
Dynamic Scheduling of Stream Programs on

Embedded Multi-core Processors

by

Haeseung Lee

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved August 2013 by the
Graduate Supervisory Committee:

Karamvir Chatha, Chair
Sarma Vrudhula

Chaitali Chakrabarti
Carole-Jean Wu

ARIZONA STATE UNIVERSITY

December 2013

ABSTRACT

Stream computing has emerged as an important model of computation for embedded system

applications particularly in the multimedia and network processing domains. In recent past several

programming languages and embedded multi-core processors have been proposed for streaming

applications. This thesis examines the execution and dynamic scheduling of stream programs on

embedded multi-core processors. The thesis addresses the problem in the context of a multi-tasking

environment with a time varying allocation of processing elements for a particular streaming appli-

cation. As a solution the thesis proposes a two step approach where the stream program is compiled

to gather key application information, and to generate re-targetable code. A light weight dynamic

scheduler incorporates the second stage of the approach. The dynamic scheduler utilizes the static

information and available resources to assign or partition the application across the multi-core ar-

chitecture. The objective of the dynamic scheduler is to maximize the throughput of the application,

and it is sensitive to the resource (processing elements, scratch-pad memory, DMA bandwidth) con-

straints imposed by the target architecture. We evaluate the proposed approach by compiling and

scheduling benchmark stream programs on a representative embedded multi-core processor. We

present experimental results that evaluate the quality of the solutions generated by the proposed

approach by comparisons with existing techniques.

i

ACKNOWLEDGEMENTS

First and foremost, I would like to give my special thanks to my graduate advisor Dr. Karam

Chatha for the patient guidance, encouragement, and advice he has provided throughout my time as

his student. His deep knowledge of wide ranging subjects has the capability to provide solutions to

almost every problem that I encountered in my research. Without his guidance and persistent help, I

will not be able to achieve that I have achieved today. I am really honored to work with Dr. Chatha

during two years of my Master’s study.

I also would like to thank my committee members for agreeing to be on my thesis committee

despite their extremely busy schedule. I would like to thank to Dr. Vrudhula for his dedication to

the Embedded Systems Consortium that benefits all the members including me. I would like to

thank to Dr. Chakrabati for her professional knowledge and guidance. I also would like to thank to

Dr. Wu for continuous support.

All the lab members who have spent their time with me, discuss research problems with

me, giving insight to me, and written papers with me, I would like to thank them too. I would

like to thank Weijia Che for his professional knowledge of stream programs that enlightened me so

many times. I also would like to thank to Amrit Panda for his understanding of architectures and

discussions that we had. I would like to thank to Jyothi Swaroop for the project that we did together

and Anil Chunduru for the support and discussions that we had.

I would like to thank to Arizona State University for giving this great opportunity to conduct

research and to meet so many good people. I would also like to thank my family, father, mother and

my brother. My family’s support keeps me staying on the right track even I am far from home.

Last but not the least, I would like to express my gratitude to Jiyoun Kim for her continued

support and encouragement. She was always there cheering me up and stood by me through the

good times and bad. I cannot put it into words to show my appreciation and love.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

1 INTRODUCTION . 1

2 PREVIOUS WORK . 4

3 PRELIMINARIES . 6

3.1 Stream program . 6

3.2 Embedded multi-core architecture . 6

3.3 Problem description . 6

4 DYNAMIC SCHEDULING OF STREAM APPLICATIONS 8

4.1 Compile time analysis and re-targetable code generation 8

4.1.1 Structure of the application . 8

4.1.2 Periodic admissible sequential schedule 9

4.1.3 Retargetable code generation . 9

4.1.4 SDF annotation and actor classification 10

4.2 Dynamic scheduler . 10

4.2.1 Calculation of optimal workload per core 10

4.2.2 Calculation of workload and memory requirements of a batch 11

4.2.3 Actor to batch assignment or fusion . 12

4.2.4 Batch replication and core assignment . 13

4.2.5 DMA overhead amortization . 13

4.2.6 Algorithm and complexity analysis . 14

4.3 Implementation details . 16

4.3.1 SPM layout and allocation . 17

4.3.2 Software pipelining . 17

4.3.3 Run-time control thread . 19

5 EXPERIMENTAL RESULTS . 21

5.1 Comparisons with existing approaches . 21

iii

CHAPTER

CHAPTER Page
5.1.1 Comparison with Flexstream [8] . 21

5.1.2 Comparison with Baker et al. [1] . 23

5.1.3 Performance comparison with compile time approach 24

5.1.4 Impact of DMA amortization optimization and comparisons with optimal . 25

5.1.5 Performance scaling with available cores and memory 25

6 CONCLUSION WITH FUTURE WORK . 28

REFERENCES . 29

iv

LIST OF TABLES

Table Page

5.1 StreamIt Benchmarks . 22

v

LIST OF FIGURES

Figure Page

1.1 Problem addressed by the thesis . 2

4.1 Dynamic Scheduler Framework . 9

4.2 DMA overhead amortization . 14

4.3 Memory layout for a local SPM. 16

4.4 Software pipelined execution. 18

5.1 Comparison with Flextream . 22

5.2 Comparison with Baker et al. 23

5.3 Comparison with compile time approach . 24

5.4 Performance without DMA amortization . 26

5.5 Performance with DMA amortization . 26

5.6 DCT performance scaling . 27

5.7 FFT performance scaling . 27

vi

Chapter 1

INTRODUCTION

Stream computing has emerged as an important programming model for high performance compute

intensive embedded system workloads. Examples of such workloads include network processing,

multimedia and signal processing and computer vision. Stream programs are typically specified

as a set of actors or filters communicating with each other through FIFOs. In each execution an

actor consumes a fixed amount of tokens or data items on its input FIFO(s) and produces a fixed

amount of tokens on its output FIFO(s). Thus, a stream program specification exposes the task and

data level parallelism of the application. A number of stream programming languages have also

emerged in recent past for specifying such applications. CUDA [15], Peakstream [18], Rapidmind

[14], TStreams [11], OpenCL [19], StreamIt [20], and CAL [6] are examples of commercial and

academic stream programming languages. Typically, stream applications exhibit stable actor execu-

tion sequence and memory access patterns. Consequently, stream applications can be aggressively

analyzed statically to generate highly optimized implementations.

Processor architectures specifically aimed at stream programming workloads have also

emerged concomitantly with stream computing and programming languages. Such processor ar-

chitectures are also called as stream processors and they incorporate specialized architectural fea-

tures. As stream computing workloads are characterized by high computation requirements, stream

processors are implemented by multi-core architectures. Specifically, stream processors are imple-

mented as heterogeneous multi-core architecture where control plane processor(s) implements the

more mundane workloads (such as OS, JVM and so on) and a multi-core data plane sub-system

implements the streaming workloads. The data plane sub-system typically consists of an array of

homogeneous processor cores that may incorporate specialized instructions based on the target do-

main. More importantly as stream programs permit extensive static analysis, the data plane proces-

sors incorporate scratch pad memories (or SPM) instead of caches. SPM requires the programmer or

compiler to manage the code execution and scheduling along with data communication. Although,

there is a greater burden on the static (manual or automated) design phase with SPM, the generated

designs exhibit higher performance and lower power consumption in comparisons to cache based

architectures. Finally, the data plane processors do not host an OS. Rather, the OS or scheduler

1

L1 PXU* L2

PPU

PPE

EIB

SXU*

Local
Store

MFC*

SPE0

SPU

SXU*

Local
Store

MFC*

SPE1

SXU*

Local
Store

MFC*

SPE2

SXU*

Local
Store

MFC*

SPE3 SPU
SPU

SPU

SXU*

Local
Store

MFC*

SPE4

SPU

SXU*

Local
Store

MFC*

SPE5

SPU

SXU*

Local
Store

MFC*

SPE6

SPU

SXU

Local
Store

MFC*

SPE7

SPU

filter split-join

pipeline feedback-loop

StreamIt Specification IBM Cell BE Architecture

Dynamic scheduling

Figure 1.1: Problem addressed by the thesis

executing on the control plane processor is responsible for overall orchestration of application exe-

cution on the data plane. Examples of commercial stream processors include IBM Cell Broadband

Engine (BE) [9], Nvidia GeForce series [10], Ageia’s PhysX [22], TI TMS320C6472 [21] and many

DSPs.

A key challenge in implementing stream programs on associated stream processor archi-

tectures is the partitioning or parallelization of the application across the multi-core data plane. As

the data plane processors incorporate an SPM the programmer or compiler is burdened with the

task of also partitioning the limited SPM for code and data, and initiating transfers of code from

external DRAM memory, and data to/from external DRAM and SPMs of other cores. The pro-

grammer or compiler must balance computation with communication overheads to maximize the

throughput of the application. To the best of our knowledge there are not commercial tool chains

that can effectively perform all the design trade-offs for implementing an application on stream pro-

cessor architectures. However, several compiler techniques and optimizations have been proposed

in recent past in academia.

A key drawback of the static compilation approaches is that it produces a single executable

code implementation. For example if the target processor architecture has 8 cores, the compiler

will optimize the application to utilize all the 8 cores (or fewer if specified). However, the number
2

of cores available to execute an application vary in a typical multitasking embedded system. For

example it is quite possible that 4 cores are initially available to run an application, after some

time 8 cores are available and next 2 cores are available. In other words the number of cores

available to execute a stream application may vary over time. Existing compiler approaches do

not permit dynamic variation in the available number of cores for a streaming application. This

thesis addresses the problem of dynamic scheduling of streaming applications on embedded multi-

core architectures (see Figure 1.1). Specifically, we present a two stage approach consisting of

retargetable code generation at compile time, and its dynamic scheduling at run time. The proposed

dynamic scheduling approach is able to assign actors to processing cores at runtime while effectively

balancing the limited SPM memory and communication overheads. We present experimental results

that compare the proposed approach against other existing dynamic scheduling techniques, and

static compilation approaches.

The remainder of the thesis is organized as follows. Chapter 2 compares the proposed

approach against existing research, Chapter 3 discusses required background on stream program

specification, embedded processor architectures, and formally defines the problem, Chapter 4 de-

scribes the proposed approach, Chapter 5 discusses the experimental results, and finally Chapter 6

concludes the thesis.

3

Chapter 2

PREVIOUS WORK

Pino et al. [17] addressed the problem of scheduling SDF specifications on multi-core processors.

Chen et al. [5] and Ostler et al. [16] proposed approaches for mapping networking applications on

multi-core network processors. Liao et al. [13] proposed techniques for parallelizing Brook lan-

guage specification on general purpose processors. Gordon et al. [7] developed a heuristic approach

to generate multi-threaded code for RAW processor architecture. Kudlur et al. [12] proposed an

integer linear programming (ILP) based approach for mapping StreamIt applications on IBM Cell

BE. Che et al. [4] proposed an ILP and heuristic technique for mapping StreamIt specifications on

Cell BE that accounted for the on-chip memory constraints. They improved upon their previous

work by addressing cyclical dependencies in the StreamIt specification [3]. All of these approaches

generate one parallelized implementation for the input specification based on the available cores in

the target architecture. If the available number of cores that are available on the target architecture

are reduced the implementation cannot be utilized. Thus, the compiled executables are not able to

address dynamic variations in available resources.

Wiggers et al. [23] made a case for runtime scheduling and noticed that for dataflow based

applications runtime scheduling can be managed at high level of abstraction. Zhang et al. [24]

proposed a dynamic scheduling scheme for IBM Cell BE that utilizes a operating system like ready

queue based approach which ignores the overall structure of the application. Blagojevic et al. [2]

presented a multigrain parallel scheduling (MGPS) approach for IBM Cell BE that uses message

passing interface (MPI) protocol and aims to combine task and loop parallelization schemes. The

approach relies upon a fixed task to SPE assignment and therefore cannot effectively adopt to vari-

ations in number of available cores.

Flexstream proposed by Hormati et al. [8] is one of the two existing approaches whose

problem focus closely matches ours. Flexstream utilizes a compile time ILP optimization to gen-

erate a maximal parallel implementation of the StreamIt specification on the IBM Cell like archi-

tecture. The parallel implementation is then adopted to address variations in available number of

cores at run time. Baker et al. [1] also proposed an approach to dynamic scheduling of StreamIt

4

specification on IBM Cell BE. They utilize compile time heuristic approach to generate a periodic

admissible sequential schedule (or PASS) of the StreamIt specification that is dynamically paral-

lelized at run time. Our static compile time approach is similar to Baker et al. However, we also

describe schemes for generation of re-targetable code and its implementation at run-time. Our dy-

namic scheduler is distinguished from both Flexstream and Baker et al. by its structured unrolling

approach to achieve highly optimized implementations through fusion and fission. Further, in com-

parison to Baker et al. the computational complexity of our algorithm is linear for a fixed number

of cores. The experimental results demonstrate the superior performance of the proposed approach

against both Flexstream and Baker et al., and establish the contribution of the thesis.

5

Chapter 3

PRELIMINARIES

3.1 Stream program

We consider stream programs that are specified using StreamIt [20]. In StreamIt a filter, also called

an actor in the thesis, is the smallest unit of computation (see Figure 1.1). An actor can be composed

by container classes into split-join construct to specify task level parallelism, pipeline construct to

specify data level parallelism, and feedback construct. A filter communicates with other filters

through FIFOs. A filter in each execution or firing consumes a fixed number of tokens or data items

from its input FIFOs and produces a fixed number of tokens on its output FIFOs. An actor can fire

as long as there are enough tokens on its input FIFOs and the output FIFOs have sufficient space to

hold the data tokens. As such the StreamIt execution semantics closely follow synchronous dataflow

(SDF) model of computation, and the intermediate representation (IR) used by our approach is based

on SDF.

3.2 Embedded multi-core architecture

We consider the IBM Cell BE [9] as a representative stream processor architecture (see Figure 1.1).

The Cell BE is a 32-bit architecture composed of a Power processor element (PPE) that acts as the

control plane processor, and eight synergistic processing elements (SPEs) that form the data plane

subsystem. Each SPE has 256 KB SPM that must be managed by the programmer for hosting both

code and data. Each SPE is also equipped with a DMA engine for communicating both code and

data to/from DRAM and other SPMs. The 9 processing cores are connected with each other and

the DRAM controller through the element interconnect bus (EIB). The DMA overhead for sending

data over the EIB has been characterized as (0.21+0.075×d)µs where d is the size of data in KB

that is being communicated [3].

3.3 Problem description

Given:

• An SDF based description of the StreamIt specification as G(V,E) where V is the set of actors

and E is the set of FIFOs. For each u ∈V , t(v) describes the run time of the actor on a single

SPE and s(v) describes the code size in KB. Similarly for each e(u,v) ∈ E, p(e) denotes the

6

number of tokens produced by u, c(e) gives the number of tokens consumed by v, s(e) gives

the size of each token in KB of each token produced by u, and d(e) gives the initial number

of tokens on an edge (relevant in the case of cycles).

• An embedded multi-core processor where P denotes the set of cores currently available for

the application in the data plane, M denotes the size of SPM associated with each processor,

and DMA overhead for communicating d KB is given by f (d) = (0.21+0.075×d)µs.

Generate a run-time schedule that maps the actors to cores in the data plane subject to the memory

constraints and communication overheads with an objective of maximizing the throughput of the

application.

7

Chapter 4

DYNAMIC SCHEDULING OF STREAM APPLICATIONS

Our approach to dynamic scheduling of stream applications on embedded multi-core architectures

consists of two stages (see Figure 4.1). In the first stage we utilize a compiler to analyze the stream

application and generate re-targetable code for the actors along with some other information. Dur-

ing run time a dynamic scheduling framework executes the application on the available cores. The

dynamic scheduling framework has the capability to execute the same application on variable num-

ber of cores. In the following few sections we discuss the compilation stage, dynamic scheduling

algorithm and implementation details. In our approach we have considered StreamIt as the input

specification language and IBM Cell BE as the target multi-core architecture.

4.1 Compile time analysis and re-targetable code generation

The key objective of the compilation stage is to statically analyze the application, generate key

information for the dynamic scheduling algorithm, generate a periodic sequential schedule for the

application, and create re-targetable executables for the actors within the application.

4.1.1 Structure of the application

The compiler analyzes the StreamIt specification to extract the SDF based intermediate representa-

tion of the application. The SDF representation captures the graphical structure of the application

along with the number and sizes of data tokens produced and consumed on each edge. We make

two transformations on the SDF based representation driven by our focus on dynamic scheduling.

We first transform the SDF into a single appearance schedule. Thus, each actor in the transformed

schedule has only one firing for one complete execution of the application. Further, we collapse

any cycles in to a single actor. Both these optimizations reduce the size of the SDF and complexity

of the dynamic scheduling problem. We would like to emphasize that as we are considering SDFs

that represent entire applications, cycles are not very common. We call the transformed structure

as SDF’ and the corresponding graph is denoted by G′(V ′,E ′). In the single appearance SDF’ each

edge e ∈ E has the same number of tokens that are produced and consumed, and we denote it as

pc(e).

8

St
re

am
P

ro
gr

am

1
. G

e
n

e
ra

te
 P

A
SS

2
. R

e
ta

rg
e

ta
b

le
 c

o
d

e

 g
e

n
e

ra
ti

o
n

3
. C

la
ss

if
y

A
ct

o
rs

1
. R

e
ce

iv
e

 R
e

so
u

rc
e

 C
o

n
fi

gu
ra

ti
o

n

2
. C

re
at

e
 B

at
ch

e
s

&

 C
al

cu
la

te
 U

n
ro

lli
n

g
fa

ct
o

r

3
. A

d
ju

st
 U

n
ro

lli
n

g

 P
ar

am
e

te
r

4
. D

M
A

 o
ve

rh
e

ad

 a
m

o
rt

iz
at

io
n

Run TimeCompile Time

Sc
h

e
d

u
le

d
P

ro
gr

am

Generate Resource Based
Schedule

Generate PASS

5
. A

ss
ig

n
 B

at
ch

e
s

to

 P
ro

ce
ss

o
rs

Figure 4.1: Dynamic Scheduler Framework

4.1.2 Periodic admissible sequential schedule

The compiler conducts the rank test on the application and generates the periodic admissible se-

quential schedule or PASS for the application if a schedule exists. The PASS is generated by a

depth first traversal of the SDF’ subject to precedence constraints between parent and child actors.

The algorithm requires that a special source actor exist in the application that generates the input

data stream. For example in the StreamIt benchmarks the file reader actor acts as the source actor

for the application. As the SDF’ is a single appearance graph, the generated PASS fires all instances

of the same actor in the original SDF as a consecutive sequence. Further, all actors belonging to a

cycle are also fired consecutively.

4.1.3 Retargetable code generation

The compiler generates retargetable binaries for all the actors. We are interested in run time scaling

up or down of the number of cores available to the application. As we do not know the number of

cores available to the application, we initially assume that all the actors are assigned to the same

core and executed according to the PASS. In the case that the application does not contain cycles

or stateful (described below) actors, replication of the same PASS across the available number of

cores is indeed the throughput optimal solution (subject to available memory).

9

4.1.4 SDF annotation and actor classification

After the binaries have been compiled the static analysis phase generates additional information

for the dynamic scheduler. It records the code memory requirements for each actor, workload for

one firing of the actor in SDF’, total workload for the PASS which is represented by Wpass, and

classification of the actors in SDF’ as stateless or stateful. An actor is classified as stateful and is

represented by ust f if the output in each firing is a function of the current and past inputs (stored as

state). Alternatively, an actor is stateless and is denoted by ustl if the outputs are purely a function

of the current inputs. An actor in SDF’ that represents a cycle in SDF is labeled as stateful.

4.2 Dynamic scheduler

The objective of the dynamic scheduler is to generate a highly optimized software pipelined sched-

ule for execution of the streaming application. The dynamic scheduling algorithm utilizes software

pipelining and unrolling to maximize the throughput of the application. Software pipelining is

achieved by introducing double buffering for inter-core communication. Unrolling is achieved by

utilizing a fusion-fission approach. Fusion assigns multiple actors to a single batch. Fission assigns

each batch to one or more cores. When a batch is assigned to more than one core it effectively

unrolls the SDF’. As the schedule is generated dynamically we are interested in a near linear time

algorithm. In the following paragraphs we describe the calculation of optimal and batch workloads,

actor to batch assignment, fission or unrolling of a batch, and block processing to amortize DMA

overhead. Finally, we discuss the pseudo code for the algorithm and its computational complexity.

4.2.1 Calculation of optimal workload per core

The optimal workload for each core Wopt for a given application is a function of the number of

cores, and maximum workload of a stateful actor, and is given by:

Wopt = max{
Wpass

n
, max
∀ust f∈V ′

(W (ust f))}

As multiple instances of a stateful actor in an unrolled SDF’ must be executed sequentially, the

effective throughput of the stateful cannot be increased by its replication across multiple cores.

Alternatively, the effective throughput of a stateless actor can be increased in an unrolled SDF by

replicating it on multiple cores. Thus, the optimal workload of the application is also lower bounded

by the maximum workload of any stateful actor.
10

4.2.2 Calculation of workload and memory requirements of a batch

As an actor u is assigned to a batch b, the workload of the batch W (b) is summation of its current

workload plus the actor workload. Thus,

W (b) =W (b)+W (u)

The memory requirement of a batch M(b) is summation of the memory required by code for ac-

tors assigned to the batch, intra-batch (same as intra-core) communication buffers, and inter-batch

(identical to inter-core) communication buffers. Thus,

M(b) = Mcode(b)+Mintra(b)+Minter(b)

As an actor is assigned to a batch, the code memory requirement of the batch increases by the size of

binary executable file for the actor. The increase in buffer memory requirement is dependent upon

if the parent or child of the actor have been assigned to any batch or not (currently unassigned).

Further, if the parent or child has already been assigned to the same batch as the actor or a different

one, the memory requirements are different. Thus, we have the following three cases:

• Case I : The parent u of the actor v has not been assigned to any batch. In this case we initially

assume that u will be assigned to a different batch, and the inter-batch communication buffer

requirement is increased to accommodate for double buffering.

Minter(b) = Minter(b)+2× pc(e)× s(e),e(u,v) ∈ E ′

Similarly, for a child w of v that has not been assigned to any batch we initially assume double

buffering. Thus, the equation is identical except the edge e(v,w) is considered.

• Case II : The parent u of the actor v has been assigned to the same batch as v. In this case

we remove the double buffers that we had initially assigned for inter-batch communication,

and increase the buffer for intra-batch communication. Thus,

Minter(b) = Minter(b)−2× pc(e)× s(e),e(u,v) ∈ E ′

Mintra(b) = Mintra(b)+ pc(e)× s(e),e(u,v) ∈ E ′

11

The calculation for a child actor w which has also been assigned to the same batch as v is also

similar.

• Case III : The parent u of the actor v has been assigned to a different batch b′. In this case

we only need to assign space for double buffering in batch b to which v is being assigned.

Thus,

Minter(b) = Minter(b)+2× pc(e)× s(e),e(u,v) ∈ E ′

The buffer space calculation for a child w of actor v is similar.

4.2.3 Actor to batch assignment or fusion

The dynamic scheduling algorithm first assigns stateful actors to batches followed by stateless ac-

tors. The strategy for actor to batch assignment is different for each of these two types of actors.

1. Stateful actors : We assign stateful actors to a batch in the order that they appear within the

PASS. We assign multiple stateful actors to a batch as long as the workload of the batch is

less than Wopt and memory requirements of the batch are lower than the SPM (M) size. When

addition of an actor to a batch results in the violation of either of these two constraints, we

assign the actor to a new batch. We refer to a generic stateful actor batch as bst f
i .

2. Stateless actors : The stateless actors are also assigned to batches in the order that they

appear within the PASS. However, in the assignment of the stateless actors we only consider

the memory constraints. That is we only ensure that the memory requirements of the batch

are lower than the SPM size. We ignore the workload of the batch as we can maximize the

workload of a stateless actor batch by fission (or unrolling). We refer to a generic stateless

actor batch as bstl
i .

It is possible that at this stage after assigning actors to batches the total number of batches

are greater than the number of cores. Thus, we cannot do one to one mapping between the batches

and cores. The primary reason for mapping stateful and stateless actors to different batches is to

be able to improve the throughput of stateless batches by batch replication. If on the other hand

the number of batches are already greater than the number of cores, we cannot do replication. In

such a case we attempt to generate a new solution where we mix both stateful and stateless actors in
12

batches. The actors are assigned in the order that they appear within the PASS. We again ensure that

Wopt and SPM memory constraints are not violated. If the solution still has more batches than the

number of cores, then we make a final attempt by re-distributing the actors in the smaller workload

batches across batches with larger workloads subject to memory constraint. If a valid solution is

still not found we declare failure.

4.2.4 Batch replication and core assignment

After the actors have been assigned to batches we improve the throughput of the application by

unrolling or fission provided the number of batches are less than the number of cores. During fission

we only consider batches that contain stateless actors. Each batch of stateful actors are assigned a

unique core. Let P′ denote the number of cores that is remaining after the stateful batches have been

assigned. We first calculate the optimal fission for each batch of stateless actors bi:

U∗(bstl
i) =

W (bstl
i)

max∀ j(W (bst f
j))

Notice that U∗(bstl
i) is not necessarily an integer. We then estimate the total core requirement after

fission as K = ∑∀iU∗(bstl
i). The fission of a stateless batch is then set as:

U(bstl
i) =

K > P′

⌊
U∗(bstl

i)× P′
K

⌋
K ≤ P′ bU∗(bstl

i)c

If at the end of batch replication there are some free cores (number of batches less than the

number of cores) and the optimal workload of the application is constrained by stateless batch, then

we attempt to improve the throughput by generating an alternative solution. In the new solution we

mix both stateful and stateless actors together, and assign actors to batches in the order that they

appear within the PASS. We compare the new alternative with the previous solution, and select the

one with better performance.

4.2.5 DMA overhead amortization

In our actor to batch (and eventually core) mapping we do incorporate double buffers for amortiz-

ing DMA overheads. However, DMA overheads are typically governed by a minimum base cost

(0.21µs on Cell BE). The base cost is constant below a certain threshold, Dth of data transfer (Dth

is 2KB in Cell BE) and then increases linearly with data size X (7.5× 10−2×Xµs in Cell BE).
13

A

B

C

A

batch1 batch2 batch3

P1 P2 P3

B

C

W
D

M
A

1

A

C

C

batch1 batch2

P1 P2 P3

A

B

B

C

C

batch3

B

BA

A

(a) Unroll factor: 2 (b) Unroll factor: 4

τDMA τDMA

W
D

M
A

2

W
D

M
A

3

W
D

M
A

2

W
D

M
A

3

W
D

M
A

1

W
D

M
A

1
W

D
M

A
1

Figure 4.2: DMA overhead amortization

Thus, if a DMA operation involves fewer than Dth KB of data, its cost can be amortized by block

processing. Block processing involves delaying the transfer of data until more data is produced by

computation and then initiating bulk transfers. Effectively, block processing involves further un-

rolling of the application and requires more buffer memory for inter-core communication. Figure

4.2 shows an example of block processing. The left hand side of Figure 4.2 depicts the original

design produced by the fission stage that has an unrolling factor of 2. However, the DMA transfer

size for batch 1 is lower than the threshold, and its overhead is greater than associated computation.

We unroll the implementation thereby increasing the unrolling factor to 4 as shown in the right

hand side of Figure 4.2. As the rate of increase of DMA overhead beyond the threshold is quite

low, we are able to completely mask the communication overhead by computation. Our algorithm

applies block processing only if the DMA overhead for some batch is greater than its associated

computation, and if the block processing indeed would result in an improvement.

4.2.6 Algorithm and complexity analysis

The pseudo-code for the dynamic scheduling algorithm is given in Algorithm 1. Line 3 calculates

the Wopt , Line 4 assigns the stateful actors to batches, and Line 6 assigns stateless filters to batches.

Line 8 performs batch replication or fission if the number of batches in current solution is less than

number of cores (F = f alse). Line 9 checks for the case if the number of batches is less than the

number of cores, and if the optimal workload is constrained by stateless batches. Function Wmax()

returns the maximum workload over a set of batches. Line 10 sets R as true if the condition is

14

Input : List of stateful actors Lst f in PASS order
: List of stateless actors Lstl in PASS order
: List of actors denoting the pass PASS
: P, M, G’(V’,E’)

Output: List of batches B (|B|= |P|), or failure
1 B← /0 ;
2 F← false, R← false ;
3 Wopt ← CalcWopt(Lst f , Lstl , P);
4 AssignBatches(Lst f , B, Wopt , M);
5 if |B|> |P| then F← true;
6 if not F then AssignBatches(Lstl , B, ∞, M) ;
7 if |B|> |P| then F← true;
8 if not F then ReplicateBatches(B);
9 if |B|< |P| and Wmax(Bst f)<Wmax(Bstl) then

10 R← true;

11 if F or R then
12 B’← /0 ;
13 AssignBatches(PASS, B’, Wopt , M);
14 if |B′|> |P| then ReAssignBatches(B’);
15 if F and |B′| ≤ |P| then
16 F← false;
17 B← B’;

18 if R and |B′| ≤ |P| and Wmax(B′)<Wmax(B) then
19 B← B’;

20 if not F then DmaAmortization(B, f);
21 if F = true then return failure else return B;

Algorithm 1: DynamicScheduler()

Input : List of actors A,Wopt , M
Input and Output: List of batches B

1 b← newbatch() ;
2 while A 6= /0 do
3 a← A.getactor();
4 if (W(b) + W(a) ¿ Wopt) OR
5 (M(b) + M(a,b) ¿ M) then
6 B.addbatch(b) ;
7 b← newbatch() ;

8 b.addactor(a);

9 if b 6= /0 then B.addbatch(b);

Algorithm 2: AssignBatches()

satisfied. The if block of Line 11 generates a solution by assigning actors in the PASS order to

batches. The algorithm enters the block if no valid solution has been generated upto this stage

(F = true) or R is true. Line 14 attempts to re-distribute the smaller workload batches across the

larger workload batches (subject to memory constraint) if the generated solution is not valid. The

function ReAssignBatches() performs this operation and modifies B′. If the new solution is valid,

15

Library Functions and Global Data

Run-time Control Thread

Heap

Stack

Overlay Tables and Control Blocks

Internal Buffers

Incoming Buffers

Outgoing Buffers

Actor Code

Figure 4.3: Memory layout for a local SPM.

Line 15 updates F and B accordingly. Line 18 checks if the new solution is better than the previous

solution and updates B. Line 20 performs DMA overhead amortization, and finally Line 21 returns

the final solution as B (if it is found).

The functions AssignBatches() and ReplicateBatches() have a complexity of O(|V |). Wmax()

has a complexity of O(|P|). As the function ReAssignBatches() sorts the existing batches it has

a complexity of |P|log|P|. Consequently the overall complexity of the algorithm is given by

O(|V |+ |P|+ |P|log|P|). In other words for a given architecture (P is constant) the complexity

of the algorithm is linear in the number of actors in the application (O(|V |).

4.3 Implementation details

In this section we discuss the implementation details for the dynamic scheduler in the context of

an embedded multi-core architecture. In the following we have assumed the target architecture as

IBM Cell BE. However, the discussion holds true for other multi-core architectures that utilize an

SPM. In the following sections we discuss the memory map, software pipeline implementation, and

run-time control thread.

16

4.3.1 SPM layout and allocation

Figure 4.3 describes the memory layout of an SPM attached to a data plane core. The memory

is partitioned into contiguous regions for library functions and global data, code region for our

runtime control thread, overlay tables and control blocks, heap, and stack. Given a fixed size SPM,

we first preserve the memory for library function and global data. Then, the memory for storing

the code of our run time control thread is allocated. Immediately after the static code region, we

allocate a fixed size memory for storing overlay tables and control blocks1. We maintain two overlay

tables, one for storing information of the code source, destination addresses, and size of each actor

(ovly table). The other table maintains information about whether an actor is present in the on-chip

SPM (ovly buf table). The control blocks also have two implementations, namely batch control

block (bcb) and actor control block (acb). A batch control block contains information of the entire

batch, and an actor control block contains information that is specific to each actor. The remaining

memory is designated for heap and stack. The actor code and their data buffers of each SPM are

dynamically allocated in heap because they are unknown at compile time. The buffers include space

for intra-core communication, inter-core incoming data, and inter-core outgoing data. Section 4.2.2

included the discussion for calculation for data buffer sizes to be allocated.

4.3.2 Software pipelining

As discussed earlier the dynamic scheduler generates a software pipelined schedule for application

execution. Figure 4.4 provides a simple example with 2 actors and 3 processing engines. We will

first discuss this example as a case study and then explain the implementation details.

In Figure 4.4 (A) we have a stream application with one producer A and one consumer B.

Assume that the workload of A is twice of B, and B is a stateful actor. After mapping them to 3

processors we will have actor A mapped to batch B0 then replicated once, and actor B mapped to

batch B1. After batch to processing engine mapping, we have the first copy of actor A (A0) mapped

to processing engine P1, the second copy of actor A (A1) mapped to processing engine P2, and actor

B mapped to processing engine P3. Each copy of A and B has two buffers for every communication

edge to implement double buffering. At iteration 0, both A0 and A1 start execution. Exec A0,0

1We assume an upper bound on the memory requirement for the tables.

17

A B
A0

B
A1

Stream Application

batching

P1 P2 P3

(A)

B0 B0 B1

Outgoing Buffers

Incoming Buffers

Processor 1 Processor 2 Processor 3

iter0
Exec A0,0 Exec A1,0

iter1

iter2
Exec A0,1 DMA {A0,0} Exec A1,1 DMA {A1,0}

iter3

iter4
Exec A0,2 DMA {A0,1} Exec A1,2 DMA {A1,1}

Exec B,0 {A0,0}

iter5 Exec B,1 {A1,0}

iter6
DMA {A0,2} DMA {A1,2}

Exec B,2 {A0,1}

Iter7 Exec B,3{A1,1}

iter8 Exec B,4{A0,2}

iter9 Exec B,5 {A1,2}

(B)

Figure 4.4: Software pipelined execution.

in Figure 4.4 (B) denotes the first execution of A0 and DMA{A0,0} denotes that the DMA engine

transfers the output data of Exec A0,0 to its destination. Starting from iteration 2, the output data

of A0 and A1 are available. We start DMA{A0,0} at iteration 2 and in iteration 4 we start the first

execution of B that consumes this data, denoted by Exec B,0{A0,0}. We also start DMA{A1,0} in

iteration 2 that transfers data to the other incoming buffer of B. Consequently, we have parallelized

executions of (A0,1), (A1,1), (DMA{A0,0}), and (DMA{A1,0}) in this iteration. Then in iterations

4 and iteration 5, we have A0, A1 each being executed once, their data being transferred to B, and

Actor B executed twice. This is also the steady state execution of the entire application. We set

synchronization barriers across the steady state schedule.

18

1 while true do
2 msg = wait mailbox();
3 if msg.stop execution==true then
4 break;

5 if msg.new schedule start==true then
6 Free previous memory and allocate new memory;
7 DMA control blocks and overlay tables;

8 if msg.flush pipeline start==true then
9 DMA control blocks;

10 Initiate DMAs for input data for index+1;
11 for i = 0; i < bcb.actors; i++ do
12 if bcb.idx≥ acb[i].start && bcb.idx≤ acb[i].end then
13 Execute actor[i];

14 Check and ensure DMAs complete;
15 write mailbox(msg);

16 write mailbox(msg);

Algorithm 3: Run-time Control Thread.

In our implementation, the control block of each batch holds the information of the current

execution index and the number of actors mapped to the batch. The control block of each actor

contains information of the iteration at which the current actor starts execution and DMA operations,

the address location of actor code, pointers for its input and output data buffers in local SPM, and

the source and destination of its incoming and outgoing data. All control blocks are initialized in

the control plane processor by the dynamic scheduler, and then transferred to each on-chip SPM

through DMAs. A main routine that operates on these data and executes a batch is discussed in the

following section.

4.3.3 Run-time control thread

Algorithm 3 describes the main routine of our run time control thread that executes on the data plane

core (SPE in IBM Cell BE) and implements the previously discussed software pipelined execution.

The main body of the control thread is a while loop. Line 2 in the algorithm implements the

synchronization barrier, and waits for a message from the control plane core (PPE in IBM Cell BE).

The message has four components. The msg.stop execution bit determines whether we terminate

the slave thread. If msg.stop execution is true, then the control thread exits immediately and writes a

message back to the control plane core, Line 16. Otherwise, it checks msg.new schedule start bit to

see whether the current iteration is a start of a new schedule. If msg.new schedule start is true, then

19

the control thread frees any heap memory that has been allocated, including previous allocations

for actor code and data buffers. Then it reallocates memory for actor code and data buffers of

the new schedule. The size of each memory allocation can be extracted from the same mailbox

message. It then initializes the control blocks and overlay tables with data that is generate by the

dynamic scheduler through DMAs. The msg.flush pipeline start bit indicates whether we terminate

the execution of the current application and flush the entire pipeline. If msg.flush pipeline start is

true, then the control thread updates the actor control blocks. The corresponding end iterations of

actor executions and DMA transfers will be updated which flush the software pipeline. Lines 10-

14 implement parallel execution of a batch for the current iteration and DMA transfers for the last

iteration. The thread first initiates DMA transfers for data that are produced from the previous stage.

Then for each actor, if the current batch execution index is no less than its execution start index and

no more than its execution end index, it executes the current actor. After execution of every actor

in the batch, it ensures that the DMA transfers for data that were produced in the previous are

complete. Then it writes a mailbox message back to the control plane processor for starting the next

iteration.

20

Chapter 5

EXPERIMENTAL RESULTS

We evaluated our technique by compiling and dynamic scheduling of StreamIt benchmark applica-

tion suite (shown in Table 5.1). The target architecture was considered to be similar to IBM Cell BE.

We compared the performance of our approach with two existing dynamic scheduling techniques

proposed by Hormati et al. (Flexstream) [8] and Baker et al.[1]. We also compared the performance

of our dynamic scheduler with a static scheduling technique proposed by Che et al. [3]. We char-

acterized the workloads and buffer requirements of the actors by compiling and executing them on

IBM Cell BE. In order to evaluate the proposed and existing approaches for architectures with larger

number of cores we constructed SystemC models. The run time of actors and the communication

overheads in the model were based on the characterization values obtained from the IBM Cell BE.

The run-time of the dynamic scheduling algorithms were obtained by executing them on the Pow-

erPC core of the IBM Cell BE. The run-time of the static analysis stage of the various approaches

was obtained on Intel Xeon Quad-core processor at 2.8 GHz.

5.1 Comparisons with existing approaches

5.1.1 Comparison with Flexstream [8]

Flexstream utilizes an integer linear programming (ILP) formulation to obtain a maximal parallel

schedule during design time on the available number of cores. It then reduces the degree of paral-

lelism in the implementation dynamically as the number of cores are reduced. In our experiment

we set the maximum number of cores as 32. Thus, Flexstream generated an implementation for

each application at compile time that required 32 cores. We then evaluated the performance of the

Flexstream approach as the number of cores were varied from 2 to 32. Figure 5.1 plots the perfor-

mance improvement in throughput achieved by utilizing our approach in comparison to Flexstream

for each of the StreamIt benchmarks and for 2-32 cores. A few trends are clearly observable. The

designs generated by our approach are overwhelmingly superior to Flexstream in vast majority of

the cases. Further, the performance due to our approach improves as the number of cores increase.

The rate of increase in performance reduces at 32 cores. This is because the Flexstream implemen-

tation at 32 cores is the statically generated design. However, the designs by our approach even at

32 cores is better than Flexstream. The primary reason for the better performance of our approach is

21

benchmark actors edges % stateful
beamformer 56 58 82%
bitonic sort 40 46 35%

channelvocoder 55 70 65%
dct 8 7 0%
des 53 60 38%
fft 17 16 0%

filterbank 85 99 58%
fm 43 53 65%

mpeg2 subset 23 26 30%
serpent full 120 128 43%

tde-pp 29 28 3%
vocoder 114 147 72%

Table 5.1: StreamIt Benchmarks

0.1

1

10

100

1000

Th
ro

u
gh

p
u

t
R

at
io

 (
lo

g
sc

al
e

)
(O

u
r

A
lg

o
ri

th
m

/F
le

xt
re

am
)

2 core
4 core
8 core
16 core
32 core

Figure 5.1: Comparison with Flextream

the aggressive unrolling that we apply both during fission (or batch replication) and DMA overhead

amortization. Our approach generates designs that are on an average 5.55 times faster (standard de-

viation of 17.91) than Flexstream. Further, our compile time stage on an average executes in 0.03s

while Flexstream ILP approach requires 49000s. Finally, our dynamic scheduling stage requires

0.3ms on average while Flexstream executes in 0.27ms.

22

0.1

1

10

100

1000

Th
ro

u
gh

p
u

t
R

at
io

 (
lo

g
sc

al
e

)
(O

u
r

A
lg

o
ri

th
m

/B
ak

e
r

e
t

al
)

2 core
4 core
8 core
16 core
32 core
128 core

Figure 5.2: Comparison with Baker et al.

5.1.2 Comparison with Baker et al. [1]

The static analysis stage of Baker et al. is similar to our technique, and unlike Flexstream they uti-

lize unrolling. We compared the designs generated by our approach against Baker et al. for 2 to 128

cores. Figure 5.2 plots the performance improvements achieved by our technique in comparison

to Baker et al. for each of the benchmark applications. As can be observed from the figure our

technique generates superior designs in comparison to Baker et al. In particular for bitonic-sort,

des, fft, fm, mpeg2-subset and vocoder our approach gives large performance improvements. The

primary reason for the performance improvement is that we restrict the DMA overheads by assign-

ment of actors to batches and then replicating the batches to perform systematic unrolling which

creates symmetric allocations. Baker et al. perform unrolling before assigning actors to batches

(which are then one-to-one mapped to cores). Consequently, the distribution of actors across cores

is quite arbitrary and results in larger DMA overheads. The average performance improvement due

to our approach over Baker et al. is 6.38X with standard deviation of 23.84. Further, our dynamic

scheduling algorithm executes in 0.32ms on average while Baker et al. requires 0.63ms or almost

23

0.1

1

10

100

Th
ro

u
gh

p
u

t
R

at
io

 (
lo

g
sc

al
e

)
(O

u
r

A
lg

o
ri

th
m

/C
h

e
 e

t
al

)

2 core
4 core
8 core
16 core
32 core
128 core

Figure 5.3: Comparison with compile time approach

twice as much as our approach. The computational complexity of our dynamic scheduling approach

is linear time for a fixed number of cores and therefore we are able to generate solutions in half the

time.

5.1.3 Performance comparison with compile time approach

We also compared the performance obtained by our technique against a compile time approach by

Che et al. [3] that generates one solution for an application based on the number of cores specified

to the compiler. Unlike, our technique the compile time approach by Che et al. utilizes retiming to

address cycles in the application graph. However, in contrast to our approach they do not consider

unrolling of the application. We compared the solutions generated by our approach against the

static compilation technique for 2 to 128 cores. Figure 5.3 gives the performance improvement

obtained by our dynamic scheduling technique against the static compilation approach. As can be

seen from the figure our dynamic scheduling technique out performs the static compilation approach

in many cases. The performance improvement is primarily due to the aggressive unrolling utilized

by our approach. Further, even though we do not optimize for cyclic dependencies for the StreamIt

benchmarks we are still able to out perform the static compilation approach that does optimize cyclic

24

dependencies. The average performance improvement due to our dynamic scheduling approach is

3X (standard deviation 6.48). Further, the average run time of the static compilation approach is 6s

which is much larger than our dynamic scheduling technique that executes in ms.

5.1.4 Impact of DMA amortization optimization and comparisons with optimal

We also analyzed the impact of DMA amortization through block processing on the overall perfor-

mance of the algorithm. Figure 5.4 depicts the normalized performance obtained by our approach

without DMA amortization for 2 to 128 cores. Each performance bar in the figure is normalized to

the performance of the same application on a single core. Further, for each bar we also show the

maximal theoretical speed-up possible (optimal in the figure). As can be seen from the figure in the

absence of DMA amortization the achieved performance is not near the theoretical optimal. This is

particularly true for bitonic-sort, des and fm. The discrete DMA communication overheads limit the

achievable performance. Figure 5.5 depicts the performance achieved with DMA amortization and

compares it with theoretical optimal. As is clearly observable from the figure DMA amortization

results in considerable speed-up in bitonic-sort, des and fm, and incremental speed-up in several

others. Amortization of communication overhead is a key challenge in multi-core implementations

and our technique is effectively able to do so. Further, the designs generated by our approach are

quite close to the theoretical optimal solutions.

5.1.5 Performance scaling with available cores and memory

We also evaluated the performance scaling of the solutions generated by our approach for two ap-

plications without any stateful actors as the available memory and cores are scaled up. Further,

we compared our designs with those generated by Baker et al. [1]. Figures 5.6 and 5.7 plot the

performance obtained by our approach and by Baker et al. Each point in the two plots is normal-

ized to the performance achieved by a single core architecture with identical memory. As can be

observed from the two plots our approach generates designs that scale up linearly with the number

of cores. The primary reason is that in the case of the stateless application our approach exploits the

available data-level parallelism to the fullest and replicates the application across each of the cores.

However, Baker et al. splits the application across the cores, and the resulting buffer requirements

in the presence of memory constraints end up limiting the achievable performance.

25

1

10

100

1000

Sp
e

e
d

 u
p

 R
at

io
 (

lo
g

sc
al

e
)

(n
-c

o
re

 /
 s

in
gl

e
 c

o
re

)

optimal
128 core
32 core
16 core
8 core
4 core

Figure 5.4: Performance without DMA amortization

1

10

100

1000

Sp
e

e
d

 u
p

 R
at

io
 (

lo
g

sc
al

e
)

(n
-c

o
re

 /
 s

in
gl

e
 c

o
re

)

optimal 128 core
32 core 16 core
8 core 4 core

Figure 5.5: Performance with DMA amortization

26

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Th
ro

u
gh

p
u

t
 S

p
e

e
d

u
p

(n

-c
o

re
/s

in
gl

e
 c

o
re

)

Number of Available Cores

Our Algorithm

8KB

16KB

32KB

64KB

96KB

128KB

Figure 5.6: DCT performance scaling

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

Th
ro

u
gh

p
u

t
 S

p
e

e
d

u
p

(n

-c
o

re
/s

in
gl

e
 c

o
re

)

Number of Available Cores

Our Algorithm

16KB

32KB

48KB

64KB

128KB

Figure 5.7: FFT performance scaling

27

Chapter 6

CONCLUSION WITH FUTURE WORK

The thesis addressed the problem of dynamic scheduling of streaming applications on embedded

multi-core architectures. We presented a two stage static-dynamic analysis approach. The static or

compile time phase collects useful information about the application and generates re-targetable ex-

ecutables. The dynamic scheduler reads the overall application information generated by the static

compilation stage and generates highly optimized parallel implementations on the specified cores.

The algorithm complexity of the dynamic scheduler is linear in the number of the cores. We evalu-

ated our approach by comparing its solution quality and run time with two dynamic scheduling and

one compile time approach. Our algorithm generates overwhelmingly superior designs in extremely

low run times. The block processing based DMA amortization stage was shown to be particularly

effective for reducing communication overheads. Further, the solutions generated by our approach

was shown to scale up with available cores and memory.

In the proposed approach although we address SPM management through overlay tables

we have not addressed problems of code and data overlays. To the best of our knowledge there

are no known purely dynamic scheduling approaches that can also address code and data overlay

optimizations at run time. Such optimizations have typically been addressed at compile time in the

past. Future work can address incorporating low complexity code and data overlay optimizations

that can be integrated with the dynamic scheduler.

28

REFERENCES

[1] Michael A. Baker and Karam S. Chatha. A lightweight run-time scheduler for multitask-
ing multicore stream applications. In Proceedings of International Conference on Computer
Design (ICCD), 2010.

[2] Filip Blagojevic, Dimitris S. Nikolopoulos, Alexandros Stamatakis, and Christos D.
Antonopoulos. Dynamic multigrain parallelization on the cell broadband engine. In Pro-
ceedings of the 12th ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming, PPoPP ’07, pages 90–100, New York, NY, USA, 2007. ACM.

[3] Weijia Che and K. Chatha. Compilation of stream programs onto scratchpad memory based
embedded multicore processors through retiming. In Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE, pages 122 –127, june 2011.

[4] Weijia Che, Amrit Panda, and Karam S. Chatha. Compilation of stream programs for multi-
core processors that incorporate scratchpad memories. In Proceedings of the Conference on
Design, Automation and Test in Europe, DATE ’10, pages 1118–1123, 3001 Leuven, Belgium,
Belgium, 2010. European Design and Automation Association.

[5] Michael K. Chen, Xiao Feng Li, Ruiqi Lian, Jason H. Lin, Lixia Liu, Tao Liu, and Roy Ju.
Shangri-la: achieving high performance from compiled network applications while enabling
ease of programming. SIGPLAN Not., 40:224–236, June 2005.

[6] J. Eker and J. W. Janneck. Cal language report. Technical report, University of California at
Berkeley, Tech. Rep. UCB/ERL M03/48.

[7] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli, Andrew A.
Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze, and Saman Amarasinghe. A
stream compiler for communication-exposed architectures. SIGARCH Comput. Archit. News,
30:291–303, October 2002.

[8] Amir H. Hormati, Yoonseo Choi, Manjunath Kudlur, Rodric Rabbah, Trevor Mudge, and Scott
Mahlke. Flextream: Adaptive compilation of streaming applications for heterogeneous archi-
tectures. In Proceedings of the 2009 18th International Conference on Parallel Architectures
and Compilation Techniques, PACT ’09, pages 214–223, Washington, DC, USA, 2009. IEEE
Computer Society.

[9] J. A. Kahle et al. Introduction to the cell multiprocessor. IBM Journal of Research and
Development, 49:589 –604, 2005.

[10] Emmett Kilgariff and Randima Fernando. The geforce 6 series gpu architecture. In SIG-
GRAPH. ACM, 2005.

[11] Kathleen Knobe and Carl D. Offner. Tstreams: A model of parallel computation (preliminary
report). Technical report, HP Labs, Technical Report HPL-2004-78.

29

[12] Manjunath Kudlur and Scott Mahlke. Orchestrating the execution of stream programs on
multicore platforms. SIGPLAN Not., 43:114–124, June 2008.

[13] Shih-wei Liao, Zhaohui Du, Gansha Wu, and Guei-Yuan Lueh. Data and computation trans-
formations for brook streaming applications on multiprocessors. In Proceedings of the In-
ternational Symposium on Code Generation and Optimization, CGO ’06, pages 196–207,
Washington, DC, USA, 2006. IEEE Computer Society.

[14] M. Monteyne and R.M. Inc. Rapidmind multi-core development platform. Technical report,
RapidMind, Tech. Rep.

[15] NVIDIA. Compute Unified Device Architecture Programming Guide. NVIDIA: Santa Clara,
CA, 2007.

[16] Chris Ostler, Karam S. Chatha, Vijay Ramamurthi, and Krishnan Srinivasan. Ilp and heuris-
tic techniques for system-level design on network processor architectures. ACM Trans. Des.
Autom. Electron. Syst., 12, September 2007.

[17] J.L. Pino and E.A. Lee. Hierarchical static scheduling of dataflow graphs onto multiple pro-
cessors. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95., 1995 International
Conference on, volume 4, pages 2643 –2646 vol.4, may 1995.

[18] Jon Stokes. Peakstream unveils multicore and cpu/gpu programming solution. Last accessed
April 2012.

[19] J.E. Stone, D. Gohara, and Guochun Shi. Opencl: A parallel programming standard for het-
erogeneous computing systems. Computing in Science Engineering, 12(3):66 –73, may-june
2010.

[20] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for
streaming applications. In R. Horspool, editor, Compiler Construction, volume 2304 of Lec-
ture Notes in Computer Science, pages 49–84. Springer Berlin / Heidelberg, 2002.

[21] Loc Truong. White paper: Low power consumption and a competitive price tag make the six-
core tms320c6472 ideal for high performance applications. Processing Business, oct. 2009.

[22] Scott Wasson. Ageia’s physx physics processing unit. The tech report, PC hardware explored,
Last accessed April 2012.

[23] Maarten H. Wiggers, Marco J.G. Bekooij, and Gerard J.M. Smit. Monotonicity and run-time
scheduling. In EMSOFT ’09: Proceedings of the seventh ACM international conference on
Embedded software, pages 177–186, New York, NY, USA, 2009. ACM.

30

[24] David Zhang, Qiuyuan J. Li, Rodric Rabbah, and Saman Amarasinghe. A lightweight stream-
ing layer for multicore execution. SIGARCH Comput. Archit. News, 36(2):18–27, May 2008.

31

