in terms of markets, such as farmers' markets, community supported agriculture (CSA) programs, and farm-to-school or farm-to-institution arrangements (Martinez et al., 2010). Crosssectional data from the 2007 National Cancer Institute's Food Attitudes and Behaviors (FAB) Survey indicated that 27% of American grocery shoppers utilized farm-toconsumer venues (e.g., farmers' markets, roadside stands, pick-your-own produce farms, or community-supported agriculture programs) in the summer at least weekly (Blanck et al., 2011). These sites have the potential to reach a growing number of Americans with the number of farmers' markets, for example, increasing by 78% between 1994 and 2012 (AMS, 2012). Likewise, community gardens are local sources of food and increasing in popularity around the country. In 2008, one million American households participated in community gardens and an estimated five million households were extremely or very interested in having a garden started near their homes, according to the National Gardening Association (Todd, 2009).

Local food is also a small but growing percentage of the food market. Direct-toconsumer market sales rose from \$551 million in 1997 to \$1.2 billion in 2007, accounting for 0.8% of agricultural sales (Nile and Zepeda, 2011). Organic agriculture, another related alternative to conventional farming, was once trivialized (Starr, 2010), but in 2009, consumers spent nearly \$25 billion on organic food, 4% of total U.S. retail food sales. Supermarkets sold more organic products than natural food stores in 2006, indicating their emergence as a mainstream product (Nile and Zepeda, 2011).

Whether and how often an individual utilizes local foods, the system is generally viewed favorably with similar motivating factors and barriers listed across studies. Several studies evaluated opinions of local food among the general population and local food shoppers. National data gathered from the Food Marketing Institute (FMI) found that the majority of respondents cited freshness (82%), support for the local economy (75%), and knowing the source of the product (58%) as motivating factors in purchasing local food from direct markets or grocery stores ("U.S. Grocery Shopper Trends," 2009). The most recent FMI report indicated that 48% of participants looked for local food when shopping ("U.S. Grocery Shopper Trends," 2012). Focus groups conducted in the U.K. found low rates of purchasing, but pervasive enthusiasm for local foods across socioeconomic levels. Similar to the results from the FMI, the participants viewed local foods as fresher and tastier than conventionally grown products and cited a need and effort to support local farmers (Chambers et al., 2007). Researchers in New England conducted focus groups and individual interviews on local food as well. Freshness and taste were again mentioned, but also distrust of industrial farming and an impression of increased food safety with limited to no middlemen (Berlin et al., 2009). Seyfang (2008) conducted semi-structured interviews and distributed surveys to customers of Eostre, a British organic producer cooperative that supplies a CSA, farmers' markets, and food service for local schools and a hospital. Nearly all respondents (94%) felt that food from Eostre was "better for the environment" in general, in particular because of their efforts at "cutting packaging waste" and "reducing food miles" (Seyfang, 2008).

Despite these positive opinions and a general feeling that shopping for local food would be a worthwhile and enjoyable experience, several barriers have been identified. Chambers et al. (2007) conducted four focus groups, two with low socio-economic status (SES) individuals and two with participants reporting higher SES. Most individuals across groups thought local foods were more expensive than those in supermarkets. Participants also felt that regularly shopping at local food outlets would be inconvenient due to lack of time and opportunity (Chambers et al., 2007). Eostre farmers' market customers felt the major drawback to purchasing 'local' compared to buying foods at supermarkets was convenience and accessibility (56%), followed by higher prices (26%) and surprisingly, poorer quality of produce (20%). The Eostre CSA customers cited limited choice and inability to select produce as the greatest disadvantage to supermarket shopping (50%), as well as price (20%) (Seyfang, 2008).

Within the local food movement, there is a slowly evolving shift in beliefs and values around food and an expanding inclusivity, mainly by addressing issues with price (Starr, 2010). Local food has been criticized as an elitist endeavor that perpetuates inequalities (Blake et al., 2010; Hinrichs, 2000). Consumers who are wealthier are more likely to cook with raw ingredients and be aware of and willing to purchase local food (Blake et al., 2010). Farmers' markets and CSAs are sometimes focused on as the specific niche of "exclusive products and exclusive customers" (Hinrichs, 2000). Farmers may choose to charge a premium for their products, because people will pay for it with the value-added effect of a direct relationship, thereby becoming too expensive for lower income shoppers (Blake et al., 2010; Hinrichs, 2000)

Elitism in local food, however, is only part of the story. In New York City, 'Greenmarkets,' the largest network of urban farmers' markets in the country, locate in some higher-income neighborhoods to offer specialty products, but they also provide a much-needed source of fresh produce for neighborhoods lacking access (Severson, 2006). Low-income communities are also creating community gardens and farm-related youth education projects (Starr, 2010). Other organizations, such as the Food Trust, work within low-income communities to establish farmers' markets and healthy corner stores to increase the amount of fresh, healthy, and affordable food to small, neighborhood stores (Starr, 2010). The movement has reached the point where the U.S. government has gotten involved, with the 2008 Farm Bill diverting more money away from corporate agriculture to farmland protection, conservation, and local food systems research (Starr, 2010).

Local Foods to Improve Fruit and Vegetable Consumption

With growing popularity, market share, and inclusivity, local food systems may be a viable option for providing or supplementing access to and intake of fresh FV. At the most fundamental level, local food could be the production of one's own produce. Likewise, Alaimo et al. (2008) found community gardeners in Flint, MI, consumed FV 1.4 times more per day than non-gardeners and were 3.5 times as likely to eat FV at least five times a day. Cleveland urban gardeners consumed 7.5 servings of FV in the fall and 6.3 servings in the spring of 1995 (Ohri-Vachaspati and Warix, 1995), indicating both an increase in intake and a residual effect after the growing season. Litt et al. (2011) suggested the impact of community gardening on diet was due to the creation of connections between gardeners, their physical and social environment, and food production.

As previously mentioned, 'local' often refers to direct markets. Literature on farmers' markets and FV intake seems mostly focused food deserts. Food deserts are urban neighborhoods or rural areas with limited access to healthy, fresh, and affordable food. Lack of access to healthy foods, like FV, contributes to lower diet quality (AMS, 2013; Lucan and Mitra, 2012). In Austin, TX, a longitudinal pilot study was conducted to measure the impact of the introduction of two farm stands in low-income neighborhoods without adequate grocery store access. Within the two neighborhoods, 92 individuals were recruited for the study and completed *the Farmers' Market Questionnaire*, in either English or Spanish, which included FV intake questions based on the National Cancer Institute seven-item screener food frequency questionnaire. The stands were open for two to three hours, one day a week for 12 weeks. Statistically significant improvements in fruit, fruit juice, green salad, tomatoes or salsa, and other vegetables (excluding potatoes) were found among participants according to post-test surveys (Evans et al., 2012).

McCormack et al. (2010) reviewed farmers' market studies that reported nutrition-related outcomes. Participants enrolled in both the WIC program and associated FMNP that provides coupons for fresh produce placed a higher value on FV and viewed FV preparation and price more favorably compared to non-FMNP women. Individuals taking part in SFMNP also had more positive attitudes towards FV preparation and had increased FV consumption compared to baseline data. WIC FMNP and SFMNP participants perceived the quality of produce to be just as good as, or better than, that at the grocery store. Also, these individuals reported planning on returning to the farmers'

market after their coupons were gone and many made purchases in excess of coupon value with their own money (McCormack et al., 2010). In a Michigan WIC FMNP intervention study (Anderson et al., 2001) and a WIC FMNP Ohio cross-sectional study (Kropf et al., 2007), participants increased their FV intake significantly compared to only those enrolled in WIC. A Seattle, WA, pilot program delivering SFMNP baskets to homebound seniors showed increased FV intakes by 1.04 servings per day, addressing the issue of difficulty in transportation for redeeming SFMNP coupons (Johnson et al., 2004).

The City Fresh program in Cleveland, OH provides "Fresh Stops" in low income neighborhoods to improve access to FV. Fresh Stops are run partly as Farmers' Markets and partly as CSAs (Ohri-Vachaspati et al., 2009). In CSAs, typically customers purchase a share of a farmer's harvest for a season in advance. Every week or month, the customer gets a box or bag of fresh, local produce (Wilkinson, 2001). Customers pay for a Fresh Stop shares in advance, weekly or seasonally, at either a regular or reduced price if they live at $\leq 185\%$ of the poverty line. Unlike traditional CAs, however, customers can choose their own produce instead of receiving a pre-designated box or bag of FV. Recipes, food samples, and nutritional information are also offered on a 'learning table'. Based on preand post- survey data, low-income individuals experienced a statically significant increase in consumption of FV a snacks, eating more than one type of V/day, and ingesting at least five servings FV/day. While not statically significant, there was a trend in increased affordability of FV (Ohri-Vachaspati et al., 2009).

Farm-to-Institution (FTI) programs can also be utilized to align an organization's food service operation with its health and sustainability ideals. FTI programs bring

together farmers and members of institutional communities, like worksites, schools, colleges, hospitals, museums, and faith-based organizations. Often, locally produced farm products are incorporated into the cafeteria menu. Cooking classes, cafeteria promotional materials, field trips to farms, and taste tests can be utilized as means of accentuating local foods' freshness and quality as means of increasing FV intake. Institutions can also host farmers' markets to increase convenience of purchasing local foods, as well as reducing the cost of operating the markets by providing space at minimal prices or for free (Harris et al., 2012).

In 2013, the USDA will be distributing the first farm-to-school grants worth a total of \$4.5 million to bring together farmers and school food service, impacting children in 37 states and the District of Columbia (Food and Nutrition Service, 2012). Anecdotal evidence has indicated students will eat more FV when they were sourced directly from farmers, presumably due to flavor, encouragement from staff excited about local food, and direct interactions with growers (Izumi et al., 2010). Michigan school food service directors were found to have some concerns about local food, namely cost, reliability, and seasonality of FV, and lack of local producers from whom to purchase. If price and quality were competitive with current suppliers, however, 83% were interested in buying directly from local farmers (Izumi et al., 2006)

Defining and Describing Foodsheds

One way to spatially define a local food system is through foodsheds. Permaculturalist Arthur Getz used the term foodshed as analogous to a watershed, in terms of conceptualizing the flow of food into and out of an area as a means of understanding the system (Kloppenburg et al., 1996). Kloppenburg et al. (1996) described five fundamental principles implicit in foodsheds: they are embedded in a local economy; are a part of a commensal community; are self-protectionist, secessionist, and successionist; use nature as a measure; and put producers and consumers into close proximity.

Foodsheds are embedded in a moral economy focused on food as central to life, a concept around which relationships can be established (Kloppenburg et al., 1996). Farmers' markets are perfect examples of how market relationships work within the moral economy. The farmer is able to earn a greater proportion of the income generated by his or her crops, gain greater control over what is produced, and enjoy visiting with customers and the value-added price that goes along with it. Consumers get high-quality, fresh produce at a reasonable price, and they establish ties with the producers. If either feels they are not getting enough value for their efforts or money, they will no longer participate in the system (Hinrichs, 2000)

Another foodshed principle is building a commensal community. Commensal communities involve the establishment of social ties beyond the market among producers and consumers, and between producers and consumers. Kloppenburg et al. (1996) cites small-scale cooperatives, CSAs, and community gardens as examples.

Foodsheds should employ the concepts of self-protection, secession, and succession, as well. Self-protection refers to a refusal to simply submit to the globalized, industrial food system (Kloppenburg et al., 1996). The La Via Campesina movement of farmers to gain "food sovereignty" and "the right to feed oneself" is one example of the concept (Starr, 2010), as are the Amish, home gardeners, seed savers, and food co-op

members (Kloppenburg et al., 1996). Secession is removal of oneself from the global system and creating an alternative. Succession is the transfer of resources and commitments from the old system to the new, local one. Secession and succession should be based around small and mid-size farms or operations, since economies of scale have led to a low-value commodities market with high-profit processor middlemen (Kloppenburg et al., 1996)

Proximity is the fourth principle. Foodshed boundaries will likely be fluid and shift to enable the community to be more self-reliant, or reduce dependence on external trade. Close proximity of producers and consumers would make the stewardship of the land, energy efficiency, and social welfare a collective responsibility of more immediate and practical concern (Kloppenburg et al., 1996)

The last foodshed principle is "nature as measure." Nature should be appreciated for its limits and opportunities, with diets shifting seasonally and between regions. Industrial agriculture currently uses often environmentally damaging technology to override natural constraints (Kloppenburg et al., 1996). Global food prices are rising, in part due to the impacts of climate change, climbing energy prices, and the use of land to produce biofuels instead of food. Agriculture faces a huge challenge in meeting the populations' nutrient needs and increasing food security while using less fossil fuel (Peters et al. (b), 2009).

Application of the Foodshed Concept

Foodsheds, and local food systems in general, appear to offer healthier alternatives to the conventional agriculture system in terms of nutrition from increased access to, and consumption of, fruits and vegetable, stronger social structures, and more environmental integrity (Kloppenburg et al, 1996; Hinrichs, 2000). The degree to which these systems can meet local communities' needs, however, requires further exploration. Several studies have been conducted to assess local food capacity and a place's ability to feed its population.

To begin producing such estimates, a land area has to be designated as 'local,' a subjective term that could be based on distance or various political boundaries (Desjardins et al., 2010). Clancy and Ruhf (2010) argue that a regional approach to 'local' should be taken to increase sustainability. 'Local' is often defined by small geographic areas, from 50-400 mile radii or on the scale of towns, counties, or portions of states. Expanding 'local' to a regional area of a state or many states increases selfreliance (supplying as much food as possible in an area without degrading the natural resources), food security (generally, the ability to produce enough food to meet a population's needs), sustainability, economic viability, and resilience due to diversity. Diversity includes type of products produced but also various scales. Regional trade economies should be supported and encouraged to help shift the focus from the global to the local marketplace (Clancy and Ruhf, 2010). The regional approach was taken in a British Columbia, Canada, study (Morrison et al., 2010) as well as a New York State model (Peters et al. (b), 2009). Researchers in the Waterloo region of Canada and Willamette Valley, OR, chose to evaluate smaller areas with distinct identities and senses of place (Desjardins et al., 2010; Giobolini et al., 2011). The assessment of food capacity in a study in Detroit, MI, was focused on the ability of urban agriculture on vacant lots in

this deindustrialized and depopulated city to feed the city's population (Colasanti and Hamm, 2010).

Once a study area is designated, information on food consumption and population is collected. Population demographic data are available from census records (Colasanti and Hamm, 2010; Peters et al. (b), 2009; Desjardins et al., 2010; Giobolini et al., 2011). Estimates of actual food consumption may be derived from the USDA Economic Research Service Loss-Adjusted Food Availability database's daily average servings of FV per capita (Colasanti and Hamm, 2010; Peters et al. (b), 2009) or food disappearance data (Desjardins et al., 2010). The Giobolini et al. (2011) study included only recommended intakes and the Morrison et al. (2010) study in British Columbia, Canada, did not consider intakes, only agricultural capacity. Other studies (Colasanti and Hamm, 2010; Peters et al. (b), 2009; Giobolini et al., 2011) used the USDA Dietary Guidelines as outlined by My Pyramid to obtain recommended intakes, while the researchers in the Waterloo Region study utilized Canada's Food Guide (Desjardins et al., 2010).

The spatial and temporal variability in food production was determined for British Columbia, Canada, in the Morrison et al. (2011) study. Some agricultural yields remain relatively stable year after year and so require only a single year of data, while others vary greatly over time and require multiple years of data to determine an average. Data were gathered from Statistics Canada, including the Agricultural Census and Food statistics. Productive farmland was mapped, along with distribution of food on a food group basis. Researchers found that while farmland was well distributed throughout the province, food groups and individual products were more isolated to small regions. In the Desjardins et al. (2010) study, researchers evaluated the Waterloo region of Ontario, Canada. Researchers first estimated the current and forecasted 2026 population's recommended FV, legume, and whole grain needs based on *Canada's Food Guide*. Researchers focused on these food groups because they are currently under-consumed. "Current food intake" was derived from food disappearance data and compared to recommendations to come up with "optimal intake ratios." These ratios showed the significant increases in food groups required to meet recommendations. Next, a list of foods that could be grown in the Waterloo region and for which there was a market was developed. The land area required to produce the quantities of these foods required for the population to meet recommendations by 2026 was calculated. Converting ~10% of currently cropped hectares to the production of under-consumed foods would be feasible agriculturally, considering the environmentally undesirable conversion of pastureland and seasonality, as well as significant in increasing local availability of FV, legumes, and whole grains (Desjardins et al., 2010).

In the analysis of the New York state (NYS) foodshed, the complete diet needs per capita that could be met within the shortest distance were mapped. Human Nutrition Equivalents (HNE) were developed and comprised all food groups combined in certain proportions to meet nutrient recommendations for one year and included only commodities produced in the state. Land requirements for each commodity were estimated by converting food needs into quantities used in agriculture (i.e., pounds or bushels versus cups or ounces) and dividing by average NYS yields. GIS Maps were created using soil data from the Soil Geographic Database and Master Soils list and of land in agricultural production using the 1992 National Landcover data set. Combined,

the maps displayed potential productivity of land. Agricultural land prone to erosion was designated for forage crops and all other land for high value crops (Peters et al. (a), 2009).

A computer model was used to match population with food production, using the minimum number of food miles possible. The population of NYS was separated into urban areas and rural population centers, while the land was partitioned into five kilometer by five kilometer production zones. The results were uneven due to the uneven distribution of population (concentrated in the southeast) and production (concentrated mostly in the west). Only 2% of New York City's needs could be met, while 84% of other urban areas and 98% of rural population centers' needs could be met (Peters et al. (a), 2009). On average, 34% of NYS's total needs could be met within the state (Peters et al. (a), 2009). The average distance food had to travel was 49km, although this figure was much smaller in rural areas and much further for NYC (Peters et al. (a), 2009).

In the Colasanti and Hamm (2010) study, the amount of available vacant land in Detroit that could be used to grow a significant amount of the population's fresh FV intake and consumption was assessed. Information was gathered on seasonal availability of crops from the Michigan State University (MSU) Student Organic Farm, MSU Extension 2004 Michigan Availability Guide, and conversations with two staff members from the Michigan Food and Farming Systems nonprofit organization. Vacant land parcels that could theoretically be turned into growing space were identified using a 2008 dataset on vacant lots from the City of Detroit and cross-referenced against 2005 aerial images from the Michigan Geographic Data Library. Researchers found 4,848 acres of publicly owned, vacant, non-park land. Based on three growing methods (high

biointensive, low biointensive, and commercial) and three production scenarios (field only; field and storage; and field, storage, and season extension methods), During the growing season, Detroit could produce 65% of fresh vegetables and 39% of fresh, nontropical fruits currently consumed on less than half the available land (1,839 acres) at low productivity levels or the same percentages of recommended FV at high productivity without season extension methods on roughly the same amount of land (1,831 acres) (Colasanti and Hamm, 2010).

The Giobolini et al. (2011) study calculated the percentage of food group recommendations for those living in Willamette Valley, OR, that could be met through current agricultural production in the region. Information on agricultural yields was collected from the Oregon State University Extension Service's database, Oregon Agricultural information network, for 2004-2008. Researchers included all food groups in their analysis, using Kantor's tables (Kantor, 1998) to convert serving sizes to food production units. In 2008, Willamette Valley agriculture production theoretically met 67% of annual required grains, 10% of vegetable needs, 24% of fruits, 59% of dairy, 58% of meat and beans, and 0% of dietary oil requirements (Giobolini et al, 2011).

Foodshed models, however, have inherently low generalizability due to difference in population and environmental conditions. The capacity of Arizona to meet its' populations needs has yet to be determined and is the purpose of this study. In the Arizona Foodshed model, much of the methods from the previous literature were adopted and expanded upon by including an analysis of vegetable sub groups and production on a monthly and seasonal basis to provide a depiction of changing local food availability throughout the year.

Arizona: Geography, Climate, and Agriculture

The foodshed in Arizona is a product of the state's geography, climate, and position in the national food system. Arizona encompasses 113,909 square miles. Within the state are three main topographical areas: a high plateau (5,000 and 7,000ft elevation) in the northeast, a mountainous region oriented southeast to northwest (9,000 and 12,000ft elevation), and low mountain ranges and desert valleys in the southwestern portion of the state. The high plateau receives approximately 10 inches of precipitation annually, with mostly sagebrush and native grasses as vegetation. Arizona consists of Ponderosa Pine forests in the mountainous region from the southeast to the northwest of the state. This region receives the most precipitation, up to 25-30 inches of rain and melted snow. The southwestern desert valleys are an extension of the Sonora Desert of Mexico and elevations are as low as 100ft in the Lower Colorado River Valley. The desert receives only three to four inches of rain per year. Temperatures in the state can range from well below zero in the high plateau and mountainous regions of central and northern Arizona during winter to over 125 degrees F in the desert during the summer. The daily range between minimum and maximum temperatures during dry portions of the year can be 50 to 60 degrees F ("Climate of Arizona," n.d.)

Elevation and season mostly dictate precipitation throughout Arizona. In November to March, the higher mountains of central and northern Arizona are subject to winter storms originated over the Pacific Ocean, often with heavy snows. Snow can accumulate to 100 inches deep or more, and the snowmelt during the spring supplies the rivers of the state with water. Reservoirs built on the streams and rivers supply water to the heavily farmed desert areas in the lower Salt River Valley and the lower Gila River

Valley areas. Summer rains, originating in the Gulf of Mexico or Gulf of California, occur between early-July until mid-September ("Climate of Arizona," n.d.).

Over one million acres of land are devoted to agriculture in Arizona. Almost onehalf of the acreage is in Maricopa County, about one-quarter in Pinal County, and 18% in Yuma County. Storage reservoirs created by the Roosevelt Dam on the Salt River, Horseshoe Dam, and Bartlett Dam on the Verde River, Carl Pleasant Dam on the Agua Fria, and Coolidge Dam on the Gila River supply the water required for growing crops. The Colorado River is the primary source of Yuma County's water ("Climate of Arizona," n.d.)

A growing season is defined as the period between freezes and varies greatly in Arizona. In the higher areas of northern and eastern Arizona, it may be as short as three month, while desert valleys can have several successive years without a freeze. The desert valley's irrigated crops constitute the majority of fruit, vegetable, and commodity production and are important to the economy of the state. Cotton, grain, alfalfa, citrus fruit, melons, head lettuce, and other vegetables are grown throughout the year ("Climate of Arizona," n.d.).

Ranching and agriculture are Arizona's second largest source of revenue, contributing \$10.3 billion to the state's economy. The state is the nation's second and third largest producer of lemons and tangerines, respectively. Arizona farmers produce close to 20 million pounds of apples a year, and the pecan crop is worth \$52 million. Yuma is the world's winter lettuce capital. Between November and March, the county supplies roughly 95% of the United States' head lettuce, leaf lettuce, and romaine lettuce, in addition to a variety of other seasonal vegetables. Arizona is also second in the U.S. in cauliflower and broccoli production ("Farming and Ranching," n.d.). As a major agricultural producer, Arizona seems well situated to providing a sizable portion of its population's FV needs.

Chapter 3

METHODS

To develop a comprehensive model assessing the extent to which Arizona agriculture can meet recommended and current consumption of fresh FV of Arizonans, disparate datasets, estimates and assumptions were used. Using these data and including assumptions where appropriate, three main components to the model were developed: calculation of total weight of recommended FV intake for all Arizonans, calculation of total weight of estimated intake of FV, and calculation of total fresh FV production. Each component required several steps (see figure 1), using a number of data sets that are all available in the appendices. FV will refer to F, V, and VSGs. 'Fresh' will refer to both fresh FV and non-tropical F.

Recommended AZ Fresh FV Intake (Step 1): Fresh fruit and vegetable recommendations were calculated for Arizonans in pounds per year by multiplying the population of Arizona by FV recommendations by age and gender groups and physical activity level. To do so, we gathered population data from the 2010 Arizona Census as the basis of the total population needs for the state. FV recommendations were derived from the 2010 Dietary Guidelines for Americans (DGAs) (USDA (a), 2010).. The DGA recommendations are provided by age, gender, and physical activity level, so we gathered physical activity data, also listed by age and gender, from Trojano et al. (2008). Gender, age, and FV recommendations by physical activity level were combined to provide total Arizona population-level FV recommendations. Details of these calculations are described below. STEP 1a

Population: Daily fruit (F) and vegetable (V) and weekly vegetable sub-group (VSG) recommendations were calculated. As previously mentioned, Arizona population data were derived from 2010 U.S. census counts from the most recent estimates (April 2010) and were listed in five-year age cohorts and by gender (Appendix A) (U.S. Census Bureau [USCB], 2012). FV recommendations do not exist for individuals 0-2 years old, so they were excluded from the model. The census cohort of 0-4 year-olds was divided by five to determine the number of people for each year of life represented, assuming equal distribution across ages. The figure representing two years' worth of people was subtracted from the total population for the 0-4 year-old cohort.

Physical Activity: Because DGA recommendations incorporate physical activity level along with age and gender, we applied assumptions regarding physical activity level across the Arizona population. We gathered physical activity data published from NHANES (2003-2004) surveys and accelerometer data, which provided national estimates by age and gender of the percentage of individuals adhering to physical activity recommendations (Trojano et al., 2008) (Appendix B). The definition for "active" was based on CDC recommendations of 30 minutes of at least moderate-intensity activity for adults or 60 minutes of such exercise for youth on at least five days a week (USDA, 2011). Trojano et al. (2008) considered an adult to have met the recommendation if they acquired their 30 minutes of exercise in modified 10-minute bouts. For youth ages 6–19 years old, every minute of at least moderate intensity activity counted toward their recommended 60 minutes per day. The study did not differentiate between moderately

Figure 1
46 *Steps to Evaluate the Arizona Foodshed's Capacity to Meet the Fruit and Vegetable Needs of the Arizona Population*

Step	Sub-step	Variable/Data sets
STEP 1: Calculated fresh fruit and vegetable recommendations for Arizonans (pounds per year)	 1a: Daily fruit (F) and vegetable (V) and weekly vegetable sub-group (VSG) recommendations were calculated 1b: Recommendations were adjusted to only include the % of FV likely consumed fresh 1c: Recommendations were converted to pounds per year and summed across census cohorts 	 1a Population/ 2010 Arizona Census; Physical activity/ Trojano et al 2008 FV recommendations/ 2010 Dietary Guidelines for Americans 1b: % FV likely to be consumed fresh/ USDA Economic Research Service (ERS) % non-tropical F consumed/Food Intakes Converted to Retail Commodities database
STEP 2: Calculated estimated actual intake of fresh fruits and vegetables for Arizonans (pounds per year)	 2a: Arizona F, V, VSG intake estimates were calculated in grams per day at the retail level 2b: Intakes were converted to pounds per year at the retail level 2c: Intakes were adjusted to only include the % FV likely consumed fresh 2d: Intakes were adjusted to remove loss estimate 	 2a: Intake estimates/ Food Converted to Retail Commodities Database 2c: % of FV likely to be consumed fresh/USDA ERS % non-tropical F/ Food Intakes Converted to Retail Commodities database 2d: Loss estimates/ Kantor (1998) and USDA ERS

47	STEP 3: Calculated fresh fruit and vegetable yearly production for Arizona (pounds per year)	 3a: Arizona fresh F, V, and VSG were calculated in pounds per year 3b: Production was adjusted to remove loss estimates from the total 	 3a: Acres harvested for the fresh market/ 2007Arizona Census of agriculture Yield per acre/2009-2011 USDA Economic, Statistics, and Market Information annual summaries 3b: Loss estimates/ Kantor (1998) and USDA ERS
	STEP 4: Calculated the monthly and seasonal fresh fruit and vegetable production for Arizona (pounds per year)	 4a: Monthly Arizona fresh, consumption level FV production was calculated, based on months each crop is in season 4b: Seasonal Arizona fresh FV production was calculated, based on two seasons: warm (April-September) and cool (October-March) 	 4a: Months in season/ Arizona Harvest Calendar from the Arizona Nutrition Network/ USDA lettuce statistics/ USDA carrot statistics/ Watson (2011)
	STEP 5: Compare calculated Arizona recommendations and intake to production of fresh fruits and vegetables	5: Percentages of fresh FV recommendations and intakes that could be met by production were calculated	Not Applicable

and vigorously active individuals; for the purposes of this study, therefore, the proportion of people who met the recommendations were considered moderately active. Also, Trojano et al. (2008) did not include data on people less than six years of age, so for the purposes of this study, it was assumed the cohort was 100% active. There are no specific USDA recommendations for children 0-5 years old (USDA, 2011). The Arizona population per year of age was multiplied by the percentage of physically active and sedentary individuals, assuming Arizonans exercised at the same rates as those in the Trojano et al. (2008) study. When census and physical activity age cohorts did not match, the physical activity percentages were averaged and applied to the age cohort. Calculated population numbers of active and inactive people were rounded to the nearest person.

Recommendations: FV recommendations were derived from 2010 DGA data in cups per day by age cohort and gender for inactive individuals (Appendix C-F) and for active individuals based on calorie need and listed by individual year of age and gender (Appendix D). The five vegetable sub-groups are dark green, red-orange, beans and legumes, starchy, and other. The age and gender cohorts for inactive recommendations did not match those from the census. As such, recommendations were averaged across census cohorts. To determine recommendations for active individuals, we matched the estimated calorie needs for moderately active individuals (Appendix E) with daily F and V and weekly VSG recommendations in cups per day by calorie range (Appendix F) according to data from the 2010 DGA report. Active recommendations are listed by year of age and were averaged across each census cohort. Recommendations for each census cohort and physical activity level were then added together for total cups per day recommended for the AZ population (Appendix G and H).

STEP 1b

Fresh, Non-Tropical Fruit: Recommendations were adjusted to only include the percent of FV likely consumed fresh. The origins of processed products can be difficult to determine and some crops cannot be grown locally, so this model included only fresh, non-tropical FV estimates. The average American diet, nonetheless, consists of both processed and fresh produce components in estimable proportions that need to be accounted for to obtain realistic fresh recommendations. Based on a three-year (2008-2011) average of food availability derived from the United States Department of Agriculture (USDA) Economic Research Service (ERS), Americans consumed 48.5% of their F in fresh form (Economic Research Service [ERS] (a), 2012). The F servings in cups per day were multiplied by this figure to get the total recommended fresh F consumption amounts. Those numbers were then further amended to account for tropical F consumption. Tropical F accounted for an average of 4.59% of total F consumption in the United States. Included in the tropical fruit category are: guava, lychees, mangoes, mango juice, papayas, passion fruit, passion fruit juice, pineapples, pineapple juice (Bowman et al., 2011) (See Table 2).

Fresh Vegetables: For V, the five-year (2006-2010) average of food availability showed Americans consumed 47.65% of their V in fresh form (ERS (a), 2012). The V servings in grams per year were multiplied by 47.65% to get the total fresh V recommended consumption amounts. Since these figures are based on national data, it was assumed that Arizonans consumed fresh and processed FV and tropical and non-tropical F in the same proportions as the American average. It was also presumed that

people would eat the same percentage of each VSG as all vegetables in fresh form (See Table 2).

STEP 1c

Conversion to grams: The fresh FV recommendations from step 1b were then converted to pounds per year. Recommendations, estimated intakes, and production were all calculated in pounds per year, so they could be compared to one another. To estimate total pounds of yearly fresh FV requirements for the Arizona population, servings in cups for FV were first converted into grams using the conversion factors provided by Kantor (1998) (Appendix I and J), based on previously published methodology (Giombolini et al., 2010; Colasanti and Hamm, 2010), as well as USDA ERS data (ERS (c), 2012) (Appendix K) (See Table 2).

The F and V groups' serving weights in grams per cup were averages of fresh F or V used in this study to estimate production for the state. Most data were available from the Kantor (1998) tables, but blackberries and raspberries were not listed, so we used the grams per cup of strawberries as a proxy. Weights of winter squash and summer squash were derived from the USDA ERS "Fruit and Vegetable Prices" database (ERS (c), 2012). Kantor (1998) did not include pumpkin and USDA ERS provides only the weight for canned, so winter squash weight was substituted. The VSG grams per serving are averages of the weights of the V included in the V group calculation, categorized by sub group. The vegetables by sub group are as follows: dark green (broccoli, lettuce [head, romaine, leaf], and spinach); red-orange (carrots, pumpkins, squash [summer and winter], and tomatoes); beans (dry, edible excluding lima beans); starchy (sweet corn and potatoes); and other (snap beans, cabbage, cauliflower, celery, dry onions, and

Conversion to pounds per year: After FV recommendations in cups were multiplied by average grams per cup, they were converted to pounds per year. First, the total grams per FV group were multiplied by 0.002 (the number of pounds per gram) to obtain pounds per day. Next, the V and F categories were multiplied by 365 to obtain average recommended pounds per year. The VSG recommendations are weekly, so the estimations for those groups were multiplied by 52 to arrive at pounds per year (See Table 2).

Estimated AZ Fresh FV Intake (Step 2): In order to determine the extent to which AZ FV production could meet current consumption levels, estimated intake of fresh FV for Arizonans were calculated in pounds per year. Arizonans, on average, do not meet FV recommendations (CDC, 2010), so we included intake in our model to account for the amount of FV that is consumed, as well as recommendations. FV intake was calculated using national per capita figures in grams of retail-level foods. These figures are estimates from mean dietary intake data by age cohort for Americans over two years old found in Food Intakes Converted to Retail Commodities Databases (FICRCD), 2001-2002 (Appendix N and O) (Bowman et al., 2011). The FICRCD were jointly developed by USDA's Agricultural Research Service (ARS) and Economic Research Service (ERS) and are based on a one-day diet recall from the following three surveys: Continuing Survey of Food Intakes by Individuals 1994-1996 and 1998, National Health and Nutrition Examination Survey 1999-2000, and What We Eat In America, National Health and Nutrition Examination Survey 2001-2002. Combination foods, like pizza or casseroles, listed on surveys are broken down into separate food group components based

on how much of each food group is present in 100 grams of a survey food. All foods within a group are converted to the raw form; for example, all frozen, canned, and dried carrots consumed were listed as raw carrots. Orange juice and apple juice were listed and removed from the calculation of fruit, since only whole fruit was considered. Total V and total F were available from these data, but vegetable sub-groups were determined by adding together individual recorded V in each group. The V by sub-group were as follows: dark green (total leafy vegetables and 0.5 of total brassica); red-orange (carrots and tomatoes); beans (dry, edible legumes including lima beans); starchy (sweet corn, green peas, and total roots and tubers); and other (celery, cucumber, green peas, onions, pepper, and 0.5 brassica). The brassica group included: broccoli, cauliflower, brussel sprouts, cabbage, chard, collards, cress, kale, mustard greens, radish, rutabagas, turnips, and turnip greens. The total roots and tubers category mostly consisted of potatoes but also contained small amounts of beets, cassava, jicama, kohlrabi, parsnips, sweet potatoes, tapioca, taro, and yams. Some of these vegetables were not categorized as starchy, so the results may have been overestimates.

To justify using national per capita data for F V intake, we compared adult BRFSS data for Arizona to BRFSS data for the United States and our calculated mean intakes of FV to Arizona BRFSS data. To calculate mean daily intake of FV for women and men, grams per day were added together for total intake for Arizonans ≥ 18 years old. The total FV consumption for AZ adults was multiplied by one minus the average loss percentage to get total estimated intake. These figures were then divided by grams per cup of FV derived from Kantor (1998) and ERS tables to get intake in cups per day. The total cups per day were then divided by the adult population of Arizona, 4,757,009.

STEP 2a

Intake Estimates by Cohort: AZ FV intake estimates were calculated in grams per day at the retail level, as a first step in converting consumption to pounds per year to be compared to production results. The intake data were broken down in age-gender groups (Bowman et al., 2011). These groups did not match the cohorts from AZ census data. The intake of individuals within census cohorts were therefore averaged and multiplied by the cohort population. The totals across cohorts were summed to get total AZ FV intake in grams. The calculations are available in Appendix P and Q.

STEP 2b

AZ FV intakes were converted to pounds per year at the retail level. The grams per day of all FV groups were multiplied by 365 to obtain estimates per year and then converted to pounds by multiplying by 0.002 (the number of pounds in a gram) (See Table 4).

STEP 2c

Intakes were adjusted to only include the percent of FV likely consumed fresh. As mentioned in recommendations, processed product origins are difficult to determine and tropical fruits cannot be grown in AZ. Fruit consumption was adjusted for tropical fruit (4.59%) (Bowman et al., 2011) and fresh fruit (48.5%) (ERS (a), 2011). All vegetables and vegetable sub-groups were adjusted for fresh vegetable intake (47.65%) (ERS (a), 2011) (See Table 4).

STEP 2d

Intakes were then adjusted to remove loss estimates, so the final intakes would only include the portion of FV likely consumed. The intakes from FICRCD are at the 53 retail level. An estimated percentage of the weight of FV purchased is not consumed. The Kantor (1998) tables of retail level food intakes list loss percentages by crop including: loss from primary (farm level) to consumer weight, nonedible share, cooking loss, retail loss, and food service and consumer loss. We wanted to compare FV from recommendations, intake, and production at the consumption level. We therefore removed all losses, except loss from primary to consumer weight, from the estimated AZ fresh FV intakes, as they were reported at the retail level. Estimated loss percentages were calculated as averages of the losses for the individual FV used in production by group (F,V,VSG). Squash (summer, winter, and pumpkin) was not listed in the Kantor (1998) tables, so estimates of inedible shares and cooking losses were gathered from the USDA ERS (ERS (c), 2012). An additional 32% loss from retail and foodservice and consumer loss was removed from the squashes because it was constant across the Kantor (1998) tables and could be assumed to be the same for those crops. Loss estimates calculations can be found in Appendix L and M.

AZ Fresh FV Production (Step 3): To determine Arizona's capacity to meet its' populations FV needs, fresh FV yearly production for the state were calculated in pounds per year. Acres harvested for fresh markets, yield per acre, and estimated loss percentages were used to calculate Arizona fresh FV production. Data on Arizona fresh acres harvested were obtained from the 2007 Arizona Census of Agriculture (ACA) (Census of Agriculture [CA], 2012) (Appendix R-T). To be considered in the census, a farm must earn \$1000 or more per year of agricultural products produced or sold (CA, 2012). Data on those who grow FV for themselves or make less than \$1000 on production sales were

therefore missing. For some crops, information on number of acres was withheld to avoid disclosing data on a single farm. Other acreage information was either unavailable or was less than half of an acre and so omitted. Due to the above stated factors, production figures calculated here are likely underestimates.

Yields per acre of the most common AZ grown crops were obtained from the 2012 USDA, Economic, Statistics, and Market Information (ESMI) annual summaries (Appendix U-X) by the National Agriculture Statistics Service (NASS). The ESMI annual summaries contain information on area planted, area harvested, yield per acre, total production, and value of product for selected crops on the national scale and by state for 2009-2011. The yields were listed as hundred weight (cwt) or 100 pounds, or 1,000 cwt or 100,000 pounds (National Agriculture Statistics Service [NASS] (a), 2012; NASS (b), 2012; NASS (c), 2012; NASS (d), 2012). We averaged the yields over the listed three years, from 2009 to 2011, then converted from cwt to pounds, so they could be compared with recommended and estimates intakes, both in pounds.

STEP 3a

Annual Yield by Crop: Arizona fresh FV were calculated in pounds per year, so that intake, recommendations, and production are in the same units and able to be compared. Fresh acres harvested by individual vegetable were listed in the ACA tables. The ACA does not, however, provide yield per acre or production figures. The "Vegetable Production" (2012) annual summary provided Arizona state specific yield per acre for the following vegetables: cabbage, head lettuce, leaf lettuce, romaine lettuce, spinach, broccoli, and cauliflower; as well as for total vegetables (NASS (d), 2012). National yields from the annual summaries were used for other, less common Arizona crops (carrots, pumpkins, winter and summer squash, tomatoes, sweet corn, celery, dry onions, and peppers), so that all vegetable sub-groups could be represented (NASS (d), 2012). Arizona dry, edible bean and potato yields were listed under the "Crop Production" (2012) annual summary (NASS (b), 2012). The individual crops were combined into vegetable sub-groups.

For fruit, the ACA contained harvested acres for melons (Appendix R), non-citrus and citrus crops (Appendix S), and berries (Appendix T). Arizona yield per acre data for melons was found in the "Vegetable Production" annual summary (NASS (d), 2012); data for apples were found in the "Non-Citrus Production" annual summary (NASS (c), 2012); and data for lemons, tangerines, and mandarins were found in the "Citrus Production" annual summary (NASS (a), 2012). Lemons yields were reported by 2009-2010, 2010-2011, and 2011-2012 groupings, so we took the average yield for these three years. National yields were used for apricots, cherries, grapes, peaches, and grapefruits (NASS (a), 2012; NASS (c), 2012). Grapefruit and lemon yields were given by the box. AZ-specific data for pounds per box of lemons were found in the "Citrus Production" (2012) annual summary, but only California, Florida, and Texas data were available for grapefruit (NASS (a), 2012). We used the California figures for grapefruit pounds per box. Yield per acre for dates, figs, olives, and plums were only available from California, and raspberries and blackberry yields were only available for Oregon (NASS (c), 2012). STEP 3b

Loss-Adjusted Total Yield: Production was adjusted to remove loss estimates from the total, so that production only includes the amount likely eaten and not wasted. Loss estimates were calculated using the figures from Kantor (1998) and USDA ERS

(Appendix L and M). Losses were similar to those subtracted from the estimated intake calculations, but included all forms of loss (primary/farm to consumer, nonedible shares, cooking loss, retail loss, foodservice and consumer loss) to bring the figures down to approximately the amount that may have been eaten. Loss estimates were subtracted from the total yearly production in pounds by individual FV crop. The loss-adjusted yields were added together for FV categories to obtain consumption level production in pounds per year. Calculations for total fresh FV yield and loss-adjusted yields can be found in Appendix Y and Z.

Seasonal Production (Step 4): The monthly and seasonal fresh fruit and vegetable production for Arizona was calculated in pounds per year. Most FV cannot be grown year-round. We wanted to capture the seasonal fluctuations in FV production. An Arizona harvest calendar developed by the Arizona Nutrition Network was obtained and used to determine the seasonality of each crop. On the calendar, Arizona was separated into warm and cool climates to determine harvest dates (Arizona Nutrition Network [ANN], 2011) (Appendix AA). Romaine lettuce harvest dates were found on the USDA "U.S. lettuce statistics" (2011) site (ERS (a), 2011) (Appendix BB) and harvest dates for carrots were found on the USDA "U.S. carrot statistics" (2011) site (ERS (b), 2011) (Appendix CC). Pear and plum harvest months were listed on a local foods website (Watson, n.d.) (Appendix DD). Monthly production for the FV not on the harvest calendar were all listed under warm, since these sources did not differentiate between warm and cool climates.

STEP 4a

Monthly Production: Monthly Arizona fresh, consumption level FV production was calculated, based on months each crop is in season. This is the first step in determining seasonal production rates to expose any oscillations in the amount of type of FV available in AZ throughout the year. The loss-adjusted annual yields by crop were divided by the number of months the crop could be harvested in both warm and cool climates, assuming yields were evenly distributed. For example, apples are harvested in warm climates from July to November (five months) and in cold climates from August to November (four months), so apples would be considered in harvest for nine months. Calculations of production by number of months in season are available in Appendix EE and FF.

The yields from both warm and cool climates were added together for total yields per month. For apples, the calculated monthly yield would be listed under both warm and cool climates, so the total yields for months in which production occurred in both types of climates simultaneously would be double that for months during which production occurred in only one climate. All the V and F yields per month were added together for total monthly V and F availability, respectively. Representative crops were summed for each VSG. Appendix GG and HH display calculated AZ fresh FV monthly production data (See Table 6).

STEP 4b

Seasonal Production: Seasonal Arizona fresh FV production was calculated based on two seasons: warm (April-September) and cool (October-March) to show variations in FV availability. The seasonal breakdown was provided on the University of Arizona's Climate Assessment for the Southwest, Arizona Climate and Weather fact sheet

("Climate of Arizona,"n.d.). The fresh FV production from April to September were added together to calculate the warm season's overall production, and those from October to March were added to calculate the cool season's total production.

Dark-Green Vegetables: In addition to the process explained above, the darkgreen VSG were calculated based only on the number of months the V were in season in the warm climate (Appendix II). Yuma County, situated in the desert valley of southwestern AZ, supplies 95% of the country's lettuce between November and March ("Climate of Arizona," n.d.; "Farming and Ranching," n.d.). Lettuce is in season in the cool climate of Arizona from May to September (ANN, 2011; ERS (b), 2011), but presumably much less is grown at this time, skewing the seasonal availability for darkgreen V.

Comparing Recommendations to Production and Intake (Step 5): We wanted to determine to what degree Arizona production could theoretically meet the Arizona population's needs. Calculated Arizona fresh FV recommendations and intake were compared to the state's FV production. Arizona recommendations, estimated intakes, and production were all calculated in pounds per year with all applicable loss percentages removed. With losses removed, the figures represent consumption-level data. Recommended and actual intake figures were also adjusted by removing amounts representing processed and tropical fruits and vegetables. Production was based on the number of acres harvested for the fresh market.

STEP 5

Percentages of fresh FV recommendations and intakes that could be met by AZ production were calculated. Recommendations and intakes were compared to yearly and seasonal production. Table 7 displays comparisons of aggregate recommendations, expressed as pounds/ year, as well as estimated FV intake in pounds/year, to yearly AZ production. The percentages listed indicate the percentage of recommended FV and estimated actual FV intakes that could be met by production annually. Table 8 compares aggregate recommendations to seasonal production to demonstrate seasonal variation in meeting recommendations needs and actual consumption needs. The warm season extends from April to September and the cool season runs from October to March. To get seasonal recommendations, the yearly recommendations were divided by two, since each season is six months long. Lastly, Table 9 presents the sub-analysis of the dark-green VSG, only considering warm climate seasonality, compared to recommendations.

Chapter 4

RESULTS

Many tables were created in the process of building the model. Male and female recommendations and intake were calculated using the same methods, but the sample tables below (Tables 1 and 3) are only for females. Male FV recommendations can be found in Appendix G. For recommendations, separate tables were also created for active and inactive males and females, as well as for F and V and VSGs for a total of eight recommendation tables. Table 1 shows recommendations for active females for F and V. Since male and female and active and inactive recommendations were calculated separately, they are listed independently in Tables 2 and male and female intakes are listed individually in Table 4. Table 5 is a sample from Appendix Y and lists only results for dark-green vegetables, although the other FV categories were calculated in the same way. Likewise, Table 6 is a sample from Appendix GG and only shows monthly yield results for total vegetables, dark-green vegetables, and red-orange vegetables for January, February, and March; although the full table includes all FV categories for every month of the year. All results can be found in the appendices.

Recommended AZ Fresh FV Intake (Step 1):

Table 1, Step 1a, Sample from Appendix G: In step 1a of the methods, daily FV recommendations were calculated. Table 1 is a sample from Appendix G that shows recommendations for active females by age cohort. For the two to 4 year old cohort, for instance 1,607,000 cups per day of fruit are recommended. All cohort recommendations for active females were added together for each FV category and carried forward to Table

The same was done for inactive females and active and inactive males. For this step, the daily recommended F for Arizona include: 529,335.1 cups for active females, 4,387,428.6 cups for inactive females, 722,858.2 cups for active males, and 5,152,347.7 cups for active males.

Table 2: Steps 1b and 1c: Recommendations were adjusted to only include the percentage of FV likely consumed fresh and were converted to pounds per year (see Table 2). The top of the table shows the male/female, active/inactive recommendations *Sample from Appendix G*

Table 1

Physically Active Arizona Females' Fresh Fruit and Vegetable Recommendations

Age	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>		<u>Fruit</u>			Vegeta	ables
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)
2				1.0			1.0		
3	133892	100.0%	133892	1.0	1.2	160.7	1.5	1.3	178.5
4		100.076		1.5			1.5		
5				1.5			1.5		
6				1.5			1.5		
7	222434		106234	1.5	1.5	159.4	2.0	1.8	191.2
8		34.7%		1.5			2.0		
9		54.770		1.5			2.0		
10				1.5			2.5		
11				1.5			2.5		
12	219669		31984	2.0	1.8	57.6	2.5	2.5	80.0
13		2 40/		2.0			2.5		
14		3.4%		2.0			2.5		
15				2.0			2.5		
16				2.0			2.5		
17	224302	F 40/	11215	2.0	2.0	22.4	2.5	2.6	29.2
18		5.4%		2.0			2.5		
19				2.0			3.0		

*Abbreviations: Physically active (PA), population (pop), average (avg), cups (c), day (d)

	Fruit*	Vegetables*	Dark-Green *	Red-Orange *	Starchy*	Bean *	Other*
Females** (1,000 cups/day)							
Active	529.3	654.1	417.9	1376.8	1374.2	324.7	1081.0
Inactive Males** (1,000 cups/day)	4387.4	6256.1	4116.2	13264.4	12558.6	3480.9	10372.3
(1,000 cdps/day) Active	722.9	963.5	651.9	1988.7	2004.4	555.4	1599.6
Inactive	5152.3	7297.4	4692.4	15112.5	14632.6	4654.6	11989.8
Total (1,000 cups/day)	10792.0	15171.1	9878.5	31742.4	30569.8	9015.6	25042.8
Fresh vegetable % (47.65%) (1,000 cups)		7229.0	4707.1	15125.2	14566.5	4295.9	11932.9
resh fruit % (48.5%) and Non- tropical % (95.41%) (1,000 cups/day)	4993.9						
Conversion factor (grams)	147.6	129.1	57.2	178.8	152.0	74.0	140.0
Total (1,000 grams)	737093.7	933267.4	269246.6	2704393.8	2214112.0	317898.5	1670602.
Conversion (grams x .002) (1,000 pounds)	1474.2	1866.5	538.5	5408.8	4428.2	635.8	3341.2
Conversion factor	365.0	365.0	52.0	52.0	52.0	52.0	52.0
Yearly total (million pounds/year)	538.1	681.3	28.0	281.3	230.3	33.1	173.7

Table 263Arizona Fresh Fruit, Vegetable, and Vegetable Sub-Group Recommendations

*Fruit and vegetable recommendations are per day and vegetable sub-groups are recommended by week

derived from the previously mentioned tables from Appendices G and H. The yearly total of F and V recommendations for Arizonans are 538.1 million pounds and 681.3 million pounds per year, respectively. For recommendations for the VSGs, yearly calculated recommendations are: red-orange 281.3, starchy 230.3, other 173.7, beans 33.1, and darkgreen 28 million pounds/year.

Estimated AZ Fresh FV Intake (Step 2):

Table 3, Step 2a, Sample from Appendix P: Arizona FV intake estimates in grams per day at the retail level can be found in Table 3, which is a sample from Appendix P and shows FV intake for Arizona Females. For the female cohort of 2-4 year-old, 50.1 million grams per day were estimated to have been consumed. Total daily estimated intake for the AZ population were calculated to be 996,334,632.4 grams for females and 1,142,514,313 grams for males.

Table 4, Steps 2b, c, and d: FV intakes in pounds per year at the retail level, adjusted to only include the % FV likely consumed fresh, and adjusted to remove loss estimate percentage can be found in Table 4 to estimate total estimated yearly intake. Female and male intakes derived from the tables in Appendices N and O are listed at the top of the table. The bottom row is total estimated intake for Arizonans in million pounds/year: fruit 334.5, vegetables 357.2, dark-greens 28.4, red-orange 139.0, starchy 86.6, beans 13.5, and other 51.9.

Sample from Appendix P

Table 3

<u>Age</u>	Cohort <u>Pop</u>		<u>Fruit</u>			Vegetables	<u>i</u>
		per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)	per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)
2		374.0			207.0		
3	133892	374.0	374.0	50.1	207.0	207.0	27.7
4		374.0			207.0		
5		374.0			207.0		
6		363.0			228.0		
7	222434	363.0	365.2	81.2	228.0	223.8	49.8
8		363.0			228.0		
9		363.0			228.0		

*Intake based on retail-level national estimates (Bowman et al., 2011)

Abbreviations: Population (pop), average (avg), grams (g), day (d), million (mil)

AZ Fresh FV Production (Step 3)

Table 5, Steps 3a and b Sample from Appendix Y: Table 5 shows only calculations from the dark-green VSG Arizona fresh FV in pounds per year and adjusted to remove loss estimates from the total. For broccoli, the yearly loss-adjusted yield estimate was 22.1 million pounds/year and the total for the dark-green vegetable group was 1,197.1 million pounds/year. Total vegetable loss-adjusted yield estimate was 1,256,739,167 pounds/year.

Table 4

Arizona Fresh Fruit and Vegetable Intake*

	Fruit	Vegetables (V)	Dark- Green V	Red- orange V	Starch V	Bean V	Other V
Female** (million grams/day)	996.3	9983.2	103.1	308	371.8	19.2	152.9
Male** (million grams/day)	1142.5	1229	86.7	418.4	486.9	27	165.8
Total (million grams/ day)	2138.8	11212.2	189.9	726.5	858.7	46.2	318.7
Convert to yearly totals (million grams x 365) (million grams/ year)	78067 9.9	812964.2	69295.9	265159.1	313415. 1	16858.5	116325.7
Convert to million pounds (grams x .002)	1561.4	1625.9	138.6	530.3	626.8	33.7	232.7
Fresh Vegetable % (47.65%) (million pounds/year)		774.8	66	252.7	298.7	16.1	110.9
Fresh Fruit % (48.5%) and Non-tropical % (95.41%) (million pounds/ year)	722.5						
Estimated Loss %***	53.70 %	53.90%	57.00%	45.00%	71.00%	16.00%	53.20%
Total Estimated Intake (million pounds/ year)	334.5	357.2	28.4	139	86.6	13.5	51.9

*Intake based on retail-level national estimates (Bowman et al., 2011)

**Only individuals \geq 2 years old were included in the calculations

***Loss includes: non-edible share, cooking, retail, and foodservice and consumer loss

Seasonal Production (Step 4)

Table 6, Step 4a, Sample from Appendix GG: Table 6 displays monthly production by climate zone for total vegetables, dark-green vegetables, and red-orange vegetables. In January, broccoli is only in season in the warm climate with an estimated monthly production of 2,457 thousand pounds. The total January production for the darkgreen VSG was calculated as 53,961.4 thousand pounds. Total vegetable production for January was 61,612.6 thousand pounds/year. This information was assessed for every month of the year and for each FV category.

Sample from Appendix Y

Table 5 Arizona Fresh Vegetable Loss Adjusted Yield Estimates

Сгор	Acres Harvested for Fresh Market	Yield per Acre (pounds)	Production (million pounds/year)	Estimated Loss %*	Loss Adjusted Yield Estimate (million pounds/year)
Dark-Green Vegetables					
Broccoli	7800.0	13500.0	105.3	79.0%	22.1
Lettuce, head	34000.0	34333.0	1167.3	55.0%	525.3
Lettuce, leaf	7900.0	21833.0	172.5	60.0%	69.0
Lettuce, romaine	18033.0	34333.0	619.1	60.0%	247.7
Spinach	7200.0	18500.0	133.2	75.0%	333.0
Total			2197.4		1197.1

Comparing Recommendations to Production and Intake (Step 5):

Table 7, Step 5: Table 7 illustrates the percentage of yearly recommendations and estimates of intake based on national-level per capita data, for the Arizona population that could be met by Arizona FV production. Specifically, Arizona FV production met 29.7% of fruit recommendations and 47.8% of estimated actual intake; 18.1% of red-orange recommendations and 36.7% of estimated actual intake; 18.2% of starchy recommendations and 48.3% of estimated actual intake; 27.5% of other recommendations and 92.2% of estimated actual intake. For the beans VSG, production only met 60.3% of recommendations, but exceeded estimated actual intake, providing 147.8% of estimated actual intake. Because Arizona produces a considerable amount of dark-green vegetables, yields met 3204.6% of recommendations and 3160.0% of estimated actual intake. Table 8, Step 4b: Seasonal Arizona fresh FV production warm (April-September) and cool (October-March) are shown in table 8. Seasonal production estimates showed inconsistent variability between warm and cool season production for the FV groups. Cool season production met 30.4% of fruit recommendations and warm season production met 30.3%, a difference of less than 1%. Total vegetable production was likewise very consistent between seasons, with 162.3% of recommendations met in the cool season and 148.3% met in the warm season. Production was 19% higher in the cool season than in the warm season for both the dark green and red-orange VSG. Cool production for the red-orange VSG met 20.1% of recommendations and in the warm season, 16.2% of recommendations were met.

Sample from Appendix GG

69

Table 6

Arizona Loss Adjusted, Fresh Total Vegetable, Dark-Green Vegetable, and Red-Orange Vegetable Monthly Production by Climate Zone (1,000 pounds/month)

Month	Total Vegetables	Dark-Green Vegetables							Red-Orange Vegetables				
Climate Zone		Broccoli	Lettuce, head	Lettuce, leaf	Lettuce, romaine	Spinach	Total	Carrots	Pumpkins	Squash, summer	Squash, winter	Tomatoes	Total
January													
Warm		2457.0	0.0	6899.2	41275.1	3330.0		4804.3	0.0	0.0	0.0	0.0	
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Both	61612.6	2457.0	0.0	6899.2	41275.1	3330.0	53961.4	4804.3	0.0	0.0	0.0	0.0	4804.3
February													
Warm		2457.0	75042.1	6899.2	41275.1	3330.0		4804.3	0.0	0.0	0.0	0.0	
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Both	136654.7	2457.0	75042.1	6899.2	41275.1	3330.0	129003.5	4804.3	0.0	0.0	0.0	0.0	4804.3
March													
Warm		2457.0	75042.1	6899.2	41275.1	3330.0		4804.3	0.0	343.3	0.0	0.0	
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Both	138904.5	2457.0	75042.1	6899.2	41275.1	3330.0	129003.5	4804.3	0.0	343.3	0.0	0.0	5147.6

Table 7

FIGURE HEIRS					
	Fresh Yield (million pounds/year)**	(m	Recommended (million pounds/year)		t ake illion s/year)**
		Weight	% Met	Weight	% Met
Fruits^	159.8	538.1	29.7%	334.5	47.8%
Vegetables^	1,256.7	681.3	184.5%	357.2	351.9%
Dark green ^	897.4	28.0	3204.6%	28.4	3160.0%
Red-orange^	51.0	281.3	18.1%	139.0	36.7%
Starchy^	41.9	230.3	18.2%	86.6	48.3%
Beans [^]	20.0	33.1	60.3%	13.5	147.8%
Other^	47.8	173.7	27.5%	51.9	92.2%

Arizona Fresh Fruit and Vegetable Needs Theoretically Met by Arizona Fresh Produce Yields

* Yields are determined by group according to the following crops: total fruit yield: cantaloupe, honey dew, watermelon, grapefruit, lemons, oranges, tangerines and mandarins, blackberries, raspberries, apples, apricots, sweet cherries, dates, grapes, peaches, pears, and plums; vegetables yield, total listed in Arizona Census of Agriculture; dark green yield: broccoli, lettuce, and spinach; Red/orange yield: carrots, all squash, pumpkins, tomatoes; beans: dry, edible-excluding lima; starchy Vegetables yield: sweet corn, potatoes; *other yield: Cabbage, cauliflower, celery, onions, snap beans, and all peppers

^Adjusted by removing tropical fruit and processed fruits and vegetables

**Losses subtracted from yield and retail level consumption, so data is at the consumption level for all categories

Seasonal variability was found for the bean, other, and starchy VSG, all with higher warm season availability. In the bean category, 80.5% of recommended amounts were met in the warm season compared to 40.2% during the cold season. For the other VSG, 36.8% of recommendations were met in the warm season and 22.0% in the cool season. The largest difference in seasonal availability was calculated for the starchy VSG, with a 98% difference between warm and cool season production. Production in the warm season provided for 96.5% of recommendations, while only 3.6% of recommendations were met in the cool season

Table 9, Step 4, Adjustment for Dark-Green Production: When both warm and cool climate months in season are both considered, dark-green VSG cool season

Table 8

71 Arizona Loss Adjusted Fresh Fruit and Vegetable Monthly and Seasonal (Warm/Cool) Production Compared to Recommendations (Recs) (million pounds per month and season)

	<u>Fruit*</u>		Fruit* Vegetal											
					Dark	Green *	Red-0	Orange*	Sta	rchy *	Be	an *	Ot	her *
	Yield	% Rec Met	Yield	% Recs Met	Yield	% Recs Met	Yield	% Recs Met	Yield	% Recs Met	Yield	% Recs Met	Yield	% Recs Met
Cool Season**	81.8	30.4%	552.8	162.3%	495.8	3617.1%	28.3	20.1%	4.2	3.6%	6.7	40.2%	17.9	22.0%
October	22.3	49.7%	91.3	160.9%	78.4	3430.6%	2.5	10.8%	4.2	21.7%	3.3	120.7%	3.0	21.9%
November	11.6	26.0%	62.6	110.3%	51.5	2254.5%	6.2	26.4%	0.0	0.0%	3.3	120.7%	1.6	11.9%
December	12.0	26.7%	61.6	108.5%	54.0	2362.0%	4.8	20.5%	0.0	0.0%	0.0	0.0%	2.8	21.0%
January	12.0	26.7%	61.6	108.5%	54.0	2362.0%	4.8	20.5%	0.0	0.0%	0.0	0.0%	2.8	21.0%
February	12.0	26.7%	136.7	240.7%	129.0	5646.9%	4.8	20.5%	0.0	0.0%	0.0	0.0%	2.8	21.0%
March	12.0	26.7%	138.9	244.7%	129.0	5646.9%	5.1	22.0%	0.0	0.0%	0.0	0.0%	4.8	35.1%
Warm Season**	81.6	30.3%	505.3	148.3%	401.5	2929.5%	22.8	16.2%	37.7	196.5%	13.3	80.5%	29.9	36.8%
April	5.3	11.9%	141.5	249.2%	129.0	5646.9%	5.1	22.0%	4.2	21.7%	0.0	0.0%	3.2	23.5%
May	0.1	0.2%	89.8	158.1%	78.4	3430.6%	5.3	22.4%	4.2	21.7%	0.0	0.0%	2.0	14.7%
June	12.4	27.6%	106.6	187.7%	87.7	3840.0%	5.6	23.9%	5.4	28.1%	3.3	120.7%	4.5	33.5%
July	13.3	29.6%	35.5	62.5%	12.7	555.3%	1.9	8.3%	10.8	356.1%	3.3	120.7%	6.7	49.8%
August	25.1	56.0%	28.0	49.4%	9.4	409.5%	2.0	8.5%	6.6	34.5%	3.3	120.7%	6.7	49.8%
September	25.5	56.8%	103.9	183.1%	84.4	3694.4%	2.9	12.2%	6.6	34.5%	3.3	120.7%	6.7	49.8%

*Monthly recommendations For the Arizona population: Fruits 44,839,867.1 lbs, Vegetables 56,773,764.4 lbs, Dark Green 2,333,470.5 lbs, Red-Orange 23,438,079.6 lbs, Starchy 19,188,970.7 lbs, Beans 2,755,120.4 lbs, Other 14,478,558.5 lbs.

Six month, seasonal recommendations for the Arizona population: Fruits 269,039,202.9 lbs, Vegetables 340,642,585.4 lbs, Dark Green 14,000,823.2 lbs, Red-Orange 140,628,477.6 lbs, Starchy 115,133,824 lbs, Beans 16,530,722.55 lbs, Other 86,871,351.1 lbs

^The vegetable category is only an average of the individual vegetable crops listed in the study. 198,713,044.4 pounds are unaccounted for, representing 15.8% of the total vegetable production

Table 9

	[Dark-Green	Vegetables*
	Production (million pounds)		% Pacs mot by Production
	(minori pourius)		% Recs met by Production
Cool Season Total**		658.4	4803.3%
October		0.0	0.0%
November		52.8	2310.1%
December		63.9	2795.2%
January		63.9	2795.2%
February		239.0	10459.8%
March		239.0	10459.8%
Warm Season Total**		239.0	1743.3%
April		239.0	10459.8%
May		0.0	0.0%
June		0.0	0.0%
July		0.0	0.0%
August		0.0	0.0%
September		0.0	0.0%

Arizona Loss Adjusted, Fresh Dark-Green Vegetable Monthly and Seasonal (Warm/Cool) Production in the Warm Climate Zone of the State Compared to Recommendations (Recs)

*One month recommendation for Dark Greens for the Arizona population: 2,284,516.4 lbs Six month recommendation for Dark Greens for the Arizona population 13,707,098.4 lbs **Cool season and warm season total production are compared to six-month recommendation figures and individual month production is compared to onemonth recommendations

production met 3617.1% of recommendations and production in the warm season met 2929.5%. There was a 64% difference between cool and warm season production, with the cool season supplying 4803.3% of recommendations and warm season production meeting 1743.3% of recommendations

Estimated Intakes for Adults Calculated to be Compared to AZ BRFSS: We calculated mean intakes of FV from Arizonan adults to be compared to Arizona BRFSS data to

justify the use of national FV intake data. The final row in Table 10 show total per capita intake for fruit as 1.07 cups/day and vegetables as 1.38 cups/day for all AZ adults.

Table 10

		Fruit lı	ntake			Vegetable	Intake	
	Total (≥ 18 years old)*	18-34 years old*	34-64 years old*	65 years old + *	Total (≥ 18 years old)*	18-34 years old*	34-64 years old*	65 years old +
Women	755.3	199.3	382.0	174.0	827.0	238.9	429.0	159.2
Men	870.2	303.0	424.0	143.3	1017.0	340.6	522.0	154.4
Total (million grams/day)	1625.5	502.3	806.0	317.3	1844.0	579.5	950.9	313.0
Average Loss %	53.7%	53.7%	53.7%	53.7%	53.9%	53.9%	53.9%	53.9%
Total Estimated Intake (million grams/day)	752.6	232.6	373.2	146.9	850.1	267.1	438.4	144.
Grams per Cup Conversion	147.6	147.6	147.6	147.6	129.1	129.1	129.1	129.
Total (cups/day)	509911 6.0	15756 97.5	25282 17.7	99520 0.8	6584612 .2	2069286 .0	339562 3.2	1119 03.0
Total Per Capita (cups/day)*	1.07	1.27	1.06	0.89	1.38	1.67	1.42	1.00

Average Arizona Adults (≥18 years) Per Capita Into	ke of Fruits and Veaetables
--	-----------------------------

* Total population of Arizonans \geq 18 years old is 4,757,009; 18-34 years old 1242441; 35-64 years old 2391268; over 65 years old 1123300

Chapter 5

DISCUSSION

This research sought to assess the fresh FV production capacity of Arizona in relation to recommendations and estimated consumption for the state's population. Although foodshed models are not generalizable to other regions, our results can be considered in relation to other foodshed analyses to contextualize Arizona's capacity to meet its own FV needs.

If we compare the results from our AZ foodshed study to those previously done, AZ produces a much greater percentage of vegetable recommendations for the population over two years old, as well as estimated intake, although results for fruit are more similar. New York State was shown to hypothetically be able to provide 34% of its population's total needs within 49 kilometers, on average (Peters et al. (a), 2009). Giombolini et al. (2011) found that the Willamette Valley, OR region could potentially meet 10% of vegetable and 24% of fruit recommendations through local production. In the Colasanti and Hamm (2010) study, it was found that 65% of Detroit's fresh V recommendations and 39% of fresh, non-tropical F recommendations could be met using only half the available vacant land if low-intensive methods and storage or high intensive and storage methods were utilized (Colasanti and Hamm, 2010). Arizona theoretically could supply 29.7% and 184.5% of the fruit and vegetable recommendations for the population living in the state over two years old, respectively, and 47.8% of fruit intake and 351.9% of vegetable consumption. Therefore, between one-third to one-half of the F, as well as all the vegetables recommended for and consumed by Arizonans could be sourced locally with excess vegetables available to ship out-of-state.

74

The other studies did not consider VSGs, but Arizona produces a large amount of dark green vegetables, namely lettuces, enough to provide over 3,000% of the state's recommended and estimated intakes for the VSG. Lettuce accounted for 19.2% of the state's farm receipts and 35.2% of the value of the entire U.S. lettuce crop (ERS (b), 2013). When we look at V production, excluding the dark-green VSG, AZ can only meet 52.8% of yearly recommendations (vs. 184% with dark-greens). As such, overall estimates for meeting vegetable recommendations and estimated consumption amounts are skewed due to this subcategory of vegetable. Arizona may not be able to completely meet the population's V recommendations by sub-group, although the total vegetable production category appears to provide an excess of V.

Results between studies may not be entirely comparable, as we used slightly different methods than the three foodshed articles previously reviewed in attempts to calculate more relevant and accurate data for Arizona. Like the previous studies, we used DGA derived data to determine recommendations and tables from the Kantor (1998) article to define the number of grams per cup of FV, as well as loss percentage estimates. We derived the concepts of including only fresh FV and estimated intake in out model from Colasanti and Hamm (2010). The researchers distinguished between fresh FV and non-tropical F, because it is difficult to determine the exact origins of processed products and tropical F cannot be grown in Michigan, as is also the case in Arizona. Colasanti and Hamm (2010) calculated FV intakes to highlight how well production could meet current estimated intake, as well as the FV recommendations that most Americans fall short of eating (Grimm et al. 2010). Researchers used USDA ERS loss-adjusted food availability data for intake. The present study, by comparison, utilized data from the Food Intakes

Converted to Retail Commodities Databases (FICRCD), 2001-2002. The FICRCD is based on actual consumption as measured by one-day diet recalls from three national surveys.

There were differences in scale and production calculations between the studies. Peters et al. (a) (2009) is most comparable to this research in terms of scale, since their foodshed model was developed at the state level, while the Giomboilini et al. (2011) and Colasanti and Hamm addressed areas, Willamette Valley, OR and Detroit, Michigan respectively. Peters et al. (a) (2009) measured total yearly diet recommendations without a breakdown by FV, whereas we were only interested in FV consumption and production. Researchers in the NYS model, as well as in the Detroit, MI foodshed analysis considered only theoretical production derived from soil quality, GIS data, and/or small-scale either high or low bio-intensive methods. In our model, we analyzed actual commercial yields, much like the Giombolini et al. (2011) study.

The Giombolini et al (2011) and Colasanti and Hamm (2010) studies overestimated physical activity when calculating recommendations. Giombolini et al. (2011) deemed all citizens to be moderately active, and Colasanti and Hamm (2010) considered the population to be two-thirds inactive and one-third active. According to the Trojano et al (2008) study of physical activity via NHANES (2003-2004) self-report and accelerometer data, this assumption is very inaccurate. Forty-two percent of six to 11 year-old cohort were considered physically active, with physical activity rates then dramatically dropping to 8% for 12-15 year-olds, and down to less than 5% for individuals over 20 years-old (Trojano et al. 2008). *Seasonal Availability:* None of the studies reviewed provided information on differences in seasonal availability of crops. The figures presented for the Peters et al. (a) (2009), Giombolini et al. (2011), and Colasanti and Hamm (2010) only compare yearly production to recommendations or recommendations and intake. All were conducted in temperate climates, with much shorter growing seasons than we have in AZ. Their results, therefore, are likely somewhat deceptive, since most production would occur in the spring to fall, with little to no production in the winter.

Growing seasons are defined by the time between freezes, and the desert lowlands of the state, where V production is concentrated, can have several successive years without a freeze. The year-round growing season is made obvious in the FV seasonal results. The F and V groups showed very little seasonal fluctuation, with less than 1% and 9% increases in cool vs. warm season production, respectively. Both groups are conglomerations of a variety of FV with different harvest months. When an average is taken across all F and all V, little variation is shown. For F, citrus is in season between December and April and balances the production of melon, stone fruits, grapes, and dates from May to November. In the V category, dark green vegetable production skewed towards the cool season offsets the other VSGs grown primarily in the warm season. When dark-green vegetables are excluded from the V category, instead of slightly higher V production in the cool season, 45.3% more V are harvested in the warm season.

The present assessment of seasonal production in Arizona was, however, only a rough estimate. Specific monthly production numbers by individual FVs were unavailable. FV yields were divided by the number of months the crop can be harvested, in both warm and cool climates, assuming yields were evenly distributed. All seasonal

variation was likely not captured; vegetable production is concentrated in the warm climate portion of the state, yields at the beginning and end of a growing season are not as high as the middle peak, and season extension methods (such as high tunnels or greenhouses) and storage were not considered. For example, although a great deal of dark greens, such as lettuce, are produced between November and March, we calculated less than a 20% difference between the cool and warm season production of dark green vegetables (lettuce, spinach, and broccoli). When dark green VSG monthly production was calculated using only warm climate harvest dates, the amount of seasonal variation detected more than tripled to a 64% difference between cool and warm season production. Three of the other VSGs also showed strong seasonal variation, all with higher production rates during the warm season; bean production was 50% higher, the other VSG production was 60%, and starchy vegetable production was 98% in the warm season compared to the cool season.

Exports and Out-Of-State shipments: As the dark-green VSG results in particular illustrate (meeting >3,000% of recommendations and intake), while this model shows the theoretical percentage of Arizona fresh FV intake and recommendations that could be met by local production, all FV produced in the state does not stay in AZ. A more accurate picture of local produce consumed by Arizonans would require information on the amount of FV shipped out of state. Unfortunately, out-of-state shipments are not accurately tracked by any state or federal agency. For example, US Customs and Border Protection do not collect data on the weight of U.S. agricultural exports by state of origin. Often times, agricultural exports are produced in inland states and pass through several marketing or processing points before arriving at a port (where export data are collected).

78

The state of origin often is lost or the product is commingled with similar products from other states in this process. Data that are collected are expressed as export dollar values and are allocated to states based on their shares of U.S. agricultural cash receipts for those products (ERS (a), 2013). Arizona exported \$124.4 million in fresh vegetables in 2011, making it the 4th highest ranked state for fresh vegetable exports (ERS (a), 2013). However, converting value to poundage is nearly impossible given market price fluctuation, on-site haggling for purchase of product as it travels through states and to ports, and other variables that disallow accurate estimations. Similarly, monthly and yearly shipment volumes in pounds are only provided at the national level and for specific crops. The figures for domestic shipments are not entirely accurate either, as they may include some imported produce inter-mixed between port and final destination (ERS (b), 2012; ERS (c), 2011). Despite the inability to account for exports and out-of-state, we were able to determine the percentage of FV needs that could be met by current production levels. By excluding dark-green vegetables, the group most likely to be exported/shipped, from the total V category, we found that Arizona could still supply over 50% of the state's V recommendations.

Compared to BFSS: In order to justify using national consumption data from 1999-2002, instead of current Arizona intake, we compared our estimated consumption results to data from a validated source, BRFSS. There was no data available in a form we could use on Arizona FV consumption, so we used national data from the FICRCD (2001-2002). The FIRCD incorporates data from surveys conducted in 1994-2002. According to Michels Blank et al (2008) based on BRFSS, FV consumption in adults did not changed significantly between 1994 and 2005. Assuming this has remained the case,

the data should still be currently valid. Comparing BRFSS data from AZ and the United States as a whole, in 2009, the percentage of Arizonans that consumed ≥ 2 fruits and ≥ 3 was vegetables per day was 33.7% and 24.4%, respectively. There is less than a 2% difference between the AZ BRFSS figures and the American average of 32.5% of the population consuming ≥ 2 fruits and 26.3% and ≥ 3 was vegetables per day. We then compared 2011 BRFSS mean estimates of cups per day of FV consumed by adults (Arizona Department of Health Services, 2013) to the mean intake of FV by those ≥ 18 years-old calculated in this study. According to the BRFF, Arizonan adults consumed 1.04 cups/day of F and 1.71 cups/day of V. The average estimated actual intake of F in this study was nearly identical to BRFSS data at 1.04 cups/day, although there was some discrepancy in the V category, calculated to be 1.38 cups/day. Our results for F intake can then be considered more accurate than those for V.

Study Strengths: The Arizona foodshed model includes a number of strengths. We used the standard data sources for recommendation (DGA guidelines) and serving weights and loss percentage estimates (Kantor,1998). In calculating recommendations, we utilized data from the Trojano et al (2008) study that assessed physical activity levels by age-gender cohort, as compared to considering everyone to be moderately active (Giombolini et al. 2011) or one-third of the population as active (Colasanti and Hamm, 2010).

Our algorithm calculated seasonal fluctuations in FV production and included VSGs, in addition to total FV. Accounting for seasonality allowed us to see how production levels change throughout the year. Due to the long growing season in the desert lowlands, there is actually very little fluctuation. The inclusion of sub-groups,

however, allowed us to quickly identify how the composition of the V category changes over the course of a year. The sub-groups also give a more accurate picture of how well production can meet all V recommendations. These are all important factors to know if one were to utilize this data in programs designed to expand the local food system in general, and specifically if the project was aimed at increasing FV consumption.

Study Limitations: There are many limitations inherent in the Arizona foodshed model, as it was built on imperfect data, requiring estimations in certain cases. For example, several assumptions had to be made to calculate the total recommended FV intake for all Arizonans, since Arizona census data, DGA recommendations, physical activity data, and FICRCD age cohorts did not coincide. Also, the DGAs did not provide FV recommendations for individuals from birth to two years of age. As such, recommendations for three- to five-year-olds were imputed. No exercise data were available for children under six years of age, so it was assumed 100% were considered 'active' based on USDA standards.

Error may have been introduced when estimating intake. When converting recommended servings of FV to grams and then pounds, representative and available national level conversion factors were used that may not be entirely accurate. Fresh FV intake, tropical fruit intake, and FV consumption figures were all based on national per capita consumption figures (1994-2002), which were used as a stand-in for actual intake; these data were assumed to be accurate for the Arizona population specifically. As mentioned earlier, BRFSS data shows that Arizonans consume FV at a rate similar to Americans in general, and our calculations of mean daily intake of FV were similar to those provided by the AZ BRFSS. Because the national figures for fresh and non-tropical

81

FV were not broken down by age or gender, the same consumption rate as a percentage of total FV intake was assumed across the Arizona population. There are likely calculation errors in dark-green estimated intakes, since they surpass recommendations. According to Guenther et al. (2006) and based on NHANES (1999-2000) less than a third of individuals consumed adequate amounts of dark-green vegetables. This may be because half brassica category of intake was considered dark-green and the other half as part of the other VSG. Perhaps people consume considerably more other vegetables (cauliflower, cabbage, turnips) than dark-greens (broccoli, chard, and turnip and mustard greens).

Several possible points of error were introduced when estimating yields as well. Arizona Census of Agriculture yields were not listed in pounds, but only by acreage, requiring conversions to be calculated. Acreage only included production estimates if the owner made >\$1000/year in agriculture revenue, resulting in the loss of a minor amount of agricultural production in the state. Arizona-specific average-pounds-per-acre yields were available for some crops, but others had to be derived from national or other states' figures. Yield data in acres or pounds per acre were also incomplete, so only subsets of the FV with highest production levels were used in overall estimates. However, these data sets were the best available. Production was compared to FV recommendations and intake figures at the consumption level, so losses incurred from the farm to the consumer were subtracted from yields, but could only be found on the national level. Seasonality assumptions were not specific as they were based on several sources (ANN, 2011; ERS (a), 2011; ERS (b), 2011; Watson, n.d.).

Future Research: More research is needed to evaluate the capacity and feasibility of Arizona's foodshed to meet the fresh FV needs of the population. A major barrier in expanding the local food market is the lack of an adequate distribution system to transport local food into mainstream markets to meet consumer demand (Martinez et al. 2010). Focus groups or interviews of farmers, food distributors, and buyers should be conducted in order to obtain information on challenges and opportunities identified by each group in participating in the local food system within the Arizona context. Computer models like the one used by Peters et al. (a) (2009) to gauge the New York State foodshed, or that of Desjardins et al. (2010) when assessing the Waterloo region in Canada, would allow researchers to identify the location of productive land and, as in the Desjardin et al. (2010) study, estimate a feasible shift in production patterns that could improve local availability of under-consumed foods. Farms, food distributors, and food processing centers, differentiated by scale, could be mapped together, along with direct marketing venues to identify areas requiring local foods infrastructure development. Methods used by Colasanti and Hamm (2010) could be replicated for Phoenix and Tucson to evaluate production capacity of Arizona's major urban centers. Results could be mapped and focus groups conducted with residents in neighborhoods with available vacant lots to determine local interest. All potential research mentioned could be used to inform program and policy making decisions to improve the chances of success in expanding the local food system and increasing FV intake.

Chapter 6

CONCLUSION

Our study evaluated Arizona agriculture's capacity to meet fresh FV needs of the state's population. Arizona could supply 29.7% of the amount recommended for fruit intake and 47.8% estimated fruit intake for its population over 2 years of age. It could also provide 184.5% of vegetable recommendations and 351.9% of estimated vegetable intake. The state is the nation's second largest producer of lettuce, with Yuma County providing 95% of the country's lettuce from November to March. Unsurprisingly, we found that recommendations and estimated intakes for the dark-green vegetable sub-group category were far exceeded, with production representing 3204.6% of recommendations at the population level, and 3160% of estimated actual intake at the population level.

Seasonal availability was also calculated for fresh FV. Seasonal production was compared to FV recommendations for six months. F and V category production were found to have low degrees of seasonal variability, although the FV composition of each group changes over the course of a year. For fruit, the winter citrus harvest is balanced by the harvest of melons, stone fruits, and other fruits. The vegetable sub-groups starchy, other, and beans and peas also showed high levels of seasonality, with greater yields in the warm months. Dark-green and red-orange VSG production is higher in the cool season. The results from all analyses of production and estimated needs indicate that a sizable percentage of the Arizona population's fresh FV needs can be met through local production, without diminishing the state's status as major supplier of dark-green vegetables for out-of-state markets.

84

REFERENCES

- Abusabha, R., Namjoshi, D., & Klein, A. (2011). Increasing access and affordability of produce improves perceived consumption of vegetables in low-income seniors. *Journal of the American Dietetic Association*, 111(10), 1549-1555.
- Agriculture Marketing Service. (2012). Farmers' markets and local food marketing. Retrieved from http://www.ams.usda.gov/AMSv1.0/ams.fetchTemplateData.do?template=Templ ateS&navID=WholesaleandFarmersMarkets&leftNav=WholesaleandFarmersMar kets&page=WFMFarmersMarketGrowth&description=Farmers%20Market%20G rowth&acct=frmrdirmkt
- Agriculture Marketing Service. (2013). *Food deserts*. Retrieved from http://apps.ams.usda.gov/fooddeserts/foodDeserts.aspx;
- Agriculture Research Service. (2012). *Reports by single nutrients* Retrieved March 30, 2013, from <u>http://www.ars.usda.gov/Services/docs.htm?docid=22769</u>
- Alaimo, K., Packnett, E., Miles, R. A., & Kruger, D. J. (2008). Fruit and vegetable intake among urban community gardeners. *Journal of Nutrition Education and Behavior*, 40(2), 94-101.
- Al-Solaiman, Y., Jesri, A., Mountford, W. K., Lackland, D. T., Zhao, Y., & Egan, B. M. (2010). DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. *Journal of Human Hypertension*, 24(4), 237-246.
- Ammerman, A. S., Lindquist, C. H., Lohr, K. N., & Hersey, J. (2002). The efficacy of behavioral interventions to modify dietary fat and fruit and vegetable intake: A review of the evidence. *Preventive Medicine*, 35(1), 25-41.
- Anderson, J. V., Bybee, D. I., Brown, R. M., McLean, D. F., Garcia, E. M., Breer, M. L., & Schillo, B.(2001). 5 A day fruit and vegetable intervention improves consumption in a low income population. *Journal of the American Dietetic Association*, 101(2), 195-202.
- Ascherio, A., Rimm, E. B., Hernan, M., Giovannucci, E. L., Kawachi, I., Stampfer, M. J., & Willett, W. C. (1998). Intake of potassium, magnesium, calcium, and fiber and risk of stroke among US men. *Circulation (New York, N.Y.)*, 98(12), 1198; 1198-1204; 1204.

- Arizona Department of Health Services. (2013). *BRFSS fruit and vegetable intake summary:2011 data*. Retrieved from <u>http://www.azdhs.gov/phs/bnp/nupao/documents/BRFSS-Fruit-Vegetable-Intake-Summary-Arizona-2011.pdf</u>
- Arizona Nutrition Network. (2011).*Arizona harvest calendar*. Retrieved November 29, 2012, from <u>http://www.eatwellbewell.org/uploads/media/documents/harvest-calendar-final.pdf</u>
- Avignon, A., Hokayem, M., Bisbal, C., & Lambert, K. (2012). Dietary antioxidants: Do they have a role to play in the ongoing fight against abnormal glucose metabolism? *Nutrition (Burbank, Los Angeles County, Calif.)*, 28(7-8), 715-721.
- Backman, D., Gonzaga, G., Sugerman, S., Francis, D., & Cook, S. (2011). Effect of fresh fruit availability at worksites on the fruit and vegetable consumption of low-wage employees. *Journal of Nutrition Education and Behavior*, 43(4 Suppl 2), S113-21.
- Berlin, L., Lockeretza, W., & Bella, R. (2009). Purchasing foods produced on organic, small, and local farms: A mixed method analysis of New England consumers. *Renewable Agriculture and Food System*, 24(4), 267-275.
- Blake M, Mellor J, Crane L. (2010).Buying local food: Shopping practices, place, and consumption networks in defining food as 'local'. *Ann Assoc Am Geogr.*, 100(2):409-426.
- Blanchette, L., & Brug, J. (2005). Determinants of fruit and vegetable consumption among 6-12-year-old children and effective interventions to increase consumption. *Journal of Human Nutrition and Dietetics*, 18(6), 431.
- Blanck, H. M., Thompson, O. M., Nebeling, L., & Yaroch, A. L. (2011). Improving fruit and vegetable consumption: Use of farm-to-consumer venues among US adults. *Preventing Chronic Disease*, 8(2), A49.
- Blitstein, J. L., Snider, J., & Evans, W. D. (2012). Perceptions of the food shopping environment are associated with greater consumption of fruits and vegetables. *Public Health Nutrition*, *15*(6), 1124-1129.
- Bloom, J. D., & Hinrichs, C. C. (2011). Moving local food through conventional food system infrastructure: Value chain framework comparisons and insights. *Renewable Agriculture and Food Systems*, 26(1), 13.
- Bowman, S. A., Martin, C. L., Friday, J. E., Clemens, J., Moshfegh, A. J., Lin, B. H., & Wells, H. F. (2011). *Retail food commodity intakes: Mean amounts of retail commodities per individual*, 2001-2002. U.S. Department of Agriculture, Agricultural Research Service and Economic Research Service

- Brown, L., Rosner, B., Willett, W. W., & Sacks, F. M. (1999). Cholesterol-lowering effects of dietary fiber: A meta-analysis. *The American Journal of Clinical Nutrition*, 69(1), 30-42.
- Buscemi, S., Rosafio, G., Arcoleo, G., Mattina, A., Canino, B., Montana, M., . . . Rini, G. (2012). Effects of red orange juice intake on endothelial function and inflammatory markers in adult subjects with increased cardiovascular risk. *The American Journal of Clinical Nutrition*, 95(5), 1089-1095.
- Carter, P., Gray, L. J., Troughton, J., Khunti, K., & Davies, M. J. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: Systematic review and meta-analysis. *BMJ (Clinical Research Ed.)*, 341, c4229.
- Census of Agriculture. (2012). *Arizona*. (No. vol 1).USDA Census of Agriculture. Retrieved Sept.30, from http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapte r_1_State_Level/Arizona/
- Centers of Disease Control and Prevention, Behavioral Risk Factor Surveillance System. (2009). Adults who have consumed fruits and vegetables five or more times per day. Retrieved October 29, 2012, from http://apps.nccd.cdc.gov.ezproxy1.lib.asu.edu/brfss/list.asp?cat=FV&yr=2009&q key=4415&state=All.
- Centers for Disease Control and Prevention. (2012).*Chronic disease and health* promotion. Retrieved December 16, 2012, from http://www.cdc.gov.ezproxy1.lib.asu.edu/chronicdisease/overview/index.htm
- Centers for Disease Control and Prevention. (2010). State-specific trends in fruit and vegetable consumption among adults --- United States, 2000-2009. *MMWR.Morbidity and Mortality Weekly Report*, 59(35), 1125-1130.
- Chambers, S. (2007). Local, national and imported foods: A qualitative study. *Appetite*, *49*(1), 208.
- Chandalia, M., Garg, A., Lutjohann, D., von Bergmann, K., Grundy, S. M., & Brinkley, L. J. (2000). Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. *The New England Journal of Medicine*, 342(19), 1392-1398.
- Chang, J. L., Chen, G., Ulrich, C. M., Bigler, J., King, I. B., Schwarz, Y., Lampe, J.W. (2010). DNA damage and repair: Fruit and vegetable effects in a feeding trial. *Nutrition and Cancer*, 62(3), 329-335.
- Chapman, K. (2010). Can people make healthy changes to their diet and maintain them in the long term? A review of the evidence. *Appetite*, *54*(3), 433-441.

- Chen, S., Maruther, N., & Appel, L. (2010). The effect of dietary patterns of estimated coronary heart disease risk: Results from the dietary approaches to stop hypertension (DASH trial). *Circulation Cardiovascular Quality Outcomes*, *3*(5), 484-489.
- Clancy K, Ruhf K. (2010). Is local enough? some arguments for regional food systems. *Choices: the magazine of food, farm, and resource issues*, 25(1).
- *Climate of Arizona*. (n.d.). Retrieved University of Arizona, Western Regional Climate Center Web site:<u>http://www.wrcc.dri.edu/narratives/ARIZONA.htm</u>
- Colasanti K.A., Hamm M.W. (2010). Assessing the local food supply capacity of Detroit, Michigan. *The Journal of Agriculture, Food Systems, and Community Development*, 1(2):41-58.
- Daniel, C. R., Park, Y., Chow, W. H., Graubard, B. I., Hollenbeck, A. R., & Sinha, R.(2013). Intake of fiber and fiber-rich plant foods is associated with a lower risk of renal cell carcinoma in a large US cohort. *The American Journal of Clinical Nutrition*, doi:10.3945/ajcn.112.045351
- Desjardins E., MacRae R., Schumilas T. (2010).Linking future population food requirements for health with local production in Waterloo region, Canada. *Agriculture and Human Values*, 27(2):129-140.
- DeVol, R., & Bedroussian, A.; Charuworn, A.; Chatterjee, A.;Kyu Kim, I.; Kim, S.; Klowden, K. (2007). An unhealthy America: the economic burden of chronic disease. Santa Monica, CA: Milken Institute..
- Dubowitz T., Heron M., Bird C.E., Lurie N., Finch B.K., Basurto-Dávila R., Hale L., Escarce JJ. (2008). Neighborhood socioeconomic status and fruit and vegetable intake among whites, blacks, and Mexican Americans in the United States. Am J Clin Nutr, 87(6):1883.
- Economic Research Service. (a). (2012).*Food availability (per capita) data system: data sets* [statistics]. Available from ERS database. Retrieved March 22, 2013, from http://www.ers.usda.gov/data-products/food-availability-%28per-capita%29datasystem.aspx#.UU0nhlcXtK0
- Economic Research Service.(b). (2012). *Fruit and tree nut yearbook* [statistics]. Available from ERS database. Retrieved March 26, 2013, from <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1</u> <u>377</u>
- Economic Research Service.(c). (2012). *Fruit and vegetable prices* [statistics]. Available from ERS database. Retrieved November13, 2012, from <u>http://www.ers.usda.gov/dataproducts/fruit-and-vegetable-prices.aspx</u>

- Economic Research Service. (a). (2013).*State export data* [statistics]. Available from ERS database. Retrieved January 28, 2013, from <u>http://www.ers.usda.gov/data-products/state-export-data.aspx</u>
- Economic Research Service. (b). (2013). *State fact sheet* [statistics]. Available from ERS database. Retrieved March 26, 2013, from <u>http://www.ers.usda.gov/data-products/state-fact sheets/ statedata.aspx? Stat e</u> <u>FIPS=04&StateName=Arizona#P73e0c7d94737432e8e686bb2fd5a5c68_2_580i</u> 21C0x0
- Economic Research Service.(a).(2011).U.S carrot statistics [statistics]. Available from ERS database. Retrieved December 17, 2012, from <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=</u> <u>1577</u>
- Economic Research Service.(b).(2011).U.S lettuce statistics [statistics]. Available from ERS database. Retrieved December 17, 2012, from <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1</u> <u>576</u>
- Economic Research Service. (c).(2011). Vegetables and melons yearbook [statistics]. Available from ERS database. Retrieved March 26, 2013, from <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID12</u> <u>12</u>
- Evans, A. E., Jennings, R., Smiley, A. W., Medina, J. L., Sharma, S. V., Rutledge, R., Hoelscher, D. M. (2012). Introduction of farm stands in low-income communities increases fruit and vegetable among community residents. *Health & Place*, 18(5), 1137-1143.
- Farming and ranching. (n.d). Retrieved December 17, 2012, from <u>http://arizonaexperience.org/land/farming-and-ranching</u>
- Food and Nutrition Service. (2012). USDA awards first grants to increase local foods in eligible schools 68 projects support nearly 2 million students. Retrieved December 17, 2012, from http://www.fns.usda.gov/cga/PressReleases/2012/0343.htm
- Foreign Agriculture Service. (2009). *Trade and agriculture: What's at stake for Arizona?*.Retrieved December 17, 2012, from <u>http://www.fas.usda.gov/info/factsheets/WTO/states/az.pdf</u>
- Ganmaa, D., Li, X. M., Wang, J., Qin, L. Q., Wang, P. Y., & Sato, A. (2002). Incidence and mortality of testicular and prostate cancers in relation to world dietary practices. *International Journal of Cancer*, *98*(2), 262-267.

- Giombolini K.J., Chambers K.J., Schlegel S.A., Dunne J.B. (2011). Testing the local reality: Does the Willamette Valley growing region produce enough to meet the needs of the local population? A comparison of agriculture production and recommended dietary requirements. *Agriculture and human values*, 28(2):247-262.
- Glanz K., Basil M., Maibach E., Goldberg J., Snyder D. (1998). Why Americans eat what they do: Taste, nutrition, cost, convenience, and weight control concerns as influences on food consumption. *J Am Diet Assoc*, 98(10):1118-1126.
- Grimm, K., Blanck, H., Scanlon, K., Moore, L., Grummer-Strawn, L., & Foltz, J. (2010). State specific trends in fruit and vegetable consumption among adults---United States, 2000-2009. *Morbitity and Mortality Weekly Report*, 59(35), 1125-1130.
- Gruchow, H. W., Sobocinski, K. A., & Barboriak, J. J. (1988). Calcium intake and the relationship of dietary sodium and potassium to blood pressure. *The American Journal of Clinical Nutrition*, 48(6), 1463-1470.
- Guenther PM, Dodd KW, Reedy J, Krebs-Smith SM. (2006). Most Americans eat much less than recommended amounts of fruits and vegetables. *J Am Diet Assoc*, 106(9):1371-1379.
- Haddy, F. J., Vanhoutte, P. M., & Feletou, M. (2006). Role of potassium in regulating blood flow and blood pressure. *American Journal of Physiology.Regulatory*, *Integrative and Comparative Physiology*, 290(3), R546-52.
- Haskell, W. L., Spiller, G. A., Jensen, C. D., Ellis, B. K., & Gates, J. E. (1992). Role of water-soluble dietary fiber in the management of elevated plasma cholesterol in healthy subjects. *The American Journal of Cardiology*, 69(5), 433-439.
- He F. (2007).Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: Meta-analysis of cohort studies.*J Hum Hypertens*, 21(9):717.
- He F.J., Nowson C.A., MacGregor G.A.(2006). Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. *The Lancet*, 367(9507):320-326.
- Hinrichs C.C. (2000).Embeddedness and local food systems: Notes on two types of direct agricultural market. *J Rural Stud*, 16(3):295-303.
- Howerton, M. W., Bell, B. S., Dodd, K. W., Berrigan, D., Stolzenberg-Solomon, R., & Nebeling, L. (2007). School-based nutrition programs produced a moderate increase in fruit and vegetable consumption: Meta and pooling analyses from 7 studies. *Journal of Nutrition Education and Behavior*, 39(4), 186-196.

- Hung H.C., Joshipura K.J., Jiang R., Hu F.B., Hunter D., Smith-Warner S.A., Colditz G.A., Rosner B., Spieglman D., Willett W.C. (2004).Fruit and vegetable intake and risk of major chronic disease. JNCI : *Journal of the National Cancer Institute*, 96(21):1577-1584.
- Izumi, B. T., Alaimo, K., & Hamm, M. W. (2010). Farm-to-school programs: Perspectives of school food service professionals. *Journal of Nutrition Education* and Behavior, 42(2), 83-91.
- Izumi, B. T., Rostant, O. S., Moss, M. J., & Hamm, M. W. (2006). Results from the 2004 Michigan farm-to-school survey. *The Journal of School Health*, *76*(5), 169-174.
- Jacobs D., Tapsell L.C., Temple NJ. (2011).Food synergy: The key to balancing the nutrition research effort. *Public Health Rev*, 33(2):1.
- Joffres, M. R., Reed, D. M., & Yano, K. (1987). Relationship of magnesium intake and other dietary factors to blood pressure: The Honolulu heart study. *American Journal of Clinical Nutrition*, 45(2), 469-475.
- Johnson, D. B., Beaudoin, S., Smith, L. T., Beresford, S. A., & LoGerfo, J. P. (2004). Increasing fruit and vegetable intake in homebound elders: The Seattle senior farmers' market nutrition pilot program. *Preventing Chronic Disease*, 1(1), A03.
- Kantor, L. (1998). A dietary assessment of the U.S. food supply: Comparing per capita food consumption with food guide pyramid serving recommendations. (No. 772 Agricultural Economic Report). Washington, DC:Food and Rural Economics division, Economic Research Service, USDA.
- Keller, J., Lanou, A. J., & Barnard, N. D. (2002). The consumer cost of calcium from food and supplements. *Journal of the American Dietetic Association*, 102(11), 1669-1671.
- Kingsolver B., Hopp S., Kingsolver C. Animal, vegetable, miracle: a year of food life. New York: HarperCollins Publishers.2007.
- Kloppenburg JJ, Hendrickson J, Stevenson GW. (1996).Coming in to the foodshed. *Agriculture and human values*, 13(3):33-42.
- Kropf, M. L., Holben, D. H., Holcomb, J. P., Jr, & Anderson, H. (2007). Food security status and produce intake and behaviors of special supplemental nutrition program for women, infants, and children and farmers' market nutrition program participants. *Journal of the American Dietetic Association*, 107(11), 1903-1908.
- Larsen, K., & Gilliland, J. (2009). A farmers' market in a food desert: Evaluating impacts on the price and availability of healthy food. *Health & Place*, *15*(4), 1158-1162.

- Larsson, S. C., Mannisto, S., Virtanen, M. J., Kontto, J., Albanes, D., & Virtamo, J. (2009). Dietary fiber and fiber-rich food intake in relation to risk of stroke in male smokers. *European Journal of Clinical Nutrition*, 63(8), 1016-1024.
- Lee, R. E., Heinrich, K. M., Medina, A. V., Regan, G. R., Reese-Smith, J. Y., Jokura, Y., & Maddock, J. E. (2010). A picture of the healthful food environment in two diverse urban cities. *Environmental Health Insights*, 4, 49-60.
- Li, C., Balluz, L. S., Okoro, C. A., Strine, T. W., Lin, J. M., Town, M., . . . Centers for Disease Control and Prevention (CDC). (2011). Surveillance of certain health behaviors and conditions among states and selected local areas --- behavioral risk factor surveillance system, united states, 2009. *Morbidity and Mortality Weekly Report.Surveillance Summaries (Washington, D.C.: 2002), 60*(9), 1-250.
- Lobell D., Burke M.B, Tebaldi C., Mastrandrea M.D, Falcon W.P., Naylor R.L, (2008). Prioritizing climate change adaptation needs for food security in 2030. *Science*, 319:607-610.
- Lock, K., Pomerleau, J., Causer, L., Altmann, D. R., & McKee, M. (2005). The global burden of disease attributable to low consumption of fruit and vegetables: Implications for the global strategy on diet. *Bulletin of the World Health Organization*, 83(2), 100-108.
- Lorson B.A., Melgar-Quinonez H.R., Taylor C.A. (2009).Correlates of fruit and vegetable intakes in US children. *J Am Diet Assoc*, 109(3):474-478.
- Low, S., & Vogel, S. (2011). Direct and intermediated marketing of local foods in the United States. (No. 128).United states Department of Agriculture: Economic Research Service.
- Lucan S.C., Mitra N. (2012). The food environment and dietary intake: Demonstrating a method for GIS-mapping and policy-relevant research. *Journal of Public Health*, 20(4):375-385.
- MaClellan, D., Gottshall-Pass, K., & Larsen, R. (2004). Fruit and vegetable consumption: Benefits and barriers. *Canadian Journal of Dietetic Practice and Research*, 65, 101-105.
- Martinez, S., Hand, M., Da Pra, M., Pollack, S., Ralston, K., Smith, T, Newman, C. (2010). *Local food systems*. (No. 97). Washington, D.C.: U.S. Dept. of Agriculture, Economic Research Service.

- McCormack, L. A., Laska, M. N., Larson, N. I., & Story, M. (2010). Review of the nutritional implications of farmers' markets and community gardens: A call for evaluation and research efforts. *Journal of the American Dietetic Association*, 110(3), 399-408.
- McLeroy, K. R., Bibeau, D., Steckler, A., & Glanz, K. (1988). An ecological perspective on health promotion programs. *Health Education Quarterly*, *15*(4), 351-377.
- Michels Blanck H., Gillespie C., Kimmons J.E., Seymour J.D., Serdula M.K. (2008).Trends in fruit and vegetable consumption among U.S. men and women, 1994–2005. Prev Chron Dis,5(2).
- Morrison K.T., Nelson T.A., Ostry A.S. (2011).Methods for mapping local food production capacity from agricultural statistics. *Agricultural Systems*, 104(6):491-499.
- Murphy, N., Norat, T., Ferrari, P., Jenab, M., Bueno-de-Mesquita, B., Skeie, G., Riboli, E. (2012). Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). *PloS One*, 7(6), e39361.
- National Agriculture Library. (2013). *Community supported agriculture*. Retrieved from <u>http://www.nal.usda.gov/afsic/pubs/csa/csa.shtml</u>
- National Agricultural Statistics Service. (a).(2012).*Citrus fruit 2011 summary*. (2012). Retrieved from <u>http://usda01.library.cornell.edu/usda/current/CitrFrui/CitrFrui-09-20-2012.pdf</u>
- National Agricultural Statistics Service.(b). (2012).*Crop production 2011 summary*. Retrieved Oct 15, 2012, from http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1 047
- National Agriculture Statistics Services. (c). (2012). Non citrus fruits and nuts: 2011 summary .Retrieved November 12, 2013, from http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID= 1113
- National Agriculture Statistics Services. (d). (2012).*Vegetables: 2012 summary* [statistics]. Available from NASS database. Retrieved from <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=</u> <u>1183</u>

- National Institutes of Health. (2013). *Behavior change and maintenance*. Retrieved from <u>http://obssr.od.nih.gov.ezproxy1.lib.asu.edu/scientific_areas/health_behaviour/behaviour_changes/index.aspx;</u>
- Nile C., Zepeda L. (2011).Lifestyle segmentation of US food shoppers to examine organic and local food consumption. *Appetite*, 57(1):28-37.
- Ohri-Vachaspati, P., Massi, B., Taggart, M., Konen, J., & Kerrigan, J. (2009). City fresh: A local collaboration for food equity. *Journal of Extension*, 47(6)
- Ohri-Vachaspati P. and Warrix M. (1998).Fruit and Vegetable Consumption Among Urban Gardeners. Ohio State University Extension. As published in the 1999 SNE Annual Meeting Proceedings, page 33.
- Olesen J., Carter T. Diaz-Ambrona C., Fronzek S, Heideman T., Hickler T., Holt T., Minguez M., Morales P., Palutikof J., Quernada M., Ruiz-Ramos M., Rubaek G, Sau F., Smith B., Sykes M. (2007).Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from the regional climate models. *Climate Change*, 81: 123-143.
- Park, Y. (2010). Intakes of vegetables and related nutrients such as vitamin B complex, potassium, and calcium are negatively correlated with risk of stroke in Korea. *Nutrition Research and Practice*, 4(4), 303-310.
- Paxton, R. J., Garcia-Prieto, C., Berglund, M., Hernandez, M., Hajek, R. A., Handy, B., Jones, L. A. (2012). A randomized parallel-group dietary study for stages II-IV ovarian cancer survivors. *Gynecologic Oncology*, 124(3), 410-416.
- Pearson, N., Biddle, S. J., & Gorely, T. (2009). Family correlates of fruit and vegetable consumption in children and adolescents: A systematic review. *Public Health Nutrition*, 12(2), 267-283.
- Pelletier, J. E., Laska, M. N., Neumark-Sztainer, D., & Story, M. (2013). Positive attitudes toward organic, local, and sustainable foods are associated with higher dietary quality among young adults. *Journal of the Academy of Nutrition and Dietetics*, 113(1), 127-132.
- Peters C.J., Bills N.L., Lembo A.J., Wilkins J.L., Fick G.W.(a).(2009). Mapping potential foodsheds in New York State: A spatial model for evaluating the capacity to localize food production. *Renewable agriculture and food systems*, 24(01):72-84.
- Peters C.J., Bills N.L., Wilkins J.L., Fick G.W. (b).(2009). Foodshed analysis and its relevance to sustainability. *Renewable agriculture and food systems*, 2009;24(01):1-7.

Pollan, M. Omnivore's Dilemma. New York, NY: Penguin Press. 2006.

- Pomerleau, J., Lock, K., Knai, C., & McKee, M. (2005). Interventions designed to increase adult fruit and vegetable intake can be effective: A systematic review of the literature. *The Journal of Nutrition*, 135(10), 2486-2495.
- Rautiainen, S., Levitan, E. B., Orsini, N., Åkesson, A., Morgenstern, R., Mittleman, M. A., & Wolk, A. (2012). Total Antioxidant Capacity from Diet and Risk of Myocardial Infarction: A Prospective Cohort of Women. *The American Journal* of Medicine, 125(10), 974-980.
- Riboli E., Norat T. (2003).Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. *Am J Clin Nutr*, 78(3 Suppl):559S-569S.
- Rimm, E. B., Ascherio, A., Giovannucci, E., Spiegelman, D., Stampfer, M. J., & Willett, W. C. (1996). Vegetable, fruit, and cereal fiber intake and risk of coronary heart disease among men. *JAMA : The Journal of the American Medical Association*, 275(6), 447-451.
- Robinson, T. (2008). Applying the socio-ecological model to improving fruit and vegetable intake among low-income African Americans. *Journal of Community Health*, *33*(6), 395-406.
- Roswall, N., Olsen, A., Christensen, J., Dragsted, L. O., Overvad, K., & Tjonneland, A. (2010). Source-specific effects of micronutrients in lung cancer prevention. *Lung Cancer (Amsterdam, Netherlands)*, 67(3), 275-281.
- Severson, K. (2006). Greenmarket at 30, searching for itself. The New York Times, F.1.
- Seyfang, G. (2008). Avoiding Asda? exploring consumer motivations in local organic food networks. *Local Environment*, *13*(3), 187-201.
- Slusser, W. M., Cumberland, W. G., Browdy, B. L., Lange, L., & Neumann, C. (2007). A school salad bar increases frequency of fruit and vegetable consumption among children living in low-income households. *Public Health Nutrition*, 10(12), 1490-1496.
- Smith A., MacKinnon J.B. Plenty: One man, one woman, and a raucous year of eating locally. San Francisco: Random House.2007.
- Sontia, B., & Touyz, R. M. (2007). Role of magnesium in hypertension. Archives of Biochemistry and Biophysics, 458(1), 33-39.
- Starr A. Local food: A social movement? (2010).*Cultural Studies* <=> *Critical Methodologies*,10(6):479-490.

- Svastisalee, C. M., Holstein, B. M., & Due, P. (2012). Fruit and vegetable intake in adolescents: Association with socioeconomic status and exposure to supermarkets and fast food outlets. *Journal of Nutrition and Metabolism Volume* Updated 2012. Retrieved September 24, 2012.
- *Temperature and precipitation.* (2012). Retrieved from University of Arizona, Climate Assessment of the Southwest Web site: <u>http://www.climas.arizona.edu/sw-climate/temp-precip</u>
- Terry, P., Terry, J. B., & Wolk, A. (2001). Fruit and vegetable consumption in the prevention of cancer: An update. *Journal of Internal Medicine*, 250(4), 280-290.
- te Velde, S. J., Bruge, J., Winda, M., Hildonena, C., Bjellanda, M., Pérez-Rodrigoa, C., & Kleppa, K. (2008). Effects of a comprehensive fruit- and vegetable-promoting school-based intervention in three European countries: The pro children study. *British Journal of Nutrition*, 99(04), 893-903.
- Thomson, C. A., & Ravia, J. (2011). A systematic review of behavioral interventions to promote intake of fruit and vegetables. *Journal of the American Dietetic Association*, *111*(10), 1523-1535.
- Timmons, D., & Wang, Q. (2010). Direct food sales in the United States: Evidence from state and county-level data. *Journal of Sustainable Agriculture*, *34*(1-2), 229.
- Todd, A. (2009). Interest in community gardens sprouting all across America. *Rural Cooperatives*, 76(3), 26.
- Troiano R.P., Berrigan D., Dodd K.W., Masse L.C., Tilert T., McDowell M. (2008).Physical activity in the United States measured by accelerometer. *Med Sci Sports Exerc*, 40(1):181-188.
- U.S. Census Bureau.(a). (2012). Intercensal estimates of the resident population by sex and age for Arizona: April 1, 2000 to July 1, 2010. Retrieved October 15, 2013. http://www.census.gov/popest/data/intercensal/state/ST-EST00INT-02.html
- U.S. Census Bureau.(b). (2012).*Statistical abstract of the United States: Agriculture: Table 835*. Retrieved February 21,2013, from <u>http://www.census.gov/prod/2011pubs/12statab/agricult.pdf</u>
- U.S. Department of Agriculture and U.S. Department of Health and Human Services.(a).*Dietary Guidelines for Americans*, 2010. (2010).7th Edition, Washington, DC: U.S. Government Printing Office, December 2010. Retrieved September 24, 2012, from <u>http://www.health.gov/dietaryguidelines/2010.asp</u>.

- U.S. Department of Agriculture. (b).(2010). *Food Groups*. Retrieved February, 2012, from http://www.choosemyplate.gov/food-groups/
- U.S Department of Agriculture. (2011). *How much physical activity do you need?*. Retrieved from <u>http://www.cdc.gov.ezproxy1.lib.asu.edu/physicalactivity/everyone/guidelines/ind</u> <u>ex.html</u>
- U.S. grocery shopper trend 2009. (2009). Food Marketing Institute.
- U.S. grocery shopper trend 2012: Executive summary. (2012). Food Marketing Institute.
- Veldman, F. J., Nair C. H., Vorsten, H. H., Vermaack, W. J. H., Jerlin, J. C., Oosthuizen, W., & Venter, C. S. (1997). Dietary pectin influences fibrin network structure in hypercholesterolaemic subjects. *Thrombosis Research*, 86(3), 183; 183-96; 196.
- Ventura, E., Davis, J., Byrd-Williams, C., Alexander, K., McClain, A., Lane, C. J., Goran, M. (2009). Reduction in risk factors for type 2 diabetes mellitus in response to a low-sugar, high-fiber dietary intervention in overweight Latino adolescents. Archives of Pediatrics & Adolescent Medicine, 163(4), 320-327
- Watson, M. (n.d.). Arizona seasonal fruits and vegetables. Retrieved December 17, 2012, from <u>http://localfoods.about.com/od/searchbyregion/a/arizonaseasons.htm</u>
- Whaley, S. E., Ritchie, L. D., Spector, P., & Gomez, J. (2012). Revised WIC food package improves diets of WIC families. *Journal of Nutrition Education and Behavior*, 44(3), 204-209.
- Wilson K., Keelan J. (2008).Learning from Listeria :the autonomy of the Public Health Agency of Canada. *Canadian Medical Association Journal*,179:877-879.

APPENDIX A

2010 ARIZONA POPULATION

Table 2. Interc	ensal Estimat	es of the Res	ident Populat	ion by Sex an	d Age for Ariz	zona: April 1,	2000 to July 1	, 2010
Sax and Aga			Intercensal	Estimates (as	s of July 1)			April 1,
Sex and Age	2003	2004	2005	2006	2007	2008	2009	2010 ²
MALE	2,746,287	2,816,798	2,908,266	3,003,007	3,070,683	3,125,084	3,153,246	3,175,82
Under 5 years	212,369	219,468	227,461	234,349	239,414	241,498	236,159	232,56
5 to 9 years	199,628	201,849	206,255	213,558	218,850	224,569	228,217	231,24
10 to 14 years	210,613	213,709	217,232	221,268	223,936	226,173	227,858	228,99
15 to 19 years	202,553	209,474	218,017	225,967	232,399	236,980	237,592	237,28
20 to 24 years	211,198	213,772	216,575	220,164	224,031	226,581	228,031	229,56
25 to 29 years	199,558	206,836	215,866	226,402	230,336	231,555	228,836	225,60
30 to 34 years	199,915	200,612	201,856	203,553	205,712	208,126	210,499	212,22
35 to 39 years	194,518	195,138	200,928	208,825	213,202	214,831	213,047	210,22
40 to 44 years	201,385	205,464	208,161	209,981	207,970	206,465	204,915	205,89
45 to 49 years	183,323	189,172	196,857	203,661	208,898	211,218	213,070	212,49
50 to 54 years	160,887	166,074	173,163	180,491	187,568	194,502	198,530	202,4
55 to 59 years	138,883	147,555	158,020	168,309	170,571	172,496	175,630	178,60
60 to 64 years	112,415	119,218	126,700	133,575	144,258	152,579	159,621	166,9
65 to 69 years	96,687	101,180	105,811	110,786	115,594	122,428	128,972	133,5
70 to 74 years	85,589	86,571	88,724	91,078	93,140	96,416	100,288	102,6
75 to 79 years	67,650	68,943	71,503	72,775	74,034	74,853	75,334	76,2
80 to 84 years 85 years and	42,965	44,612	46,053	47,174	47,914	49,507	50,330	51,50
over	26,151	27,151	29,084	31,091	32,856	34,307	36,317	37,7
Under 18 years	744,880	760,789	782,984	806,222	822,274	832,614	831,449	831,9
Under 5 years	212,369	219,468	227,461	234,349	239,414	241,498	236,159	232,5
5 to 13 years	369,172	371,594	379,556	390,296	397,884	406,342	410,561	414,7
14 to 17 years	163,339	169,727	175,967	181,577	184,976	184,774	184,729	184,5
18 to 64 years	1,682,365	1,727,552	1,784,107	1,843,881	1,884,871	1,914,959	1,930,556	1,942,2
18 to 24 years	291,481	297,483	302,556	309,084	316,356	323,187	326,408	327,7
25 to 44 years	795,376	808,050	826,811	848,761	857,220	860,977	857,297	853,9
45 to 64 years	595,508	622,019	654,740	686,036	711,295	730,795	746,851	760,5

100	65 years and over	319,042	328,457	341,175	352,904	363,538	377,511	391,241	401,695
	16 years and over 18 years and	2,082,880	2,139,567	2,212,072	2,288,370	2,342,659	2,386,788	2,415,705	2,437,034
	over	2,001,407	2,056,009	2,125,282	2,196,785	2,248,409	2,292,470	2,321,797	2,343,919
	15 to 44 years	1,209,127	1,231,296	1,261,403	1,294,892	1,313,650	1,324,538	1,322,920	1,320,796
	Median age (years)	33.4	33.6	33.8	33.9	34.0	34.2	34.5	34.8
	FEMALE	2,764,077	2,835,606	2,930,811	3,026,134	3,096,998	3,155,278	3,189,908	3,216,194
	Under 5 years	204,240	210,563	219,646	225,398	230,266	232,313	227,259	223,153
	5 to 9 years	189,722	191,396	195,637	203,480	209,148	215,602	218,777	222,434
	10 to 14 years	200,580	204,458	207,998	211,933	215,225	216,528	218,109	219,669
	15 to 19 years	186,620	193,034	201,497	209,382	215,865	221,157	223,913	224,302
	20 to 24 years	196,007	197,927	199,191	201,354	204,621	208,701	210,866	213,022
	25 to 29 years	184,301	191,984	203,100	215,474	220,007	221,050	218,266	214,390
	30 to 34 years	187,561	188,998	191,103	192,985	195,182	197,927	201,693	204,472
	35 to 39 years	187,031	187,295	192,268	199,961	205,433	207,586	207,237	205,469
	40 to 44 years	200,264	203,763	206,736	207,042	204,918	202,829	200,589	200,902
	45 to 49 years	188,081	193,053	200,700	207,620	211,737	213,740	215,103	214,523
	50 to 54 years	170,940	178,071	185,304	192,766	199,599	206,018	209,314	213,113
	55 to 59 years	150,108	159,130	170,691	182,682	185,991	189,339	193,794	196,603
	60 to 64 years	125,980	133,767	141,583	148,697	159,577	167,835	175,783	184,006
	65 to 69 years	106,192	110,996	116,421	122,069	128,135	137,349	144,369	149,267
	70 to 74 years	94,843	96,148	97,860	100,032	102,716	105,793	109,553	112,398
	75 to 79 years	82,290	82,060	83,407	84,209	84,590	84,900	85,738	86,040
	80 to 84 years	59,764	61,917	64,569	65,354	65,634	66,087	66,011	66,769
	85 years and								
	over	49,553	51,046	53,100	55,696	58,354	60,524	63,534	65,662
	Under 18 years	708,791	723,665	746,184	768,645	785,621	796,037	795,894	797,110

1	1	1					1	
Under 5 years	204,240	210,563	219,646	225,398	230,266	232,313	227,259	223,153
5 to 13 years	351,440	354,157	361,713	372,863	381,131	388,852	393,519	398,728
14 to 17 years	153,111	158,945	164,825	170,384	174,224	174,872	175,116	175,229
18 to 64 years	1,662,644	1,709,774	1,769,270	1,830,129	1,871,948	1,904,588	1,924,809	1,938,948
18 to 24 years	268,378	273,713	277,785	282,902	289,504	298,264	303,030	305,470
25 to 44 years	759,157	772,040	793,207	815,462	825,540	829,392	827,785	825,233
45 to 64 years	635,109	664,021	698,278	731,765	756,904	776,932	793,994	808,245
65 years and								
over	392,642	402,167	415,357	427,360	439,429	454,653	469,205	480,136
16 years and								
over	2,131,147	2,189,615	2,265,018	2,342,472	2,399,134	2,447,024	2,482,324	2,507,447
18 years and								
over	2,055,286	2,111,941	2,184,627	2,257,489	2,311,377	2,359,241	2,394,014	2,419,084
15 to 44 years	1,141,784	1,163,001	1,193,895	1,226,198	1,246,026	1,259,250	1,262,564	1,262,557
Median age								
(years)	35.9	36.1	36.1	36.3	36.4	36.6	36.9	37.2

¹ The April 1, 2000 Population Estimates base reflects changes to the Census 2000 population from the Count Question Resolution program, legal boundary updates, and other geographic program revisions.

² The data source for April 1, 2010 is the 2010 Census count.

³ The values for July 1, 2010 were produced by applying estimates of change in the population between April 1 and July 1 of 2010 to the 2010 Census counts. Further details on this methodology are available at http://www.census.gov/popest/methodology/2000-2010_Intercensal_Estimates_Methodology.pdf.

Note: Median age is calculated based on single year of age.

10 1

APPENDIX B

PHYSICAL ACTIVITY LEVELS

TABLE 5. Prevalence* (% and SE) of the population attaining sufficient† physical activity to meet public health recommendations.

Approach	Age (yr)	Males	Females	Total
Counting every minute	6-11	48.9 (2.8)	34.7 (1.2)	42.0 (1.6)
	12-15	11.9 (1.7)	3.4 (0.6)	8.0 (1.1)
	16-19	10.0 (1.6)	5.4 (1.4)	7.6 (1.2)
Counting only bouts	16-19	7.1 (1.0)	4.1 (1.0)	5.6 (0.8)
	20-59	3.8 (0.4)	3.2 (0.3)	3.5 (0.3)
	60+	2.5 (0.4)	2.3 (0.5)	24 (0.4)

* Prevalence estimates were based on individuals with one or more valid days of accelerometer data. Adherence definitions were based on age-specific criteria for moderate intensity for ages 6–17 yr; moderate-intensity criterion = 2020 counts per minute for ages 18 and older.

† Adherence: for ages 6–19 yr, 60 or more minutes of moderate- or greater-intensity activity on 5 of 7 d, accumulating every minute above criterion; for ages 16 yr and older, 30 or more minutes of moderate- or greater-intensity activity on 5 of 7 d, accumulated in modified 10-min bouts (8 of 10 min). Ages 16–19 yr were estimated with both definitions.

APPENDIX C

MYPLATE VEGETABLE RECOMMENDATIONS

How many vegetables are needed daily or weekly?

Daily recommendation*

Children	2-3 years old	1 cup**
	4-8 years old	1½ cups**
Girls	9-13 years old 14-18 years old	2 cups** 2½ cups**
Boys	9-13 years old	21⁄2 cups**
	14-18 years old	3 cups**
Women	19-30 years old 31-50 years old	2½ cups** 2½ cups**
	51+ years old	2 cups**
Men	19-30 years old 31-50 years old 51+ years old	3 cups** 3 cups** 2½ cups**

*These amounts are appropriate for individuals who get less than 30 minutes per day of moderate physical activity, beyond normal daily activities. Those who are more physically active may be able to consume more while staying within calorie needs.

Dark green	Red and	Beans	Starchy	Other
vegetables	orange	and peas	vegetables	vegetables

vegetables

			AMOUNT PE	R WEEK**		
Children	2–3 yrs old	½ cup	2½ cups	½ cup	2 cups	1½ cups
	4–8 yrs old	1 cup	3 cups	½ cup	3½ cups	2½ cups
Girls	9–13 yrs old	1½ cups	4 cups	1 cup	4 cups	3½ cups
••	14–18 yrs old	$1\frac{1}{2}$ cups	5½ cups	1½ cups	5 cups	4 cups
	•	•	·		·	
-			- 4 /		_	
Boys	9–13 yrs old	1½ cups	5½ cups	1½ cups	5 cups	4 cups
	14–18 yrs old	2 cups	6 cups	2 cups	6 cups	5 cups
Women	19–30 yrs old	1½ cups	5½ cups	1½ cups	5 cups	4 cups
	•	•	·		·	
	31–50 yrs old	1½ cups	5½ cups	1½ cups	5 cups	4 cups
	51+ yrs old	1½ cups	4 cups	1 cup	4 cups	3½ cups
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0/2 00/00
Men	19–30 yrs old	2 cups	6 cups	2 cups	6 cups	5 cups
WEIT	19–30 yrs olu	z cups	0 cups	z cups	0 cups	5 cups
	31–50 yrs old	2 cups	6 cups	2 cups	6 cups	5 cups
	51+ yrs old	0	C auro	0	C euro	F evene
		2 cups	6 cups	2 cups	6 cups	5 cups

APPENDIX D

MYPLATE FRUIT RECOMMENDATIONS

How much fruit is needed daily?

Daily recommendation

Children	2-3 years old 4-8 years old	1 cup** 1 to 1 ½ cups**
Girls	9-13 years old 14-18 years old	1 ½ cups** 1 ½ cups**
Boys	9-13 years old 14-18 years old	1 ½ cups** 2 cups**
Women	19-30 years old 31-50 years old 51+ years old	2 cups** 1 ½ cups** 1 ½ cups**
Men	19-30 years old 31-50 years old 51+ years old	2 cups** 2 cups** 2 cups**

**These amounts are appropriate for individuals who get less than 30 minutes per day of moderate physical activity, beyond normal daily activities. Those who are more physically active may be able to consume more while staying within calorie needs.

APPENDIX E

ESTIMATED CALORIE NEEDS PER DAY BY AGE, GENDER, AND

PHYSICAL ACTIVITY LEVEL

APPENDIX 6. ESTIMATED CALORIE NEEDS PER DAY BY AGE, GENDER, AND PHYSICAL ACTIVITY LEVEL (DETAILED)

Estimated amounts of calories^a needed to maintain calorie balance for various gender and age groups at three different levels of physical activity. The estimates are rounded to the nearest 200 calories. An individual's calorie needs may be higher or lower than these average estimates.

Gender/ Activity level ^b	Male/ Sedentary	Male/ Moderately Active	Male/ Active	Female ^c / Sedentary	Female ^c / Moderately Active	Female ^c / Active
Age (years)						
2	1,000	1,000	1,000	1,000	1,000	1,000
3	1,200	1,400	1,400	1,000	1,200	1,400
4	1,200	1,400	1,600	1,200	1,400	1,400
5	1,200	1,400	1,600	1,200	1,400	1,600
6	1,400	1,600	1,800	1,200	1,400	1,600
7	1,400	1,600	1,800	1,200	1,600	1,800
8	1,400	1,600	2,000	1,400	1,600	1,800
9	1,600	1,800	2,000	1,400	1,600	1,800
10	1,600	1,800	2,200	1,400	1,800	2,000
11	1,800	2,000	2,200	1,600	1,800	2,000
12	1,800	2,200	2,400	1,600	2,000	2,200
13	2,000	2,200	2,600	1,600	2,000	2,200
14	2,000	2,400	2,800	1,800	2,000	2,400
15	2,200	2,600	3,000	1,800	2,000	2,400
16	2,400	2,800	3,200	1,800	2,000	2,400
17	2,400	2,800	3,200	1,800	2,000	2,400
18	2,400	2,800	3,200	1,800	2,000	2,400
19-20	2,600	2,800	3,000	2,000	2,200	2,400
21-25	2,400	2,800	3,000	2,000	2,200	2,400
26-30	2,400	2,600	3,000	1,800	2,000	2,400
31-35	2,400	2,600	3,000	1,800	2,000	2,200
36-40	2,400	2,600	2,800	1,800	2,000	2,200
41-45	2,200	2,600	2,800	1,800	2,000	2,200
46-50	2,200	2,400	2,800	1,800	2,000	2,200
51-55	2,200	2,400	2,800	1,600	1,800	2,200
56-60	2,200	2,400	2,600	1,600	1,800	2,200
61-65	2,000	2,400	2,600	1,600	1,800	2,000
66-70	2,000	2,200	2,600	1,600	1,800	2,000
71-75	2,000	2,200	2,600	1,600	1,800	2,000
76+	2,000	2,200	2,400	1,600	1,800	2,000

a. Based on Estimated Energy Requirements (EER) equations, using reference heights (average) and reference weights (healthy) for each age-gender group. For children and adolescents, reference height and weight vary. For adults, the reference man is 5 feet 10 inches tall and weighs 154 pounds. The reference woman is 5 feet 4 inches tall and weighs 126 pounds. EER equations are from the Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington (DC): The National Academies Press; 2002. b. Sedentary means a lifestyle that includes only the light physical activity associated with typical day-to-day life. Moderately active means a lifestyle that

b. Sedentary means a lifestyle that includes only the light physical activity associated with typical day-to-day life. Moderately active means a lifestyle that includes physical activity equivalent to walking about 1.5 to 3 miles per day at 3 to 4 miles per hour, in addition to the light physical activity associated with typical day-to-day life. Active means a lifestyle that includes physical activity equivalent to walking more than 3 miles per day at 3 to 4 miles per hour, in addition to the light physical activity associated with typical day-to-day life.

c. Estimates for females do not include women who are pregnant or breastfeeding.

Source: Britten P, Marcoe K, Yamini S, Davis C. Development of food intake patterns for the MyPyramid Food Guidance System. J Nutr Educ Behav 2006;38(6 Suppl):S78-S92.

APPENDIX F

USDA FOOD PATTERNS

For each food group or subgroup, ^a recommended average daily intake amounts ^b at all calorie levels. Recommended intakes from vegetable
and protein foods subgroups are per week. For more information and tools for application, go to MyPyramid.gov.

Calorie level of pattern ^c	1,000	1,200	1,400	1,600	1,800	2,000	2,200	2,400	2,600	2,800	3,000	3,200
Fruits	1c	1c	1½ c	1½ c	1½ c	2 c	2 c	2 c	2 c	2½ c	2½ c	2½ c
Vegetables ^d	1 c	1½ c	1½ c	2 c	2½ c	2½ c	3 c	3 c	3½ c	3½ c	4 c	4 c
Dark-green vegetables	<mark>1∕2 c/wk</mark>	1 c/wk	1 c/wk	1½ c/wk	1½ c/wk	1½ c/wk	2 c/wk	2 c/wk	2½ c∕wk	2½ c/wk	2½ c/wk	2½ c∕wk
Red and orange vegetables	2½ c∕wk	3 c/wk	3 c/wk	4 c/wk	5½ c/wk	5½ c∕wk	6 c/wk	6 c/wk	7 c/wk	7 c/wk	7½ c∕wk	7½ c∕wk
Beans and peas (legumes)	½ c∕wk	½ c∕wk	½c/wk	1c/wk	1½ c/wk	1½ c/wk	2 c/wk	2 c/wk	2½ c/wk	2½ c/wk	3 c/wk	3 c/wk
Starchy vegetables	2 c/wk	3½ c/wk	3½ c/wk	4 c/wk	5 c/wk	5 c/wk	6 c/wk	6 c/wk	7 c/wk	7 c/wk	8 c/wk	8 c/wk
Other vegetables	1½ c/wk	2½ c/wk	2½ c/wk	3½ c/wk	4 c/wk	4 c/wk	5 c/wk	5 c/wk	5½ c/wk	5½ c/wk	7 c <mark>/</mark> wk	7 c/wk

112

APPENDIX G

ARIZONA FEMALES' FRESH FRUIT AND VEGETABLE RECOMMENDATIONS

Age	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>	<u>Fruit</u>				Vegetables		
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	
2				1.0			1.0			
3	133892	100.0%	133892	1.0	1.2	160.7	1.5	1.3	178.5	
4		100.076		1.5			1.5			
5				1.5			1.5			
6				1.5			1.5			
7	222434		106234	1.5	1.5	159.4	2.0	1.8	191.2	
8		34.7%		1.5			2.0			
9		54.770		1.5			2.0			
10				1.5			2.5			
11				1.5			2.5			
12	219669		31984	2.0	1.8	57.6	2.5	2.5	80.0	
13		2 40/		2.0			2.5			
14		3.4%		2.0			2.5			
15				2.0			2.5			
16				2.0			2.5			
17	224302	5.4%	11215	2.0	2.0	22.4	2.5	2.6	29.2	
18		5.4%		2.0			2.5			
19				2.0			3.0			
20				2.0			3.0			
21				2.0			3.0			
22	213022		6817	2.0	2.0	13.6	3.0	3.0	20.5	
23				2.0			3.0			
24				2.0			3.0			
25				2.0			3.0			
26		2.20/		2.0			2.5			
27	214390	3.2%	6860	2.0	2.0	13.7	2.5	2.6	17.8	
28				2.0			2.5			
29				2.0			2.5			
30				2.0			2.5			
31	204472		6542	2.0	2.0	12.1	2.5	<u>э</u> г	16 4	
32	204472		6543	2.0	2.0	13.1	2.5	2.5	16.4	
33				2.0			2.5			

Physically Active Arizona Females' Fresh Fruit and Vegetable Recommendations

34				2.0			2.5		
35				2.0			2.5		
36				2.0			2.5		
37	205469		6575	2.0	2.0	13.2	2.5	2.5	16.4
38				2.0			2.5		
39				2.0			2.5		
40				2.0			2.5		
41				2.0			2.5		
42	200902		6429	2.0	2.0	12.9	2.5	2.5	16.1
43				2.0			2.5		
44				2.0			2.5		
45				2.0			2.5		
46				2.0			2.5		
47	214523		6865	2.0	2.0	13.7	2.5	2.5	17.2
48				2.0			2.5		
49				2.0			2.5		
50				2.0			2.5		
51				2.0			2.5		
52	213113		6820	2.0	2.0	13.6	2.5	2.5	17.1
53				2.0			2.5		
54				2.0			2.5		
55				2.0			2.5		
56				2.0			2.5		
57	196603		6291	2.0	2.0	12.6	2.5	2.5	15.7
58				2.0			2.5		
59				2.0			2.5		
60+	664142	2.3%	15275	1.5	1.5	22.9	2.5	2.5	38.2
		TOTAL	351800			529.3			654.1

*Abbreviations: Physically active (PA), population (pop), average (avg), cups (c), day (d)

Physically Active Arizona Females' Fresh Vegetable Sub-Group Recommendations (Dark-Green and Red-Orange)

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>	Dark-Green Vegetables			Red-Orange Vegetables									
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)							
2				0.5			2.5									
3	133892	100.0%	133892	1.0	0.8	107.1	3.0	2.8	374.9							
4		100.078		1.0			3.0									
5				1.0			3.0									
6				1.0			3.0									
7	222434		106234	1.5	1.3	138.1	4.0	3.6	382.4							
8		34.7%		1.5			4.0									
9		54.770		1.5			4.0									
10				1.5			5.5									
11				1.5			5.5									
12	219669		31984	1.5	1.5	48.0	5.5	5.5	175.9							
13		3.4%		1.5			5.5									
14		5.470		1.5			5.5									
15				1.5			5.5									
16				1.5			5.5									
17	224302	5 4%	11215	1.5	1.6	17.9	5.5	5.6	62.8							
18		5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%	5.4%		1.5			5.5		
19				2.0			6.0									
20				2.0			6.0									
21				2.0			6.0									
22	213022		6817	2.0	2.0	13.6	6.0	6.0	40.9							
23				2.0			6.0									
24				2.0			6.0									
25				2.0			6.0									
26		3.2%		1.5			5.5									
27	214390		6860	1.5	1.6	11.0	5.5	5.6	38.4							
28				1.5			5.5									
29				1.5			5.5									
30				1.5			5.5									
31	204472		6543	1.5	1.5	9.8	5.5	5.5	36.0							
32				1.5			5.5									

33				1.5			5.5		
34				1.5			5.5		
35				1.5			5.5		
36				1.5			5.5		
37	205469		6575	1.5	1.5	9.9	5.5	5.5	36.2
38				1.5			5.5		
39				1.5			5.5		
40				1.5			5.5		
41				1.5			5.5		
42	200902		6429	1.5	1.5	9.6	5.5	5.5	35.4
43				1.5			5.5		
44				1.5			5.5		
45				1.5			5.5		
46				1.5			5.5		
47	214523		6865	1.5	1.5	10.3	5.5	5.5	37.8
48				1.5			5.5		
49				1.5			5.5		
50				1.5			5.5		
51				1.5			5.5		
52	213113		6820	1.5	1.5	10.2	5.5	5.5	37.5
53				1.5			5.5		
54				1.5			5.5		
55				1.5			5.5		
56				1.5			5.5		
57	196603		6291	1.5	1.5	9.4	5.5	5.5	34.6
58				1.5			5.5		
59				1.5			5.5		
60+	664142	2.3%	15275	1.5	1.5	22.9	5.5	5.5	84.0
		TOTAL	351800			417.9			1376.8

*Abbreviations: Physically active (PA), population (pop), average (avg)

Physically Active Arizona Females' Fresh Vegetable Sub-Group Recommendations (Starchy, Bean, and Other)

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>	Starchy Vegetables			Bea	n Vegeta	<u>bles</u>	Other Vegetables			
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	
2				2.0			0.5			1.5			
3	133892	100.0%	133892	3.5	3.0	401.7	0.5	0.5	66.9	2.5	2.2	294.6	
4		100.078		3.5			0.5			2.5			
5				3.5			0.5			2.5			
6				3.5			0.5			2.5			
7	222434		106234	4.0	3.8	403.7	1.0	0.8	85.0	3.5	3.1	329.3	
8		34.7%		4.0			1.0			3.5			
9		5 / 0		4.0			1.0			3.5			
10				5.0			1.5			4.0			
11				5.0			1.5			4.0			
12	219669		31984	5.0	5.0	159.9	1.5	1.5	48.0	4.0	4.0	127.9	
13		3.4%		5.0			1.5			4.0			
14		5.170		5.0			1.5			4.0			
15				5.0			1.5			4.0			
16				5.0			1.5			4.0			
17	224302	5.4%	11215	5.0	5.2	58.3	1.5	1.6	17.9	4.0	4.2	47.1	
18		0.170		5.0			1.5			4.0			
19				6.0			2.0			5.0			
20				6.0			2.0			5.0			
21				6.0			2.0			5.0			
22	213022		6817	6.0	6.0	40.9	2.0	2.0	13.6	5.0	5.0	34.1	
23				6.0			2.0			5.0			
24				6.0			2.0			5.0			
25				6.0			2.0			5.0			
26		3.2%		5.0			1.5			4.0			
27	214390		6860	5.0	5.2	35.7	1.5	1.6	11.0	4.0	4.2	28.8	
28				5.0			1.5			4.0			
29				5.0			1.5			4.0			
30				5.0			1.5			4.0			
31	204472		6543	5.0	5.0	32.7	1.5	1.5	9.8	4.0	4.0	26.2	
32				5.0			1.5			4.0			

33				5.0			1.5			4.0		
34				5.0			1.5 1.5			4.0 4.0		
34				5.0						4.0		
							1.5					
36	205469		6575	5.0	5.0	32.9	1.5	1.5	9.9	4.0	4.0	26.3
37	203403		0373	5.0	5.0	52.5	1.5	1.5	9.9	4.0	4.0	20.5
38				5.0			1.5			4.0		
39				5.0			1.5			4.0		
40				5.0			1.5			4.0		
41				5.0		22 4	1.5			4.0		<u></u>
42	200902		6429	5.0	5.0	32.1	1.5	1.5	9.6	4.0	4.0	25.7
43				5.0			1.5			4.0		
44				5.0			1.5			4.0		
45				5.0			1.5			4.0		
46				5.0			1.5			4.0		
47	214523		6865	5.0	5.0	34.3	1.5	1.5	10.3	4.0	4.0	27.5
48				5.0			1.5			4.0		
49				5.0			1.5			4.0		
50				5.0			1.5			4.0		
51				5.0			1.5			4.0		
52	213113		6820	5.0	5.0	34.1	1.5	1.5	10.2	4.0	4.0	27.3
53				5.0			1.5			4.0		
54				5.0			1.5			4.0		
55				5.0			1.5			4.0		
56				5.0			1.5			4.0		
57	196603		6291	5.0	5.0	31.5	1.5	1.5	9.4	4.0	4.0	25.2
58				5.0			1.5			4.0		
59				5.0			1.5			4.0		
60+	664142	2.3%	15275	5.0	5.0	76.4	1.5	1.5	22.9	4.0	4.0	61.1
		TOTAL	351800			1374.2			324.7			1081.0

*Abbreviations: Physically active (PA), population (pop), average (avg)

Age	<u>Cohort</u> <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>		<u>Fruit</u>			Vegeta	bles
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)
2				1.0			1.0		
3	133892	100.0%	0	1.0	N/A	N/A	1.0	N/A	N/A
4		100.078		1.3			1.5		
5				1.3			1.5		
6				1.3			1.5		
7	222434		116200	1.3	1.3	151.1	1.5	1.6	185.9
8		34.7%		1.3			1.5		
9		51.776		1.5			2.0		
10				1.5			2.0		
11				1.5			2.0		
12	219669		187685	1.5	1.5	281.5	2.0	2.1	394.1
13		3.4%		1.5			2.0		
14				1.5			2.5		
15				1.5			2.5		
16				1.5			2.5		
17	224302	5.4%	213087	1.5	1.6	340.9	2.5	2.5	532.7
18				1.5			2.5		
19				2.0			2.5		
20				2.0			2.5		
21	212022		200205	2.0	2.0	412 4	2.5	2 5	545 5
22	213022		206205	2.0	2.0	412.4	2.5	2.5	515.5
23				2.0			2.5		
24 25				2.0 2.0			2.5 2.5		
26 27	214390	3.2%	207530	2.0 2.0	2.0	415.1	2.5 2.5	2.5	518.8
27	211330	5.270	207330	2.0	2.0	113.1	2.5	2.5	510.0
20				2.0			2.5		
30		1		2.0			2.5		
31				1.5			2.5		
32	204472		197929	1.5	1.6	316.7	2.5	2.5	494.8
33				1.5			2.5		
34				1.5			2.5		

Inactive Arizona Females' Fresh Fruit and Vegetable Recommendations

35				1.5			2.5		
36				1.5			2.5		
37	205469		198894	1.5	1.5	298.3	2.5	2.5	497.2
38				1.5	-		2.5	-	-
39				1.5			2.5		
40				1.5			2.5		
41				1.5			2.5		
42	200902		194473	1.5	1.5	291.7	2.5	2.5	486.2
43				1.5			2.5		
44				1.5			2.5		
45				1.5			2.5		
46				1.5			2.5		
47	214523		207658	1.5	1.5	311.5	2.5	2.5	519.1
48				1.5			2.5		
49				1.5			2.5		
50				1.5			2.5		
51				1.5			2.0		
52	213113		206293	1.5	1.5	309.4	2.0	2.1	433.2
53				1.5			2.0		
54				1.5			2.0		
55				1.5			2.0		
56				1.5			2.0		
57	196603		190312	1.5	1.5	285.5	2.0	2.0	380.6
58				1.5			2.0		
59				1.5			2.0		
60+	664142	2.3%	648867	1.5	1.5	973.3	2.0	2.0	1297.7
		TOTAL	2775133			4387.4			6256.1

*Abbreviations: Physically active (PA), population (pop), average (avg), not applicable (NA), cups (c), day (d)

<u>Age</u>	Cohort <u>Pop</u> <u>(100</u> <u>thou)</u>	<u>РА</u> <u>%</u>	Active <u>Pop</u> (100 <u>thou)</u>		oark-Gree /egetable		<u>Red-Orange</u> <u>Vegetables</u>			
				per capita (c/w)	Avg per capita (c/w)	Cohort recs (100 thou c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (100 thou c/w)	
2				0.5			2.5			
3	134	100	0	0.5	N/A	N/A	2.5	N/A	N/A	
4		100		1.0			3.0			
5				1.0			3.0			
6				1.0			3.0			
7	222		1	1.0	1.1	1.3	3.0	3.2	3.7	
8		35		1.0			3.0			
9		33		1.5			4.0			
10				1.5			4.0			
11				1.5			4.0			
12	220		2	1.5	1.5	2.8	4.0	4.3	8.1	
13		3		1.5			4.0			
14		-		1.5			5.5			
15				1.5			5.5			
16				1.5			5.5			
17	224	5	2	1.5	1.5	3.2	5.5	5.5	11.7	
18				1.5			5.5			
19				1.5			5.5			
20				1.5			5.5			
21				1.5			5.5			
22	213		2	1.5	1.5	3.1	5.5	5.5	11.3	
23				1.5			5.5			
24		3		1.5			5.5			
25				1.5			5.5			
26				1.5			5.5			
27	214		2	1.5	1.5	3.1	5.5	5.5	11.4	
28				1.5			5.5			
29				1.5			5.5			

Inactive Arizona Females' Vegetable Sub-Group Recommendations (Dark-Green and Red-Orange)

30				1.5			5.5		
31				1.5			5.5		
32	204		2	1.5	1.5	3.0	5.5	5.5	10.9
33				1.5			5.5		
34				1.5			5.5		
35				1.5			5.5		
36				1.5			5.5		
37	205		2	1.5	1.5	3.0	5.5	5.5	10.9
38				1.5			5.5		
39				1.5			5.5		
40				1.5			5.5		
41				1.5			5.5		
42	201		2	1.5	1.5	2.9	5.5	5.5	10.7
43				1.5			5.5		
44				1.5			5.5		
45				1.5			5.5		
46				1.5			5.5		
47	215		2	1.5	1.5	3.1	5.5	5.5	11.4
48				1.5			5.5		
49				1.5			5.5		
50				1.5			5.5		
51				1.5			4.0		
52	213		2	1.5	1.5	3.1	4.0	4.3	8.9
53				1.5			4.0		
54				1.5			4.0		
55				1.5			4.0		
56				1.5			4.0		
57	197		2	1.5	1.5	2.9	4.0	4.0	7.6
58				1.5			4.0		
59				1.5			4.0		
60+	664	2	6	1.5	1.5	9.7	4.0	4.0	26.0
	TOTAL		28			41.2			132.6

*Abbreviations: Physically active (PA), population (pop), average (avg), not applicable (NA), cups (c), week (w), 100,000 (100 thou)

Inactive Arizona Females 'Vegetable Sub-Group Recommendations (Starchy, Bean,
and Other)

	Cohort		Active									
<u>Age</u>	<u>Pop</u> (100 <u>thou)</u>	<u>PA</u> <u>%</u>	<u>Pop</u> (100 <u>thou)</u>	<u>Starc</u>	hy Vege	tables	<u>Bea</u>	n Vegeta	ables	<u>Oth</u>	er Veget	ables
	<u>(1100)</u>		<u>(1100)</u>	per capita (c/w)	Avg per capita (c/w)	Cohort recs (100 thou c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (100 thou c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (100 thou c/w)
2				2.0			0.5			1.5		
3	134	100	0	2.0	N/A	N/A	0.5	N/A	N/A	1.5	N/A	N/A
4				3.5			0.5			2.5		
5				3.5			0.5			2.5		
6	222		1	3.5	3.6	4.2	0.5	0.6	0.7	2.5	2.7	3.1
7			-	3.5	5.0	7.2	0.5	0.0	0.7	2.5	2.7	5.1
8 9		35		3.5 4.0			0.5 1.0			2.5 3.5		
10				4.0			1.0			3.5		
11				4.0			1.0			3.5		
12	220		2	4.0	4.2	7.9	1.0	1.1	2.1	3.5	3.6	6.8
13 14		3		4.0 5.0			1.0 1.5			3.5 4.0		
15				5.0			1.5			4.0		
16				5.0			1.5			4.0		
17	224	5	2	5.0	5.0	10.7	1.5	1.5	3.2	4.0	4.0	8.5
18				5.0			1.5			4.0		
19				5.0			1.5			4.0		
20				5.0			1.5			4.0		
21	213		2	5.0	5.0	10.3	1.5	1.5	3.1	4.0	4.0	8.2
22	215		-	5.0	5.0	10.5	1.5	1.5	5.1	4.0	4.0	0.2
23 24				5.0 5.0			1.5 1.5			4.0 4.0		
25				5.0			1.5			4.0		
26		3		5.0			1.5			4.0		
27	214		2	5.0	5.0	10.4	1.5	1.5	3.1	4.0	4.0	8.3
28 29				5.0 5.0			1.5 1.5			4.0 4.0		
30				5.0			1.5			4.0		
31	204		2	5.0	5.0	9.9	1.5	1.5	3.0	4.0	4.0	7.9
32	204		2	5.0	5.0	9.9	1.5	1.5	5.0	4.0	4.0	.5
33				5.0			1.5			4.0		

34				5.0			1.5			4.0		
35				5.0			1.5			4.0		
36				5.0			1.5			4.0		
37	205		2	5.0	5.0	9.9	1.5	1.5	3.0	4.0	4.0	8.0
38				5.0			1.5			4.0		
39				5.0			1.5			4.0		
40				5.0			1.5			4.0		
41				5.0			1.5			4.0		
42	201		2	5.0	5.0	9.7	1.5	1.5	2.9	4.0	4.0	7.8
43				5.0			1.5			4.0		
44				5.0			1.5			4.0		
45				5.0			1.5			4.0		
46	245		2	5.0	- 0	10.1	1.5		2.4	4.0		
47	215		2	5.0	5.0	10.4	1.5	1.5	3.1	4.0	4.0	8.3
48				5.0			1.5			4.0		
49				5.0			1.5			4.0		
50				5.0			1.5			4.0		
51	212		2	4.0	4.2	07	1.0	1 1	n n	3.5	2.6	7 4
52	213		2	4.0	4.2	8.7	1.0	1.1	2.3	3.5	3.6	7.4
53				4.0			1.0			3.5		
54				4.0			1.0			3.5		
55				4.0			1.0			3.5		
56	197		2	4.0	4.0	7.6	1.0	1.0	1.9	3.5	3.5	6.7
57	197		2	4.0	4.0	7.0	1.0	1.0	1.5	3.5	5.5	0.7
58 50				4.0			1.0			3.5 2 E		
59	664	-		4.0		26.6	1.0	4.0		3.5	2.5	
60+	TOTAL	2	6 28	4.0	4.0	26.0 125.6	1.0	1.0	6.5 34.8	3.5	3.5	22.7 103.7
L			-3			120.0			05			100.7

*Abbreviations: Physically active (PA), population (pop), average (avg), not applicable (NA), cups (c), week (w), 100,000 (100 thou)

APPENDIX H

ARIZONA MALES' FRESH FRUIT AND

VEGETABLE RECOMMENDATIONS

<u>Age</u>	<u>Cohort</u> <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>		<u>Fruit</u>		Vegetables			
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	
2				1.0			1.0			
3	139537	100.0%	139537	1.5	1.3	181.4	1.5	1.3	181.4	
4		100.078		1.5			1.5			
5				1.5			1.5			
6				1.5			2.0			
7	231246		136713	1.5	1.5	205.1	2.0	2.0	273.4	
8		48.9%		1.5			2.0			
9		-0.570		1.5			2.5			
10				1.5			2.5			
11				2.0			2.5			
12	228995		61142	2.0	1.9	116.2	3.0	2.8	171.2	
13		11.9%		2.0			3.0			
14				2.0			3.0			
15			_	2.0			3.5			
16		10.0%	10.0%		2.5			3.5		86.2
17	237280			24630	2.5	2.4	59.1	3.5	3.5	
18		10.070		2.5			3.5			
19				2.5			3.5			
20				2.5			3.5			
21				2.5			3.5			
22	229562		8723	2.5	2.5	21.8	3.5	3.5	30.5	
23				2.5			3.5			
24		-		2.5			3.5			
25		3.8%		2.5			3.5			
26				2.0			3.5			
27	225608		8573	2.0	2.1	18.0	3.5	3.5	30.0	
28				2.0			3.5			
29				2.0			3.5			
30	212223		8064	2.0	2.0	16.1	3.5	3.5	28.2	

Physically Active Arizona Males' Fresh Fruit and Vegetable Recommendations

31				2.0			3.5		
32				2.0			3.5		
33				2.0			3.5		
34				2.0			3.5		
35				2.0			3.5		
36				2.0			3.5		
37	210224		7989	2.0	2.0	16.0	3.5	3.0	24.0
38				2.0			3.5		
39				2.0			3.5		
40				2.0			3.5		
41				2.0			3.5		
42	205899		7824	2.0	2.0	15.6	3.5	3.5	27.4
43				2.0			3.5		
44				2.0			3.5		
45				2.0			3.5		
46				2.0			3.0		
47	212499		8075	2.0	2.0	16.2	3.0	3.1	25.0
48				2.0			3.0		
49				2.0			3.0		
50				2.0			3.0		
51				2.0			3.0		
52	202411		7692	2.0	2.0	15.4	3.0	3.0	23.1
53				2.0			3.0		
54				2.0			3.0		
55				2.0			3.0		
56				2.0			3.0		
57	178665		6789	2.0	2.0	13.6	3.0	3.0	20.4
58				2.0			3.0		
59				2.0			3.0		
60+	568649	2.5%	14216	2.0	2.0	28.4	3.0	3.0	42.6
		TOTAL	439967.0			722.9			963.5

*Abbreviations: Physically active (PA), population (pop), average (avg), cups (c), day (d)

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>	Dark-O	Green Veg	<u>etables</u>	Red-Orange Vegetables			
				per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	
2				0.5			2.5			
3	139537	100.0%	139537	1.0	0.8	111.6	3.0	2.8	390.7	
4		100.0%		1.0			3.0			
5				1.0			3.0			
6				1.5			4.0			
7	231246		136713	1.5	1.4	191.4	4.0	4.1	560.5	
8		40.00/		1.5			4.0			
9		48.9%		1.5			5.5			
10				1.5			5.5			
11				1.5			5.5			
12	228995		61142	2.0	1.8	110.1	6.0	5.8	354.6	
13		11.00/		2.0			6.0			
14		11.9%		2.0			6.0			
15				2.5			7.0			
16				2.5			7.0			
17	237280	10.00/	24630	2.5	2.5	61.6	7.0	7.0	172.4	
18		10.0%		2.5			7.0			
19				2.5			7.0			
20				2.5			7.0			
21				2.5			7.0			
22	229562		8723	2.5	2.5	21.8	7.0	7.0	61.1	
23				2.5			7.0			
24				2.5			7.0			
25				2.5			7.0			
26		3.8%		2.5			7.0			
27	225608	5.6%	8573	2.5	2.5	21.4	7.0	7.0	60.0	
28				2.5			7.0			
29				2.5			7.0			
30				2.5			7.0			
31	212222		90 <i>6</i> 4	2.5	2.5	20.2	7.0	7.0	56.4	
32	212223		8064	2.5			7.0		50.4	
33				2.5			7.0			

Physically Active Arizona Males' Vegetable Sub-Group Recommendations (Dark-Green and Red-Orange)

34				2.5			7.0		
35				2.5			7.0		
36				2.5			7.0		
37	210224		7989	2.5	2.5	20.0	7.0	7.0	55.9
38				2.5			7.0		
39				2.5			7.0		
40				2.5			7.0		
41				2.5			7.0		
42	205899		7824	2.5	2.5	19.6	7.0	7.0	54.8
43				2.5			7.0		
44				2.5			7.0		
45				2.5			7.0		
46				2.0			6.0		
47	212499		8075	2.0	2.1	17.0	6.0	6.2	50.1
48				2.0			6.0		
49				2.0			6.0		
50				2.0			6.0		
51				2.0			6.0		
52	202411		7692	2.0	2.0	15.4	6.0	6.0	46.2
53				2.0			6.0		
54				2.0			6.0		
55				2.0			6.0		
56				2.0			6.0		
57	178665		6789	2.0	2.0	13.6	6.0	6.0	40.7
58				2.0			6.0		
59				2.0			6.0		
60+	568649	2.5%	14216	2.0	2.0	28.4	6.0	6.0	85.3
		TOTAL	439967.0			651.9			1988.7

*Abbreviations: Physically active (PA), population (pop), average (avg), recommendations (recs), cups (c), week (w)

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>	<u>Star</u>	chy Veget	ables	Bea	in Vegeta	bles	Other Vegetables		
				per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)
2				2.0			0.5			1.5		
3	139537	100.0%	139537	3.5	3.0	418.6	0.5	0.5	69.8	2.5	2.2	307.0
4		100.0%		3.5			0.5			2.5		
5				3.5			0.5			2.5		
6				4.0			1.0			3.5		
7	231246		136713	4.0	4.1	560.5	1.0	1.0	136.7	3.5	3.4	464.8
8		48.9%		4.0			1.0			3.5		
9		40.970		5.0			1.5			4.0		
10				5.0			1.5			4.0		
11				5.0			1.5			4.0		
12	228995		61142	6.0	5.6	342.4	2.0	1.8	110.1	5.0	4.6	281.3
13		11.00/		6.0			2.0			5.0		
14		11.9%		6.0			2.0			5.0		
15				7.0			2.5			5.5		
16		10.0%		7.0			2.5			5.5		
17	237280		24630	7.0	7.0	172.4	2.5	2.5	61.6	5.5	5.5	135.5
18				7.0			2.5			5.5		
19				7.0			2.5			5.5		
20				7.0			2.5			5.5		
21				7.0			2.5			5.5		
22	229562		8723	7.0	7.0	61.1	2.5	2.5	21.8	5.5	5.5	48.0
23				7.0			2.5			5.5		
24				7.0			2.5			5.5		
25				7.0			2.5			5.5		
26		2.00/		7.0			2.5			5.5		
27	225608	3.8%	8573	7.0	7.0	60.0	2.5	2.5	21.4	5.5	5.5	47.2
28				7.0			2.5			5.5		
29				7.0			2.5			5.5		
30				7.0			2.5			5.5		
31	212222		8064	7.0	7.0		2.5		20.2	5.5	E	
32	212223		8064	7.0	7.0	56.4	2.5	2.5	20.2	5.5	5.5	44.4
33				7.0			2.5			5.5		

Physically Active Arizona Males' Vegetable Sub-Group Recommendations (Starchy, Bean, and Other)

34				7.0			2.5			5.5		
35				7.0			2.5			5.5		
36				7.0			2.5			5.5		
37	210224		7989	7.0	7.0	55.9	2.5	2.5	20.0	5.5	5.5	43.9
38				7.0			2.5			5.5		
39				7.0			2.5			5.5		
40				7.0			2.5			5.5		
41				7.0			2.5			5.5		
42	205899		7824	7.0	7.0	54.8	2.5	2.5	19.6	5.5	5.5	43.0
43				7.0			2.5			5.5		
44				7.0			2.5			5.5		
45				7.0			2.5			5.5		
46				6.0			2.0			5.0		
47	212499		8075	6.0	6.2	50.1	2.0	2.1	17.0	5.0	5.1	41.2
48				6.0			2.0			5.0		
49				6.0			2.0			5.0		
50				6.0			2.0			5.0		
51				6.0			2.0			5.0		
52	202411		7692	6.0	6.0	46.2	2.0	2.0	15.4	5.0	5.0	38.5
53				6.0			2.0			5.0		
54				6.0			2.0			5.0		
55				6.0			2.0			5.0		
56				6.0			2.0			5.0		
57	178665		6789	6.0	6.0	40.7	2.0	2.0	13.6	5.0	5.0	33.9
58				6.0			2.0			5.0		
59				6.0			2.0			5.0		
60+	568649	2.5%	14216	6.0	6.0	85.3	2.0	2.0	28.4	5.0	5.0	71.1
		TOTAL	439967.0			2004.4			555.4			1599.6

*Abbreviations: Physically active (PA), population (pop), average (avg), recommendations (recs), cups (c), week (w)

<u>Age</u>	<u>Cohort</u> <u>Pop</u>	<u>PA %</u>	Active <u>Pop</u>		<u>Fruit</u>		7	/egetab	les
				per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)	per capita (c/d)	Avg per capita (c/d)	Cohort recs (1,000 c/d)
2				1.0			1.0		
3	139537	100.0%	0	1.0	N/A	N/A	1.0	N/A	N/A
4		100.076		1.3			1.5		
5				1.3			1.5		
6				1.3			1.5		
7	231246		94533	1.3	1.3	122.9	1.5	1.7	160.7
8		49.00/		1.3			1.5		
9		48.9%		1.5			2.5		
10				1.5			2.5		
11				1.5			2.5		
12	228995		167853	1.5	1.6	268.6	2.5	2.6	436.4
13		11.00/		1.5			2.5		
14		11.9%		2.0			3.0		
15				2.0			3.0		
16				2.0			3.0		
17	237280		212650	2.0	2.0	425.3	3.0	3.0	638.0
18		10.0%		2.0			3.0		
19				2.0			3.0		
20				2.0			3.0		
21				2.0			3.0		
22	229562		220839	2.0	2.0	441.7	3.0	3.0	662.5
23				2.0	-		3.0		
24				2.0			3.0		
25		1		2.0			3.0		
26				2.0			3.0		
27	225608		217035	2.0	2.0	434.1	3.0	3.0	651.1
28		3.8%		2.0			3.0	210	~~ + + +
28 29				2.0			3.0		
30		4		2.0			3.0		
31				2.0			3.0		
32	212223		204159	2.0	2.0	408.3	3.0	3.0	612.5
33				2.0			3.0		
34				2.0			3.0		
35	210224	1	202235	2.0	2.0	404.5	3.0	3.0	606.7

Inactive Arizona Males' Fresh Fruit and Vegetable Recommendations

36				2.0			3.0		
37				2.0			3.0		
38				2.0			3.0		
39				2.0			3.0		
40				2.0			3.0		
41				2.0			3.0		
42	205899		198075	2.0	2.0	396.2	3.0	3.0	594.2
43				2.0			3.0		
44				2.0			3.0		
45				2.0			3.0		
46				2.0			3.0		
47	212499		204424	2.0	2.0	408.8	3.0	3.0	613.3
48				2.0			3.0		
49				2.0			3.0		
50				2.0			3.0		
51				2.0			2.5		
52	202411		194719	2.0	2.0	389.4	2.5	2.6	506.3
53				2.0			2.5		
54				2.0			2.5		
55				2.0			2.5		
56				2.0			2.5		
57	178665		171876	2.0	2.0	343.8	2.5	2.5	429.7
58				2.0			2.5		
59				2.0			2.5		
60+	568649	2.5%	554433	2.0	2.0	1108.9	2.5	2.5	1386.1
		TOTAL	2642831.0			5152.3			7297.4

*Abbreviations: Physically active (PA), population (pop), average (avg), cups (c), day (d)

Inactive Arizona Males' Fresh Vegetable Sub-Group Recommendations (Dark-Greens and Red-Orange)

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	<u>Active</u> Pop	Dark-0	Dark-Green <u>Vegetables</u> Red			-Orange <u>Vegetables</u>		
				per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	
2				0.5			2.5			
3	139537	100.0%	0	0.5	N/A	N/A	2.5	N/A	N/A	
4				1.0			3.0			
5				1.0			3.0			
6				1.0			3.0			
7	231246		94533	1.0	1.1	104.0	3.0	3.5	330.9	
8		48.9%		1.0			3.0			
9		10.570		1.5			5.5			
10				1.5			5.5			
11				1.5			5.5			
12	228995		167853	1.5	1.6	268.6	5.5	5.6	940.0	
13		11.9%		1.5			5.5			
14		11.9%		2.0			6.0			
15				2.0			6.0			
16				2.0			6.0			
17	237280	10.0%	212650	2.0	2.0	425.3	6.0	6.0	1275.9	
18		10.0%		2.0			6.0			
19				2.0			6.0			
20				2.0			6.0			
21				2.0			6.0			
22	229562		220839	2.0	2.0	441.7	6.0	6.0	1325.0	
23				2.0			6.0			
24				2.0			6.0			
25				2.0			6.0			
26		3.8%		2.0			6.0			
27	225608		217035	2.0	2.0	434.1	6.0	6.0	1302.2	
28				2.0			6.0			
29				2.0			6.0			
30				2.0			6.0			
31	212223		204159	2.0	2.0	408.3	6.0	6.0	1225.0	

32				2.0			6.0		
33				2.0			6.0		
34				2.0			6.0		
35				2.0			6.0		
36				2.0			6.0		
37	210224		202235	2.0	2.0	404.5	6.0	6.0	1213.4
38				2.0			6.0		
39				2.0			6.0		
40				2.0			6.0		
41				2.0			6.0		
42	205899		198075	2.0	2.0	396.2	6.0	6.0	1188.5
43				2.0			6.0		
44				2.0			6.0		
45				2.0			6.0		
46				2.0			6.0		
47	212499		204424	2.0	2.0	408.8	6.0	6.0	1226.5
48				2.0			6.0		
49				2.0			6.0		
50				2.0			6.0		
51				1.5			5.5		
52	202411		194719	1.5	1.6	311.6	5.5	5.6	1090.4
53				1.5			5.5		
54				1.5			5.5		
55				1.5			5.5		
56				1.5			5.5		
57	178665		171876	1.5	1.5	257.8	5.5	5.5	945.3
58				1.5			5.5		
59				1.5			5.5		
60+	568649	2.5%	554433	1.5	1.5	831.6	5.5	5.5	3049.4

*Abbreviations: Physically active (PA), population (pop), average (avg), recommendations (recs), cups (c), week (w)

Inactive Arizona Males' Fresh Vegetable Sub-Group Recommendations (Starchy, Bean, and Other)
--

<u>Age</u>	Cohort <u>Pop</u>	<u>PA %</u>	Active Pop	<u>Star</u>	chy Veget	tables	Bea	an Vegeta	<u>bles</u>	<u>Otl</u>	ner Vegeta	ables
				per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)	per capita (c/w)	Avg per capita (c/w)	Cohort recs (1,000 c/w)
2				2.0			0.5			1.5		
3	139537	100.0%	0	2.0	N/A	N/A	0.5	N/A	N/A	1.5	N/A	N/A
4		1001070		3.5			0.5			2.5		
5				3.5			0.5			2.5		
6				3.5			0.5			2.5		
7	231246		94533	3.5	3.8	359.2	0.5	0.7	66.2	2.5	2.8	264.7
8		48.9%		3.5			0.5			2.5		
9		40.570		5.0			1.5			4.0		
10				5.0			1.5			4.0		
11				5.0			1.5			4.0		
12	228995		167853	5.0	5.2	872.8	1.5	1.6	268.6	4.0	4.2	705.0
13		11.00/		5.0			1.5			4.0		
14		11.9%		6.0			2.0			5.0		
15				6.0			2.0			5.0		
16				6.0			2.0			5.0		
17	237280	40.00/	212650	6.0	6.0	1275.9	2.0	2.0	425.3	5.0	5.0	1063.3
18		10.0%		6.0			2.0			5.0		
19				6.0			2.0			5.0		
20				6.0			2.0			5.0		
21				6.0			2.0			5.0		
22	229562		220839	6.0	6.0	1325.0	2.0	2.0	441.7	5.0	5.0	1104.2
23				6.0			2.0			5.0		
24				6.0			2.0			5.0		
25		0.67		6.0			2.0			5.0		
26		3.8%		6.0			2.0			5.0		
27	225608		217035	6.0	6.0	1302.2	2.0	2.0	434.1	5.0	5.0	1085.2
28				6.0			2.0			5.0		
29				6.0			2.0			5.0		
30				6.0			2.0			5.0		
31	212223		204159	6.0	6.0	1225.0	2.0	2.0	408.3	5.0	5.0	1020.8

32				6.0		ļ	2.0			5.0		
32				6.0			2.0			5.0		
				6.0			2.0			5.0		
34				6.0			2.0			5.0		
35				6.0			2.0			5.0		
36	210224		202235	6.0	6.0	1213.4	2.0	2.0	404.5	5.0	5.0	1011.2
37	210221		LOLLUS	6.0	0.0	1215.1	2.0	2.0	101.5	5.0	5.0	1011.2
38				6.0			2.0			5.0		
39				6.0			2.0			5.0		
40				6.0			2.0			5.0		
41 42	205899		198075	6.0	6.0	1188.5	2.0	2.0	396.2	5.0	5.0	990.4
42				6.0			2.0			5.0		
43				6.0			2.0			5.0		
44				6.0			2.0			5.0		
45				6.0			2.0			5.0		
40	212499		204424	6.0	6.0	1226.5	2.0	2.0	408.8	5.0	5.0	1022.1
48				6.0			2.0			5.0		
49				6.0			2.0			5.0		
50				6.0			2.0			5.0		
51				5.0			1.5			4.0		
52	202411		194719	5.0	5.2	1012.5	1.5	1.6	311.6	4.0	4.2	817.8
53				5.0			1.5			4.0		
54				5.0			1.5			4.0		
55				5.0			1.5			4.0		
56				5.0			1.5			4.0		
57	178665		171876	5.0	5.0	859.4	1.5	1.5	257.8	4.0	4.0	687.5
58				5.0			1.5			4.0		
59				5.0			1.5			4.0		
60+	568649	2.5%	554433	5.0	5.0	2772.2	1.5	1.5	831.6	4.0	4.0	2217.7
		TOTAL	2642831.0			14632.6			4654.6			11989.8

*Abbreviations: Physically active (PA), population (pop), average (avg), recommendations (recs), cups (c), week (w)

APPENDIX I

SERVING WEIGHTS FOR FRESH VEGETABLES

ood supply commodity	database number	Serving description	Serving weight*	Loss from primary to consumer weight ³	Nonedible share (refuse)	Cooking loss	Retail loss	Foodservice and consumer loss	Calories per serving
			Grams			-Percent			Calories
resh vegetables:									
Artichokes	11008	1 medium (globe or french) cocked, boiled, drained	1.20	7	60	6	2	30	60
Asparagus	11012	1/2-cup, cooked, boiled, drained	90	9	47	7	2	30	22
Beacu - smap	110.53	1/2-cup, green snap beans, cooked, boiled, drained	63	6	12	2	2	30	22
Broccali	11090	1/2-cup chopped or diced, raw	44	8	39		2	30	12
Brussels sprouts	11099	1/2-cup, cocked, boiled, drained	78	8	10	+9	2	30	30
Cabbage	11109	1/2-cup chopped or shredded, raw	80	7	20		2	30	17
Carrots	11124	1/2-cup chopped, grated, strips, or slices, raw	62	3	11	-	2	30	26
Caulifiower	11135	1/2-cup, raw	50	8	61		2	30	12
Celery	11143	1/2-cup diced or strips, raw	61	7	11	-	2	30	10
Com - sweet	11168	1/2-cup, yellow, cooked, boiled, drained, cut from cob	82	8	64	12	2	30	89
Cocumbers	11206	1/2-cup pared, chopped or sliced	63	8	27	-	2	30	8
liggilant	11210	1/2-cup cubes, cooked, boiled, drained	45	10	19	2	2	30	14
Escarole/endive	11213	1 cup endive chopped, raw	50	7	3.4		2	30	4
Citetic	11215	1/2-cup, naw	68	19	13		2	30	13
Lettace-head	11252, 11250	1/2-cup shredded or chopped, keeberg or butterhead, raw	28	7	16	-	2	30	3
Lettuce-Romaine/lesf	11251, 11253	1-cup Cos, Romaine or looseleaf, shredded, raw	56	7	21		2	30	4
Mushrooms	11260	1/2-cup pieces or alices, raw	35	154	3		2	30	9
Onions	11283	1/2-cup cooked, boiled, drained	105	6	10	15	2	30	46
Peppers - bell	11333	1/2-cup sliced or chopped, raw	61		18		2	30	16
Potatoes	11363, 11367	1/2-cup flesh, without skin, boiled; 1/2-cup flesh, baked	70	-4	23	10	2	30	62
Radishes	11429	1/2-cup slices, raw	58	3	10	-	2	30	12
Spirach	11457	1-cup, raw	30	15	28		2	30	7
Sweetpokakoes 4	11367	1/2-cup flesh, without skin, boiled; 1/2-cup flesh, baked	70	4	25	11	2	30	62
Tomatoes	11529	1/2-cup chopped or sliced, raw	90	15	9	-	2	30	19
egetables for canning:									
Asparagas	11015	1/2-cup canned, drained solids	121	18	0		1	15	23
Smip beans	11056	1/2-cup green, canned, regular pack, drained solids	-68	+-63	0	-	1	15	13
Cabbage for sauerkraut	11.4.39	1/2-cup sauerkraut, canned, solids and liquids	71	56	0		1	15	22
Carrots	11128	1/2-cup, canned, regular pack, drained solids, sliced	73	25	0		1	15	18
Chile peppers	11329	1/2-cup chopped or diced	68	27	0	-	1	15	14
Com, sweet	11172	1/2-cup, yellow, canned, whole kernel, drained solids	82	27	0		1	15	66
Cocumbers for pickling	11907, 11940	1/2-cup dill or sweet, diced, chopped, or sliced	79	60	0	**	1	15	55
Green peas	11308	1/2-cup, canned, regular pack, drained solids	85	+34	0		1	15	59
Mulhoomi	11264	1/2-cup, canned, drained solids, pieces	78	+35	0		1	15	19
Potatoes	11376	1/2-cup, canned, drained solids	90	29	0		1	15	54
Tomators	11885	1/2-cup, canned, red ripe, whole	1.203	59	0	-	1	15	23
Other (beets, spinach)	11084, 11461	1/2-cup beets, or spinuch, chopped or diced, sliced						172	1.000
		or whole, canned	107	24	0		1	15	39

Appendix table 2-Serving weights for the vegetable group

See notes at end of table.

APPENDIX J

SERVING WEIGHTS FOR FRESH FRUIT

Food supply commodity	Nutrient database number ¹	Serving description	Serving weight?	Loss from primary to consumer weight ³	Nonedible share (refuse)	Cooking Ions	Retail loss	Foodservice and consumer loss	Calories per serving
			Grams	** ** ** **		-Percent-			Calories
Fresh fruit:									
Fresh citrus fruit-									
Orange s/temples	09200	Raw, all commercial varieties; 1 medium fruit (2 5/8")	131	3	27	0	2	30	62
Tangerines/tangelos	09218	Raw, 1/2-cup sections	98	5	28	0	2	30	43
Grapefruits	09111	Raw, all varieties; 1/2 medium fruit (4 1/2")	128	3	50	0	2	30	41
Lemons	09150	Raw, 1/2-cup sections	106	4	47	0	2	30	31
Limes	09159	Raw, 1 fruit (2")	67	5	16	0	2	30	20
Fresh noncitrus fruit-									
Apples	09003	Raw, medium with skin (2 3/47)	138	4	8	0	2	30	81
Apricots	09021	Raw, 1/2-cup halves: 1/2-cup sliced	80	9	7	0	2	30	38
Avocados	09037	Raw, all commercial varieties; 1/2-cup cubes; 1/2-cup sliced	74	6	26	0	2	30	119
Banamas	09040	Raw, 1 medium (7-7 7/8" long)	118	0	36	0	2	30	109
Cantaloupe	09181	Raw, 1/2-cup balls; 1/2-cup cubes; 1/2-cup diced pieces	82	8	49	0	2	30	29
Cherries	09070	Raw, 1/2-cup sweet, whole, pitted	73	8	10	0	2	30	52
Cranberries	09078	Raw, 1/2-cup chopped	55	4	5	0	2	30	27
Grapes	09131	Raw, European type (adherent skin), 1/2-cup seedless	80	9	4	0	2	30	57
Honeydew melon	09184	Raw, 1/2-cup balls, 1/2-cup diced pieces	87	8	54	0	2	30	30
Kiwifrait	09405	Raw, I medium fruit without skin	76	0	14	0	2	30	46
Mangoes	09176	Raw, 1/2-cup sliced	83	0	31	0	2	30	54
Peaches/nectarines	09191	Raw, 1 medium (2 1/2") peach; 1 medium (2 1/2") nectarine	117	5	11	0	2	30	54
Pears	09252	Raw, 1 medium (2 1/2") fruit	166	5		0	2	30	98
Pineapple	09266	Raw, 1/2-cup diced, pieces	78	5	48	0	2	30	38
Papeyas	09226	Raw, 1/2-cup cubed pieces	70	0	33	0	2	30	27
Plums/prones	09279	Raw, 1 fruit (2 1/8")	66	5	6	0	2	30	36
Strawberries	09316	Raw, 1/2-cup halver; 1/2-cup sliced; 1/2-cup whole	77	8	6	0	2	30	23
Watermelon	09326	Raw, 1/2-cup balls; 1/2-cup diced	77	10	48	0	2	30	24
Fruit for canning:									
Apples and applesauce	09401	1/2-cup applesauce, unsweetened, canned	122	0	0	0	1	15	52
Apricats	09023	1/2-cup canned, water packed without skin or pits,			1.5	17.1		1.345-	222
		solid and liquids	114	0	0	0	1	15	25
Cherries (sweet & tart)	09071	1/2-cup sweet, canned, water pack, solids and liquid, pitted	124	0	0	0	1	15	57
Peaches (excludes spiced)	09237	1/2-cup canned, water pack, solids and liquids, halves		<u>50</u>	2010	52.0	1.00	1.5	
a second features alycent	A REPORT OF	or slices	122	0	0	0	1	15	29
Pears (incl. fr. cocktail)	09253	1/2-cup canned, water pack, cooked, drained solids	122	0	0	0	1	15	35
Pineapples	09267	1/2-cup canned, water pack, solids and liquids, crushed,	1 848					1.0	
a monthly and	1 Aug.	sliced, or in chanks	123	0	0	0		15	39
Plans and prates	09281	1/2-cup canned, purple, water pack, solids and liquids, pitted		0	0	0	1	15	51

Appendix table 3-Serving weights for the fruit group

APPENDIX K

FRUIT AND VEGETABLE PRICES

	Avora	ge retail	Refuse	Cooking	Size of a		Number of		Average price
Form		rice	(inedible share)	yield		cup ivalent		ole cup valents	per cup equivalent
Fresh ^{1,2}	\$2.67	per pound	0%	85%	205 grams		1.881	per pound	\$1.42
Frozen ²	\$1.70	per 0% 85% 205 grams		1.881	per pound	\$0.90			
Note: It is assumed that consumers bake fresh and frozen winter squash prior to consumption.							r to cons	sumption.	

Winter squash—Average retail price per pound and per cup equivalent, 2008

					•				
	Avera	na rotail	Refuse	Cooking	Siz	e of a		nber of	Average price
Form	Form Average retail price		(inedible share)	yield	cup equivalent		edible cup equivalents		per cup equivalent
Fresh ^{1,2}	\$1.86	per pound	5%	81%	180	grams	1.939	per pound	\$0.96
Frozen ³	\$1.60	per pound	0%	76%	180	grams	1.915	per pound	\$0.83
Canned ⁴	\$1.15	per pound	0%	61%	216	grams	1.281	per pound	\$0.90

Note: It is assumed that consumers boil fresh and frozen summer squash. For canned summer squash, we assume that consumers drain the liquid contents of a can. However, the cooking yield in the above table does not account for any further preparation that may occur prior to consumption. MyPyramid cup equivalent weight for canned summer squash excludes the weight of the liquid medium in which the vegetable is packed.

APPENDIX L

FRESH VEGETABLE CONVERSION FACTORS AND LOSS ESTIMATES FOR

ARIZONA GROWN CROPS

Vegetables:	Grams/cup	% Losses from retail level to consumer level	% Loss from primary (farm) level	Total loss %
Dark-Green Vegetables				
Broccoli	88.0	71.0%	8.0%	79.0%
Lettuce, head	56.0	48.0%	7.0%	55.0%
Lettuce, leaf	56.0	53.0%	7.0%	60.0%
Lettuce, romaine	56.0	53.0%	7.0%	60.0%
Spinach	30.0	60.0%	15.0%	75.0%
Average	57.2	57.0%	8.8%	65.8%
Red-Orange Vegetables				
Carrots	124.0	43.0%	3.0%	46.0%
Pumpkins	205.0	47.0%	0.0%	47.0%
Squash, summer	180.0	47.0%	0.0%	56.0%
Squash, winter	205.0	47.0%	0.0%	47.0%
Tomatoes in the open	180.0	41.0%	15.0%	56.0%
Average	178.8	45.0%	3.6%	50.4%
Starchy Vegetables				
Sweet corn	164.0	77.0%	8.0%	85.0%
Potatoes	140.0	65.0%	4.0%	69.0%
Average	152.0	71.0%	6.0%	77.0%
Bean vegetables				
Dry, edible beans	74.0	16.0%	0.0%	16.0%
Other Vegetables				
Beans, snap	126.0	46.0%	6.0%	52.0%
Cabbage, head	160.0	52.0%	7.0%	59.0%
Cauliflower	100.0	71.0%	8.0%	79.0%
Celery	122.0	43.0%	7.0%	50.0%
Onions, dry	210.0	57.0%	6.0%	63.0%
Peppers, all	122.0	50.0%	8.0%	58.0%
Average	140.0	53.2%	7.0%	60.2%
Total Vegetable Average*	129.1	53.9%	6.4%	60.9%

Fresh Vegetable Conversion Factors (grams per cup) and Loss Estimates For Arizona Grown Crops

*Since beans do make up a large portion of consumption and are the only vegetable included in 'dry' form, they were not included in the 'total vegetable average' category

APPENDIX M

FRESH FRUIT CONVERSION FACTORS AND LOSS ESTIMATES FOR

ARIZONA GROWN CROPS

Fresh Fruit Conversion Factors (grams per cup) and Loss Estimates for Arizona Grown Crops

Fruits	Grams/cup	% Losses from retail level to consumer level	% Loss from primary (farm) level	Total loss %
Honey dew	174.0	86.0%	8.0%	94.0%
Cantaloupe	164.0	81.0%	8.0%	89.0%
Watermelon	154.0	80.0%	10.0%	90.0%
Apples	138.0	40.0%	4.0%	44.0%
Apricots	160.0	39.0%	9.0%	48.0%
Cherries, sweet	146.0	42.0%	8.0%	50.0%
Dates, dried	89.0	32.0%	0.0%	32.0%
Grapes	160.0	36.0%	9.0%	45.0%
Peaches, all	117.0	43.0%	5.0%	48.0%
Pears, all	166.0	40.0%	5.0%	45.0%
Plums	66.0	38.0%	5.0%	43.0%
Grapefruit	128.0	82.0%	3.0%	85.0%
Lemons	212.0	79.0%	4.0%	83.0%
Oranges, all	131.0	59.0%	3.0%	62.0%
Tangerines and mandarins	196	60.00%	5.00%	65.00%
Blackberries*	154.0	38.0%	8.0%	46.0%
Raspberries, all *	154.0	38.0%	8.0%	46.0%
Average	147.6	53.7%	6.0%	59.7%

 $\ensuremath{^*\text{Conversion}}$ factors and losses were unavailable and substituted with those for strawberries

APPENDIX N

ACTUAL INTAKE: VEGETABLES

			Ģ		Brai	sica		8							6	2	Leafy V	egatables	ġ
Gender and Age (years)	Sample size		otal stables	†Te	tal	Brocco Caulif		Can	ots	Ceà	ery	Cucus	ibers	Gre		†Te	otal	Lett (head a	
		1							— Me	ean (SE) in gra	ms							
Males	1		1				1								1				
2- 5	423			5	(1.6)	4*		6	(1.2)	1	(0.3)	3*	(1.1)	6*		3	(0.9)	3	
6-11	568	264		11	(2.9)	S*	(2.9)	85	(1.5)	3	(0.7)	3	(0.5)	8*	(2.8)	.9*	(2.9)	8*	
12 - 19	1139	300	(13.6)	9	(1.7)	5	(0.9)	2	(1.1)	3	(0.5)	5	(0.9)	6	(1.5)	11	(1.3)	11	(1.2)
2 - 19	2130	294	(10.6)	9	(1.2)	6	(1.1)	6	(0.9)	3	(0.4)	4	(0.4)	7	(1.5)	9	(1.2)	8	(1.2)
20 - 29	383	448	(42.7)	9	(2.6)	7*	(2.4)	7	(1.6)	3	(0.5)	6	(1.4)	10*	G.7)	15	(2.0)	14	(1.8)
30 - 39	354		(21.1)	10	(1.4)	5	(1.2)	13	(3.7)	5	(1.4)	S	(2.0)	11*	(4.0)	29	(4.7)	22	(3.0)
40 - 49	429			26	(5.7)	18*	(6.3)	14	(2.7)	7	(1.2)	7	(1.3)	11	(2.4)	25	(3.0)	21	(2.8)
50 - 59	339	410	(20.9)	19	(3.5)	11	(2.7)	12*	(4.1)	5	(1.5)	7	(1.5)	10	(2.9)	32	(4.5)	21	(3.2)
60 - 69	316		(16.7)	18	(2.4)	6	(1.2)	9	(1.4)	6	(1.5)	9	(2.3)	18	(5.1)	24	(3.8)	16	(2.9)
70 and over	429		(13.4)	34	(5.0)	20	(4.5)	9	(1.0)	6	(1.0)	7	(1.6)	15	(3.0)	24	(4.8)	15	(2.5)
20 and over	2250	444	(16.6)	18	(1.8)	11	(1.9)	11	(1.2)	5	(0.5)	7	(0.6)	12	(1.4)	25	(2.1)	19	(1.5)
Females:																			
2 - 5	433			8	(1.8)	7	(1.7)	9	(1.4)	1	(0.2)		(1.0)	8*	(2.4)	3	(0.5)	2	(0.4)
6 - 11	568	228	(13.7)	6*		3*	(1.1)	6	(0.8)	22	(0.5)	4*	(1.4)	7	(1.8)	5	(1.1)	5	(1.1)
12 - 19	1158	277	(12.5)	8	(1.3)	6	(1.2)	7	(1.7)	2	(0.6)	6	(1.4)	4	(0.9)	13	(1.7)	10	(1.4)
2 - 19	2159	246	(7.9)	7	(1.2)	5	(0.9)	7	(0.5)	2	(0.3)	5	(1.1)	6	(1.0)	8	(0.5)	7	(0.6)
20 - 29	533	339	(14.7)	18	(3.7)	10	(2.8)	8	(1.0)	3	(0.5)	6	(1.0)	7	0.0	19	(4.3)	12	(1.7)
30 - 39	462			30	(4.5)	23	(3.7)	12	(2.0)	4	(0.9)	10	(2.3)	9	(2.5)	25	(3.6)	20	(3.1)
40 - 49	417	365	(18.6)	29*		20*	(8.9)	14	(2.1)	6	(1.2)	8	(1.2)	12	(2.5)	27	(2.2)	21	(1.6)
50 - 59	303	343	(22.6)	37	(8.8)	20	(5.9)	9	(1.7)	6*	(1.9)	6	(0.9)	7	(2.0)	28	(3.7)	22	(3.2)
60 - 69	345	366	(19.3)	31	(6.8)	18*	(5.5)	11	(2.0)	5	(0.8)	7	(2.0)	16*	(5.1)	31	(4.8)	22	(3.6)
70 and over	434	316	(13.3)	32	(5.0)	15	(2.3)	12	(2.1)	5	(0.7)	7*	(2.2)	16	(4.5)	25	(2.4)	17	(1.3)
20 and over	2494	345	(6.4)	29	(3.7)	17	(2.9)	11	(0.7)	5	(0.4)	8	(1.0)	10	(0.9)	25	(1.8)	19	(1.1)
Males and females:																			
2 and over	9033	360	(7.2)	19	(1.6)	12	(1.5)	10	(0.7)	4	(0.3)	7	(0.7)	10	(0.6)	20	(1.2)	16	(0.8)

Table 7. Vegetables: Mean Amounts of Retail Commodities Consumed per Individual¹, Estimated From Dietary Intake Data, by Gender and Age, in the United States, WWELA, NHANES 2001-2002

* Indicates an estimate with a relative standard error greater than 30% of the mean. † Total Vegetables; Total Brazzica; Total Leafy Vegetables; and Total Roots and Tubers include miscellaneous vegetables not assigned to any of the other commodifies listed in the table. DATA SOURCES: What We East In America, NEANES 2001-2002, individuals 2 years and over (archading breast-fied children), day 1 dietary intake data, weighted. Food Intakes: Courted to Result Commodities Database 2001-2002.

											Roots an	d Tuber	5				
Gender and Age (years)	Sample size	Oni	005	Рерр	Xers	Terr	atoes	Swee	t Com	†T	'otal	Pot	atoes	Sn Bez			omes ry)
		-							Mean (S	E) in p	rams —						
Males: 2 - 5 6 - 11 12 - 19	423 568 1139	6 11 14	(1.0) (1.2) (1.0)	2* 3 5	(0.6) (0.8) (0.8)	67 100 128	(8.3) (8.9) (10.9)	20 21 15	(5.6) (3.2) (4.1)	81 76 133	(10.1) (6.2) (10.7)	80 74 131	(10.2) (6.3) (10.7)	4* 4 5*	(1.6) (1.0) (1.6)	436	(0.6) (0.7) (1.3)
2 - 19	2130	11	(0.7)	4	(0.4)	105	(5.5)	18	(2.3)	102	(6.2)	101	(6.2)	4	(1.1)	5	(0.7)
20 - 29 30 - 39 40 - 49	383 354 429	26 25 26	(5.4) (2.8) (4.2)	18* 16 9	(6.1) (3.8) (1.9)	166 152 139	(40.8) (14.8) (16.8)	17 41 29	(5.0) (6.2) (5.0)	146 142 140	(16.1) (15.4) (13.7)	146 138 137	(16.1) (15.9) (13.5)	5 7* 6*	(1.2) (2.3) (2.0)	10 12 13	(2.8) (1.6) (3.0)
50 - 59 60 - 69 70 and over	339 316 429	21 17 13	(2.0) (2.7) (1.5)	976	(1.2) (1.7) (1.1)	119 108 94	(15.1) (12.7) (7.8)	16 39 38	(4.4) (9.1) (6.5)	120 97 105	(6.8) (12.9) (6.1)	118 96 99	(6.6) (12.9) (5.7)	6 13 9	(1.4) (2.6) (1.9)	10 9 6	(2.2) (2.2) (1.0)
20 and over	2250	23	(2.1)	12	(1.6)	136	(10.7)	29	(2.2)	131	(4.5)	128	(4.6)	7	(1.0)	11	(0.5)
Females: 2 - 5 6 - 11 12 - 19	433 568 1158	6 9 10	(0.9) (1.3) (0.8)	1 3 4	(0.2) (0.6) (0.7)	58 76 89	(7.3) (6.0) (6.4)	25 16 13	(7.4) (3.3) (2.5)	75 81 104	(6.5) (6.6) (6.9)	74 77 103	(6.5) (5.4) (6.9)	4* 3* 2	(1.4) (0.9) (0.3)	4 4 5	(0.6) (1.2) (1.0)
2 - 19	2159	9	(0.4)	3	(0.3)	78	(3.9)	17	(2.4)	90	(4.8)	88	(4.7)	3	(0.6)	5	(0.7)
20 - 29 30 - 39 40 - 49	533 462 417	21 14 16	(5.\$) (1.4) (1.4)	6 9 10	(0.8) (2.1) (1.9)	101 88 91	(8.7) (10.1) (12.9)		(6.1) (11.0) (11.6)	105 77 83	(12.4) (8.3) (8.0)	104 74 78	(12.1) (8.1) (7.7)	6 4* 5	(1.5) (1.4) (1.2)	7 8 7	(1.2) (1.3) (1.4)
50 - 59 60 - 69 70 and over	303 345 434	14 13 11	(1.9) (0.8) (1.0)	10 7 3	(2.9) (1.3) (0.7)	93 102 77	(16.4) (13.6) (6.8)	19 21 29	(5.6) (3.7) (5.5)	81 79 71	(6.1) (9.8) (4.9)	77 72 65	(5.3) (9.3) (5.0)	6 11 8	(1.5) (2.6) (2.4)	6 7 5	(0.£) (1.4) (0.£)
20 and over	2494	15	(1.4)	8	(0.8)	93	(3.6)	28	(2.2)	84	(3.5)	80	(3.7)	6	(0.6)	7	(0.4)
Males and females: 2 and over	9033	16	(1.1)	8	(0.8)	108	(4.5)	25	(1.5)	104	(2.1)	101	(2.2)	6	(0.6)	8	(0.5)

Table 7. Vegetables: Mean Amounts of Retail Commodities Consumed per Individual', Estimated From Dietary Intake Data, by Gender and Age, in the United States, WWEIA, NHANES 2001-2002 (continued)

* Indicates an estimate with a relative standard error greater than 30% of the mean. † Total Vegetables, Total Branicz, Total Leafy Vegetables, and Total Roets and Tabers include miscellansous vegetables not assigned to any of the other commodities listed in the table. DATA SOURCES: ¹ What We East In America, NHANES 2001-2002, individuals 2 years and over (excluding breast-fed children), day 1 distary intake data, weighted. Food Intakes Converted to Retail Commodities Database 2001-2002.

APPENDIX O

ACTUAL INTAKES: FRUIT

115001050-0			5	Apples					
Gender and Age (years)	Sample size	†Total Fruit	Total	From Fruit	From Juice	Bananas	Berries	Grapes	Melons
					— Mean (SE) in grams —			
Males:	1		1 855		1.22				
2- 5	423	462 (30.8)	115 (14.9)	34 (5.3)	SI (13.7)	25 (2.7)	10 (2.5)	46 (10.7)	28* (14.3)
6 - 11	568	318 (32.2)	78 (8.3)	29 (5.1)	49 (8.2)	15 (3.1)	8 (2.1)	39* (13.8)	16* (8.1)
12 - 19	1139	352 (29.6)	63 (8.3)	26 (5.6)	37 (7.8)	13 (1.2)	8 (1.9)	18 (4.1)	16* (6.0)
2 - 19	2130	362 (23.0)	79 (5.8)	28 (2.7)	50 (5.9)	16 (1.4)	8 (1.6)	31 (5.6)	19 (5.0)
20 - 29	383	403 (11.6)	72 (15.6)	20 (5.8)	52*(17.1)	27* (9.5)	9 (2.5)	9 (2.5)	28* (19.7)
30 - 39	354	406 (78.1)	33 (5.9)	15 (3.1)	18 (5.2)	26 (6.2)	12 (2.5)	21* (8.1)	24* (8.9)
40 - 49	429	305 (21.7)	51 (7.8)	31 (3.9)	20 (4.5)	35 (4.7)	12 (2.1)	25 (4.4)	13* (4.4)
50 - 59	339	396 (48.0)	72 (13.6)	29 (6.3)	43 (11.0)	35 (4.6)	17 (3.2)	34 (8.2)	35* (21.0)
60 - 69	316	360 (32.2)	46 (7.9)	23 (5.2)	23 (5.8)	41 (7.7)	10 (3.0)	29* (11.2)	29 (8.4)
70 and over	429	355 (21.6)	39 (6.5)	29 (4.9)	10* (3.0)	42 (5.4)	9 (2.1)	26 (4.0)	37 (9.8)
20 and over_	2250	371 (27.2)	53 (4.5)	24 (2.3)	29 (4.2)	33 (2.8)	12 (1.5)	23 (3.2)	26 (6.2)
Females:					1000 000				
2 - 5	433	374 (24.5)	124 (9.7)	24 (3.4)	99 (9.3)	21 (2.6)	10 (2.2)	43 (6.1)	20* (10.9)
6-11	568	363 (36.0)	97 (11.3)	22 (5.4)	75 (10.3)	12 (2.9)	7 (1.5)	26 (4.7)	34* (24.6)
12 - 19	1158	294 (15.5)	59 (5.8)	14 (1.1)	45 (5.6)	12 (2.5)	11 (1.9)	18 (2.1)	30 (6.7)
2 - 19	2159	334 (17.8)	\$6 (4.8)	19 (2.3)	67 (4.5)	14 (1.1)	10 (1.3)	26 (2.3)	29 (8.1)
20 - 29	533	252 (28.2)	40 (7.2)	12 (3.5)	28 (4.1)	14 (2.7)	10 (1.4)	22 (5.9)	17 (4.5)
30 - 39	462	319 (46.4)	35 (7.3)	16 (3.6)	19 (5.5)	30 (5.2)	9 (1.9)	28 (8.0)	17* (5.2)
40 - 49	417	305 (26.0)	40 (9.0)	16 (4.3)	24* (8.1)	18 (3.0)	7 (1.5)	28 (6.7)	19 (4.9)
50 - 59	303	301 (23.8)	45 (6.4)	29 (7.0)	16* (5.6)	35 (4.8)	10 (2.0)	27* (8.4)	32 (6.0)
60 - 69	345	361 (24.1)	46 (6.1)	28 (5.8)	19 (5.0)	35 (7.5)	13 (2.3)	23 (3.5)	36* (13.2)
70 and over	434	363 (23.3)	30 (4.7)	20 (2.9)	10* (3.5)	39 (5.8)	14 (3.3)	24 (3.8)	55 (11.9)
20 and over	2494	310 (15.9)	39 (3.1)	19 (2.1)	20 (2.0)	27 (1.8)	10 (0.5)	25 (3.2)	26 (4.3)
Males and females:	1912012-		0.981058840		8570 19632				
2 and over	9033	342 (15.5)	56 (3.2)	22 (1.5)	34 (2.3)	26 (1.3)	10 (0.9)	25 (2.2)	26 (3.4)

Table 3. Fruits: Mean Amounts of Retail Commodities Consumed per Individual¹, Estimated From Dietary Intake Data, by Gender and Age, in the United States, WWEIA, NHANES 2001-2002

* Indicates an estimate with a relative standard error greater than 30% of the mean. † Total Fruit includes mixed laneous fruits not assigned to any of the other commodities listed in the table. DATA SOURCES.¹ What We East In America, NHANES 2001-2002, individuals 2 years and over (excluding breast-fed children), day 1 dietary intake data, weighted. Food Intakes Converted to Retail Commodities Database 2001-2002.

				Oran	ges								
Gender and Age (years)	Sample size	Te	otal	From	Fruit	From	1 Juice	Other Fra		Sto Fru		Trop Fru	
	10010-0	1		0.0014			dean (Si	E) in gra	ms				
Males:	1						e 1973 A	1					
2 - 5	423	190	(19.3)	7	(1.9)	183	(17.9)	9	(2.4)	6	(1.6)	28	(6.3)
6-11	568	112	(14.8)	11*	(3.9)	101	(11.7)	13	(3.8)	6	(1.3)	26*	(8.8)
12 - 19	1139	196	(22.1)	5	(1.6)	190	(22.1)	16	(2.5)	5	(1.0)	14	(3.0)
2 - 19	2130	165	(15.1)	8	(1.6)	157	(14.8)	14	(1.7)	6	(0.6)	21	(3.4)
20 - 29	383	207	(55.5)	4*	(2.2)	203	(54.4)	34	(8.6)	4	(0.6)	11*	(3.3)
30 - 39	354	229	(67.3)	16*	(5.9)	212	(63.7)	22	(5.6)	11	(3.3)	22*	(7.1)
40 - 49	429	111	(12.9)	7	(1.5)	104	(11.4)	35	(6.9)	11*	(4.2)	8	(1.9)
50 - 59	330	134	(16.2)	6	(1.5)	129	(16.1)	38	(7.7)	10*	(3.4)	12*	(4.7)
60 - 69	316	155	(27.8)	14	(3.7)	141	(27.2)	22	(4.1)	13	(3.5)	5	(1.2)
70 and over	429	133	(16.3)	8	(1.7)	125	(15.6)	22 29	(6.2)	16	(2.3)	15*	(5.8)
20 and over	2250	165	(20.9)	9	(1.4)	156	(20.1)	31	(2.5)	10	(1.7)	13	(1.4)
Females:	1000						10200	0.25					
2 - 5	433	121	(14.9)		(1.6)		(15.3)		(2.8)	6	(1.5)	17	(2.5)
6-11	568	133	(19.2)	9	(2.3)		(18.6)		(10.7)	5	(1.2)	16	(2.8)
12 - 19	1158	121	(11.2)	5	(1.0)	116	(10.9)	18	(3.1)	10	(1.5)	12	(1.5)
2 - 19	2159	125	(8.3)	6	(1.0)	118	(8.0)	19	(3.2)	7	(1.0)	15	(1.6)
20 - 29	533	77	(13.9)	2*	(0.9)	75	(13.5)	40	(10.2)	5	0.2	23*	(8.4)
30 - 39	462	142	(28.0)	6*	(2.1)		(27.2)		(9.7)	9	(1.6)	19	(4.7)
40 - 49	417	115	(17.9)	7*	(2.8)	108	(17.7)	35	(6.7)	17	(3.4)	19*	(6.5)
50 - 59	303	86	(17.0)	4*	(1.3)	82	(16.8)	31*	(10.0)	11	(2.7)	14	(3.1)
60 - 69	345	149			(5.2)		(20.1)	19	(4.2)	14*	(4.9)	14	(25)
70 and over	434	139		S	(1.9)		(14.6)	16	(4.0)	26	(2.8)	14	(3.5)
20 and over	2494	115	(7.9)	7	(1.1)	109	(7.5)	30	(4.6)	13	(1.1)	18	(2.7)
Males and females:	66333	1.45	-		10.00	1.2.2		20	(2.2)	10	10.00	16	
2 and over	9033	141	(9.4)	9	(0.8)	133	(8.9)	26	(2.3)	10	(0.9)	16	(1.5)

Table 3. Fruits: Mean Amounts of Retail Commodities Consumed per Individual¹, Estimated From Dietary Intake Data, by Gender and Age, in the United States, WWEIA, NHANES 2001-2002 (continued)

* Indicates an estimate with a relative standard error greater than 30% of the mean. DATA SOURCES: ' What We East In America, NHANES 2001-2002, individuals 2 years and over (excluding breast-fed children), day 1 diseasy intake data, weighted. Food Intakes Converted to Retail Commodities Database 2001-2002.

APPENDIX P

ESTIMATED ARIZONA FEMALES' FRUIT AND VEGETABLE INTAKE

Arizona Females' Fresh Fruit and Vegetable Intake*

Age	Cohort <u>Pop</u>		<u>Fruit</u>			<u>Vegetables</u>	
		per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)	per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)
2		374.0			207.0		
3	133892	374.0	374.0	50.1	207.0	207.0	27.7
4		374.0			207.0		
5		374.0			207.0		
6		363.0			228.0		
7	222434	363.0	365.2	81.2	228.0	223.8	49.8
8		363.0			228.0		
9		363.0			228.0		
10		363.0			228.0		
11		363.0			228.0		
12	219669	294.0	321.6	70.6	277.0	257.4	56.5
13		294.0			277.0		
14		294.0			277.0		
15		294.0			277.0		
16		294.0			277.0		
17	224302	294.0	294.0	65.9	277.0	277.0	62.1
18		294.0			277.0		
19		294.0			277.0		
20		252.0			339.0		
21		252.0			339.0		
22	213022	252.0	252.0	53.7	339.0	339.0	72.2
23		252.0			339.0		
24		252.0			339.0		
25		252.0			339.0		
26	214200	252.0	252.0	EAO	339.0	220.0	72 7
27	214390	252.0	252.0	54.0	339.0	339.0	72.7
28		252.0			339.0		

29		252.0			339.0		
30		319.0			338.0		
31		319.0			338.0		
32	204472	319.0	319.0	65.2	338.0	338.0	69.1
33		319.0			338.0		
34		319.0			338.0		
35		319.0			338.0		
36		319.0			338.0		
37	205469	319.0	319.0	65.5	338.0	338.0	69.4
38		319.0			338.0		
39		319.0			338.0		
40		305.0			365.0		
41		305.0			365.0		
42	200902	305.0	305.0	61.3	365.0	365.0	73.3
43		305.0			365.0		
44		305.0			365.0		
45		305.0			365.0		
46		305.0			365.0		
47	214523	305.0	305.0	65.4	365.0	365.0	78.3
48		305.0			365.0		
49		305.0			365.0		
50		301.0			343.0		
51		301.0			343.0		
52	213113	301.0	301.0	64.1	343.0	343.0	73.1
53		301.0			343.0		
54		301.0			343.0		
55		301.0			343.0		
56		301.0			343.0		
57	196603	301.0	301.0	59.2	343.0	343.0	67.4
58		301.0			343.0		
59		301.0			343.0		
60	184006	361.0	361.0	66.4	366.0	366.0	67.3
61	104000	361.0	301.0	00.4	366.0	500.0	07.5

			Total	996.8			998.3
70+	330869	363.0	363.0	120.1	316.0	316.0	104.6
69		361.0			366.0		
68		361.0			366.0		
67	149267	361.0	361.0	53.9	366.0	366.0	54.6
66		361.0			366.0		
65		361.0			366.0		
64		361.0			366.0		
63		361.0			366.0		
62		361.0			366.0		

*Intake based on retail-level national estimates (Bowman et al., 2011)

Abbreviations: Population (pop), average (avg), grams (g), day (d), million (mil)

5 Arizona Females' Fresh Vegetable Sub-Group Intake*

<u>Age</u>	Cohort <u>Pop</u>	Dark-G	ireen <u>Veg</u>	etables	Red-Or	ange <u>Veg</u>	etables	<u>Star</u>	ch Vegeta	ables	<u>Bea</u>	ns Vegeta	ables	<u>Oth</u>	er Vegeta	<u>ibles</u>
		per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)												
2		7.0			67.0			108.0			4.0			19.0		
3	133892	7.0	7.0	0.9	67.0	67.0	9.0	108.0	108.0	14.5	4.0	4.0	0.5	19.0	19.0	2.5
4		7.0			67.0			108.0			4.0			19.0		
5		7.0			67.0			108.0			4.0			19.0		
6		8.0			82.0			104.0			4.0			24.0		
7	222434	8.0	7.8	1.7	82.0	79.0	17.6	104.0	104.8	23.3	4.0	4.0	0.9	24.0	23.0	5.1
8		8.0			82.0			104.0			4.0			24.0		
9		8.0			82.0			104.0			4.0			24.0		
10	219669	8.0	13.4	2.9	82.0	90.4	19.9	104.0	114.2	25.1	4.0	4.6	1.0	24.0	26.4	5.8
11	213003	8.0	10.4	2.5	82.0	50.4	19.9	104.0	117.2	23.1	4.0	4.0	1.0	24.0	20.4	5.0

160	1	1	l			I			l			I			I		1
100	12		17.0			96.0			121.0			5.0			28.0		
	13		17.0			96.0			121.0			5.0			28.0		
	14		17.0			96.0			121.0			5.0			28.0		
	15		17.0			96.0			121.0			5.0			28.0		
	16		17.0			96.0			121.0			5.0			28.0		
	17	224302	17.0	17.0	3.8	96.0	96.0	21.5	121.0	121.0	27.1	5.0	5.0	1.1	28.0	28.0	6.3
	18		17.0			96.0			121.0			5.0			28.0		
	19		17.0			96.0			121.0			5.0			28.0		
	20		28.0			109.0			132.0			7.0			51.0		
	21		28.0			109.0			132.0			7.0			51.0		
	22	213022	28.0	28.0	6.0	109.0	109.0	23.2	132.0	132.0	28.1	7.0	7.0	1.5	51.0	51.0	10.9
	23		28.0			109.0			132.0			7.0			51.0		
	24		28.0			109.0			132.0			7.0			51.0		
	25		28.0			109.0			132.0			7.0			51.0		
	26		28.0			109.0			132.0			7.0			51.0		
	27	214390	28.0	28.0	6.0	109.0	109.0	23.4	132.0	132.0	28.3	7.0	7.0	1.5	51.0	51.0	10.9
	28		28.0			109.0			132.0			7.0			51.0		
	29		28.0			109.0			132.0			7.0			51.0		

30		40.0			100.0			117.0			8.0			56.0		
31		40.0			100.0			117.0			8.0			56.0		
32	204472	40.0	40.0	8.2		100.0	20.4		117.0	23.9		8.0	1.6		56.0	11.5
52	204472	40.0	40.0	0.2	100.0	100.0	20.4	117.0	117.0	25.9	8.0	8.0	1.0	56.0	50.0	11.5
33		40.0			100.0			117.0			8.0			56.0		
34		40.0			100.0			117.0			8.0			56.0		
35		40.0			100.0			117.0			8.0			56.0		
36		40.0			100.0			117.0			8.0			56.0		
37	205469	40.0	40.0	8.2	100.0	100.0	20.5	117.0	117.0	24.0	8.0	8.0	1.6	56.0	56.0	11.5
38		40.0			100.0			117.0			8.0			56.0		
39		40.0			100.0			117.0			8.0			56.0		
40		41.5			105.0			136.0			7.0			59.5		
41		41.5			105.0			136.0			7.0			59.5		
42	200902	41.5	41.5	8.3		105.0	21.1		136.0	27.3		7.0	1.4		59.5	12.0
	200302		11.5	0.5	105.0	105.0	21.1	136.0	130.0	27.5	7.0	7.0	1.1	59.5	55.5	12.0
43		41.5			105.0			136.0			7.0			59.5		
44		41.5			105.0			136.0			7.0			59.5		
45		41.5			105.0			136.0			7.0			59.5		
46	214523	41.5	41.5	8.9	105.0	105.0	22.5	136.0	136.0	29.2	7.0	7.0	1.5	59.5	59.5	12.8
47		41.5														
					105.0			136.0			7.0			59.5		

62	1					1			1			I			I		1
	48		41.5			105.0			136.0			7.0			59.5		
	49		41.5			105.0			136.0			7.0			59.5		
	50		46.5			102.0			107.0			6.0			60.5		
	51		46.5			102.0			107.0			6.0			60.5		
	52	213113	46.5	46.5	9.9	102.0	102.0	21.7	107.0	107.0	22.8	6.0	6.0	1.3	60.5	60.5	12.9
	53		46.5														
						102.0			107.0			6.0			60.5		
	54		46.5			102.0			107.0			6.0			60.5		
	55		46.5			102.0			107.0			6.0			60.5		
	56		46.5			102.0			107.0			6.0			60.5		
	57	196603	46.5	46.5	9.1		102.0	20.1		107.0	21.0		6.0	1.2		60.5	11.9
						102.0			107.0			6.0			60.5		
	58		46.5			102.0			107.0			6.0			60.5		
	59		46.5			102.0			107.0			6.0			60.5		
	60		46.5			113.0			116.0			7.0			58.5		
	61		46.5			113.0			116.0			7.0			58.5		
	62	184006	46.5	46.5	8.6	113.0	113.0	20.8	116.0	116.0	21.3	7.0	7.0	1.3	58.5	58.5	10.8
	63		46.5			113.0			116.0			7.0			58.5		
	64		46.5			113.0			116.0			7.0			58.5		
					6.0	113.0			110.0			7.0			50.5		
	65	149267	46.5	46.5	6.9	113.0	113.0	16.9	116.0	116.0	17.3	7.0	7.0	1.0	58.5	58.5	8.7

163	1			1	1					I			I			I
66		46.5			113.0			116.0			7.0			58.5		
67		46.5			113.0			116.0			7.0			58.5		
68		46.5			113.0			116.0			7.0			58.5		
69		46.5			113.0			116.0			7.0			58.5		
70+	330869	41.0	41.0	13.6	89.0	89.0	29.4	116.0	116.0	38.4	5.0	5.0	1.7	58.5	58.5	19.4
			Total	103.1			308.0			371.8			19.2			152.9

*Intake based on retail-level national estimates (Bowman et al., 2011)

Abbreviations: Population (pop), average (avg), grams (g), day (d), million (mil)

APPENDIX Q

ESTIMATED ARIZONA MALES' FRUIT AND VEGETABLE INTAKE

Age	Cohort <u>pop</u>		<u>Fruit</u>		<u>Vegetables</u>						
		per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)	per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)				
2		462.0			212.0						
3	139537	462.0	462.0	64.5	212.0	212.0	29.6				
4		462.0			212.0						
5		462.0			212.0						
6		318.0			264.0						
7	231246	318.0	346.8	80.2	264.0	253.6	58.6				
8		318.0			264.0						
9		318.0			264.0						
10		318.0			264.0						
11		318.0			264.0						
12	228995	352.0	338.4	77.5	356.0	319.2	73.1				
13		352.0			356.0						
14		352.0			356.0						
15		352.0			356.0						
16		352.0			356.0						
17	237280	352.0	352.0	83.5	356.0	356.0	84.5				
18		352.0			356.0						
19		352.0			356.0						
20		403.0			448.0						
21		403.0			448.0						
22	229562	403.0	403.0	92.5	448.0	448.0	102.8				
23		403.0			448.0						
24		403.0			448.0						
25		403.0			448.0						
26	225600	403.0	402.0	00.0	448.0	1100	101 1				
27	225608	403.0	403.0	90.9	448.0	448.0	101.1				
28		403.0			448.0						

Arizona Males' Fresh Fruit and Vegetable Intake*

29		403.0			448.0		
30		406.0			485.0		
31		406.0			485.0		
32	212223	406.0	406.0	86.2	485.0	485.0	102.9
33		406.0			485.0		
34		406.0			485.0		
35		406.0			485.0		
36		406.0			485.0		
37	210224	406.0	406.0	85.4	485.0	485.0	102.0
38		406.0			485.0		
39		406.0			485.0		
40		305.0			472.0		
41		305.0			472.0		
42	205899	305.0	305.0	62.8	472.0	472.0	97.2
43		305.0			472.0		
44		305.0			472.0		
45		305.0			472.0		
46		305.0			472.0		
47	212499	305.0	305.0	64.8	472.0	472.0	100.3
48		305.0			472.0		
49		305.0			472.0		
50		396.0			410.0		
51		396.0			410.0		
52	202411	396.0	396.0	80.2	410.0	410.0	83.0
53		396.0			410.0		
54		396.0			410.0		
55		396.0			410.0		
56		396.0			410.0		
57	178665	396.0	396.0	70.8	410.0	410.0	73.3
58		396.0			410.0		
59		396.0			410.0		
60		360.0			397.0		
61	166054	360.0	260.0	60.1	397.0	207.0	66.2
62	166954	360.0	360.0	60.1	397.0	397.0	66.3
63		360.0			397.0		

			Total	1142.5			1229.0
70+	268096	355.0	355.0	95.2	378.0	378.0	101.3
69		360.0			397.0		
68		360.0			397.0		
67	133599	360.0	360.0	48.1	397.0	397.0	53.0
66		360.0			397.0		
65		360.0			397.0		
64		360.0			397.0		

*Intake based on retail-level national estimates (Bowman et al., 2011)

Abbreviations: Population (pop), average (avg), grams (g), day (d), million (mil)

Age	Cohort pop	Dark-Green			R	ed-Oran	ge		Starchy			Beans				<u>Other</u>		
		per capita (g/d)	Avg per capita (g/d)	Cohort intake (mil g/d)														
2		5.5			73.0			107.0			4.0			18.5				
3	139537	5.5	5.5	0.8	73.0	73.0	10.2	107.0	107.0	14.9	4.0	4.0	0.6	18.5	18.5	2.6		
4		5.5			73.0			107.0			4.0			18.5				
5		5.5			73.0			107.0			4.0			18.5				
6		14.5			108.0			105.0			3.0			29.5				
7	231246	14.5	12.7	2.9	108.0	101.0	23.4	105.0	105.4	24.4	3.0	3.2	0.7	29.5	27.3	6.3		
8		14.5			108.0			105.0			3.0			29.5				
9		14.5			108.0			105.0			3.0			29.5				
10		14.5			108.0			105.0			3.0			29.5				
11		14.5			108.0			105.0			3.0			29.5				
12	228995	15.5	15.1	3.5	133.0	123.0	28.2	154.0	134.4	30.8	6.0	4.8	1.1	36.5	33.7	7.7		
13		15.5			133.0			154.0			6.0			36.5				
14		15.5			133.0			154.0			6.0			36.5				
15		15.5			133.0			154.0			6.0			36.5				
16		15.5			133.0			154.0			6.0			36.5				
17	237280	15.5	15.5	3.7	133.0	133.0	31.6	154.0	154.0	36.5	6.0	6.0	1.4	36.6	36.5	8.7		
18		15.5			133.0			154.0			6.0			36.5				
19		15.5			133.0			154.0			6.0			36.5				
20		19.5			173.0			173.0			10.0			62.5				
21		19.5			173.0			173.0			10.0			62.5				
22	229562	19.5	19.5	4.5	173.0	173.0	39.7	173.0	173.0	39.7	10.0	10.0	2.3	62.5	62.5	14.3		
23		19.5			173.0			173.0			10.0			62.5				
24		19.5			173.0			173.0			10.0			62.5				
25	225608	19.5	19.5	4.4	173.0	173.0	39.0	173.0	173.0	39.0	10.0	10.0	2.3	62.5	62.5	14.1		

Arizona Males' Vegetable Sub-Group Intake*

26		19.5			173.0			173.0			10.0			62.5		
27		19.5			173.0			173.0			10.0			62.5		
28		19.5			173.0			173.0			10.0			62.5		
29		19.5			173.0			173.0			10.0			62.5		
30		34.0			165.0			194.0			12.0			66.0		
31		34.0			165.0			194.0			12.0			66.0		
32	212223	34.0	34.0	7.2	165.0	165.0	35.0	194.0	194.0	41.2	12.0	12.0	2.5	66.0	66.0	14.0
33		34.0			165.0			194.0			12.0			66.0		
34		34.0			165.0			194.0			12.0			66.0		
35		34.0			165.0			194.0			12.0			66.0		
36		34.0			165.0			194.0			12.0			66.0		
37	210224	34.0	34.0	71.5	165.0	165.0	34.7	194.0	194.0	40.8	12.0	12.0	2.5	66.0	66.0	13.9
38		34.0			165.0			194.0			12.0			66.0		
39		34.0			165.0			194.0			12.0			66.0		
40		38.0			153.0			180.0			13.0			68.0		
41		38.0			153.0			180.0			13.0			68.0		
42	205899	38.0	38.0	7.8	153.0	153.0	31.5	180.0	180.0	37.1	13.0	13.0	2.7	68.0	68.0	14.0
43		38.0			153.0			180.0			13.0			68.0		
44		38.0			153.0			180.0			13.0			68.0		
45		38.0			153.0			180.0			13.0			68.0		
46		38.0			153.0			180.0			13.0			68.0		
47	212499	38.0	38.0	8.1	153.0	153.0	32.5	180.0	180.0	38.2	13.0	13.0	2.8	68.0	68.0	14.4
48		38.0			153.0			180.0			13.0			68.0		
49		38.0			153.0			180.0			13.0			68.0		
50		41.5			131.0			146.0			10.0			57.5		
51		41.5			131.0			146.0			10.0			57.5		
52	202411	41.5	41.5	8.4	131.0	131.0	26.5	146.0	146.0	29.6	10.0	10.0	2.0	57.5	57.5	11.6
53		41.5			131.0			146.0			10.0			57.5		
54		41.5			131.0			146.0			10.0			57.5		

1	7	0	
		-	

8

55		41.5			131.0			146.0			10.0			57.5		
56		41.5			131.0			146.0			10.0			57.5		
57	178665	41.5	41.5	7.4	131.0	131.0	23.4	146.0	146.0	26.1	10.0	10.0	1.8	57.5	57.5	10.3
58		41.5			131.0			146.0			10.0			57.5		
59		41.5			131.0			146.0			10.0			57.5		
60		33.0			117.0			154.0			9.0			61.0		
61		33.0			117.0			154.0			9.0			61.0		
62	166954	33.0	33.0	5.5	117.0	117.0	19.5	154.0	154.0	25.7	9.0	9.0	1.5	61.0	61.0	10.2
63		33.0			117.0			154.0			9.0			61.0		
64		33.0			117.0			154.0			9.0			61.0		
65		33.0			117.0			154.0			9.0			61.0		
66		33.0			117.0			154.0			9.0			61.0		
67	133599	33.0	33.0	4.4	117.0	117.0	15.6	154.0	154.0	20.6	9.0	9.0	1.2	61.0	61.0	8.1
68		33.0			117.0			154.0			9.0			61.0		
69		33.0			117.0			154.0			9.0			61.0		
05		55.0			11/.0			134.0			5.0			01.0		
70+	268096	41.0	41.0	11.0	103.0	103.0	27.6	158.0	158.0	42.4	6.0	6.0	1.6	58.0	58.0	15.5
			Total	151.0			418.4			486.9			27.0			165.8

*Intake based on retail-level national estimates (Bowman et al., 2011)

Abbreviations: Population (pop), average (avg), grams (g), day (d), million (mil)

APPENDIX R

ARIZONA CENSUS OF AGRICULTURE: TABLE: VEGETABLES, POTATOES, AND MELONS

SAMPLE PAGE FROM A LARGER DOCUMENT

http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapter_1_State_Lev

el/Arizona/st04_1_034_034.pdf

Table 34. Vegetables, Potatoes, and Melons Harvested for Sale: 2007 and 2002 [Totals may not add due to rounding. For meaning of abbreviations and symbols, see introductory text]

			200	7			2002	
Crop	Total harv	rested	Harvesta		Harveste fresh ma		total harv	
	Farms	Acres	Farms	Acres	Farms	Acres	Farms	Acres
Vegetables harvested for sale (see text) 1	2,565	137,574	19	5,160	2,552	132,415	274	134,394
0.1 to 0.9 acres	819	350 2,565	2	(D)	817	(D) 2,565	38 47	17
1.0 to 4.9 acres	1.209	2,565			1,209	2,565		104
5.0 to 14.9 acres	379	2,769	3	2	379	2,768	28	245
15.0 to 24.9 acres	47	844			47	844	28	307
25.0 to 49.9 acres	18	609			18	609		292
50.0 to 99.9 acres		518	1	(D)	7	(D)	17	1,240
100.0 to 249.9 acres		3,217	8	1.090	12	2,127	41	6,692
250 0 to 499 9 acres	23	7,397	ă l	1,208	13 19	6,191	41 27	9.669
500.0 to 749.9 acres		3,339					11	5,946
750.0 to 999.9 acres	9	5,954		(B)	67	(B)	10	8,693
		110,013		(D)	20	16(1	35	101,190
1,000.0 acres or more		14,975	2	8	30 9 3	7,956	32 15	21,444
1.000.0 to 1,999.9 acres	10	14,87.2		(U)	š.	7	10	10,158
		7,956	13	1.1	3	7,800	4	
3,000.0 to 4,999.9 acres		41,793			11	41,793	8	8
5,000.0 acres or more	7	45,289		-	7	45,289	5	(D)
Artichokes (excluding Jerusalem) (see text)		(D)		-	5	(D)	1	(D)
Asparagus, bearing age (see text)		1			7	3	- 14	4
Beans, green limas		2	(#)	-	5	2	19 i i i i i i i i i i i i i i i i i i i	
Beans, snap		103	(7)	1	224	103	34	25
Beets		5		5. e	19	5	33	28
Broccoli	44	11,889	- 2	12	44	11,869	54	11,970
Brussels sprouts		(D)			2	(D)		
Cabbage, head	23	2,675	~		23	2,675	22	3,794
Cantaloupes	748	18,933	52 C	1.2	748	18,933	73	14,799
0.1 to 0.9 acres	617	178	(NA)	(NA)	(NA)	(NA)	3.4	(D)
1.0 to 4.9 acres		156	(NA)	(NA)	NA	(NA)	34	(0)
5.0 to 14.9 acres		(D)	(NA)	(NA)	(NA)	(NA)	5	28
15.0 to 24.9 acres		(0)	(NA)	(NA)	(NA)	(NA)	<u> </u>	
25.0 to 49.9 acres	0.000		(NA)	(NA)	(NA)	(NA)		(73)
50.0 to 99.9 acres		(D)	(NA)	NA	NA	(NA)	4	(D) 288
100.0 to 88.8 acres	3	300		(NA)	(NA)		6	768
100.0 to 249.9 acres		1,005	(NA) (NA)	NA	NA	(NA)	0.8	2,895
250.0 to 499.9 acres								2,080
500.0 acres or more	6	17,194	(NA)	(NA)	(NA)	(NA)	8	10,768
Carrots	43	(D)	19	-	43	(D)	33 20	2,190
0.1 to 0.9 acres		8		-	38	8	20	(D)
1.0 to 4.9 acres	3	3		-	3	3	5	5
5.0 to 14.9 acres			18 I.	-			2	(D)
15.0 to 24.9 acres	-			-	-			
25.0 to 49.9 acres	-	-	-	-	-			-
50.0 to 99.9 acres	-		1.1	-	-			-
100 0 to 249 9 acres			1		2 C		(NA)	(NA)
250.0 to 499.9 acres	1	(D)		-	1	(D)	(NA)	(NA)

APPENDIX S

ARIZONA CENSUS OF AGRICULTURE: SPECIFIED FRUITS AND NUTS

SAMPLE PAGE FROM A LARGER DOCUMENT

http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapter_1_State_Lev

el/Arizona/st04_1_035_035.pdf

Table 35. Specified Fruits and Nuts by Acres: 2007 and 2002

[Totals may not add due to rounding. For meaning of abbreviations and symbols, see introductory text]

Crop	Total		Bearing age	acres	Nonbearing ag	je acres
	Farms	Acres	Farms	Acres	Farms	Acres
Voncitrus fruit, all (see text)	1,005 434	5,029 7,699	883 289	3.970 6,183	219 237	1,05 1,51
Apples2007 2002	496 185	1,344 1,581	424 118	1,249 1,459	111 103	12
2007 acres: 0.1 to 0.9 acres	378	87	322	70	68	
1.0 to 4.9 acres	93	122	79	92	32	
5.0 to 14.9 acres	18	122	16	95	8	
15.0 to 24.9 acres	2	(B)	1	(B)	1	(
50.0 to 99.9 acres	ĩ	(D)	1	B	1	1
100.0 acres or more	3	890	3	(D)	1	1
2002 acres:			-	100		
0.1 to 0.9 acres	56 98	21	35 52	(P) 73	29 62	(
5.0 to 14.9 acres	21	137	21	110	10	
15.0 to 24.9 acres	3	61	3	61	-	
25.0 to 49.9 acres	4	133	4	(D)	2	(
100.0 acres or more	3	1.070	3	1,070	1	
Apricots	382 90	127 34	337 53	108 25	50 42	
Avocados	1	(D)	2	84 -	1	
Cherries, sweet	63 23	59 57	48 20	54 57	20	
Cherries, tart 2007	33	14	19	9	15	
2002	1	(D)	15	-	ĩ	1
Dates	17 41	1,354 1,397	16 37	(D) 873	7 28	5
Figs	7	(D)	5	(D)	2	1
2002	13	5	13	6	6	
Grapes	127 135	400 3.337	101 97	229 2,563	44 62	1
2007 acres:						
0.1 to 0.9 acres	89	(D) 53	69 20	13 (D)	23	5
5.0 to 14.9 acres	23	64	4	17	87	(
15.0 to 24.9 acres	4	66	4	24	4	
25.0 to 49.9 acres	1 3	(D) 170	1	(B)	ź	
100.0 acres or more	2	170	2	(0)	ć.	10
2002 acres:						
0.1 to 0.9 acres	75 36	(D) 52	56	(D) 24	27 22	(
1.0 to 4.9 acres	30	52	23	24 57	22	
15.0 to 24.9 acres		100	2	51	2	
25.0 to 49.9 acres	2	(D)	2	(D)	1	(
50.0 to 99.9 acres	37	212 2.844	37	(D) 2.269	23	5
100.0 acres or more		2,044	·	2,208	3	9

174

APPENDIX T

ARIZONA CENSUS OF AGRICULTURE: BERRIES

http://www.agcensus.usda.gov/Publications/2007/Full_Report/Volume_1,_Chapter_1_State_Lev

el/Arizona/st04_1_036_037.pdf

Table 36. Berries: 2007 and 2002

		2002						
Crop	Total ac	res	Acres harv	ested	Acres not harvested		acres harvested	
	Farms	Acres	Farms	Acres	Farms	Acres	Farms	Acres
Blackberries and dewberries	17	10	13	7	5	2	13	6
Blueberries, tame	3	1			3	1		
Boysenberries	3	1	3		(e)	9		à
Raspberries, all	5	1	4	(D)	1	(D)	3	
Strawberries	9	3	8	(D)	1	(D)	4	(Z
Other berries	4	(Z)	4	(Z)	(a)		~	

[Totals may not add due to rounding. For meaning of abbreviations and symbols, see introductory text]

APPENDIX U

VEGETABLE YIELD AND VALUE

SAMPLE PAGE ONLY FROM A LARGE DOCUMENT:

http://usda01.library.cornell.edu/usda/current/VegeSumm/VegeSumm-01-26-2012.pdf

Principal Fresh Market Vegetable Area Planted and Harvested – States and United States: 2009-2011 [Only includes estimates for the selected crops in the NASS annual program. These crops are not estimated for all States that might produce them. See the 2007 Census of Agriculture for a comprehensive tally of total vegetable acres by State. Includes processing total for dual usage crops (asparagus, broccoli, and cauliflower)]

State	23	Area planted		82	Area harvested	
State	2009	2010	2011	2009	2010	2011
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)
Alabama	7,000	6,500	6,500	5,300	5,400	5,05
Arizona	115,100	113,600	116,900	113,800	111,900	115,00
Arkansas	2.600	2,600	2,700	2,400	2,400	2.40
California	752,300	756,400	767,600	739,600	742,200	753,70
Colorado	25,600	25,600	24,800	22,400	24,200	23.80
Connecticut	4,500	4,000	4,300	3,900	3,500	3.10
Delaware	6,000	6.000	6,100	6,000	5,800	5,90
Florida	192,600	190,200	204,400	183,100	176,500	185.10
Georgia	117,300	114,300	110.600	110,500	107,900	101.80
Idaho	9,000	9,200	9,400	8,800	9,000	9,20
Idano	9,000	9,200	9,400	0,000	9,000	9,20
Illinois	21,600	23,400	24,400	19,600	22,600	22,60
Indiana	17,500	17,500	17,100	16,500	16,800	16,16
Maine	2,000	1,900	1,800	1,500	1,800	1,60
Maryland	11,460	11,430	11,250	10,580	10,630	10,50
Massachusetts	5,400	5,400	5,300	4,700	5,200	4,50
Michigan	57,500	57,500	55,800	54,500	55,200	52.70
Mississippi	2.800	2,900	2.800	2,300	2,500	2.40
Missouri	3,100	3,300	3,000	2,600	3,200	2.90
Nevada	3,930	4,200	4,050	3,930	4,200	4.05
New Hampshire	1,600	1,600	1,500	1,400	1,400	1,30
New Jersey	26,700	26,900	26,500	25,000	25,600	24.40
New Mexico	18,000	15,150	16,100	17,300	14.600	15.40
New York	68,230	69,890	66,080	64,100	67,160	58,53
North Carolina	42,700	42,400	40,800	41,600	39,500	37.90
Ohio	34,510	34,970	34,030	28,610	31,170	31.33
Oklahoma	5,500	5,500	5,400	3,500	5,000	2.30
Oregon	28,500	28,500	28,800	28,300	27,150	28,10
Pennsylvania	26,500	27,500	26,690	24,500	25,300	22.55
Rhode Island	800	750	800	750	700	22,5
South Carolina	14,700	15,200	15.800	13,200	13,900	14.30
South Carolina	14,700	15,200	15,000	13,200	15,900	14,50
Tennessee	13,700	16,600	17,500	11,600	14,800	15,20
Texas	62,650	66,450	62,750	55,900	59,100	54,00
Utah	1,600	1,600	1,600	1,550	1,600	1,60
Vermont	1,200	1,100	1,000	1,000	1,000	70
Virginia	16,600	16,600	17,100	15,800	15,500	16,20
Washington	42,700	45,700	41,700	42,000	45,000	40.80
Wisconsin	13,100	13,500	12,400	12,200	12,000	11,60
United States	1,776,580	1,785,840	1,795,350	1,700,320	1,711,410	1,699,32

Ctata		Area planted		Area harvested				
State	2009	2010	2011	2009	2010	2011		
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)		
Arizona	2,300	2,100	2,500	2,300	2,100	2,500		
California	12,700	12,700	13,200	12,500	12,500	13,000		
Colorado	3,000	3,100	2,900	2,700	2,900	2,800		
Florida	10,100	10,500	8,800	9,500	9,700	8,100		
Georgia	6,900	6,200	5,400	6,300	5,700	5,200		
Michigan	2,700	3,100	3,400	2,600	3,000	3,300		
New Jersey	1,700	1,800	1,500	1,600	1,700	1,400		
New York	9,600	10.600	10,900	9.000	10,400	10,700		
North Carolina	5,500	5,100	4,900	5,400	5,000	3,900		
Ohio	1,100	1,300	1,300	1,000	1,200	1,200		
Pennsylvania	1,200	1,200	1,200	1,200	1,200	1,000		
Texas	8,700	8,200	7,400	7,500	7,800	6,000		
Virginia	500	600	600	500	600	500		
Wisconsin	3,200	3,300	2,900	3,200	2,900	2,800		
United States	69,200	69,800	66,900	65,300	66,700	62,400		

____je for Fresh Market Area Planted and Harvested – States and United States: 2009-2011

Cabbage for Fresh Market Yield and Production – States and United States: 20	09-2011
--	---------

State		Yield per acre		Production 1				
State	2009	2010	2011	2009	2010	2011		
50	(cwt)	(cwt)	(cwt)	(1,000 cwt)	(1,000 cwt)	(1,000 cwt)		
Arizona	435	515	460	1,000	1,082	1,150		
California	395	400	390	4,938	5,000	5,070		
Colorado	470	460	460	1,269	1,334	1,288		
Florida	385	300	340	3,658	2,910	2,754		
Georgia	300	290	230	1,890	1,653	1,196		
Michigan	260	280	230	676	840	759		
New Jersey	345	280	375	552	476	525		
New York	380	430	440	3,420	4,472	4,708		
North Carolina	220	270	230	1,188	1,350	897		
Ohio	127	280	355	127	336	420		
Pennsylvania	220	330	155	264	396	155		
Texas	320	320	200	2,400	2,496	1,200		
Virginia	250	280	210	125	168	105		
Wisconsin	300	250	320	960	725	896		
United States	344	348	339	22,467	23,238	21,129		

179

APPENDIX V

NON-CITRUS FRUIT YIELD AND VALUE

SAMPLE PAGE ONLY FROM A LARGE DOCUMENT:

http://usda01.library.cornell.edu/usda/current/NoncFruiNu/NoncFruiNu-07-06-2012.pdf

Commercial Apple Fresh Market Utilization, Price, and Value - States and United States: 2009-2011

State		Quantity			Price per pound	
State	2009	2010	2011	2009	2010	2011
	(million pounds)	(million pounds)	(million pounds)	(dollars)	(dollars)	(dollars)
Arizona	1.2	2.0	1.0	0.700	0.849	0.780
California	110.0	115.0	125.0	0.446	0.373	0.325
Colorado	9.0	8.0	4.0	0.390	0.310	0.450
Connecticut	15.0	18.5	17.5	0.590	0.620	0.590
daho	30.0	40.0	35.0	0.305	0.315	0.335
llinois	(D)	(D)	(D)	(D)	(D)	(D)
ndiana	19.0	19.0	13.0	0.405	0.484	0.507
owa	(D)	(D)	(D)	(D)	(D)	(D)
Maine	26.0	24.0	17.0	0.490	0.540	0.595
Maryland	16.0	14.0	18.0	0.320	0.390	0.460
Massachusetts	34.0	27.0	31.0	0.540	0,700	0.685
Michigan	400.0	210.0	340.0	0.215	0.300	0.350
Minnesota	(D)	(D)	(D)	(D)	(D)	(D)
Missouri	13.0	22.0	9.0	0.343	0.405	0.406
New Hampshire	18.0	14.5	13.0	0.660	0.600	0.630
New Jersey	31.0	30.0	25.0	0.650	0.640	0.907
New York	685.0	600.0	565.0	0.225	0.263	0.333
North Carolina	42.0	56.0	59.0	0.291	0.276	0.308
Dhio	90.7	56.2	43.4	0.404	0.460	0.460
Oregon	90.0	85.0	75.0	0.270	0.290	0.244
Pennsylvania	170.0	190.0	184.0	0.265	0.258	0,290
Rhode Island	(D)	(D)	(D)	(D)	(D)	(D)
Tennessee	(D)	(D)	(D)	(D)	(D)	(D)
Utah	14.2	11.3	17.5	0.320	0.257	0.228
/emont	21.0	27.0	16.0	0.370	0.360	0.445
/irginia	60.0	70.0	60.0	0.308	0.267	0.364
Washington	4,300.0	4,550.0	4,500.0	0.321	0.321	0.383
West Virginia	20.0	14.0	19.0	0.313	0.319	0.365
Wisconsin	32.0	28.2	32.5	0.454	0.574	0.563
Other States 1	66.8	65.1	57.2	0.573	0.688	0.699
United States	6,313.9	6,296.8	6,277.1	0.314	0.325	0.380

[Equivalent packinghouse door returns for California, Michigan, New York, and Washington; price at point of first sale for all other States]

See footnote(s) at end of table.

-continued

18 1

APPENDIX W

CITRUS FRUIT YIELD AND VALUE

SAMPLE PAGE ONLY FROM A LARGE DOCUMENT:

http://usda01.library.cornell.edu/usda/current/CitrFrui/CitrFrui-09-20-2012.pdf

Lemon, Tangelo, Tangerine and Mandarin Acreage, Yield, Utilization, Price, and Value – States and United States: 2009-2010, 2010-2011, and 2011-2012 [See Statistical Methodology for net weight per box and price per box calculations] [See Statistical Methodology for net weight per box and price per box calculations]

Crop, State,	Bearing	Yield	Utiliza	Utilization of production		Price per box 1			Value of production		
and season	acreage	per acre	Total	Fresh	Processed	All	Fresh	Processed	Total	Fresh	Processed
	(acres)	(boxes)	(1,000 boxes)	(1,000 boxes)	(1,000 boxes)	(dollars)	(dollars)	(dollars)	(1,000 dollars)	(1,000 dollars)	(1,000 dollars)
Lemons Arizona 2009-2010 2010-2011 2011-2012	11,000 10,500 10,000	200 238 75	2,200 2,500 750	1,118 1,313 481	1,082 1,187 269	14.89 13.74 17.26	(D) (D) (D)	(D) (D) (D)	32,751 34,360 12,946	(D) (D) (D)	(D) (D) (D)
California 2009-2010 2010-2011 2011-2012	46,000 45,000 45,000	457 456 456	21,000 20,500 20,500	11,600 13,700 15,900	9,400 6,800 4,600	17.27 17.18 21.26	(D) (D) (D)	(D) (D) (D)	362,588 352,154 435,752	(D) (D) (D)	(D) (D) (D)
United States 2009-2010 2010-2011 2011-2012	57,000 55,500 55,000	407 414 386	23,200 23,000 21,250	12,718 15,013 16,381	10,482 7,987 4,869	17.04 16.80 21.12	(D) (D) (D)	(D) (D) (D)	395,339 386,514 448,698	(D) (D) (D)	(D) (D) (D)
Tangelos Florida 2009-2010 2010-2011 2011-2012	4,700 4,300 4,100	191 267 280	900 1,150 1,150	415 443 434	485 707 716	7.51 8.63 12.43	12.40 10.35 16.45	3.33 7.56 10.00	6,761 9,930 14,299	5,146 4,585 7,139	1,615 5,345 7,160
Tangerines and mandarins Arizona ² 2009-2010 2010-2011 2011-2012	2,500 2,500 2,500	140 120 80	350 300 200	205 183 123	145 117 77	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)
California ² 2009-2010 2010-2011 2011-2012	30,000 33,000 38,000	330 321 287	9,900 10,600 10,900	8,280 9,100 9,400	1,620 1,500 1,500	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)	(D) (D) (D)
Florida 2009-2010 2010-2011 2011-2012	13,300 12,800 12,100	335 363 355	4,450 4,650 4,290	3,011 3,007 2,838	1,439 1,643 1,452	13.64 13.97 12.82	18.70 17.70 14.50	3.06 7.14 9.55	60,709 64,955 55,018	56,306 53,224 41,151	4,403 11,731 13,867
United States ² 2009-2010 2010-2011 2011-2012	45,800 48,300 52,600	321 322 293	14,700 15,550 15,390	11,496 12,290 12,361	3,204 3,260 3,029	18.30 20.87 22.33	22.90 25.70 26.68	2.51 3.46 5.37	274,519 330,503 351,351	266,681 320,350 336,209	7,838 10,153 15,142

(D) Withheld to avoid disclosing data for individual operations. Equivalent packinghouse-door returns. ² Includes tangelos and tangors.

Chatta		Crop year		
State	2009-2010	2010-2011	2011-2012	
	(pounds)	(pounds)	(pounds)	
Oranges	_			
California	75	80	80	
Florida ¹	90	90	90	
Texas	85	85	85	
Grapefruit				
California	67	80	80	
Florida	85	85	85	
Texas	80	80	80	
Lemons				
Arizona	76	80	80	
California	76	80	80	
Tangerines				
Arizona	75	80	80	
California	75 75	80	80	
Florida	95	95	95	
Tangelos				
Florida	90	90	90	

Box Weights by Crop - States: 2009-2010, 2010-2011, and 2011-2012

¹ Includes Temples.

184

APPENDIX X

CROP PRODUCTION YIELD AND VALUE

SAMPLE PAGE ONLY FROM A LARGE DOCUMENT:

http://usda01.library.cornell.edu/usda/current/CropProdSu/CropProdSu-01-12-2012.pdf

Clata		Area planted		Area harvested				
State -	2009	2010	2011	2009	2010	2011		
	(1,000 acres)	(1,000 acres)	(1,000 acres)	(1,000 acres)	(1,000 acres)	(1,000 acres)		
Arizona	4.0	3.7	3.8	4.0	3.7	3.8		
California	38.2	33.6	36.7	37.6	33.5	36.6		
Colorado	60.0	59.5	58.5	59.1	59.1	58.3		
Delaware	1.7	1.6	1.6	1.6	1.6	1.0		
Florida	32.6	33.2	36.4	28.9	31.8	35.6		
daho	320.0	295.0	320.0	319.0	294.0	319.0		
Illinois	5.4	6.5	7.0	5.2	6.3	6.8		
Kansas	5.0	4.5	5.5	4.8	4.4	5.3		
Maine	56.0	55.0	57.0	55.5	54.8	54.0		
Maryland	2.4	2.1	2.2	2.3	2.1	2.2		
Massachusetts	3.5	3.9	3.5	3.4	3.8	21		
Michigan	45.0	44.0	45.0	43.5	43.5	44.0		
Minnesota	47.0	45.0	49.0	45.0	42.0	47.0		
Missouri	7.3	7.3	8.3	7.1	7.2	7.		
Montana	11.2	11.5	11.7	9.7	11.3	11.5		
Nebraska	20.0	19.0	20.0	19.9	18.6	19.5		
Nevada	5.1	(D)	(D)	5.1	(D)	(D		
New Jersey	2.1	1.9	2.0	2.1	1.7	1.8		
New Mexico	6.5	(D)	(D)	6.4	(D)	(D		
New York	17.1	16.2	16.5	16.5	16.0	16.3		
North Carolina	16.0	16.0	17.0	15.0	15.0	16.5		
North Dakota	83.0	84.0	84.0	75.0	80.0	77.0		
Ohio	2.3	2.2	2.0	2.1	2.1	1.1		
Dregon	37.0	35.5	40.0	37.0	35.5	39.9		
Pennsylvania	10.0	9.5	9.2	9.5	9.0	7.8		
Rhode Island	0.5	0.6	0.6	0.4	0.6	0.0		
Texas	17.8	17.7	19.1	16.4	15.9	18.5		
/irginia	6.0	5.8	6.0	5.9	5.6	5.9		
Nashington	145.0	135.0	160.0	143.0	134.0	160.0		
Visconsin	63.5	62.5	63.0	63.0	61.5	62.5		
Other States 1		13.4	13.3		13.4	13.3		
United States	1.071.2	1.025.7	1.098.9	1.044.0	1,008.0	1,076.		

See footnote(s) at end of table.

-continued

State		Yield per acre ²			Production	
State	2009	2010	2011	2009	2010	2011
	(cwt)	(cwt)	(cwt)	(1,000 cwt)	(1,000 cwt)	(1,000 cwt)
Arizona	280	280	280	1,120	1,036	1,064
California	389	411	411	14,644	13,763	15,048
Colorado	401	389	393	23,679	22,971	22,919
Delaware	300	275	250	480	440	400
Florida	266	250	256	7,700	7,950	9,112
Idaho	415	384	398	132,500	112,970	127,070
Illinois	385	350	330	2,002	2,205	2,244
Kansas	360	335	280	1,728	1,474	1,484
Maine	275	290	265	15,263	15,892	14,310
Maryland	320	340	300	736	714	660
Massachusetts	260	285	275	884	1,083	743
Michigan	360	360	345	15,660	15,660	15,180
Minnesota	460	405	355	20,700	17,010	16,685
Missouri	275	300	170	1,953	2,160	1,207
Montana	340	325	330	3,298	3,673	3,795
Nebraska	440	415	400	8,756	7,719	7,800
Nevada	470	(D)	(D)	2,397	(D)	(D)
New Jersey	260	230	190	546	391	342
New Mexico	400	(D)	(D)	2,560	(D)	(D
New York	300	320	250	4,950	5,120	4,050
North Carolina	225	195	170	3,375	2,925	2,805
North Dakota	255	275	245	19,125	22,000	18,865
Ohio	335	290	250	704	609	425
Oregon	580	565	585	21,460	20,058	23,342
Pennsylvania	310	245	230	2,945	2,205	1,794
Rhode Island	230	275	250	92	165	150
Texas	349	323	297	5,718	5,143	5,487
Virginia	240	170	200	1,416	952	1,180
Washington	610	660	615	87,230	88,440	98,400
Wisconsin	460	395	400	28,980	24,293	25,000
Other States 1	(A)	392	439	-	5,252	5,845
United States	414	401	397	432,601	404,273	427,406

187 Potato Area Planted and Harvested, Yield, and Production – States and United States: 2009-2011 (continued)

Represents zero.
 (D) Withheld to avoid disclosing data for individual operations.
 Includes data withheld above.
 ² Derived.

APPENDIX Y

ARIZONA FRESH VEGETABLE LOSS ADJUSTED YIELD ESTIMATES

Arizona Fresh Vegetable Loss Adjusted Yield Estimates

Сгор	Acres Harvested for Fresh Market	Yield per Acre (pounds)	Production (million pounds/year)	Estimated Loss %*	Loss Adjusted Yield Estimate (million pounds/year)
Dark-Green Vegetables					
Broccoli	7800.0	13500.0	105.3	79.0%	22.1
Lettuce, head	34000.0	34333.0	1167.3	55.0%	525.3
Lettuce, leaf	7900.0	21833.0	172.5	60.0%	69.0
Lettuce, romaine	18033.0	34333.0	619.1	60.0%	247.7
Spinach	7200.0	18500.0	133.2	75.0%	333.0
Total			2197.4		1197.1
Red-Orange Vegetables					
Carrots	2190.0	32500.0	71.2	46.0%	38.4
Pumpkins	593.0	22000.0	13.0	47.0%	6.9
Squash, summer	642.0	15800.0	10.1	56.0%	4.5
Squash, winter	47.0	15800.0	0.7	47.0%	0.4
Tomatoes in the open	65.0	29400.0	1.9	56.0%	0.8
Total			97.0		51.0
Starchy Vegetables					
Sweet corn	4813.0	11900.0	57.3	85.0%	8.6
Potatoes	3833.0	28000.0	107.3	69.0%	33.3
Total			164.6		41.9
Bean Vegetables Dry edible beans, excluding green lima	12100.0	1963.0	23.8	16.0%	20.0
Other Vegetables					

189

		21115		47.0
		144.9		47.8
2733.0	6800.0	18.6	58.0%	7.8
535.0	49800.0	26.6	63.0%	9.9
437.0	69800.0	30.5	50.0%	15.3
3067.0	22000.0	67.5	79.0%	14.2
2300.0	47000.0	1.1	59.0%	0.4
103.0	5700.0	0.6	52.0%	0.3
	2300.0 3067.0 437.0 535.0	2300.0 47000.0 3067.0 22000.0 437.0 69800.0 535.0 49800.0	2300.0 47000.0 1.1 3067.0 22000.0 67.5 437.0 69800.0 30.5 535.0 49800.0 26.6 2733.0 6800.0 18.6	2300.0 47000.0 1.1 59.0% 3067.0 22000.0 67.5 79.0% 437.0 69800.0 30.5 50.0% 535.0 49800.0 26.6 63.0% 2733.0 6800.0 18.6 58.0%

*Estimated loss %: Losses include retail loss, food service/consumer loss, inedible shares, cooking loss (potatoes, corn, snap beans, cauliflower), and loss from primary to consumer weight (Kantor, 1998) for most of the crops. USDA ERS tables ("Fruit and vegetable prices," 2012) were used to find inedible shares , and cooking yield (cauliflower, corn, pumpkin, winter squash, summer squash) and 32% for retail and foodservice/consumer loss.

**For the Total vegetable category, an average of all the listed vegetable loss % (excluding beans) was used

APPENDIX Z

ARIZONA FRESH FRUIT LOSS ADJUSTED YIELD ESTIMATES

Arizona Fresh Fruit Loss Adjusted Yield Estimates

Сгор	Acres Harvested for the Fresh Market	Yield per Acre (pounds)	Production (1,000 pounds/year)	Estimated Loss %*	Loss Adjusted Yield Estimate (million pounds/year)
Honey dew	3300.0	21500.0	70950.0	94.0%	4257.0
, Cantaloupe	21367.0	23000.0	491441.0	89.0%	54055.5
Watermelon	5333.0	45667.0	243542.1	90.0%	24354.2
Fresh Apples**			4200.0	44.0%	2352.0
Apricots	106.0	11000.0	1166.0	48.0%	606.3
Cherries, sweet	54.0	8540.0	461.2	50.0%	230.6
Dates	1354.0	7080.0	9586.3	32.0%	6518.7
Grapes	229.0	15500.0	3549.5	45.0%	1952.2
Peaches, all	156.0	19060.0	2973.4	48.0%	1546.1
Pears, all	40.0	32600.0	1304.0	45.0%	717.2
Plums	11.0	4720.0	51.9	43.0%	29.6
Grapefruit	520.0	35700.0	18564.0	85.0%	2784.6
Lemons	10500.0	13453.0	141256.5	83.0%	24013.6
Oranges, all	2526.0	29790.0	75249.5	62.0%	28594.8
Blackberries	7.0	6920.0	48.4	46.0%	26.2
Raspberries	1.0	2080.0	2.1	46.0%	1.1
Tangerines and mandarins	2500.0	8851.0	22127.5	65.0%	7744.6
TOTAL FRUIT			1086473.4	59.7%	159784.5

*Estimated loss %: 32% added to losses for retail loss and food service/consumer loss + inedible shares, cooking loss (potatoes, corn, snap beans, cauliflower), and loss from primary to consumer weight (Kanto, 1998).

**Apple data was gathered from the "Non-Citrus Production" (2012) USDA ERS annual summary and did not include acres harvested for fresh markets and yields

APPENDIX AA

ARIZONA HARVEST CALENDAR

1		M	lon	ths	in	Sea	1501	i			_			_	M	on	ths	in S	sea	son		-		-			_	M	lon	ths	in !	Sea	son		- 25		
Fruits	January	February	March	April	May	June	July	Angust	September	October	Navember	December	Vegetables	Jamury	February	March	April	May	June	July	August	September	October	Nevenber	December	Vegetables	January	February	March	April	May	June	Judy	August	September	October	
Apples			1										Asparagas			-			_	_	_					Okra											
Apricots			1										Benns, Green						- 2				2			Ouious								- 14			
	-									-	-	_					_	_						-		0.00	_	_	_	-	-					_	
Blackberriet	+	- 6			\vdash							-	Benn: (Lims, Pinto)							-						Onions, Green			-		-1					-	,
Cherries													Beets								_	_				Parsnips					Ļ						
Dates			Ű							1			Bok Choy													Peas											
												-	Broccali							_	_				-												
Figs	-		-		\vdash					35		-	Droccan												-	Peppers (Bell, Chile)			-								ĺ
Grapes	_		- 22									-	Cabbage (Green,													Potatoes (Red, Rumet)	_								_	_	
Grspefruit										-			Purple, Napa)													Potstoet, Sweet			-					- 14			
								_		4		_	Carrett	-		-			-		-	-				-			_		3						
Lemon3	-				+			-			-	-	Cauliflower													Pumpkint										-	
Melens										Ú,		1	Celery												_	Radithet											
Nectorines	+				-							-	com/						-0				1	1		Spinach											
- 500 estis e													Corn												_												
Orsaget					-	-	1	-		-	2	-	Cucumbers	\vdash					-le							Squash, Summer (Crook-											
Peaches			- 8	-						3	8															neck, Straight- neck, Zarchini)	_										
P	-	_		-	-				_	_	-	-	Eggplant			-		-		-	_					Squath, Winter (Acorn, Bat-											
Pomegranaie:	\vdash			-	-		-				1	-	Garlic			Ĩ										ternut, Hubbard, Spaghettij											
Raspberries													Greens													Switz Chard											
Strawberries	-		-								+	-	(Collard, Mus- tard, Tarnip)						-							Tomatoes											
													Kale	-				_	_																		
Tangelos, Tangerines			- 11	-		18						-	Alle	-		-									-	Turnips											
					-	-		1			-	-	Leeks				1									Bazil											
							imat						Letrace, Head									1	-	-	-												
				Co	010	lin	nate							-	1		-		-							Cilantes				-							
	9												Letruce, Leaf						_		_	_				Parsley						-				-	ĺ

APPENDIX BB

ROMAINE LETTUCE HARVEST DATES

		• •			
	Usual Planting D	ates	Usual Harv	esting Dates	
State	Begins	Ends	Begins	Most Active	Ends
Winter					
AZ	Sep 1	Jan 31	Nov 1	Dec 1 - Mar 31	Apr 30
CA	Sep 15	Nov 15	Dec 1	Jan 1 - Mar 1	Mar 31
Spring					
CA	Jan 1	Mar 31	Apr 1	May 1 - Jun 30	Jul 31
Summer					
CA	Apr 1	Jul 31	Jun 1	Jul 1 - Sep 30	Oct 31
Fall					
CA	Aug 1	Sep 30	Oct 1	Oct 15 - Nov 15	Nov 30

-1 abic 03^{-1} $0.0.1$ of that the following of the following date.	Table 69 U.S.	. romaine lettuce:	Usual planting	g and harvesting dates
--	---------------	--------------------	----------------	------------------------

Source: USDA, National Agricultural Statistics Service, Vegetables Usual Planting and Harvesting Dates, May 2007.

APPENDIX CC

CARROTS HARVEST DATES

Season	Usual pla	nting dates	U	sual harvesting dates	
and State	Begins	Ends	Begins	Most Active	Ends
Winter					
AZ	Oct 1	Feb 15	Nov 1	Dec 15-Jan 15	July 1
CA	July 1	Sep 30	Nov 1	Dec 1 - Jan 31	Mar 1
GA	Aug 1	Dec 15	Dec 15	Feb 15 - Jun 1	Jun 15
ТХ	Sep 1	Dec 31	Dec 1	Jan 1 - Mar 31	Apr 30
Spring					
CA	Dec 1	Aug 31	Mar 1	Mar 1 - Jun 15	Jun 30
ТХ	Nov 1	Nov 30	1-Mar	Apr 1 - Apr 30	June 30
Summer					
СА	Dec 1	Mar 31	May 1	May 15 - Jun 30	Jul 31
СО	April 15	June 30	Aug 1	Aug 15 - Oct 10	Oct 31
Mi	April 15	July 10	Jul 10	Aug 5 - Nov 15	Nov 25
WA	April 15	Jul 31	June 30	Sep 1 - Nov 1	Dec 31
Fall					
CA	Apr 1	July 31	Aug 1	Sep 1 - Nov 30	Dec 31
ТХ	July 1	July 31	Oct 1	Nov 1 - Nov 30	Dec 31

Table 51--Carrots, fresh-market: Usual planting and harvesting dates, 2004-2006

Source: Compiled by ERS from data of USDA, National Agricultural Statistics Service.

APPENDIX DD

PEAR AND PLUM HARVEST DATES

SAMPLE PAGE ONLY FROM A LARGE DOCUMENT:

http://localfoods.about.com/od/searchbyregion/a/arizonaseasons.htm

Arizona Seasonal Fruits and Vegetables

Find What's In Season In Arizona

By <u>Molly Watson</u>, About.com Guide See More About:

- <u>arizona</u>
- <u>seasons</u>
- state guides

The Arizona growing season goes all year long. Mild winters allow for the harvest of cool weather crops and hot summers help make citrus sweet, chiles spicy, and dates ripe. Exactly what is in season in Tuscon or Phoenix and Scottsdale or Flagstaff can differ at any given time, of course, but this will give you a sense of what to expect. Find more fruits and vegetables with the <u>Seasonal Produce Guide</u>, and find more resources with this <u>Guide to Arizona Local Foods</u>. <u>Pears</u>, mid-August through September <u>Plums & pluots</u>, June through August

APPENDIX EE

ARIZONA LOSS ADJUSTED MONTHLY FRESH VEGETABLE PRODUCTION

Сгор	Production (1,000 pounds/year)	Months in Season (warm and cool climates of Arizona)	Production by Month (1,000 pounds/month)
Dark-Green			
Vegetables			
Broccoli	22113.0	9.0	2457.0
Lettuce, head	525294.9	7.0	75042.1
Lettuce, leaf	68992.3	10.0	6899.2
Lettuce, romaine	247650.8	6.0	41275.1
Spinach	33300.0	10.0	3330.0
Red-Orange Vegetables			
Carrots	38434.5	8.0	4804.3
Pumpkins	6914.4	7.0	987.8
Squash, summer	4463.2	13.0	343.3
Squash, winter	393.6	8.0	49.2
Tomatoes in the open	840.8	8.0	105.1
Starchy Vegetables			
Sweet corn	8591.2	7.0	1227.3
Potatoes	33270.4	8.0	4158.8
Bean Vegetables			
Dry beans, excluding green lima beans	19951.9	6.0	3325.3
-	19991.9	0.0	5525.5
Other Vegetables	207 7	7.0	A.A. A.
Beans, snap	287.7	7.0	41.1
Cabbage, head	443.2	11.0	40.3
Cauliflower	14169.5	9.0	1574.4
Celery	15251.3	8.0	1906.4
Onions, dry	9857.9	8.0	1232.2
Peppers, all	7805.4	8.0	975.7

Arizona Loss Adjusted Monthly Fresh Vegetable Production by Months in Season

APPENDIX FF

ARIZONA LOSS ADJUSTED MONTHLY FRESH FRUIT PRODUCTION

Сгор	Production (1,000 pounds/year)	Months in Season (warm and cool climates of Arizona)	Production by Month (1,000 pounds/month)
Honey dew	4257.0	8	532.1
Cantaloupe	54055.5	8	6756.9
Watermelon	24354.2	8	3044.3
Apples	2352.0	9	261.3
Apricots	606.3	7	86.6
Cherries, sweet	230.6	2	115.3
Dates	6518.7	6	1086.4
Grapes	1952.2	6	325.4
Peaches, all	1546.1	5	309.2
Pears, all	717.2	1.5	2868.8
Plums	29.6	3	14.8
Grapefruit	2784.6	6	464.1
Lemons	24013.6	5	4802.7
Oranges, all	28594.8	6	4765.8
Tangerines and Mandarins	7744.6	4	1936.2
Blackberries	26.2	3	8.7
Raspberries	1.1	2	0.6

APPENDIX GG

ARIZONA FRESH VEGETABLE MONTHLY PRODUCTION CALENDAR

0	n	6
Z	U	O

Arizona Loss Adjusted, Fresh Total Vegetable, Dark-Green Vegetable, and Red-Orange Vegetable Monthly Production by Climate Zone (1,000 pounds/month)

Month	Total Vegetable			Dark-Gree	n Vegetable	25			Red-Orange Vegetables						
Climate Zone		Broccoli	Lettuce, head	Lettuce, leaf	Lettuce, romaine	Spinach	Total	Carrots	Pumpkins	Squash, summer	Squash, winter	Tomatoes	Total		
January															
Warm		2457.0	0.0	6899.2	41275.1	3330.0		4804.3	0.0	0.0	0.0	0.0			
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			
Both	61612.6	2457.0	0.0	6899.2	41275.1	3330.0	53961.4	4804.3	0.0	0.0	0.0	0.0	4804.3		
February															
Warm		2457.0	75042.1	6899.2	41275.1	3330.0		4804.3	0.0	0.0	0.0	0.0			
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			
Both	136654.7	2457.0	75042.1	6899.2	41275.1	3330.0	129003.5	4804.3	0.0	0.0	0.0	0.0	4804.3		
March															
Warm		2457.0	75042.1	6899.2	41275.1	3330.0		4804.3	0.0	343.3	0.0	0.0			
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			
Both	138904.5	2457.0	75042.1	6899.2	41275.1	3330.0	129003.5	4804.3	0.0	343.3	0.0	0.0	5147.6		
April															
Warm		2457.0	75042.1	6899.2	41275.1	3330.0		4804.3	0.0	343.3	0.0	0.0			
Cool		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0			
Both	141488.9	2457.0	75042.1	6899.2	41275.1	3330.0	129003.5	4804.3	0.0	343.3	0.0	0.0	5147.6		
Мау															
Warm		0.0	0.0	0.0	0.0	0.0		4804.3	0.0	343.3	0.0	105.1			
Cool		0.0	75042.1	0.0	0.0	3330.0		0.0	0.0	0.0	0.0	0.0			
Both	89771.5	0.0	75042.1	0.0	0.0	3330.0	78372.1	4804.3	0.0	343.3	0.0	105.1	5252.7		
June															
Warm		0.0	0.0	0.0	0.0	0.0		4804.3	0.0	343.3	0.0	105.1			
Cool		2457.0	75042.1	6899.2	0.0	3330.0		0.0	0.0	3433.2	0.0	0.0			
Both	106573.7	2457.0	75042.1	6899.2	0.0	3330.0	87728.4	4804.3	0.0	686.6	0.0	105.1	5596.1		
July															
Warm		0.0	0.0	0.0	0.0	0.0		0.0	987.8	343.3	49.2	105.1			

Coo	ol		2457.0	0.0	6899.2	0.0	3330.0		0.0	0.0	343.3	0.0	105.1	
Bot		35463.4	2457.0	0.0	6899.2	0.0	3330.0	12686.2	0.0	987.8	686.6	49.2	210.2	1933.8
August												-	-	
Wa	ırm		0.0	0.0	0.0	0.0	0.0		0.0	987.8	343.3	49.2	105.1	
Co	ol		2457.0	0.0	6899.2	0.0	0.0		0.0	0.0	343.3	49.2	105.1	
Bot	th	28023.8	2457.0	0.0	6899.2	0.0	0.0	9356.2	0.0	987.8	686.6	98.4	210.2	1983.0
Septer	nber													
Wa	ırm		0.0	0.0	0.0	0.0	0.0		0.0	987.8	343.3	49.2	0.0	
Co	ol		2457.0	75042.1	6899.2	0.0	0.0		0.0	987.8	343.3	49.2	105.1	
Bot	th	103948.6	2457.0	75042.1	6899.2	0.0	0.0	84398.4	0.0	1975.5	686.6	98.4	105.1	2865.7
Octobe	er													
Wa	ırm		0.0	0.0	0.0	0.0	0.0		0.0	987.8	343.3	49.2	0.0	
Co	ol		0.0	75042.1	0.0	0.0	3330.0		0.0	987.8	0.0	49.2	105.1	
Bot	th	91342.1	0.0	75042.1	0.0	0.0	3330.0	78372.1	0.0	1975.5	343.3	98.4	105.1	2522.4
Noven	nber													
Wa	ırm		0.0	0.0	6899.2	41275.1	0.0		4804.3	987.8	343.3	49.2	0.0	
Co	ol		0.0	0.0	0.0	0.0	3330.0		0.0	0.0	0.0	0.0	0.0	
Bot	th	62629.8	0.0	0.0	6899.2	41275.1	3330.0	51504.4	4804.3	987.8	343.3	49.2	0.0	6184.6
Decem	nber													
Wa	ırm		2457.0	0.0	6899.2	41275.1	3330.0		4804.3	0.0	0.0	0.0	0.0	
Coo	ol		0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	
Bot	th	61612.6	2457.0	0.0	6899.2	41275.1	3330.0	53961.4	4804.3	0.0	0.0	0.0	0.0	4804.3

Month	Starchy Vegetables			Beans*		Other Vegetables						
Climate Zone	Corn	Potatoes	Total	Dry beans*	Beans, snap	Cabbage, head	Cauliflower	Celery	Onion, dry	Peppers, all	Total	
January												
Warm	0.0	0.0		0.0	0.0	40.3	1574.4	0.0	1232.2	0.0		
Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Both	0.0	0.0	0.0	0.0	0.0	40.3	1574.4	0.0	1232.2	0.0	2846.	
February												
Warm	0.0	0.0		0.0	0.0	40.3	1574.4	0.0	1232.2	0.0		
Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Both	0.0	0.0	0.0	0.0	0.0	40.3	1574.4	0.0	1232.2	0.0	2846.	
March												
Warm	0.0	0.0		0.0	0.0	40.3	1574.4	1906.4	1232.2	0.0		
Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Both	0.0	0.0	0.0	0.0	0.0	40.3	1574.4	1906.4	1232.2	0.0	4753	
April												
Warm	0.0	4158.8		0.0	0.0	40.3	0.0	1906.4	1232.2	0.0		
Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0		
Both	0.0	4158.8	4158.8	0.0	0.0	40.3	0.0	1906.4	1232.2	0.0	3178.	
Мау												
Warm	0.0	4158.8		0.0	41.1	0.0	0.0	1906.4	0.0	0.0		
Cool	0.0	0.0		0.0	0.0	40.3	0.0	0.0	0.0	0.0		
Both	0.0	4158.8	4158.8	0.0	41.1	40.3	0.0	1906.4	0.0	0.0	1987	
June												
Warm	1227.3	4158.8		3325.3	41.1	0.0	0.0	1906.4	0.0	975.7		
Cool	0.0	0.0		0.0	0.0	40.3	1574.4	0.0	0.0	0.0		

Arizona Loss Adjusted, Fresh Starchy Vegetables, Beans, and Other Vegetable Monthly Production by Climate Zone (1,000 pounds/month)

	Both	1227.3	4158.8	5386.1	3325.3	41.1	40.3	1574.4	1906.4	0.0	975.7	4537.9
Ju		1227.5	4156.6	5500.1	5525.5	41.1	40.5	1574.4	1900.4	0.0	975.7	4557.
	Warm	1227.3	4158.8		3325.3	0.0	0.0	0.0	0.0	0.0	975.7	
	Cool	1227.3	4158.8		0.0	41.1	40.3	1574.4	1906.4	1232.2	975.7	
	Both	2454.6	8317.6	10772.2	3325.3	41.1	40.3	1574.4	1906.4	1232.2	1951.4	6745.
Αι	ıgust											
	Warm	1227.3	0.0		0.0	0.0	0.0	0.0	0.0	0.0	975.7	
	Cool	1227.3	4158.8		3325.3	41.1	40.3	1574.4	1906.4	1232.2	975.7	
	Both	2454.6	4158.8	6613.4	3325.3	41.1	40.3	1574.4	1906.4	1232.2	1951.4	6745
Se	ptember											
	Warm	1227.3	0.0		0.0	0.0	0.0	0.0	0.0	0.0	975.7	
	Cool	1227.3	4158.8		3325.3	41.1	40.3	1574.4	1906.4	1232.2	975.7	
	Both	2454.6	4158.8	6613.4	3325.3	41.1	40.3	1574.4	1906.4	1232.2	1951.4	6745
0	ctober											
	Warm	0.0	0.0		3325.3	41.1	0.0	0.0	0.0	0.0	975.7	
	Cool	0.0	4158.8		0.0	0.0	40.3	0.0	1906.4	0.0	0.0	
	Both	0.0	4158.8	4158.8	3325.3	41.1	40.3	0.0	1906.4	0.0	975.7	2963
No	ovember											
	Warm	0.0	0.0		3325.3	41.1	0.0	1574.4	0.0	0.0	0.0	
	Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Both	0.0	0.0	0.0	3325.3	41.1	0.0	1574.4	0.0	0.0	0.0	1615
De	ecember											
	Warm	0.0	0.0		0.0	0.0	40.3	1574.4	0.0	1232.2	0.0	
	Cool	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	Both	0.0	0.0	0.0	0.0	0.0	40.3	1574.4	0.0	1232.2	0.0	2846.

*The bean category includes all dry beans, excluded green lima beans

APPENDIX HH

ARIZONA FRESH FRUIT MONTHLY PRODUCTION CALENDAR

Month Climate Zone	Total Fruit	Honey dew	Cantaloupe	Watermelon	Apples	Apricots	Cherries, sweet	Dates	Grapes	Peaches, all	Pears, all	Plums
January												
Warm		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both February	1946.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Warm		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both March	1946.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Warm		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both April	1946.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Warm		0.0	0.0	0.0	0.0	86.6	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both	5316.5	0.0	0.0	0.0	0.0	86.6	0.0	0.0	0.0	0.0	0.0	0.0
Мау												
Warm		0.0	0.0	0.0	0.0	86.6	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both	86.6	0.0	0.0	0.0	0.0	86.6	0.0	0.0	0.0	0.0	0.0	0.0
June												
Warm		532.1	6756.9	3044.3	0.0	86.6	0.0	1086.4	325.4	0.0	0.0	14.8
Cool		0.0	0.0	0.0	0.0	86.6	115.3	0.0	0.0	309.2	0.0	0.0
Both July	12366.4	532.1	6756.9	3044.3	0.0	173.2	115.3	1086.4	325.4	309.2	0.0	14.8
Warm		532.1	6756.9	3044.3	261.3	86.6	0.0	1086.4	325.4	309.2	0.0	14.8

Arizona Loss Adjusted, Fresh Total Fruit and Non-Citrus Monthly	v Production B	v Climate Zone	(1.000 pounds/month)

-	
·)	1)

		0.0	0.0	0.0	0.0	86.6	115.3	0.0	325.4	309.2	0.0	0.0
Both	13262.9	532.1	6756.9	3044.3	261.3	173.2	115.3	1086.4	650.7	618.5	0.0	14.8
August												
Warm		532.1	6756.9	3044.3	261.3	0.0	0.0	1086.4	325.4	309.2	1434.4	14.8
Cool		532.1	6756.9	3044.3	261.3	86.6	0.0	0.0	325.4	309.2	0.0	0.0
Both	25090.1	1064.3	13513.9	6088.6	522.7	86.6	0.0	1086.4	650.7	618.5	1434.4	14.8
September												
Warm		532.1	6756.9	3044.3	261.3	0.0	0.0	1086.4	0.0	0.0	2868.8	0.0
Cool		532.1	6756.9	3044.3	261.3	0.0	0.0	0.0	325.4	0.0	0.0	0.0
Both	25470.0	1064.3	13513.9	6088.6	522.7	0.0	0.0	1086.4	325.4	0.0	2868.8	0.0
October												
Warm		532.1	6756.9	3044.3	261.3	0.0	0.0	1086.4	0.0	0.0	0.0	0.0
Cool		532.1	6756.9	3044.3	261.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both	22275.8	1064.3	13513.9	6088.6	522.7	0.0	0.0	1086.4	0.0	0.0	0.0	0.0
November												
Warm		0.0	0.0	0.0	261.3	0.0	0.0	1086.4	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	261.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both	11641.7	0.0	0.0	0.0	522.7	0.0	0.0	1086.4	0.0	0.0	0.0	0.0
December												
Warm		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Cool		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Both	1946.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Month Climate Zone	Grapefruit	Lemons	Oranges, all	Tangerines and Mandarins	Blackberries	Raspberrie
January						
Warm	464.1	4802.7	4765.8	1936.2	0.0	0.
Cool	0.0	0.0	0.0	0.0	0.0	0.
Both	464.1	4802.7	4765.8	1936.2	0.0	0.
February						
Warm	464.1	4802.7	4765.8	1936.2	0.0	0.
Cool	0.0	0.0	0.0	0.0	0.0	0.
Both	464.1	4802.7	4765.8	1936.2	0.0	0.
March						
Warm	464.1	4802.7	4765.8	1936.2	0.0	0.
Cool	0.0	0.0	0.0	0.0	0.0	0
Both	464.1	4802.7	4765.8	1936.2	0.0	0
April						
Warm	464.1	0.0	4765.8	0.0	0.0	0
Cool	0.0	0.0	0.0	0.0	0.0	0
Both	464.1	0.0	4765.8	0.0	0.0	0
Мау						
Warm	0.0	0.0	0.0	0.0	0.0	0
Cool	0.0	0.0	0.0	0.0	0.0	0
Both	0.0	0.0	0.0	0.0	0.0	0
lune						
Warm	0.0	0.0	0.0	0.0	0.0	0
Cool	0.0	0.0	0.0	0.0	8.7	0
Both	0.0	0.0	0.0	0.0	8.7	0
July						
Warm	0.0	0.0	0.0	0.0	0.0	0
Cool	0.0	0.0	0.0	0.0	8.7	0
Both	0.0	0.0	0.0	0.0	8.7	0
August						
Warm	0.0	0.0	0.0	0.0	0.0	0
Cool	0.0	0.0	0.0	0.0	8.7	0
Both	0.0	0.0	0.0	0.0	8.7	0

Arizona Loss Adjusted, Fresh Citrus and Berries Monthly Production By Climate Zone (1,000 pounds/month)

September

Warm	0.0	0.0	0.0	0.0	0.0	0.0
Cool	0.0	0.0	0.0	0.0	0.0	0.0
Both	0.0	0.0	0.0	0.0	0.0	0.0
October						
Warm	0.0	0.0	0.0	0.0	0.0	0.0
Cool	0.0	0.0	0.0	0.0	0.0	0.0
Both	0.0	0.0	0.0	0.0	0.0	0.0
November						
Warm	464.1	4802.7	4765.8	0.0	0.0	0.0
Cool	0.0	0.0	0.0	0.0	0.0	0.0
Both	464.1	4802.7	4765.8	0.0	0.0	0.0
December						
Warm	464.1	4802.7	4765.8	1936.2	0.0	0.0
Cool	0.0	0.0	0.0	0.0	0.0	0.0
Both	464.1	4802.7	4765.8	1936.2	0.0	0.0

APPENDIX II

ARIZONA WARM CLIMATE DARK-GREEN VEGETABLE PRODUCTION

CALENDAR

Month		Dark-Green Vegetables (million pounds/month)										
	Broccoli	Lettuce, head	Lettuce, leaf	Lettuce, romaine	Spinach	Total						
January	4.4	0.0	11.5	41.3	6.7	63.9						
February	4.4	175.1	11.5	41.3	6.7	239.0						
March	4.4	175.1	11.5	41.3	6.7	239.0						
April	4.4	175.1	11.5	41.3	6.7	239.0						
Мау	0.0	0.0	0.0	0.0	0.0	0.0						
June	0.0	0.0	0.0	0.0	0.0	0.0						
July	0.0	0.0	0.0	0.0	0.0	0.0						
August	0.0	0.0	0.0	0.0	0.0	0.0						
September	0.0	0.0	0.0	0.0	0.0	0.0						
October	0.0	0.0	0.0	0.0	0.0	0.0						
November	0.0	0.0	11.5	41.3	0.0	52.8						
December	4.4	0.0	11.5	41.3	6.7	63.9						

Arizona Loss Adjusted, Fresh Dark-Green Vegetable Production by Months in Season in the Warm Climate Zone of the State