
 

Dynamic Loading of Substation Distribution Transformers: An Application for use in a 

Production Grade Environment 

by 

Ming Zhang 

 

 

 

 

 

A Thesis Presented in Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

 

 

 

 

 

 

 

 

 

 

Approved October 2013 by the 

Graduate Supervisory Committee: 

 

Daniel J. Tylavsky, Chair 

Raja Ayyanar 

Keith Holbert 

 

 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

December 2013



i 

ABSTRACT 

 

Recent trends in the electric power industry have led to more attention to optimal 

operation of power transformers. In a deregulated environment, optimal operation means 

minimizing the maintenance and extending the life of this critical and costly equipment 

for the purpose of maximizing profits. Optimal utilization of a transformer can be 

achieved through the use of dynamic loading. A benefit of dynamic loading is that it 

allows better utilization of the transformer capacity, thus increasing the flexibility and 

reliability of the power system. This document presents the progress on a software 

application which can estimate the maximum time-varying loading capability of 

transformers. This information can be used to load devices closer to their limits without 

exceeding the manufacturer specified operating limits. 

The maximally efficient dynamic loading of transformers requires a model that can 

accurately predict both top-oil temperatures (TOTs) and hottest-spot temperatures (HSTs). 

In the previous work, two kinds of thermal TOT and HST models have been studied and 

used in the application: the IEEE TOT/HST models and the ASU TOT/HST models. And, 

several metrics have been applied to evaluate the model acceptability and determine the 

most appropriate models for using in the dynamic loading calculations. 

In this work, an investigation to improve the existing transformer thermal models 

performance is presented. Some factors that may affect the model performance such as 

improper fan status and the error caused by the poor performance of IEEE models are 

discussed. Additional methods to determine the reliability of transformer thermal models 

using metrics such as time constant and the model parameters are also provided.  



ii 

A new production grade application for real-time dynamic loading operating purpose 

is introduced. This application is developed by using an existing planning application, 

TTeMP, as a start point, which is designed for the dispatchers and load specialists. To 

overcome the limitations of TTeMP, the new application can perform dynamic loading 

under emergency conditions, such as loss-of transformer loading. It also has the 

capability to determine the emergency rating of the transformers for a real-time 

estimation. 
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CHAPTER 1  

INTRODUCTION 

 Introduction 1.1

Due to economic reasons, there is an increasing emphasis on improving transformer 

utilization to obtain maximum benefit. By increasing the maximum energy delivered each 

day from substation distribution transformers while keeping the loss of life within 

reasonable limits, utilities can save millions of dollars. To meet this object, transformers 

must be optimally utilized based on prevailing environmental and apparatus conditions. 

Maximizing the return on an investment (ROI) in a transformer takes many factors 

into account, but one important tradeoff is between loading a transformer more heavily to 

defer capital cost versus prolonging its service life time through lighter loads. Insulation 

loss-of-life is the most reliable indicator of the remaining life expectancy of a transformer. 

Loss of insulation life is determined by the insulation temperature. Because the loading 

on transformers varies during the day and the response of oil and insulation temperatures 

lag applied load, transformers can be loaded for a “short” time with a load greater than 

their design/name-plate rating.  

Optimal utilization of a transformer can be achieved through the use of dynamic 

loading. Dynamic loading is the term used for loading a transformer while taking into 

account the time variation of load, rule-of-thumb maximum allowable insulation 

temperatures, thermal time constants, cooling mode transitions and ambient temperatures.   

Ultimately, insulation temperature rises because of no-load and load losses that 

produce heat. In oil-immersed transformers, the most frequently used thermal limits are 

top-oil temperature (TOT) and hottest-spot temperature (HST). In the past, the 
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information of hottest-spot temperature can only be acquired from conventional heat run 

tests which were performed after the transformer was manufactured. But the location of 

hottest-spot temperature was hard to determine. Recently, various methods have been 

suggested for direct measurements of hottest-spot temperature in transformer windings, 

such as fiber-optic sensors and fluoro-optic thermometers. The optimal location of these 

sensors has also been demonstrated. Typically, HST is the criterion which limits the 

maximum dynamic load profile, but when the load profile is relatively flat, TOT will be 

the limiting criterion. Both temperatures are usually considered when performing 

dynamic loading calculation. 

To minimize the risk of failure and to estimate the remaining life of the transformer 

realistically, both top-oil temperature and hottest-spot temperature should be controlled 

within certain ranges. Therefore, it is necessary when performing dynamic loading to 

estimate TOT and HST to as high of a degree of accuracy as possibly. Much work has 

been done to develop accurate thermal models of the TOT and HST for substation-

distribution and power transformers. An approach that involves developing superior 

models and then estimating the parameters of these models from measured field data has 

been shown to give better prediction performance [1]-[5]. The advantage comes from the 

fact that models derived from measured data naturally account for the unique 

environmental conditions of each transformer, and also account for many phenomena that 

develop in operating transformers, such as fouled heat exchangers and malfunctioning 

pumps/fans [5]. 

Dynamic loading simulates the thermal behavior of the transformer for the purpose of 

computing how heavily and how long the transformer can be loaded above the name-
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plate to reach the maximum permissible TOT or HST temperatures for a given loading 

condition. This information can be used for load planning and scheduling purposes, 

allowing better utilization of the transformer capability, and increasing the flexibility of 

the power system operation. 

 Research Objective 1.2

Salt River Project (SRP) has been interested in a software application which could be 

used to perform dynamic loading of substation distribution transformer for load planning 

and scheduling.  In the previous work [1]-[5], the application developed by a team at 

Arizona State University is capable of reading in measured data, building thermal models 

with historical data for transformers; then, selecting the “best” model and using the model 

to estimate the maximum dynamic load the transformer can sustain without violating its 

thermal limits. In the previously developed application, the dynamic loading calculation 

is performed based on the assumption that there is no change in load shape (load is added 

to base-case load curve equally at all the time points of a full day). This limitation of the 

function makes the application able to be used for planning purposes, but may not work 

well for emergency conditions where there is a step change to the load that is temporary.  

Therefore, the objective of this research is to enhance the dynamic loading function 

for real-time operating purposes and develop a production grade application for both the 

planning and operating engineers at SRP to perform dynamic loading. 
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 Literature Review 1.3

Improving the utilization of transformers requires that both top-oil temperature and 

hottest-spot temperature are predicted accurately. In the literature, the development of an 

HST model presumes the existence on a TOT model since the HST is a function of TOT.  

The top-oil and hottest-spot thermal models given in the IEEE Guide for Loading 

Mineral-Oil-Immersed Transformers [6], which are commonly referred to as IEEE 

Clause 7 models in the literature, are widely used in industry for predicting TOT and 

HST. All of the parameters needed for these models can be easily distilled from the 

transformer heat-run test report. The IEEE TOT model assumes that all changes in top-oil 

temperature rise over ambient temperature are caused by changes in the load (current). 

However, the effect of ambient temperature variation on the changes in top-oil 

temperature is not properly taken into account. Therefore, the IEEE Clause 7 models, 

despite having a long history of acceptable performance, are criticized for their accuracy. 

A substantial amount of work has been done to develop and improve the transformer 

thermal models. In the following section, some of the newer, more accurate TOT and 

HST models are discussed. 

1.3.1 TOT Models 

In [7], a modified version of the IEEE Clause 7 TOT model which better 

characterizes both loading and ambient temperature variations was developed. This 

model is referred to as the top oil model. The field verification of the model provided in 

[7] shows that the modified model does capture some phenomena that the IEEE model 

does not and therefore gives a significant improvement in the TOT prediction. 
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In [8], Swift developed a thermal model for TOT based on heat transfer theory and 

the thermal-electrical analogy. A simple equivalent circuit is used to represent the 

thermal heat flow equations for power transformers. Key features are the use of a current 

source analogy to represent heat input due to losses (copper and iron), and a nonlinear 

resistor analogy to represent the effect of air or oil cooling convection currents. 

Parameters in the circuit can be calculated with data obtained from heat-run tests and 

online monitoring devices. The field verification of the model proposed in [8] is 

presented in [9], showing that this thermal model adequately predicts the top-oil 

temperature.  

A generalized TOT model for power transformers based on the basic approach 

proposed by Swift in [8] is developed in [10]. This method focuses specifically on the 

nonlinear thermal resistance of the transformer oil, where the variation in oil viscosity 

and winding resistance with temperature are considered. It was shown that this thermal 

model yields results that agree with measured values with good accuracy. 

Companion papers [11] and [12] compared the performance of the TOT equations 

developed in [6] [7] [8] and [10] to each other. It defines metrics to measure model 

adequacy, accuracy and consistency and then ranks these models according to their 

acceptability. It was shown that, the linearized TOT model of [7] has the best 

performance among all the four models.  

Some other TOT models contained in [13]-[15] requires some parameters that are not 

generally available to utilities. Therefore, these models are not suitable for this work. Of 

the many models available, the linearized model given in [7] was chosen for this work.  
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1.3.2 HST Models 

Swift did not develop a model for HST in [8], but stated that an HST equation could 

be derived by analogy from the TOT equation presented. This suggested HST model is 

developed and tested in [16]. Experimental results show that the model can reflect 

thermal behavior of transformer well under constant loading and dynamic loading. 

Reference [10] contains an HST model that accounts for the nonlinear thermal resistance 

of the transformer oil. 

In [1], the modified Clause 7 HST model from [2], the HST model by Susa in [10] 

and the suggested HST model in [8] are examined and compared with each other. The 

investigation fits the models to measured field data using numerical and statistical 

methods. The reliability and acceptability of these models for HST prediction are 

evaluated. It is shown that the modified HST model and Susa’s model are acceptable for 

training models from field data. Swift’s model is not acceptable because it is structurally 

deficient. 

The Clause 7 model in [6] assumes that the oil temperature in the cooling ducts is the 

same as the tank top oil during overloads. However, an investigation reported by Pierce 

in [13] shows that during overloads, the temperature of the oil in the winding cooling 

ducts rises rapidly, and there is a time lag between the top-oil temperature rise and the oil 

temperature rise in the winding cooling ducts. This phenomenon results in actual winding 

hottest-spot temperature greater than that predicted by the Clause 7 model. In another 

paper [14], Pierce developed improved loading equations which consider type of liquid, 

cooling mode, winding duct oil temperature rise, resistance and viscosity changes, and 

ambient temperature and load changes during a load cycle. These equations are referred 
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to as Annex G equations in the literature and are included in annex G of [6]. Although 

with more accuracy in predicting HST, Pierce’s model requires the use of bottom-oil 

temperature and other transformer parameters that are not normally available in the 

transformer test report.  

A linearized HST model was derived by analogy with the linearized TOT model 

given in [2]. This linearized HST model was found to have good prediction performance, 

and, thus, is selected for use in this work. 

1.3.3 Other Notable Research on Thermal Models 

References [3]-[5] show that the models derived from field-measured data give better 

prediction performance than those using parameters obtained from transformer heat-run-

test reports. The superiority comes from the fact that models trained from measured data 

are able to capture the unique environmental conditions and many phenomena in 

operating transformers. This approach was successfully used to investigate the 

acceptability of TOT and HST models in papers [1] [2] [11] and [12]. In [3], a 

methodology to assess the reliability of the thermal model parameters estimated from 

measured data was presented. 

Reference [4] introduces data quality control and data set screening techniques. 

Results show that model reliability can be increased by about 50% while decreasing 

model prediction error by applying data quality control and data set screening procedures.  

Some sources of error that affect top-oil temperature prediction were discussed in [5]. 

Error source such as inadequate data gathering, inadequate model, improper 

discretization and bad data are investigated. And, it is found that some of the difference is 

due to the absence of driving variables in the model such as wind and rain. 
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 Summary of Chapters 1.4

The rest chapters of this document are organized as follows. In Chapter 2, a detailed 

analysis of the existing models used in this project is presented. Chapter 3 discusses some 

factors that could affect the performance of transformer thermal models. Additional 

criteria used in determining the acceptability of the models are discussed in Chapter 4. In 

Chapter 5, a detailed introduction of the application and the Graphical User Interface 

design is provided. Chapter 6 focuses on the dynamic loading calculation. Some 

challenges of the algorithm design are also presented. 
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CHAPTER 2  

SELECTED TRANSFORMER THERMAL MODELS 

 Introduction 2.1

The ultimate goal of this work is to produce a software-based application which can 

perform transformer dynamic loading calculations. To perform dynamic loading, a model 

of the transformer’s thermal performance is needed in order to predict HST and TOT. A 

lot of research has been completed to evaluate and select the optimal thermal models for 

this software application [1]-[16]. While the IEEE Clause 7 models, [6], uses parameters 

calculated from transformer heat-run test report data, other more accurate models, [7]-

[10], use coefficients distilled from measured data. In this section, a detailed review of 

the two models used in the software application and developed in this work is provided. 

The technique of linear regression, which is used in estimating the transformer model 

parameters from measured data, is discussed. The data format and some metrics for 

assessing reliability of models are also presented. 

 IEEE TOT Model (Top-Oil Rise Model) 2.2

IEEE loading guide Std. C57.91-1995 presents a model for predicting TOT. This top-

oil-rise-over-ambient-temperature model (also called top-oil rise model), is a function of 

load and the load loss ratio [6]. This model is widely used by the electric-power industry 

in order to predict the TOT of substation distribution transformers. The parameters 

required to build the model are provided in the manufacturer’s heat-run test reports. 
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The top-oil rise model is governed by a differential equation, 

uo

o

oil
dt

d



   (2.1) 

whose solution is an exponential function: 

i

t

iuo
oile  




)1)((  (2.2) 

npu

flu
R

RI
)

1

1
(

2




   (2.3) 

fl

fl

Roil
P

C
 ,  (2.4) 

n

fl

i
n

fl

u

fl

i

fl

u

Roiloil 11,













































































  
(2.5) 

rated

pu
I

I
I   

(2.6) 

where, 

C : is the thermal capacity of transformer (Wh/°C) 

I : is the load under consideration (kVA or A) 

ratedI : is the rated load (kVA or A) 

puI : is the ratio of specified load to rated load (per unit) 

n : is an empirically derived exponent 

R : is the ratio of load loss to no-load loss at rated load 

t : is the duration of load (hours) 

fl : is the top-oil rise over ambient temperature at rated load (°C) 
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i : is the initial top-oil rise over ambient temperature for t=0 (°C) 

o : is the top-oil rise over ambient temperature (°C) 

u : is the ultimate top-oil rise over ambient temperature rise (°C) 

oil : is the oil time constant for any load and for any specific top-oil temperature rise 

(hours) 

Roil, : is the oil time constant at rated kVA (hours) 

The variable fl is obtained from off-line tests and corresponds to the full-load top-oil 

temperature rise over ambient. The exponent n approximately accounts for changes in 

load loss and oil viscosity caused by changes in temperature. Values for n used in these 

equations are shown in Table 2.1,  

TABLE 2.1 VALUES OF THE EXPONENT n  FOR DIFFERENT COOLING MODES 

Type of cooling n 

OA 0.8 

FA 0.9 

Non-directed FOA 0.9 

Directed FOA 1 

where, 

OA: is the oil-natural-air-natural cooling mode 

FA: is the oil-natural-air-forced cooling mode 

FOA: is the oil-forced-air-forced cooling mode 

Equation (2.2) describes the transformer TOT rise over ambient behavior as a first 

order model. The TOT is given by 
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where, 

amb : is the ambient temperature variation (°C) 

oil : is the top-oil temperature (°C) 

For purposes of estimating transformer coefficients, a discretized version of (2.1) is 

formulated using the Backward Euler approximation for the time derivative given by 
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Substituting (2.8), (2.6) and (2.3) into (2.1), the discretized form of (2.1) is obtained 
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where t is the sampling period and k is the time step index.  

If 1R and 12 RI pu , an approximation of the TOT rise over ambient temperature 

can be written as follows: 
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  (2.10) 

 

 IEEE HST Model (Winding Hot-Spot Rise Model) 2.3

IEEE loading guide Standard C57.91-1995 provides a model for predicting HST rise 

over TOT [6]. This first-order model is described by the differential equation, 
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huh

h

h
dt

d
T 


  (2.11) 

which has the solution, 

   hi

Tt

hihuh
he  


1  (2.12) 

m

puhrhu I 2   (2.13) 

where, 

m : is an empirically derived exponent  

t : is the time duration of load (min) 

hT : is the winding time constant at hottest-spot location (min) 

h : is the hottest-spot temperature rise over top-oil temperature (°C) 

hi : is the initial hottest-spot temperature rise over top-oil temperature (°C) 

hr : is the hottest-spot temperature rise over top-oil temperature at rated load (°C) 

hu : is the ultimate hottest-spot temperature rise over top-oil temperature (°C) 

The suggested values of the exponent m  used in temperature determination equations are 

given in Table 2.2. 

TABLE 2.2 VALUES OF THE EXPONENT m  FOR DIFFERENT COOLING MODES 

Cooling Mode m 

OA 0.8 

FA 0.8 

Non-directed FOA 0.8 

Directed FOA 1 

 



14 

The IEEE loading guide does not provide an explicit equation for calculating the 

winding time constant, hT , but it indicates that the winding time constant may be 

estimated from the resistance cooling curve during thermal tests. The winding time 

constant is defined in [6] as the time it takes for the winding temperature rise over top oil 

temperature to reach 63.2% of the difference between final rise and initial rise during a 

load change. Because of the similarity of transformer designs and based upon SRP’s 

suggestion, the default winding time constant is chosen to be 5.5 minutes for all the 

transformers in this software application. 

Using the previous equations, the HST rise over TOT can be calculated and in return 

used to calculate the HST by using: 

   )(1)()( tett oilhi

Tt

hihuoilhhst
h  

  (2.14) 

where hst  is the hottest-spot temperature (°C)  

In order to predict hottest-spot temperature, a discretized form of (2.11) is more 

convenient to use. The Backward Euler method is used to approximate the derivative 

term, which is given by, 















t

kk

dt

d hhh ]1[][ 
 (2.15) 

Substituting (2.15) into (2.11) gives, 
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 (2.16) 

Substituting (2.6), and (2.13) into (2.16) and rearranging gives, 



15 

  m

puhr

h

h

h

h
h kI

Tt

t
k

Tt

T
k

2
][]1[][  



























  (2.17) 

Typical values of parameters hT and hr are available in the transformer heat-run report.  

 ASU TOT Model (Top-Oil Model) 2.4

The top-oil rise model described in (2.1) is a simple model that captures the basic 

thermodynamics of the transformer load, while not properly taking into account the 

variation of ambient temperature. Thus, reference [7] suggests that a better first-order 

characterization of both loading and ambient temperature variations can be accomplished 

by appropriately including amb into (2.1). 

ambuoil

oil

oil
dt

d



   (2.18) 

The solution of the new formulation is,  

   oili

t

oiliambuoil
oile  



1  (2.19) 

where oil is the initial value of TOT at t=0.  

Using the Backward Euler approximation, and substituting (2.3) into (2.18), results in 

(2.20): 
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  (2.20) 

For purposes of estimating transformer parameters from measure data, (2.20) can be 

formulated as follows: 
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  3

2

122 ][][]1[1][ KkIKkKkKk puamboiloil    (2.21) 

Noticed that (2.21) is a linear equation. Optimal 
1 3K K can be calculated from measured 

data using linear regression. This model was tested in [2] and [6]. The results indicated 

that the ASU TOT model does capture the dynamics associated with the ambient 

temperature, yielding a significant improvement over the IEEE model in the prediction 

accuracy.  

 ASU HST Model (Modified HST Model) 2.5

The IEEE HST model implies that all changes in HST rise over TOT are caused by 

changes in load. However, the effect of TOT variation on the HST rise over TOT is not 

considered. According to thermodynamic theory, HST will not change instantaneously 

even if TOT changes instantaneously. There is a time lag due to the winding time 

constant. The linearized HST model, also known as the ASU HST model, captures the 

effect of TOT variations on HST by changing the state variable in (2.11) from the HST 

rise ( h ), to HST ( hst ). 

huh

hst

h
dt

d
T 


  (2.22) 

where h  is defined as 

)()( tt oilhsth    (2.23) 

Substituting (2.23) into (2.22) yields, 

)(t
dt

d
T oilhuhst

hst

h 


  (2.24) 



17 

which has the solution, 

   hsti

Tt

hioilhuhst
het  


1)(  (2.25) 

where hsti is the initial value of HST for t=0.  

Using the Backward Euler approximation, equation (2.24) is discretized, resulting in 

(2.26): 
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 (2.26) 

Substituting (2.6) in (2.26) and rearranging gives, 
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The parameters of the ASU HST model, mL1  and 2L , can be estimated from the measured 

data using linear regression. 

 Linear Regression and the Least-Squares Method 2.6

A multiple regression model that describes the relationship between the output 

response, y , and the k  regressor (predictor) variables can be represented as follows: 

  kk xxxy 22110  (2.28) 

The parameters kjj ,1,0,   are called the regression coefficients. The model 

parameters are estimated by fitting the model to the measured data [17]. Suppose that

kn   observations are available, and let iy denote the thi observed response and ijx
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denote the thi observation of the regressor, jx . The error term,  , is assumed to be 

normally distributed with mean zero and variance 2 , and the errors are assumed to be 

mutually uncorrelated. The least-squares method can be used to estimate the regression 

coefficients of equation (2.28). In matrix notation, (2.28) can be written as, 

       (2.29) 

where   is an 1n vector of the observations,   is an kn  matrix of the variables,   is a 

1k  vector of the unknown regression coefficients and   is an 1n vector of random 

errors.  

Thus, the least-squares estimator of   can be found by minimizing the function: 

     ∑  
                    ‖    ‖ 

 

 

   

 (2.30) 

Expanding equation (2.30) results in: 

                      (2.31) 

The least-squares estimator must satisfy, 

     

  
            ̂    (2.32) 

The least-squares estimator of  , is given by 

 ̂             (2.33) 

The formulation presented in (2.29)-(2.33) can be used to estimate the transformer 

coefficients from measured data. 
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The top-oil model described in (2.21) can be rearranged as follows, 

  32

2

1 ]1[][][]1[][ KkkKkIKkk oilambpuoiloil    (2.34) 

Note that 1K  is proportional to the heat generated by the load in time t , 2K  is 

proportional to the heat lost to air during each time interval, and 3K  is proportional to 

heat generated by no-load losses. The objective function needed to find the coefficients 

that best minimize the cost function )(S is: 

    

2
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  (2.35) 

Using (2.33) and the corresponding measured data the transformer coefficients 

321 ,, KKK can be estimated. A similar process is used to obtain the optimal parameters 

for the ASU HST model, mL1  and 2L , from measure data, as shown below: 

      
2

22

12
][]1[][]1[][minˆ
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(2.36) 

 Metrics for Model Reliability Assessment 2.7

After model building, there are two types of models for TOT/HST prediction: the 

IEEE models with parameters calculated from the transformer heat-run test report, and 

the ASU models with parameters obtained from measured data. If the measured input 

data are corrupted or insufficient to build a reliable ASU model, the application must be 

(and is) able to recognize it, and use the IEEE model as a backup. 

In the existing application, several metrics are used to determine whether an ASU 

model is reliable and which model (IEEE model or ASU model) should be used. 
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2.7.1 Maximum Steady-State Load ( MaxSSL ) and Bootstrapping 

An important metric that incorporates all transformer coefficients is steady-state load. 

Maximum steady-state load is the maximum load that can be sustained without violating 

TOT or HST operation limits when the load and ambient temperature remain constant. 

Under steady-state conditions, ][]1[ kk oiloil   . Using this constraint and then solving 

equation (2.34) for the load, gives the maximum steady-state load as follows: 

 

1

3max2

K

KTTOTK
SSL amb

Max


  (2.37) 

where ambT is the ambient temperature. 

This assumes TOT is the limiting criterion. If HST is the limiting criterion, a similar 

result may be obtained: 

 
m

m

Max
L

TOTHSTL
SSL 2

2

maxmax1 
  (2.38) 

In this work, maxTOT is taken as 105°C, maxHST is taken as 135°C. The ambient 

temperature, ambT , is taken as 117°F, which is the typical worst-case condition SRP uses 

for calculating peak summer loading.  

In order to load the transformer conservatively, a 95% conservative rating is selected 

(defined below), whose calculation requires bootstrapping. Bootstrapping is a statistical 

method that can make a smaller data set of size n “look” like a larger data set by taking 

multiple random samples, with replacement, of size n from the small data set. In this 

project, bootstrapping is used to form 3000 sets of samples. And then, for each data set, a 
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TOT and an HST model are built, yielding 3000 TOT/HST models. Each model is then 

used to predict maximum steady-state load. The process for this is shown in Fig. 2.1. 

Because the data are always noisy, models built from different datasets will differ and 

produce different estimates of MaxSSL . In consultation with engineers from SRP, the 95% 

conservative rating of MaxSSL is used as the criteria of model selection. If the 95% 

conservative MaxSSL prediction is greater than 1.3 pu, the ASU model is treated as 

unreliable and will not be used. 

Using all days of data (16-
day sample size) generate 
3000 bootstrap samples

Estimate the transformer 
coefficients using the 3000 

bootstrap samples

Using the estimated 
coefficients predict the 

steady state load

Compute the mean and 
standard deviation of the 

steady state load

Return

Input data

 

Fig. 2.1 Flowchart of bootstrapping 

 



22 

2.7.2 Variance Inflation Factors (VIF) 

The covariance matrices of the estimated parameters   of a linear model is given as 

         . The variable jjC is the diagonal element of the matrix        . The 

Variance Inflation Factor (VIF) for the thj  parameter is defined as:  

jjj CVIF   (2.39) 

For a linear model, if the thj parameter is orthogonal to or has little dependence on 

other predictor variables then jjC is 1.0 or closes to 1.0. The VIF for each variable can be 

used as a metric that measures the combined effect of the dependencies among the 

variables on the variance of that term. 

When the VIF of a variable is greater than 10, it means that the variable is highly 

dependent on other variables and the corresponding parameter is poorly estimated. 

Therefore, the model is unreliable. 

2.7.3 Coefficient of Determination 2R   

The coefficient of determination 2R is defined as 

T

s

SS

SS
R Re2 1  (2.40) 

where TSS is a measure of total variation in the observations and sSSRe is the error sum of 

squares.  

The 2R value provides a measure of the variability explained by the model. A value 

closer to 1 is desired. In this work, models with 2R <0.7 are treated as unreliable. 
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 Conclusions 2.8

The advantage of the IEEE models is that all the parameters need can be found in the 

heat-run test report. However, the IEEE models are criticized for their inaccuracy. The 

ASU models are linearized models which take into account the effect of ambient 

temperature. With parameters distilled form measured data by using linear regression, the 

ASU models are proved to have better performance in predicting TOT and HST. Several 

metrics are applied to assess model reliability and select the optimal model for dynamic 

loading calculation. 
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CHAPTER 3  

IMPROVING MODEL PERFORMANCE 

 Introduction 3.1

In this research, it is found that the cooling fans in transformers sometimes do not 

turn on/off according to their specified set-points, or the set-points in the field are 

different from the values prescribed by the responsible engineers. Because thermal 

models can only make reliable predictions for one thermodynamic condition, the data 

used for model building must all come from transformer performance when all fans have 

the same status. Given that the measured data used in model building is separated into 

sets (i.e., cooling mode) based on the turn on/off set-points specified by engineering, if 

the set-points used for data parsing do not match those in the field, then data 

corresponding to more than one thermodynamic condition will be used to train the same 

model. Consequently, improper fan status could lead to poor quality models. In addition, 

the IEEE models are used for thermodynamic conditions where no ASU model is 

available. The performance of the IEEE models affects the calculated cooling mode 

transition points, and these erroneous transition points negatively impact the prediction 

results of the ASU models. A more detailed discussion of this complex issue is provided 

in the following subsections. Also, some researches to improve the model performance 

are presented in this chapter.  

 Cooling Modes 3.2

The transformer has a set of fans, and possibly pumps, which may be put in service to 

increase the power-carrying capacity at high loading. The cooling modes are defined by 
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the way cooling occurs: by natural convection or by a forced circulation system 

composed of fans or pumps.  

For the light loading, the coolant circulation is by natural convection. The transformer 

is said to be in an oil-natural-air-natural cooling mode (ONAN or OA). The transformer 

that uses fans rather than pumps in service is in an oil-natural-air-forced cooling mode 

(ONAF or FA). Typically, when the first turn-on set-point is reached, only half of the 

fans turn on. At the second turn-on set-point, all fans come on and the mode is referred to 

as ONFAFA or more simply, FAFA, or FA/FA. If a transformer has oil pumps, then at 

the second turn-on set-point, both the fans and pumps are engaged, and the transformer is 

said to be in the oil-forced-air-forced cooling mode (OFAF or FOA) [18]. Data measured 

in the OA mode is classified as tier-1 data in this work. Data measured in the FA mode 

can be divided into two parts: when half the fans are on, which is classified as tier-2 data; 

and when all fans are on, which is classified as tier-3 data.  

The on/off state of the fans and pumps is controlled by the HST. Historically, 

simulated HST was used to determine the cooling-modes transition points because HST 

was not measured directly. While measured HST is used in newer transformers, 

simulated HST is still used when measured HST is unavailable. Based on SRP’s settings, 

the tier divisions typically occur as follows: tier-3 starts when HST (simulated or 

measured) exceeds 75°C and ends when HST drops below 70°C; tier-2 starts when HST 

rises over 65°C and ends when the HST falls below 60°C. The rest of the data is 

considered as tier-1 data, as shown in Fig. 3.1. 
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 Fig. 3.1 Tier division 

 

 Improper fan status 3.3

The fan status of transformer DV10 is displayed in Fig. 3.2, which was provided by 

APS. The x-axis is the time of day and the y-axis is temperature in ℃. In the figure, the 

yellow line is the TOT, the short red lines indicate the point in time when the fan turns on, 

and the short blue lines indicate the point in time when they turn off. The on/off state of 

the fans is controlled by the HST, according to their set-points. However, it may be 

observed in this figure that the turn-on-temperature and turn-off-temperature of the fans 

during different days is variable when it should be consistent. On the day 07/19, the fans 

turn on and then turn off immediately. On another day 07/27, the fans turn on and do not 

turn off, at least for the duration of the plot. 
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In this project, the measured data are separated into different tiers (cooling modes) 

according to the desired set-points provided to us by engineers at SRP. Since the ultimate 

application of this research is to predict transformer performance under over-loaded 

conditions (that is tier-3 cooling mode). The ASU models are created using only tier-3 

data and are applied for tier-3 cooling mode prediction during the dynamic loading 

process. As stated earlier, inaccurate fan status could cause the ASU thermal models to be 

inaccurate by including data from more than one cooling mode. 

 

 

Fig. 3.2 Fan status of the transformer DV10 

 

      Turn-on temperature                        Turn-off-temperature 
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 Bad Performance of the IEEE Models 3.4

The IEEE models are widely used in industry. However, the effects of ambient-

temperature variation on TOT and HST are not properly taken into account and the 

prediction results of IEEE models are consequently inaccurate. The example below 

indicates how the poor performance of the IEEE models affects the accuracy of ASU 

models when used in temperature prediction. 

Since the ASU model is only built for tier-3 operation, when predicting transformer 

temperature for a period in which tier-1 and tier-2 cooling occurs, the IEEE model must 

be used. In Fig. 3.3 the prediction results for TOT and HST are presented for a 24-hour 

period with the IEEE models used for predicting tier-1 and tier-2 performance and the 

ASU model used to predict tier-3 performance. For a comparison, the prediction results 

for TOT and HST with the TOT initialized to the measured value at tier-2-tier-3 

boundary (to correct for the prediction errors caused by the IEEE model in tier-1 and tier-

2 operation) is shown in Fig. 3.4. Observe that during tier-1 and tier-2 performance, the 

IEEE models predict both TOT and HST far below their measured value. The bad 

performance leading up to the tier-2-tier-3 boundary creates not only the wrong tier 

transition times but also a poor initial condition for the ASU tier-3 model (incorrect in 

Fig. 3.3 but corrected in Fig. 3.4), leading to obvious inaccuracies. 
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Fig. 3.3 Prediction results of Highline3 on 2009-7-20: tier-1 and tier-2 use IEEE 

models, tier-3 use ASU models 

 

 

Fig. 3.4 Prediction results of Highline3 on 2009-7-20: tier-1 and tier-2 use IEEE 

models, tier3 use ASU models, with TOT alone initialized to the measured TOT 

value at tier-2-tier-3 boundary 
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 Improving Model Performance 3.5

It was found that, some transformers have cooling mode set-points that do not follow 

the rules mentioned above. Instead of the transition point vector shown in Fig. 3.1, i.e., 

(65, 75, 70, 60)℃, these transformers use (75, 75, 60, 60)℃ for cooling mode transition 

set-points, which means there are only two cooling modes for those transformers. The 

results of building ASU models using the data consistent with both transition point 

vectors are displayed below: 

TABLE 3.1 ESTIMATED MODEL PARAMETERS BASED ON COOLING MODE SET-POINT VECTOR (75, 75, 60, 60)℃ 

Transformer 

Name 1K  2K  3K  
4K  

Time 

Constant 

(hr) 

SSL_max 

(pu) 

RMS 

Error 

Highline3 1.3597 0.0899 0.9100 1.9423 2.5292 1.5825 2.5542 

Kirk2 1.1732 0.0870 0.9130 1.8107 2.6228 1.6928 2.2610 

Moody1 3.4832 0.1277 0.8723 1.8076 1.7073 1.2887 0.7758 

Pendergast2 2.6255 0.1252 0.8748 2.1018 1.7472 1.4261 1.4233 

University2 1.8237 0.0772 0.9228 1.9151 2.9866 1.2115 1.1954 

 

TABLE 3.2 ESTIMATED MODEL PARAMETERS BASED ON COOLING MODE SET-POINT VECTOR (65, 75, 70, 60)℃ 

Transformer 

Name 1K  2K  3K  
4K  

Time 

Constant 

(hr) 

SSL_max 

(pu) 

RMS 

Error 

Highline3 3.8543 0.1261 0.8739 1.9264 1.7322 1.2022 1.2080 

Kirk2 1.9674 0.1081 0.8919 2.0437 2.0626 1.4925 1.5591 

Moody1 3.6669 0.1249 0.8751 1.5959 1.7511 1.2610 0.5723 

Pendergast2 3.3483 0.1388 0.8612 2.0992 1.5515 1.3553 0.7213 

University2 2.1997 0.0917 0.9083 2.2374 2.4749 1.2092 0.6099 
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Table 3.1 gives the estimated model parameters based on cooling mode set-point 

vector (75, 75, 60, 60)℃, and Table 3.2 is for the model parameters with transition point 

vector (65, 75, 70, 60)℃. By comparing these two tables, it is found that both time 

constants and SSLmax decrease when the three-cooling-mode model is assumed. And, 

there is a significant improvement on the root-mean-square (RMS) error. When using the 

cooling mode set-points (75, 75, 60, 60) ℃, all the data are divided into on two tiers, tier-

1 or tier-3, in this program. From these results it appears that the tier-data parsing using 

(75, 75, 60, 60) ℃ is incorrect, which leads to part of the tier-2 data being used to build 

tier-3 models, making the ASU models inaccurate. 

 Results of Model Performance 3.6

3.6.1 Highline3 Transformer 

Fig. 3.5 shows the TOT prediction for the five hottest days during the period 2-8 PM 

based on different cooling mode set-points. The measured TOT (red line), the TOT 

predicted by the ASU model (dotted-dashed blue line) and the TOT predicted by the 

IEEE model (dashed purple line) are displayed in the figure for comparison. Comparing 

(a) and (b) in Fig. 3.5, it is found that the ASU model built with transition point vector 

(65, 75, 70, 60) ℃ predicts TOT more accurately. Fig. 3.6 shows the TOT and HST 

prediction results on 2009-7-27 for those two cooling mode transition point vectors.  
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Fig. 3.5 TOT prediction for 5 hottest days for transformer Highline3: (a) cooling 

mode set-point vector (75, 75, 60, 60) ℃; (b) cooling mode set-point vector (65, 75, 

70, 60) ℃ 
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Fig. 3.6 Predicted TOT and HST on 2009-7-27 for transformer Highline3: (a) cooling 

mode set-points (75, 75, 60, 60) ℃; (b) cooling mode set-points (65, 75, 70, 60) ℃ 

 

3.6.2 Kirk2 Transformer 

Fig. 3.7 shows the TOT prediction for the five hottest days during the period 2-8 PM 

based on different cooling mode set-points. The measured TOT is displayed using a red 

line, the TOT predicted by the ASU model is displayed using the dotted-dashed blue line, 
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and the TOT predicted by the IEEE model is represented using the dashed purple line. 

Compare (a) and (b) in Fig. 3.7, it is found that the ASU model built with cooling mode 

set-points (65, 75, 70, 60) ℃ has better performance in matching the measured data. Fig. 

3.8 shows the TOT and HST prediction results on 2009-7-17 for those two sets of cooling 

mode set-points. 

 

Fig. 3.7 TOT prediction for 5 hottest days for transformer Kirk2: (a) cooling mode 

set-points (75, 75, 60, 60) ℃; (b) cooling mode set-points (65, 75, 70, 60) ℃ 
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Fig. 3.8 Predicted Data on 2009-7-17 for transformer Kirk2: (a) cooling mode set-

points (75, 75, 60, 60)℃; (b) cooling mode set-points (65, 75, 70, 60)℃ 

 Conclusions 3.7

Both improper fan status and the IEEE models’ poor performance could impact the 

prediction results of the ASU models, because of the erroneous cooling mode transition 

points. For some transformers, changing the cooling mode set-points can improve their 

models’ performance. 
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CHAPTER 4  

ADDITIONAL CRITERIA FOR MODEL SELECTION 

 Introduction 4.1

Before the improvements reported here were added to the existing application, several 

metrics (mentioned earlier) were applied to determine whether an ASU model was 

reliable and which model (IEEE model or ASU model) should be used. These metrics are: 

 Maximum Steady-State Load ( MaxSSL ) 

 Variance Inflation Factors (VIF) 

 Coefficient of Determination ( 2R ) 

However, it was found that more consistent “good model” determination could be 

obtained if additional metrics were used. Additional criteria used in determining the 

acceptability of the ASU models are introduced and defined in this chapter. These criteria 

are applied to evaluate the acceptability of the ASU models in this chapter. 

 Model Testing on Webber3  4.2

To evaluate the model’s prediction performance, validation under interpolation and 

extrapolation should be verified. Interpolation performance is measured based on 

predicted values inside and on the boundary of the given data. The accuracy of predicted 

values significantly outside the range of given (training) data set is a measure of 

extrapolation performance. Since this application is to predict the maximum dynamic 

loading, which is an overloaded condition, the extrapolation performance of the model is 

important.  
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From all the data provided by SRP, only transformer Webber3 is found to have two 

overloaded days (8/20/2009 and 8/21/2009) with a step load change in the load curve, 

thus, Webber3 is selected for testing the model’s extrapolation performance.. To conduct 

this testing, the ASU models are built (trained) on historical data under normal load 

conditions (excluding the two aforementioned overloaded days), then the models were 

used, together with the load profile and ambient temperature profile, to predict TOT and 

HST for the two overloaded days..  

Here, two cases are considered: 

Case 1: For tier 1 and tier 2, use IEEE model; for tier 3, use ASU model.  

Case 2: For tier 1 and tier 2, use IEEE model; for tier 3, use ASU model with the 

TOT alone initialized to the measured TOT value at tier 2-3 boundary.  

The results are shown as follows: 

4.2.1 Simulation Results for 8/20/2009: 

Fig. 4.1 corresponds to case 1 and Fig. 4.2 corresponds to case 2. Observe that the 

ASU models under-predict both the TOT and HST, which means the ASU models will 

over predict the amount of load that can be added per dynamic loading calculation. By 

comparing Fig. 4.1 and Fig. 4.2, it is found that most of the error in the TOT and HST 

prediction is due to the poor initial starting point of the tier-3 simulation, which is the end 

point of the IEEE model tier-2 simulation. When the starting point of tier-3 simulation is 

corrected to the measured value, as opposed to the tier-2 simulated value, as shown in Fig. 

4.2, the error at the peak point in both TOT and HST for the ASU models are reduced to 

from 10.43°C and 9.23°C to 5.68°C and 4.39°C, respectively. 



38 

 

Fig. 4.1 Measured and predicted data for 2009-8-20 (case 1) 

 

 

Fig. 4.2 Measured and predicted data for 2009-8-20 (case 2) 
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4.2.2 Simulation Results for 8/20/2009 

Fig. 4.3 corresponds to case 1 and Fig. 4.4 corresponds to case 2. Observe that, the 

ASU models over-predict the TOT and HST by 0.32
o
C and 4.5

o
C respectively. When 

initializing the starting point of the tier-3 simulation to the measured value, as shown in 

Fig. 4.4, the error at peak point of the predicted TOT and HST curves increases by 1.46 

o
C and 2.29 

o
C respectively.  

 

 

Fig. 4.3 Measured and predicted data on 2009-8-21 (case 1) 
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Fig. 4.4 Measured and predicted data on 2009-8-21 (case 2) 
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 Additional Metrics for Model Selection 4.3

Clearly, the values of the model parameters affect the performance of the model. 

From an engineering point of view, these parameters may be massaged to produce two 

metrics which are intuitively meaningful and whose effect on the simulations can be seen: 

the SSLmax and the top-oil time constant. If either the time constant or the steady-state 

load is too large or too small the model predictions will be inaccurate. As introduced in 

Chapter 2, the maximum steady-state load (SSLmax) has already been chosen to be a 

criterion of model reliability evaluation. In the following section, the time constant will 

be introduced as an additional criterion for model selection. 

4.3.1 Time Constant 

One type of metric that is often used for screening models derived from measured 

data is the so-called guide parameter. Guide parameters are physical model parameters 

for which either the values are approximately known or the bounds are known. The guide 

parameter chosen for model screening in this work is the top-oil time constant, rather 

than the HST time constant for the following reasons. It is known that the HST time 

constant is about 5-7 minutes. The value is so small, compared to the TOT time constant 

(about 2.5 hours,) that in some calculations it is ignored and the HST response is taken as 

instantaneous. Further, since the HST prediction is based on TOT prediction, the TOT 

time constant is ultimately more critical to model accuracy. Thus, only the ASU TOT 

model time constant was selected and is studied below.  
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As mentioned in Chapter 2, the parameters 21, KK  and 3K  can be estimated from 

measured data using linear regression. From equation (2.20) and (2.21), the time constant 

can be derived as follows: 

oilt

t
K




2

 (4.1) 

t
K

t
oil 




2

  (4.2) 

where the sampling period t is 0.25 hour (15 minutes) for the TOT model. 

The time constants for the 15 transformers listed in Table 4.1 were calculated from 

the ASU tier-3 model coefficients distilled from measured data. A scatter chart of all of 

these time constants, which is shown in Fig 4.1, gives a different view of this data. 

TABLE 4.1 TIME CONSTANT FOR 15 TRANSFORMERS 

Transformer Name 
Time Constant 

(hour) 
Transformer Name 

Time Constant 

(hour) 

Broadway4(09) 4.19 Moody1(09) 1.71 

Broadway4(10) 4.61 Moody1(10) 1.83 

Cheatham2(09) 1.52 Pendergast2(09) 1.75 

Cheatham2(10) 1.74 QueenCreek3(10) 1.82 

CitrusHeights0(09) 1.55 QueenCreek4(09) 1.89 

CitrusHeights0(10) 1.54 Sage4(09) 3.10 

Clark2(09) 1.87 Sage4(10) 3.08 

Clark2(10) 2.21 Tryon2(09) 1.68 

Egan2(09) 1.77 Tryon2(10) 2.35 

Highline3(09) 2.53 University2(09) 2.99 

Highline3(10) 2.01 University2(10) 4.70 

Kirk2(09) 2.62 Webber3(09) 2.43 

Kirk2(10) 1.96 Webber3(10) 2.87 
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Fig. 4.5 Time constant for 15 transformers 

 

In this research, when the time constant is larger than 2.75 hours, it was observed that 

the model prediction performance was poor. Thus, 2.75oil  hours is used as a criterion 

of model selection. 

4.3.2 Other Criterion for Model Screening 

Another criterion being used for model screening is the ASU TOT model parameter

3K , which is proportional to heat generated by no-load losses. 3K should be larger than 0. 

Thus, models with 03 K are regarded as bad models and are not be used by the 

application developed. 
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 Conclusion 4.4

Results show that additional metrics, such as the time constant and the model 

parameter 3K , are needed to evaluate the acceptability of the ASU models. 
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CHAPTER 5  

THE APPLICATION AND GUI DESIGN 

 Introduction 5.1

During peak summer loading, when an outage occurs, it is necessary to perform 

switching action on feeders so that customer load is picked up by transformers adjacent to 

the one out of service. This process is done today in a rather cumbersome way. When a 

substation distribution transformer overloading alarm is sent to the dispatcher, the 

dispatcher will determine which breakers to open and which to close in order to switch 

the load between transformers. Since estimating the overloading capability of a substation 

distribution transformer is complicated, the amount of load that is switched on or off is 

usually determined by taking a guess based on the experience of dispatchers or by 

consulting with planning engineers. 

Over several years and under guidance of the SRP engineers, a planning tool, TTeMP, 

has been developed to build transformer thermal models that allow planning engineers to 

predict peak loads. The process for building these models requires several steps, some of 

which are quite lengthy, for example gathering and formatting measure data. This 

application calculates peak loading capability assuming a given load shape that was 

usually taken from historical data. This application was inappropriate for use by load 

specialists in a real-time environment for two main reasons. First, dispatchers do not have 

the time to perform the steps needed for model building; second the load shape for which 

they want to calculate maximum loading will not be based solely on historical data, but 

will have load step changes reflective of discrete switching on/off of load. 
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During the last two years, great stride has been made in developing a dynamic 

loading application for the dispatchers and load specialists. This Dynamic Loading of 

Transformer Application (DLTA) is created by using the existing planning application 

TTeMP as a starting point. 

In this chapter, a detailed introduction of this DLTA application and Graphical User 

Interface design will be provided.  

 The Program Design  5.2

Since there has been no way to easily estimate the real-time loading limit, an off-line 

calculation incorporating the previous day’s loading and temperature profiles as well as 

specific transformer parameters is used to determine the dynamic loading capability 

which lies within an acceptable confidence interval. Automation of this calculation and 

making it available as a real-time tool for the dispatchers and load specialists is the goal 

of this work. And, also, try to make it as easy and simple as possible. 

5.2.1 Function Design 

Salient functional specifications of this application include: 

a. Read and process data 

i. Read historical data file 

ii. Read real-time data file 

iii. Read typical data file 

iv. Read transformer model parameter data file 

b. Get user input and check input 

c. Search for the most “similar day” 
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d. Perform dynamic loading calculation 

i. Maximum load estimation 

ii. Maximum duration estimation 

e. Output results 

In this application, two scenarios are considered for the dynamic loading calculation: 

Fixed-duration maximum-step-load increment calculation: If the user specifies the 

duration and the start time of the load increment, the program will compute the maximum 

step-load increment that the transformer can sustain without violating the TOT and HST 

thermal limits. 

Fixed-load-increment maximum-duration calculation: If the user specifies the step-

load increment and the start time of the load increment, the program will compute the 

maximum duration that the load change can be sustained without violating the TOT and 

HST thermal limits by the transformer. 

5.2.2 Directory Structure and Data Files 

Each folder and file in Fig. 5.1 is explained below: 

 “DLTA”: the root directory for the application which contains other folders and 

files. 

 “Execution Module”: the executable file for the application 

 “Data”: this folder is the root directory for all the data files.  

 “TOT&HST_data”: this folder contains data files which contain the measured 

TOT, HST, load and ambient temperature data. 

 “Typical_data”: a folder contains typical load shape and ambient temperature data 
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files for use when no corresponding historical data is available. 

 “RealTime_data”: this folder contains real-time data files which contain measured 

TOT, HST, load and ambient temperature data. 

 “XfmrModelParameters”: this is a .csv file that contains IEEE and ASU model 

parameters of all the transformers. 

Data 
TOT&HST_dat

a

Typical_data

RealTime_dat
a

XfmrModelParameters

DLTA .exe Execution Module

 

Fig. 5.1 Directory structure of the DLTA 

 

5.2.3 Flowchart 

The overall flowchart of the program is shown in Fig. 5.2. The first module is to set 

up search path to the installation directory  

1. The first module is to set up search path to the installation directory. 

2. Then, read in transformer model parameter (.csv) file and create a data structure. 
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3. From point A to point B is a loop to select a transformer for dynamic loading 

calculation, and to check whether the model information of the selected transformer is 

valid. 

4. From point B to point C is to get the user input and check whether the input is valid. 

5. From point C to the end is to select a type of data (“Historical data” or “Typical data”) 

for dynamic loading calculation 

6. Finally, display the results. 
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Fig. 5.2 The overall flowchart of the program 
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 GUI Design 5.3

5.3.1 Startup Interface 

Once the installation of the DLTA application is complete (see the user’s manual) the 

next step is to start DLTA. Contained in Fig. 5.3 is a screenshot of the startup interface of 

the application. The user needs to input or browse to designate the path to DLTA’s root 

directory before starting the application. After the search path is specified, the application 

will access the data folder, and read in transformer model coefficients which are stored in 

the file “Model Parameters.csv” to build a transformer data file for later use. A progress 

bar is displayed to show the progress of the data reading process. After this data is read in, 

the program will enter the main window and the startup interface will disappear and be 

concealed. 

 

Fig. 5.3 Startup Interface 

5.3.2 Main User Interface and Functional Area 

Contained in Fig. 5.4 is a screenshot of the user interface. This interface can be 

divided into two functional areas: input area and output area. The GUI functional areas 

are discussed separately in the coming sections. 
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Fig. 5.4 Main User interface 

5.3.3 Input Area 

In order to perform dynamic loading calculation, some information must be entered 

as follows: 

 Select a substation and a specific transformer 

 Enter either MVA increment or enhanced load duration  

 Enter the start time of load increment 

 Enter the highest and lowest forecast ambient temperatures 

 Click on “Start” button to perform dynamic loading  



53 

5.3.3.1 Select a Substation and a Transformer  

All the transformers are classified by the substation to which they belong. As shown 

in Fig. 5.4, drop-down boxes are used in the substation and transformer selection. Each 

initiates the appearance of a drop-down box. Clicking on the drop-down arrow to the 

right of “Select a substation”, displayed in Fig. 5.5, allows the user to select an 

appropriate name from the drop-down list.  

 

Fig. 5.5 Select a substation 

After the substation is specified, all the transformer names associated with that 

substation are displayed in the second drop-down box, as shown in Fig. 5.6. From this 

drop-down box, the user selects the transformer name.  
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Fig. 5.6 Select a transformer 

5.3.3.2 Enter Either MVA Increment or Enhanced Load Duration 

As mentioned above, this application performs dynamic loading calculations for two 

different scenarios: (a) the fixed-duration maximum-step-load increment calculation and 

(b) the fixed-load-increment maximum-duration calculation. To perform a dynamic 

loading estimate, the user needs to enter either a desired load increment or desired load 

duration. When one option is entered, the other one will be disabled, as shown in Fig. 5.7. 

In consultation with engineers from SRP, the load increment is restricted to be no more 

than 1.5 per unit (42 MVA) for safety. 

 

Fig. 5.7 Enter either MVA increment or enhanced load duration 

 

5.3.3.3 Other Input 

The remaining inputs, “start time of load increment” and “high and low forecast 

temperatures,” will be prefilled automatically by the program, as shown in Fig. 5.8. The 
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values for these fields are found as follows: After the user selects a transformer, the 

program reads in the real-time data file of that transformer, and uses the end time in that 

file as the prefilled start time. The user can change the start time using the drop-down box 

to the right of “Enter start time of load increment.” The program records the “high and 

low forecast temperatures” entered by the user each time they used the program. When 

the main interface is executed, the program will prefill those temperatures with the most 

recently entered values. The user can change “high and low forecast temperature” by 

retyping them. 

As required by SRP, this application performs dynamic loading calculation for a 

period of 2-days (48-hour). If the “start time of load increment” entered by the user is 

earlier than the (prefilled) current time, it is assumed that the start time occurs in the 

second 24-hour period, since the start time for “today” cannot be earlier than today’s 

current time. 

 

Fig. 5.8 Other input 

 

5.3.4 Output Area 

When all needed information has been entered and vetted using the sanity-checks not 

described here, the dynamic loading calculation can be performed by clicking on the 

“Start” button. In this work, both IEEE and ASU models are used and give predictions 

respectively. 
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DLTA displays the dynamic loading calculation results including duration and load 

increment in both text and figures. The text message is displayed in the area labeled as 

“Result” in the main window. And, the figures are shown in the pop-up window.  

 

Fig. 5.9 Dynamic loading calculation results 
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Fig. 5.10 Predicted load, TOT and HST curves 

 

 Conclusion 5.4

A detailed introduction to this application and graphical user interface design is 

provided in this chapter. The overall flowchart and salient functions are also presented. 
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CHAPTER 6  

DYNAMIC LOADING ALGORITHM DESIGN 

 Introduction 6.1

This chapter focuses on the dynamic loading calculation, including the definition of 

dynamic loading, the dynamic loading algorithm, how to perform dynamic loading with 

selected models and the results of dynamic loading. Some examples on dynamic loading 

are provided. And some challenges in the algorithm design are also presented. 

 Definition of Dynamic Loading 6.2

Dynamic loading is the term used for loading (usually optimally) a transformer while 

taking into account the time variation of  load, rule-of-thumb maximum allowable 

insulation temperatures, thermal time constants, cooling mode transitions, and ambient 

temperatures profiles. Because the load varies and the response of oil and insulation 

temperatures lag applied load, transformers can be loaded for a “short” time with a load 

greater than their name-plate rating.  

When determining the loading capability of a transformer, the amount of load to 

switch on or off and for what length of time the transformer can be loaded above name-

plate requires that the load, as a function of time, be forecasted and then the insulation 

temperature response to the load must be calculated via a differential equation 

numerically integrated inside a nonlinear optimization loop. 

As mentioned in Chapter 5, two scenarios are considered for dynamic loading 

calculation in this application: fixed-duration maximum-step-load increment and fixed-

load-increment maximum-duration. The maximum step-load-increment is defined as the 
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maximum load that can be added to a typical daily load curve for a desired time period 

that a transformer can sustain without violating HST or TOT thermal limits. The 

maximum-duration is defined as the longest period of time that a transformer can sustain 

a given step-change on a typical (or specified) daily load curve without violating HST 

and TOT thermal limits. 

From a planning point of view, this information could be used in various ways. It 

could be used in reliability studies to calculate energy not served due to transformer 

outages or as guidelines to the system dispatchers to know how heavily they can load a 

transformer under emergency conditions. 

 Dynamic Loading Calculation for a 48-Hour Cycle 6.3

This section discusses how to perform dynamic loading calculations for a 48-hour 

cycle, which includes how to select “the most similar day” and the dynamic loading 

algorithm design.  

The maximum dynamic loading calculation is an optimization problem with upper 

bound limited by the allowable peak HST/TOT thermal limits. The method is to 

multiplicatively scale up the base-case load shape to match the real-time data. The 

algorithm implemented by the application is described in detail below, and the 

corresponding flowchart is shown in Fig. 6.1. 

1. Select “the most similar day” from the historical data file by using the forecast 

high and low temperatures. If no acceptable similar day is found, the user may 

select a “typical” day (in the “Typical Data” option). 

2. Adjust the load profile and the ambient temperature profile of that selected day by 
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multiplication, to match the end point of real-time data. 

3. Make an initial estimation of the maximum step-load-increment (or the maximum 

duration), and update the load shape. 

4. Calculate the HST and TOT profile using this updated load profile and 

temperature profile, and check whether HST or TOT exceeds their thermal limits, 

respectively. If the maximum duration is larger than 24 hours, and both the HST 

and TOT do not reach their thermal limits, stop the iteration. In this case, the 

given step-load-increment is considered as can be sustained for an “unlimited” 

period.  

5. Use a Quasi-Newton method combined with a binary search algorithm to obtain 

the next estimate of maximum step-load-increment (or the maximum duration). 

6. Redo step 4 and step 5 until the limiting quantity (either TOT or HST lies within 

1°C of its limit and the other is below its limit) is reached, or the loop runs 20 

times without getting a solution. 



61 

Select “the most similar day”

Is the day found?

Adjust load and ambient 
temperature profiles

Is

 maxHST<135℃ & abs(maxTOT-105)<3℃
or

maxTOT<105℃ & abs(maxHST-135)<3℃ ?

Use Quasi-Newton method and 
binary search algorithm to estimate 
the maximum step-load-increment 

(or maximum duration)

Update load profile

Estimate TOT and HST 
profiles based on updated 

load profile

Return

Output results

Is loop>20?

Yes

Yes
Return

Prompt “The 
program still cannot 

get to the answer 
after 20 iterations.”

No

No

No

Yes

Use typical data?
No

Yes

 

Fig. 6.1 The flowchart of dynamic loading calculation 
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 Select “The Most Similar Day” 6.4

Since there is no way to easily estimate the real-time loading limit, one challenge that 

appears is to find proper load and ambient temperature profiles which could approximate 

the real-time data of the future.  

In order to find a historical load profile which can best represent the real-time loading 

limit, the high and low forecast temperatures are used. It is assumed that, if the highest 

and lowest forecast temperatures for the day of interest are similar to those temperatures 

for another day in the historical record, the historical load profiles should be a good 

estimate of the profile for the day of interest. Therefore, the most similar day is selected 

by comparing all historical days’ high and low temperatures with the given forecasted 

value and calculating the a “closeness” metric using the following equation: 

i

f

i

f

i
TTkTTkT max,max2min,min1min   (6.1) 

 

where 

21 ,kk : are weighting coefficients 

ff TT minmax , : are the highest and the lowest forecast ambient temperatures 

ii TT min,max, , : are the highest and the lowest ambient temperatures in the i th day of 

historical data 

In consulting with SRP’s engineers, it was determined to set: 1 20.4, 0.6k k  . If, using 

the above equation, FT  5 , then a message box will appear to warn the user that no 

similar day is found. At that point, the user is directed to select a “typical” day instead for 

dynamic loading calculation. 
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After “the most similar day” is found (or a typical day is selected by the user), the 

temperature profile will be scaled and adjusted to meet the input high and low forecasted 

value, as described in equation (6.2). The load profile is also scaled to meet the end point 

value of real-time load, 

adjustambnewamb
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adjust
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TTT

nTTT

TT

TT
n










,

maxmax

minmax

minmax

 (6.2) 

where: 

n : is the enlargement factor 

adjustT : is the calibration temperature  

 Quasi-Newton Method and Binary Search Algorithm 6.5

Since the dynamic loading algorithm for those maximum-load and maximum duration 

scenarios is similar, only the first scenario (fixed-duration maximum-step-load increment) 

is used as an example to explain the algorithm design. 

The step-load-increment estimation is conducted in two steps: first, an initial estimate 

of step load change corresponding to the maximum dynamic loading is made and then the 

estimate of the step load change is improved inside the iteration process.  

Based on the scaled historical load profile, the start time of the load increment and the 

load increment duration, the first time the dynamic loading calculation subroutine is 

called, an initial guess of the step load increment is made. If the peak load of the forecast 

and scaled load curve is below 1.3 p.u., the initial estimate of step load increment is such 
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as to make the peak load equal 1.3 p.u. If the peak load is above 1 p.u., the initial estimate 

of the step-load increment is such as to increase the peak load by 50%. 

During the iteration process, the subroutine makes corrections to the step-load-

increment based on TOT/HST predictions. A Quasi-Newton method is applied here. The 

Quasi-Newton method assumes the relationship between step-load-increment and the 

temperature may be modeled as line with a slop and intercept. The slope is calculated by 

taking the numerical (rather than symbolic/analytic) derivative of load with respect to 

temperature using the equations below,  
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(6.3) 

where: 

k : is the iteration index 

oilI : is the peak value of load curve estimated based on TOT 

hstI : is the peak value of load curve estimated based on HST 

oilI : is the step-load-increment estimated based on TOT 

hstI : is the step-load-increment estimated based on HST 

In more detail of this process: first, we have two estimate of the operating points to 

calculate the first derivative, then, update the numerical estimate of the derivative using 

the most recent load and temperature iteration results. As the iterations proceed, the 
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estimation becomes more and more accurate and finally converges, meaning a load 

profile is reached with causes either the TOT or HST to hit its limiting value. 

However, in our research it was found that some part of the peak HST/TOT versus 

step-load-increment curve (and also peak HST/TOT versus enhanced duration curve) has 

a slope that is close to zero, as shown in Fig. 6.2 and Fig. 6.3. Due to the sensitivity of the 

Quasi-Newton method for the zero (or shallow) sloped lines, a more complicated 

iteration procedure is needed.  

 

Fig. 6.2 Peak HST and Peak TOT versus Load Increment 
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Fig. 6.3 Peak HST and Peak TOT versus Enhanced Duration 

 

Usually, it takes 5-6 iterations to get the optimal solution by using Quasi-Newton 

method. However, if two adjacent estimates of load increment both lay on the part which 

the slope of the curve is close to zero (just like D3 and D4 in Fig. 6.3), the difference 

between the two corresponding peak TOT (or HST) values is nearly zero and, according 

to Equation (6.3), the inverse is unreasonably large; this causes the Quasi-Newton 

method to diverge.  

To solve this problem, a binary search method is implemented. When the Quasi-

Newton method diverges, the program will search the algorithms historical record of 

estimates and find the two specific adjacent estimates: the one causes the TOT or HST to 

be above its limit (“high” estimation, just like D4 in Fig. 6.3) and the other that causes the 

TOT or HST to be below its limit (“low” estimation, just like D3 in Fig. 6.3). Then, the 

binary search starts using these two estimates as the boundary points. In each step, the 
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algorithm creates a new estimate which is halfway between the “high” and “low” 

estimates. If the new estimation leads the TOT or HST being above its limit, the latest 

load estimate is set to be the new “high” estimate; if the new estimate leads the TOT or 

HST being below its limit, the latest load estimate is set to be the new “low” estimate. 

This process is repeated, until the maximum load is found whose corresponding TOT and 

HST values do not violate the specified limits. Typically, it takes 3-4 iterations to get the 

result by using the binary search. Based on SRP’s guidelines, the limiting value of HST is 

set to be 135°C and the corresponding value of TOT is 105°C. Once the TOT/HST limits 

are satisfied, the dynamic loading calculation is finished and the results are displayed on 

the user interface.  

 Cooling Mode Transition in the HST and TOT Calculations 6.6

As described in the previous section, as the load profile is updated (scaled) toward a 

maximum value during the iteration process, the HST and TOT profiles are 

correspondingly updated using the HST and TOT models introduced in Chapter 2 

One challenge encountered is cooling mode or tier switching. When the transformer 

thermal performance is simulated using an updated load profile, the updated load profile 

changes the time at which the transformer enters into and exits each cooling mode. So the 

time point in the 48-hour simulation at which models are changed (to correspond to the 

appropriate cooling condition) must be recalculated during every loop. 

 An Example of Dynamic Loading Calculation for Broadway4 Transformer 6.7

As an example, a dynamic loading calculation is performed on the Broadway4 

transformer. Fig. 6.4 shows the user input on the interface, and Fig. 6.5 and Fig. 6.6 
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display the estimate of the TOT/HST and load curve resulting from the dynamic loading 

calculation using the IEEE model and the ASU model, respectively. 

 

 

Fig. 6.4 Dynamic loading of Broadway4 transformer 
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Fig. 6.5 Dynamic loading result of Broadway4 transformer using IEEE model 

 

 

Fig. 6.6 Dynamic loading result of Broadway4 transformer using ASU model 
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 Conclusion 6.8

The Quasi-Newton method combined with binary search algorithm is discussed in 

this chapter. It has been found though many (>100) trials that the combined methods have 

never failed to converge to an answer.  
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CHAPTER 7  

CONCLUSIONS AND FUTURE WORK 

 Conclusions 7.1

The ultimate goal of this work is to produce a software-based application for 

transformers’ dynamic loading calculation. In this document, two kinds of transformer 

thermal models, the IEEE TOT/HST models and the ASU TOT/HST models, are 

developed and analyzed in this work. Several metrics used to evaluate model 

acceptability in the previous work are described in Chapter 2, and later in Chapter 4, 

additional criteria used as an enhancement for model selection are introduced. Results of 

model testing on transformer Webber3 are discussed. Some researches to improve the 

model performance are also presented. Furthermore, the development of the new 

application based on the existing one and the GUI design are introduced. The dynamic 

calculation algorithm and some challenges encountered in the algorithm design are also 

discussed.  

For this production grade application, both IEEE models and the ASU models are 

used. The advantage of the IEEE models is that all the parameters needed can be 

calculated from the heat-run test report. The ASU models are linearized models built 

from the measured data using linear regression. The ASU models are superior to the 

IEEE models in the fact that: 1) it incorporates ambient temperature variation into the 

model, 2) it creates a model that accurately represents what is in the field, and 3) it 

provides a measure of the reliability of the model.  
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Additional criteria such as the time constant and the model parameter 3K are used, 

together with the existing metrics applied in the previous application, to determine the 

reliability of the ASU models. Results show that more consistent “good” model 

determination could be obtained if additional metrics were used.  

The new application is developed by using an existing application, TTeMP, as a 

starting point. With an easy and simple graphical user interface, it is more convenient for 

the dispatchers and load specialists to use. It gets rid of all lengthy steps in TTeMP and 

gives results directly. Other enhancements are that it can work in a real-time environment 

and it has the capability to perform dynamic loading under emergency conditions, when 

there is a step change in the load curves. Mainly, two scenarios are considered for the 

dynamic loading calculation in this application: fixed-duration, get maximum-step-load 

increment; fixed-load-increment, get maximum-duration. 

The Quasi-Newton method is applied in the dynamic loading calculation. Usually, it 

takes 5-6 iterations to get the optimal solution. However, it is found that under some 

circumstances, the Quasi-Newton method will diverge. Thus, a binary search algorithm is 

used as a backup when the Qusai-Newton method fails. Results show that it takes 3-4 

iterations to get the optimal solution by using the binary search. 

 Future Work 7.2

This application needs some data files from an independent model building 

application. To develop that model building application and incorporate it with the 

dynamic loading calculation tool is the future work. 
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