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ABSTRACT 

The advent of threshold logic simplifies the traditional Boolean logic to the single 

level multi-input function. Threshold logic latch (TLL), among implementations of 

threshold logic, is functionally equivalent to a multi-input function with an edge triggered 

flip-flop, which stands out to improve area and both dynamic and leakage power 

consumption, providing an appropriate design alternative. Accordingly, the TLL standard 

cell library is designed. Through technology mapping, hybrid circuit is generated by 

absorbing the logic cone backward from each flip-flip to get the smallest remaining 

feeder.  

With the scan test methodology adopted, design for testability (DFT) is proposed, 

including scan element design and scan chain insertion. Test synthesis flow is then 

introduced, according to the Cadence tool, RTL compiler.  

Test application is the process of applying vectors and the response analysis, 

which is mainly about the testbench design. A parameterized generic self-checking 

Verilog testbench is designed for static fault detection.  

Test development refers to the fault modeling, and test generation. Firstly, 

functional truth table test generation on TLL cells is proposed. Before the truth table test 

of the threshold function, the dependence of sequence of vectors applied, i.e., the 

dependence of current state on the previous state, should be eliminated. Transition test 

(dynamic pattern) on all weak inputs is proved to be able to test the reset function, which 
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is supposed to erase the history in the reset phase before every evaluation phase. 

Remaining vectors in the truth table except the weak inputs are then applied statically 

(static pattern). Secondly, dynamic patterns for all weak inputs are proposed to detect 

structural transistor level faults analyzed in the TLL cell, with single fault assumption and 

stuck-at faults, stuck-on faults, and stuck-open faults under consideration. Containing 

those patterns, the functional test covers all testable structural faults inside the TLL. 

Thirdly, with the scope of the whole hybrid netlist, the procedure of test generation is 

proposed with three steps: scan chain test; test of feeders and other scan elements except 

TLLs; functional pattern test of TLL cells. Implementation of this procedure is discussed 

in the automatic test pattern generation (ATPG) chapter.  
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CHAPTER 1 

INTRODUCTION  

1.1 BASIC OF THRESHOLD LOGIC LATCH  

Research on threshold logic has been started since 1943, where the mathematical 

model of threshold logic gates was proposed for the first time [1]. To express the Boolean 

function 1 2( , ,..., )nf x x x , it used the sign function of the difference of weighted sum and 

the threshold value, that is, 
1

sgn( )
n

i i

i

w x 


 . It is promising that threshold logic greatly 

simplifies the Boolean logic, from which the area, performance, and power benefit. In 

1971, the book [2] about the research on threshold logic and its application was published. 

The lack of appropriate implementation slows the pace of the relevant research. However, 

recent years, as discussed in the survey [3], three main types of VLSI implementation of 

threshold logic are proposed, including capacitive, conductance, and differential solutions. 

Capacitive solutions contain switched capacitor and the floating gate, with the drawback 

of required keeper [4]. Conductance solution relies on the static current [5], with the 

demerit of static power consumption. Comparatively, the differential solutions 

outperform the other two types, providing better area and power consumption. The paper 

proposed the threshold logic gate based on a latch-type differential comparator, which 

achieved lower power [19]. The threshold logic latch (TLL) architecture was proposed 

[20] to have low leakage power and high performance. Later, as presented in the paper 

[6], adoption of TLL gates improves both area and total power by a factor of up to 1.5 
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and reduces leakage power by a factor of up to 2.3 in the experiment of the pipelined 

multipliers. On the other hand, there are numerous papers and patent solving problems in 

threshold logic synthesis [16-18]. Recently, the paper [7] provided an efficient heuristic 

procedure based on binary decision diagram (BDD) [15] for threshold decomposition, i.e., 

identifying the threshold function from the given Boolean function. Finally, the design 

method of a standard cell library of TLL and the relevant technology mapping were 

proposed in the paper [8].  

 

1.1.1 Introduction to threshold function 

The model of circuit under test is based on the paper [6-8]. If the on and off set of 

a Boolean function 1 2( , ,..., )nf x x x  is linearly separable, it can be called threshold 

function. In other words, the threshold function is identified if there exist a certain set of 

weights 1 2( , ,..., )nw w w  and the threshold value T such that 1 2( , ,..., )=1nf x x x  if and 

only if 
1

n

i i

i

w x T


 . For example, ( , , , , ) ( ) ( ) ( )f a b c d e ac b d e de a bc ab d e        

can be transformed to the threshold function with the weight vector 

( 2, 1, 1, 1, 1)a b c d ew w w w w      and 4T   [8]. It is obvious that this threshold 

logic is of single level which greatly reduces the logic and implementation complexity, 

compared to its multi-level Boolean version.  
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1.1.2 Structure of TLL cell 

clk clkM11

M1 M2

M5

M7

M6

M8

M3 M4

M12

CP

N1 N2

inn in2n-1inn+1 ...... in0in1inn-1

N6N5

N3 N4

clk

clk

 

Figure 1. Structure of the TLL cell [8]. 

Figure 1 shows the schematic of the differential part of the TLL cell. Note that the 

N1 and N2 should further connect to the latch which keeps its output when both inputs 

are high and the output Q of the latch is equal to the value of N2 if either N1 or N2 is 

pulled down.  
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The inputs of the TLL cell contain the input network (network in the left side) 

0 1 1( , ,..., )nin in in  , the threshold network (network in the left side) 1 2 1( , ,..., )n n nin in in  , 

and the controlling clock input CP. The only observable TLL output is the output Q of the 

latch. 

The TLL has two operation phases, reset and evaluation phase, when CP=0 and 

CP=1 respectively. In reset phase, clk=0. N5 and N6 are discharged through M11 and 

M12, turning on the reset PMOS M1 and M4. Hence N1 and N2 are pulled up with the 

latch keeping its value. In evaluation, on the other hand, CP rises, so does clk. Discharge 

devices M11 and M12 turn off. Next, N5 and N6 are charged through input and threshold 

networks. The charging speed of N5 and N6 is determined by the impedance of the 

network in each side. The comparison of the network impedances implements the 

inequation of weighted sum and the threshold value. For instance, if the input network 

has lower impedance than that of the threshold network, N5 charges faster than N6. Then 

M7 turns on earlier than does M8, so that N1 discharges faster than N2. When N1 is 

pulled below the threshold of M3, N2 is charged, preventing the discharge of N2 and 

pulling it back to VDD. Eventually, N1=0 and N2=1. Due to the function of the latch, the 

Q is set to 1. 
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1.1.3 Signal assignment to TLL inputs  

An example of TLL5_32 cell is illustrated [8]. To implement the function of 

F a b c   , its threshold version, ( , , ) 4 2 2 3f a b c a b c       , is obtained by 

threshold decomposition. Each value of one in this inequation stands for a conducting 

PMOS. Too many PMOS input transistors are needed in the left side and three PMOS are 

always on in the right side, if the signal assignment is directly , , , , , , , | 0,0,0a a a a b b c c . 

Considering 1a a  , the inequation can be optimized to another variation, 

( , , ) 3 (1 ) (1 ) (1 )f a b c a b c a b c          . Hence the signal assignment is 

, , , , | , , ,1,1a a a b c a b c . In this case, the input PMOS transistors needed for both sides 

reduce to five. And the power loss due to always conducting PMOS is eliminated.  

Thus the cell TLL5_32 is selected, where the five means that each of the input 

network and threshold network has five PMOS and the worst case comparison of two 

weighted sums is three versus two. Table 1 shows the truth table.  
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Table 1. Truth table of the function F=a+bc. 

a  b  c 
Weighted sum of 

the input network 

Weighted sum of the 

threshold network 
Output Q 

0  0  0 0 3 0 

0  0  1 1 2 0 

0  1  0 1 2 0 

0  1  1 2 1 1 

1  0  0 3 2 1 

1  0  1 4 1 1 

1  1  0 4 1 1 

1  1  1 5 0 1 

 

The optimal signal assignment (OSA) is proposed in [8], which eliminates the 

always on PMOS, maximizes the worst case noise margin, and minimizes the worst case 

delay and power.  

  

1.1.4 TLL standard cell library development 

The TLL library is designed in [8], which includes four cells, TLL-3, 5, 7, and 9, 

according to the number of transistors in the network each side. For each cell, the number 

of threshold functions it can implement is demonstrated in Table 2. Altogether, the four 

cells can implement 72 threshold functions, with the great reduction in labor and library 

size. Alternatively, each cell can be optimized separately for each possible worst case 

input. Consequently, the actual standard cell library developed contains ten cells, 3_21, 
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5_21, 5_32, 7_21, 7_32, 7_43, 9_21, 9_32, 9_43, and 9_54, where the last two digits 

represent the worst case input configuration. 

 

Table 2. The number of threshold functions each TLL cell can implements.  

TLL Cell Functions 

TLL-3 3 

TLL-5 8 

TLL-7 18 

TLL-9 42 

TOTAL 72 

 

1.1.5 Introduction to the TLL based hybrid circuit 

Hybrid circuit is generated by selecting suitable sub-circuits ending with a 

flip-flop and replacing them with functionally equivalent TLL cells. This process is called 

hybridization [8].   

The procedure is that for each flip-flop and its feeder cone, enumerate all possible 

cuts，decompose the function of each cut, and select the decomposition which achieve the 

smallest feeder. 



8 

 

Figure 2. Different cuts replaceable by the TLLs [8]. 

Figure 2 shows the two different cones replaced by TLL-3 and TLL-5. In most 

cases, there is a combinational logic block as the feeder. 

 

1.2 INTRODUCTION TO TESTING OF DIGITAL CIRCUITS 

Modern digital circuits can be considered as combinations of flip-flops and 

combinational logic blocks. Main steps of testing are test development and test 

application. Test development refers to fault modeling, test vector generation and fault 

simulation. Test application, on the other hand, is about test process itself. For example, 

apply the test vectors to the primary inputs or scan inputs, timing control, and response 

analysis. [9] 

For a combinational logic or a pipelined datapath, the primary output is only the 

calculation result of the primary input. There is no dependence of current vector on the 

previous vector. In this case, all vectors can be applied in some sequence.  
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Combinational 
Logic Block

DQ

Clk

Q

DQ

Clk

Q

x1

xn

z1

zm

Y1

Yk

y1

yk

 

Figure 3. General structure of sequential logic [9].  

For the general structure of sequential circuit, as shown in Figure 3, the state 

machine takes place. The current state input <y1:yk>, which is also the state output 

<Y1:Yk> registered in the previous clock cycle, and the primary input <x1:xn> determine 

the current state output <Y1:Yk> and the primary output <z1:zm>.  

Directly testing sequential circuits has the problem of setting and checking the 

state of the system [10]. Scan test offers controllability and observability on such 

flip-flops. It breaks feedback loops in sequential circuits, simplifying the problem of 

sequential test to test of combinational blocks. However, the area and performance are the 

cost of scan. Optimization can be done to reduce the impact. Overall, using scan to test is 

a good tradeoff, for the necessity of testability.  
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Scan elements are usually flip-flops or latches with scan functions added. Normal 

mode refers to the normal calculation or propagation as what the ordinary flip-flops or 

latches do. While scan mode, or called test mode, triggers the scan input rather than the 

normal input to get in so that the connected scan chain shifts its value from the scan in 

pin of the chain further out to the global scan out pin.  

Q

CLK CLK

CLK CLK

CLK

CLK

CLK

CLK

DI

TI

TE

0

1
D Q

TE

DI

TI

CLK

(a)

(b)
 

Figure 4. A mux-based scan flip-flop: (a) its symbol, (b) a transistor level implementation [11]. 
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Figure 5. A level sensitive scan flip-flop: (a) its symbol, (b) a transistor level implementation [12].  

Figure 4 shows a design of the mux-based scan flip-flop, in which a mux is added 

before the data inputs of the flip-flop. Figure 4 (a) shows the common symbol for 

mux-based scan flip-flops. Figure 4 (b) implements this mux using transmission gates. 

The test enable (TE) determines whether the circuit works in normal mode or in test 

mode. In other words, TE controls the flip-flop to register the value from whether the data 

input DI or the test input TI. The single clock (CLK) signal controls the pace of flip-flops 

in both modes. The cost is the additional multiplexer. 
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Figure 5 introduces a level sensitive scan flip-flop for a single latch sequential 

circuit. In Figure 5 (a), the common symbol is shown. Figure 5 (b) introduces an 

implementation of level sensitive scan flip-flop. Both L1 and L2 are positive latches. In 

normal mode, non-overlapping clocks C and B control and take the value of data input D, 

with A kept low. +L1 can be used as normal mode output in a single-latch sequential 

circuit, while in double latch design +L2 is used. In test mode, non-overlapping clocks A 

and B control and take the value of test input I, with C kept low. Only +L2 is used as the 

output due to the operation of shift registers. This design eliminates the multiplexer but 

the clocks complicate the job of control.   

0

1

D Q

Clk

Q

TE

DI

TI

0

1

D Q

Clk

Q

TE

DI

TI

0

1

D Q

Clk

Q

TE

DI

TI

Scan Input Pin

Combinational 
Logic Block

0

1

D Q

Clk

Q

TE

DI

TI

0

1

D Q

Clk

Q

TE

DI

TI

0

1

D Q

Clk

Q

TE

DI

TI

Scan Output Pin

 
Figure 6. Scan chain configuration. 
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Figure 6 shows the general scan chain configuration. The dashed lines with arrow 

constitute the scan chain, while the solid lines with arrow represent the normal mode 

connection. To make use of the scan chain, these scan elements should be configured into 

test mode. Then the scanned test vectors get shifted into the chain through the scan input 

pin. The minimum number of clock cycles for the test mode is determined by the bigger 

one among the distance of furthest scan element seen from scan input pin to drive the 

combinational block and the distance of furthest scan element seen from scan output pin 

to receive the data from the combinational block. Between the current scan mode cycles 

and the next ones, the normal mode cycle should be inserted. So the data gathered from 

the output of the combinational block would get shifted out of the scan out pin as the new 

vector shifts in. This can be complicated if, for multiple combinational blocks, different 

numbers of test vectors or multiple scan chains are needed. 
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CHAPTER 2 

DESIGN FOR TESTABILITY FOR THRESHOLD LOGIC LATCH BASED CIRCUITS 

2.1 DESIGN OF TLL WITH SCAN 

 

clk clkM11

M1 M2

M5

M7

M6

M8

M3 M4

M12TE

clk

TI

TE

TIB

clk

TEB TEB

TI TIB TE TEB
CP

N1 N2

inn in2n-1inn+1 ...... in0in1inn-1

M9 M10
M13

M15

M17

M14

M16

M18

N6N5

TEB TEB

 

Figure 7. Schematic of TLL with scan.  

 

Figure 7 shows the schematic of the scan version of TLL. M13, M15, M17, M14, 

M16, and M18 form the testing branch for each side. On the other hand, M9, M7, M10, 

and M8 can be called as normal branch. In test mode, test enable (TE) is asserted so that 

the M9 and M10 are open, breaking the relation of N1, N2 to the inputs, in0 to in2n-1. 
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Then the charge in N1 or N2 will be flown through either left or right branch under the 

control of test input (TI) signal. Bottom clock gate ensures that this scan element works 

only on evaluation phase, while not impacting the charge during reset phase. Since the 

output Q of the TLL is directly controlled by and follows TI, it plays a shift register role. 

In normal mode, TE signal is de-asserted, turns off the two testing branches. M9 and M10 

are on and output Q of TLL depends on inputs.  

Another change compared to TLL without scan is the input PMOS transistor 

added to both input network and threshold network. Its gate connects to TEB. This 

addition ensures that the reset PMOS M1 and M4 can be properly turned off in evaluation 

phase and test mode. If, in test mode, either input network or threshold network has no 

PMOS on, in reset phase N5 and N6 are pulled down to reset N1 and N2. In the following 

evaluation phase, either N5 or N6 remains low and the corresponding reset PMOS keeps 

working, influencing the equation of Q and TI. Added PMOS in both sides eliminate this 

problem, making sure that N5, N6 gets pulled up in evaluation phase of test mode.   

The size of the testing branch should be small, which leads to little cost in delay, 

area and power. As the normal branch can be shut off in test mode, there is no need for a 

big driving capability. In most cases, minimum transistor size suffices.   
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2.2 MANUAL SCAN INSERTION FOR NON-SCAN NETLIST 

Scan insertion is the transformation from non-scan circuit to scanned version of it, 

where one or more scan chains are connected. Given the netlist of a circuit, replace 

sequential elements with scan elements. Each scan element has two additional pins, test 

enable (TE) and test input (TI). The following three pins are added for test mode 

operation. GTE is the global test enable input. DFT_sdi and DFT_sdo are the scan input 

and output pin.  

Since the sequential elements here consist of flip-flops and TLL cells, their 

scanned version should be prepared beforehand. For the RTL of TLL cells, a judgment 

sentence is added. Depending on the TE value, either TI or normal function calculation is 

applied to the latch and assigned to Q. Similar change is also needed for the scanned D 

flip-flops in RTL.   

Manual scan insertion provides the freedom to place the scan chain. Number of 

scan chains, partial or full scan, etc., impacts the connection of the scan chain. To begin 

with, the DFT_sdi pin is connected to the TI of first scan element. Then the output Q of 

each scan element is connected to TI of the next scan element, until the output of last one 

is assigned to the DFT_sdo pin.  

Moreover, hold violation along the scan chain should be checked by monitoring 

both rise and fall transitions. If metastability occurs, buffers should be added in the scan 

path.   
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2.3 SYNTHESIS WITH SCAN INSERTION  

Manual scan insertion is custom but time-consuming. Modern CAD tools can 

conveniently take part in scan insertion, as one task during synthesis. Test synthesis 

transforms the raw RTL design into the optimized gate level netlist with all the desired 

DFT scan elements mapped and scan chain connection, which meets all constraints. All 

the examples and commands illustrated in this part are based on Cadence RTL Compiler. 

To control the tool, Tcl scripts are programmed to fulfill tasks in the top-down flow as is 

shown below. [21] 



18 

Start

Read the library

Attributes setup

Read HDL files and elaborate design

Constraints setup

Optimization strategy setup

DFT setup

Synthesize to generic logic

Run DFT rule check

Synthesize design and map to scan

DFT configuration constraints setup

Connect the scan chain

Run incremental optimization

Export the design

Fix violations

Meet all 
constraints

End
 

Figure 8．Flow chart of test synthesis [21]. 



19 

Figure 8 shows the flow chart for test synthesis. Detailed description for each step 

is listed below [21]. Note that the following description is based on mux-based scannable 

flip-flops as scan elements and is not a complete introduction. Only the most commonly 

used are presented.  

 

2.4.1 Read the library   

The library adopted for synthesis with its path should be specified. 

 

2.4.2 Attributes setup 

      Attributes can be set to control the synthesis process in detail. Among the 

numerous types of attributes, three most commonly used types of attributes are described 

below.   

Libcell attributes setup. Each library cell has its associated attributes to be set. 

This step mainly refers to the attribute of avoid. If some cells are supposed to be avoided 

by the mapper, the attribute of avoid of those cells should be set true. It’s often the case 

that not all cells are wanted. For example, whether use TLL cells or not can be controlled 

in this way. The expression, find –libcell, is useful to specify the name of the desired cells 

to select.    
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Input and output attributes setup. When the design is exported, the command, 

write_hdl, will generate the structural netlist. There are attributes specifying rules for 

output Verilog. Examples are whether to include the implicit wires in the netlist, and 

whether to create dummy wires for unconnected pins, etc.  

Elaboration attributes setup. First, for elaboration, there are attributes to configure 

the naming style of individual bits in registers or arrays, module name in parameterized 

modules, instance name in a for-generate statement. All internal names can be elaborated 

in the alphanumeric habit. Second, issuing error messages or not is controlled by relevant 

attributes. Error examples are unresolved references and latch inferred during elaboration. 

Third, tracking of the RTL source code can be enabled, which includes track of filenames, 

and line numbers for each instance. Information kept before any optimization is useful for 

later procedures, such as error messaging and DFT violation warning.  

 Synthesis attributes setup. Rules for synthesis can be specified by setting 

attributes.   

 

2.4.3 Read HDL files and elaborate design 

Elaboration takes the raw HDL file, creates data structure internally, infers 

registers, performs high level HDL optimization, and links the cell to the reference in the 

library file, making it into an appropriate form for synthesis and constraint operations.   
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To read the HDL files in, run the command, read_hdl. Note that tracking of the 

source code should be allowed by setting true the attribute, hdl_track_filename_row_col. 

Then run the command, elaborate. Thus the RTL compiler elaborates the design.  

 

2.4.4 Constraints setup 

To setup the timing constraints, the clock signal should be defined, using 

command, define_clock. Clock domain can be created as a group of synchronous clocks. 

Here the constraint of period should be specified. Clock edges, skew, transition or latency 

can also be defined if needed. Similarly, input and output delays can be defined with 

command of external_delay.  

On the other hand, design rule constraints need to be set. Design rule constraints 

are physical requirement for synthesis process. It consists of three constraints, maximum 

capacitance per net, maximum fanout per gate, and maximum transition of a signal. Three 

corresponding attribute, max_fanout, max_capacitance, and max_transition, can be set to 

the proper value. Any violations are reported when design is exported, by the command, 

report design_rules. 

Other design constraints include external driver and load constraints, operating 

condition specifications, timing exception setup, etc.  
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2.4.5 Optimization strategy setup 

Optimization strategy is made up of numerous optimization settings before the 

synthesis. Most commonly used settings are preserve attribute and group and ungroup 

operations. 

In default optimization, all logic parts or objects may change. If some logic or 

objects are supposed to keep untouched, while others can be optimized freely, the 

preserve attribute of those instances can be set true to avoid any change. For example, 

TLL cell should be kept during synthesis. So the preserve attribute of all TLL cells should 

be true.   

Group and ungroup operation changes the design hierarchy. Subdesign instances 

can be grouped into anther single subdesign, while ungrouping flattens a hierarchy level. 

Another choice is automatic ungrouping. Ungrouping criteria such as timing, and area 

and ungrouping effort level can be configured.     

 

2.4.6 DFT setup 

DFT setup contains basic scan style setup, scan chain specification, and DFT rule 

specification. First of all, scan style refers to using either mux-based flip-flop or level 

sensitive scan elements. Then, the shift enable signal or scan clock signal should be 

defined and assigned to a pin using the following command, define_dft. There are other 

settings dependent on the specific design.  
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2.4.7 Synthesize to generic logic 

According to the design constraints, the command, synthesize –to_generic, 

perform an RTL optimization. Since elaboration produces don’t care logics, undesirable 

DFT violation appears under DFT rule check. Those don’t care logics can be eliminated 

by synthesizing to generic logic. 

 

2.4.8 Run DFT rule check 

During the DFT rule check, auto-identification of the test clock and test mode 

signals should be prevented. This can be done by setting false the attributes, 

dft_identify_top_level_test_clocks and dft_identify_test_signals.  

After auto-identification has been disabled, run DFT rule check using the 

command, check_dft_rules. The DFT rule contains two aspects. First, check if the clock 

pin of each flip-flop is controlled from primary input or defined test clock. In other words, 

violation happens when any clock pins of flip-flops are uncontrollable. Second, check if 

all asynchronous pins of flip-flops can be assigned to be in their idle state when in test 

mode. Only those flip-flops which pass the DFT rule check can be mapped to scan 

elements and included in the scan chain. DFT condition and result of this check of each 

flip-flop is reported by the command, report dft_registers.   
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2.4.9 Fix violations 

If any clock violation or asynchronous violations exist, they need to be fixed 

using the command, fix_dft_violations. Then check the DFT rule again and then fix until 

no violation appears. To report the violations, the following command, report 

dft_violations, can be used.   

 

2.4.10 Synthesize design and map to scan 

To control the mapping of non-scan flip-flops to scanned flip-flops, the attribute, 

dft_scan_map_mode, should be set. In most cases, mapping only those which pass the 

DFT rule check is the most appropriate scheme. Other choices are preserving and maping 

all.  

For the flip-flops during synthesis, the scan in pin is usually connected to the data 

output pin and the test enable pin is in its inactive value. For any existing scan chains, 

they need to be preserved. Then the DFT setup can be reported by the command, report 

dft_setup, after all settings are set.  

Next, synthesize the design and map the flip-flops to their scan version as 

described in the library, with the optimization goal of providing smallest possible 

implementations which meets all constraints. Check the report and take care of the 

warnings.  
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2.4.11 DFT configuration constraints setup 

Scan chain connection has variant configuration choices. For example, the 

minimum number of scan chains, and maximum length of scan chains can be configured. 

Also whether to allow mixture of rising and falling edge triggered flip-flops can be 

determined. In addition, the top-level scan chains can be defined. Finally, report the 

configuration setup. 

 

2.4.12 Connect the scan chain 

The scan chain will be connected using the command, connect_scan_chains. It 

connects scan elements, which pass the DFT rule check, into chains. If only the chains 

defined in the DFT configuration constraint are allowed for connection, use the command, 

chains chain_list. Aside from what has been defined in the DFT configuration constraint, 

if new scan chains are allowed to be added, the following command needs to be included, 

auto_create_chains.  

When scan chain connection finishes, the scan chain and DFT setup information 

are supposed to be reported.    
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2.4.13 Run incremental optimization 

When the design has been mapped, incremental optimization preserves the current 

implementation and changes only when the new procedure brings about any 

improvements. The timing problem resulted from scan chain connection with example of 

hold time violations can be resolved by this optimization. The relevant command is 

synthesize –incremental.  

If the resulting implementation after optimization does not meet all the constraints, 

go to the constraints and optimization strategy setup again carefully and practically.   

 

2.4.14 Export the design 

Report timing, critical path, gates, power and area details. Generate gate-level 

netlist, SDC file for place and route, and the scandef file. Moreover, report important 

DFT files with examples of design rule violations, scan chain information, status of 

registers, DFT setup, and DFT violations. 

 

2.4.15 Examples 

 

Figure 9. Post-synthesis schematic with scan insertion. 
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Figure 10. Left half part of the post-synthesis schematic with scan insertion.  

 
Figure 11. Right half part of the post-synthesis schematic with scan insertion. 

Figure 9, Figure 10, and Figure 11 show the gate level schematic after proper test 

synthesis, taking the four-bit adder as an example. As can be seen, the flip-flops connect 

each other in a line, making up the scan chain. The two 4-bit value being added are a[3:0] 

and b[3:0]. The 5-bit sum is p[4:0]. DFT_sdi_1 and DFT_sdo_1 are the global scan input 

and output. Global test enable (GTE) signal controls each flip-flop to perform as a shift 

register in the chain or a separated register connecting the primary input or output.  
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Figure 12. Post-synthesis schematic without scan insertion.  

As a comparison, Figure 12 shows the gate level schematic after synthesis without 

scan connection, taking the four-bit adder as an example. As can be seen in Figure 12, the 

combinational logic blocks are sandwiched between the 8-bit input flip-flops and the 

5-bit output flip-flops. Each flip-flop is self-connected, thus no scan chain formed. The 

only controlling signal is the clock signal.  
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CHAPTER 3 

TEST APPLICATION OF THRESHOLD LOGIC LATCH BASED CIRCUIT 

3.1 PARAMETERIZED GENERIC SELF-CHECKING VERILOG TESTBENCH DESIGN  

 In this chapter, the way of using those vectors to test circuits is emphasized. Note 

that the test application scheme here only considers static faults. Since the circuit under test 

can be of any bits of input or output, multiple stage or single stage, datapath or with 

feedback path, and the test itself can be functional truth table test or any other type of test, it 

is practical to build a parameterized all-purpose test bench with the feature of self-checking, 

in other words, do the response analysis itself. For ease of explanation, circuit under test is 

assumed to be with single scan chain. Figure 13 shows the structure of the testbench. Each 

box below corresponds to one procedural block.    

Set the input 
parameters

Clock control
Reading 

test vectors 
Primary input 

control
Response 
analysis

 

Figure 13. Structure of the testbench. 

First of all, parameters provide flexibility of the testbench. On one hand, the scan 

chain should be configured. Before further discussion about each parameter, some 

concept of scan shift policy is imperative to be illustrated [9]. It is commonly used that 

along the scan chain, scan elements which provide inputs to the combinational logic 
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(kernel) are called driver, while those which receive outputs of the kernel are called 

receiver. Starting from the scan in pin to the scan out pin, the distance between the scan in 

pin to the last driver is the minimum clock cycles required to scan in all vectors, which is 

denoted as SCin. Similarly, the distance between the first receiver and the scan out pin is 

the minimum clock cycles needed to scan out all response, which is denoted as SCout. SC 

denotes the actual clock cycles in scan mode with scanning in and scanning out 

overlapped. In minimum-shift policy, SC = max (SCin, SCout). But in flush policy, SC 

equals to the length of the scan chain. Obviously, switching between these two scan shift 

policy can be done by custom choice of the value of SC. On the other hand, the number 

of pipeline stages, PPL, determines the normal mode cycles required. For larger circuits, 

the combinational logic may be divided by the scan chain into different kernels. In order 

to differentiate the kernels under test, the whole test is sometimes conducted in a 

successive of test sessions. In such case, PPL should equal to the pipeline stages of the 

current kernel under test. In addition, parameters like the clock period and number of test 

vectors are also in need of configuration. 

Secondly, the test vectors are read from the vector file. Each vector contains its 

number, the vector to be scanned in, and the expected output vector. Then they are stored 

in arrays and applied in proper time.  
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Thirdly, primary input controller mainly controls the scan in signal (SI) and test 

enable signal (TE). The scan mode SC cycles are followed by normal mode PPL cycles. 

Both SI and TE signals are assigned to new value in the inactive edge of the clock to 

avoid metastability. In scan mode, SI is controlled by the stored scan input vector and 

change cycle by cycle to shift in and the TE keeps asserted. In normal mode, TE stays 

de-asserted.  

Fourthly, response analysis plays an important role. The response of the first 

vector appears after SC + PPL cycles and last for SCout cycles. Similarly, there are SC + 

PPL cycles between the starting bits of two contiguous responses. Note that the response 

should be observed in falling edge (inactive edge) of the clock to avoid metastability.  

 

3.2 TESTING EXAMPLE OF HYBRID DATAPATH CIRCUIT  

As datapath circuit does not include any feedback path, its primary outputs merely 

depend on primary inputs and it has no state input or state output. In other words, it’s not 

a state machine. Consequently, the outcome of datapath circuit test does not depend on 

the sequence of the vectors applied, which enable the functional truth table test by 

connecting all the primary inputs and outputs as the scan chain. Besides, datapath circuit 

can have multi-stage pipeline.  
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Take the example of a functional test of the two-stage 4-bit hybrid multiplier. The 

parameters need to be set correctly. As is easily analyzed, the SCin and SCout are 8 and 7 

respectively, due to the fact that the scan chain is designed to stretch through each 

primary input scan element and then pass each primary output scan element. Obviously, 

the number of pipeline stages, PPL, should be set to 2 cycles of normal mode, after which 

the exact outcome of the combinational logic can be latched to the output half of the scan 

chain.  

The response of the first vector appears after 10 (SC + PPL) cycles and last for 7 

(SCout) cycles. Similarly, there are SC + PPL cycles between the starting bits of two 

contiguous responses.  

Table 3 shows some vectors examples, where the first digit in the right hand side 

is the least significant bit. The input vector represents two 4-bit multiplier factors, as 

divided by a space in the middle. However, the output vector stands for an 8-bit product. 

If the test fails to pass all vectors, the testbench will output the very vector which 

produces the response different from the expected one. 

     Table 3. Test vector example for the two-stage 4-bit hybrid multiplier. 

# Input vector Expected output vector 

1 0000 0000 00000000 

2 0001 0001 00000001 

3 0011 0010 00000110 

4 0000 0001 00000000 

5 0011 0001 00000011 
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CHAPTER 4 

TEST DEVELOPMENT OF THRESHOLD LOGIC LATCH BASED DESIGN 

4.1 FUNCTIONAL TEST ON THE TLL CELL 

All following discussion in this thesis about testing of hybrid circuits is based on 

full scan scheme [9], meaning that all the registers or latches in the netlist should be 

connected into the scan chain. So each kernel is single stage and only one cycle is 

required for the normal mode.  

In a real circuit, the TLL cell has fixed input connection and implements a certain 

function. So the direct way to test is applying vectors of the whole truth table. Here 

suppose the inputs of the TLL cell can be controlled. And the only observable output is 

the output of the TLL cell, i.e., Q.   

Two different types of inputs for TLL can be defined. Weak inputs refer to those 

input vectors which produce the minimum difference between the weighted sum in the 

input network and that in the threshold network. In real cases, the weak inputs can be 

identified by searching for vectors with one-difference between the two sides, which tend 

to fail more easily. Taking account of single fault assumption, if the weighted sum 

increases or decreases by value of one due to a fault in either input network or threshold 

network, only the weak inputs may fail and produce an equation between weighted sums 

of two sides. Strong inputs, on the contrary, produce the difference larger than one, 

among which the strongest inputs refer to those produce the maxim difference.  
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Another pair of terms is defined for convenience of discussion. One inputs mean 

any input vectors which result in output Q=1, where the weighted sum in the input 

network is larger than that of the threshold network. Similarly, zero inputs refer to any 

input vectors which make output Q=0, where the weighted sum in the input network is 

smaller than that of the threshold network. 

To make the discussion of test vectors understood, an example of TLL5_32 cell is 

illustrated in chapter 1.1.3 and commonly used in this chapter. Table 1 shows the truth 

table for this function. Here (x,y) denotes that the input network has x transistors on and 

the threshold network has y transistors on. It can be identified that the weak inputs are 

(1,2), (2,1), (3,2), and the strongest inputs are (0,3), (5,0). Besides, the one inputs include 

(2,1), (3,2), (4,1), (5,0), while the zero inputs contain (0,3), (1,2).  

One important fault type is the functional reset fault. Reset phase needs to work. 

In other words, both N1 and N2 in reset phase need to be pulled up to VDD. Since TLL is 

a sequential circuit, state machine takes part in without successful reset in between 

evaluations. If the fact that TLL evaluation does not depend on history or last state gets 

proved, truth table test becomes feasible.  

To explore the method to ensure that reset really works, transition fault test is 

introduced. If reset does not work well, in evaluation phase, discharge in the two 

branches, N1 and N2, fights with the value left in the two branches from previous 

evaluation, when a transition is supposed to appear in the output. As a result, weak inputs 
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are more likely to fail and the strongest inputs are more likely to cause the next 

evaluation to fail. As a result, the worst case of the transition fault is that the weak input 

transits the previous state initialized by the strongest input.  

 

4.1.1 Two-pattern reset function test  

To conclude the way of testing the reset function, all possible two-pattern vectors 

with supposed transition in the output and in the following sequence, strongest inputs to 

weak inputs, can be applied. If the transition can always propagate to the output within 

certain amount of time, the reset of this TLL cell works. Then the truth table test can be 

done in any sequence.   

Table 1 shows the truth table. So if notation of (weighted sum of input network, 

weighted sum of threshold network) is used, (0,3) -> (3,2) and (5,0) -> (1,2) can be used 

for reset function test. Note that (5,0) -> (1,2) should be conducted twice for two input 

vectors of (1,2). After testing for reset function, the remaining three vectors can be 

applied as the whole truth table should be tested.  

Limitation of this two-pattern test is that it requires the sequential controllability 

of TLL inputs and observability of TLL output. For example, the output of the first vector 

should be observed directly from the primary output or by scanning out its value from the 

two-pattern test. On the other hand, the two patterns should be applied successively in 

normal mode. In some cases, the second pattern is unavailable for the TLL input pins.  
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4.1.2 Dynamic pattern reset function test   

The limitation disables the use of two-pattern reset function test in multi-stage 

full-scan hybrid circuit. To design a generic scheme, the dynamic pattern reset function 

test, as is discussed below, should be adopted. Here the dynamic pattern test [31] is the 

scheme of scanning in the initialized value in the output of TLL, together with the TLL 

input vector to activate the fault.  

To make sure the initialization is the strongest, the scan chain and the scan chain 

test help. Before all the test vectors applied into the scan chain, it is common that the test 

for the function of scan chain itself should be conducted. This is due to the fact that all 

vectors for the kernel are derived with the assumption of correct operation of the scan 

chain. Without the scan chain test, in some extreme scenarios, faults in the kernel and in 

the scan chain may cancel each other, making the scan chain test necessary from another 

angle. The vector for scan chain test is normally a sequence of zeros and ones with 

frequent transitions, which is applied to the scan in pin [31]. It can be either static or 

dynamic. The test enable signal is held in its asserted value and the output is measured 

from the scan out pin. Thus any fault induced in the test branch in the TLL cell can be 

detected. Interestingly, the correct operation guaranteed by the scan chain test provides 

the most confident initialization. The desired value of initialization can be set by scanning 

in the fault activation vector with the initialized output bit of that TLL cell.        
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The general reset function test procedure for a TLL cell is as follows. First, find 

the weak inputs. Second, scan in the weak input with its corresponding initialization bit in 

the position of the output of the TLL cell. Third, apply the normal cycle. Fourth, scan out 

the output result of this TLL cell, which can be overlapped with the next weak input 

vector scanned in.  

 

Figure 14. Fault initialization example 1. 
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Figure 14 shows the initialization for a weak input with lower impedance in the 

input network. The test related signal is set to their asserted value. In the last cycle of the 

scan mode, the correct initialization bit with the value of zero is stored in the latch. The 

N1 and N2 is 1 and 0. In the subsequent reset phase, both N1 and N2 are supposed to be 

pulled up. Faulty reset results in incomplete pull-up for N2.   

 

Figure 15. Fault activation example 1. 
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Figure 15 shows the fault activation for a weak input with lower impedance in the 

input network. The test related signal is set to their de-asserted value. In the normal mode 

cycle, the discharge in the left branch, as is indicated by the arrow, fights the charge 

across M2 caused by incomplete reset N2. Only when it wins with correct output stored 

in the latch can the TLL cell pass this test vector.  

 

Figure 16. Fault initialization example 2. 
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Figure 16 shows the initialization for a weak input with lower impedance in the 

threshold network. The test related signal is set to their asserted value. In the last cycle of 

the scan mode, the correct initialization bit with the value of one is stored in the latch. 

The N1 and N2 is 0 and 1. In the subsequent reset phase, both N1 and N2 are supposed to 

be pulled up. Faulty reset results in incomplete pull-up for N1.   

 

 

 

Figure 17. Fault activation example 2. 
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Figure 17 shows the fault activation for a weak input with lower impedance in the 

threshold network. The test related signal is set to their de-asserted value. In the normal 

mode cycle, the discharge in the right branch, as is indicated by the arrow, fights the 

charge across M3 caused by incomplete reset N1. Only when it wins with correct output 

stored in the latch can the TLL cell pass this vector.  

 

4.1.3 Conclusion of functional test on the TLL cell 

As discussed before, the weak inputs are easier to fail, since it needs to fight 

against the strongest opposite initial value scanned in, if reset does not work correctly. It 

is reasonable to assume that the reset function works if all weak inputs pass such dynamic 

pattern test.  

The procedure can be concluded as two steps. First, for all weak inputs, do 

dynamic pattern test. Second, for the remaining vectors in the truth table, that is, all the 

strong inputs, do static pattern test. Here the static pattern test means the regular static test 

with the fault activation vector scanned in and without the initialization.  
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4.2 STRUCTURAL FAULT TEST ON THE TLL CELL 

Chapter 4.1 proposes a functional test on TLL cells. Ideally any fault types or 

multiple faults which influence the functional operation of the TLL are detected. 

However, one specific structural fault may mask the fault propagation of another fault, 

making the declaration of fault-free circuit invalid. For example, when the feeder is tested, 

if an undetected structural fault inside the TLL cell masks the propagation of one fault in 

the feeder, the latter one becomes undetected and may propagate the faulty effect to the 

output under other input configurations. Therefore, it is necessary to delve into the TLL 

cell and derive the test for structural faults.  

Transistor level structural fault model is analyzed for the TLL standard cell. It is a 

reasonable simplification here to note that all the analysis is based on the cell of TLL 

without scan and all operations are in normal mode. Because the scan related part can be 

tested functionally in scan chain test separately in the beginning, which is further 

discussed in the last part in this chapter.  

All the following discussion is based on single fault assumption and scan test. 

Every vector proposed is applied in the normal cycle. Dynamic pattern test can be used to 

provide an initialization and observe a transition, which is commonly adopted for weak 

inputs, as proposed in chapter 4.1.2.   
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Fault model used here is of static faults including stuck-at faults, stuck-open faults 

and stuck-on faults. Firstly, stuck-at faults refer to lines always on voltage of VDD or 

GND, no matter the voltage on the driver or its stem [13]. And if stuck-at fault happens 

on the stem, all the downstream lines are affected. Note that the stuck-at faults are only 

modeled on stems and those lines which drive a gate. Stuck-at faults are modeled for 

those wires which drive the gate of at least one transistor. Secondly, for the stuck-open 

fault, the transistor keeps open irrelevant to the voltage on its gate. Similarly, for the 

stuck-on fault, the transistor keeps on irrelevant to the voltage on its gate. [14]  

Each TLL cell can be divided into 4 parts for convenience of analysis, i.e., 

differential amplifier, input/threshold networks, discharge devices, and clock buffers. Due 

to the fact that the latch is merely controlled by N1 and N2 determined jointly by the four 

parts listed above, the latch is not included. Its full function of four possible output cases, 

0->0, 0->1, 1->1, and 1->0, together with the function of test mode related transistors and 

wires, are tested by scan chain test beforehand.  

In each part, faults are grouped with same or similar effects, thus sharing the same 

test set. In other words, they are equivalent faults. Each group is matched with the 

relevant test method, including the use of current monitor which detects large current 

caused by DC path for a long enough period of time.  
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4.2.1 Fault analysis on the part of differential amplifier 

 

M1 M2

M5

M7

M6

M8

M3 M4

N1 N2

N6N5

N1P

N1N

N2P

N2N

N5P N6P

N5N N6N
 

Figure 18. Model of the differential amplifier part. 

Figure 18 shows the fault model on the differential amplifier part. Here N5 and 

N6 can be modeled as the stem, since it is controlled by discharge device and input 

network and threshold network in respectively reset phase and evaluation phase. Due to 

the different function between the reset PMOS and the pair of NMOS in the bottom, 

treating N5P and N5N as separated branches is a better way. Besides, each transistor 

should be modeled and there is no exception.  
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Table 4. Part I : Fault analysis on differential amplifier part. 

Faults Effect Analysis Faulty response Test vector 

N5P_0; 

M1_On; 

M2_On; 

N2P_0 

N1 is always pulled up. Large current 

when no transistor is on in threshold 

network. Otherwise, due to positive 

feedback, Q is always zero. 

Large current in 

evaluation for 

(5,0). Q=0 for 

other one inputs. 

(3,2) 

N5P_1; 

M1_Open 

M1 keeps open. Once discharged, N1 

cannot be pulled up. 

Q=1 for weak zero 

inputs (dynamic 

pattern). 

dynamic 

pattern 

(1,2) 

N5N_0; 

M7_Open 

M7 keeps open. N1 is always 1. Q=0 for one inputs. (3,2) 

N5N_1; 

M7_On 

M7 keeps on. Large current in reset. In 

evaluation, M7 always discharges 

earlier than M8. Thus Q is always 1. 

Large current in 

reset. Q=1 for zero 

inputs. 

(1,2) 

N6P_0; 

M4_On; 

M3_On; 

N1P_0 

N2 is always pulled up. Large current 

when no transistor is on in input 

network. Otherwise, due to positive 

feedback, Q is always one. 

Large current in 

evaluation for 

(0,3). Q=1 for 

other zero inputs 

 

(1,2) 

N6P_1; 

M4_Open 

M4 keeps open. Once discharged, N2 

cannot be pulled up. 

Q=0 for weak one 

inputs (dynamic 

pattern). 

dynamic 

pattern 

(3,2) 

N6N_0; 

M8_Open 

M8 keeps open. N2 is always 1. Q=1 for zero inputs (1,2) 

N6N_1; 

M8_On 

M8 keeps on. Large current in reset. In 

evaluation, M8 always discharges 

earlier than M7. Thus Q is always 0. 

Large current in 

reset. Q=0 for one 

inputs. 

(3,2) 

M2_Open; 

N2P_1 

M2 keeps open. If input (1,2) although 

N2 discharges faster, N1 will not be 

impacted by N2 and will fall down to 

0 making N2 to 1. 

Q=1 for zero inputs (1,2) 

M3_Open; 

N1P_1 

M3 keeps open. If input (3,2) although 

N1 discharges faster, N2 will not be 

impacted by N1 and will fall down to 

0 making N1 to 1. 

Q=0 for one inputs. (3,2) 

M5_Open; 

N2N_0 

M5 keeps open. N1 cannot get 

discharged, making N2 discharged. 

Q=0 for one inputs. (3,2) 
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Table 5. Part II : Fault analysis on differential amplifier part. 

Faults Effect Analysis Faulty response Test vector 

M5_On; 

N2N_1 

M5 keeps on. When the weight of 

threshold network is higher than that 

of the input network, N2 discharges 

first and then get pulled up since M5 

keeps discharging N1. 

Q=1 for zero inputs. (1,2) 

M6_Open; 

N1N_0 

M6 keeps open. N2 cannot get 

discharged, making N1 discharged. 

Q=1 for zero inputs. (1,2) 

M6_On; 

N1N_1 

M6 keeps on. When the weight of 

input network is higher than that of 

the threshold network, N1 discharges 

first and then get pulled up since M6 

keeps discharging N2. 

Q=0 for one inputs. (3,2) 

N1_0  Q=1 for zero inputs. (1,2) 

N1_1  Q=0 for one inputs. (3,2) 

N2_0  Q=0 for one inputs. (3,2) 

N2_1  Q=1 for zero inputs. (1,2) 

 

The above Table 4 and Table 5 show a detailed fault analysis. In the first column, 

the fault is notated as the located wire name followed by the underscore and the fault type. 

For example, N1_0 and N1_1 represent the stuck-at zero and stuck-at one fault on the 

wire of N1. M1_On and M1_Open represent the stuck-on fault and stuck-open fault on 

the transistor of M1. Effect analysis discusses about the influence of the fault on the 

operation. Faulty result gives the scenario to detect the fault, which is opposite to 

fault-free result, and the complete test set for the fault. Test vector gives the most 

sensitive and common vector to detect the fault according to the faulty result.  

From Table 4 and Table 5, the minimum required vectors for fault modeled in this 

part contains the weakest one input and weakest zero input as dynamic patterns.     
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4.2.2 Fault analysis on the part of input and threshold network 

inn in2n-1inn+1 ...... in0in1inn-1

N6N5

clk
 

Figure 19. Model of the input and threshold network. 

Figure 19 gives the structure of the input and threshold network. Any fault-at fault, 

stuck-open fault and stuck-on fault would only influence one variation on the weighted 

sum, under the single fault assumption. As a consequence, only the weak inputs may fail 

and produce an equation between weighted sums of two sides. So only the faults which 

can be activated by any weak vectors are detectable. The best effort to make is applying 

all weak inputs.  

For the example of TLL5_32, the test vectors are (2,1), (1,2), and (2,3). If, 

consider multiple fault, and other fault type such as shorting fault, which affects the 

weighted sum greater than variance of one, truth table test is necessary.  
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4.2.3 Fault analysis on the part of discharge devices 

clk4M12clk3 M11

Input 

network

Threshold 
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Figure 20. Model of the discharge devices. 

Figure 20 gives the fault model of the discharge devices. Here N5 and N6, which 

act as stem to the differential amplifier part, are determined by inputs and clock bar 

during different time intervals. Table 6 below lists the fault analysis in detail. Note that 

the Clkb here means clock bar. The column of faulty result indicates the complete test set 

for each fault, while the column of test vector is picked to be the most sensitive and 

common vector to ensure fault detection.  

 

 

 

 

 

 

 



49 

Table 6. Fault analysis on discharge device part. 

Faults Effect Analysis Faulty result Test vector 

N5_0 Reset Pmos M1 is always on.  

M7 always open. 

Q=0 for one inputs. (3,2) 

N6_1 Reset Pmos M4 is always open.  

M8 always on. 

Q=0 for one inputs. (3,2) 

N5_1 Reset Pmos M1 is always open.  

M7 always on. 

Q=1 for zero inputs. (1,2) 

N6_0 Reset Pmos M4 is always on.  

M8 always open. 

Q=1 for zero inputs. (1,2) 

Clkb3_0; 

M11_Open 

Left discharge device does not work. 

In reset phase, N5 can only be pulled 

down to Vthp instead of zero. In the 

next evaluation phase, N5 start with 

higher voltage in the charging 

competition with N6. For weak 

inputs, this advantage of starting 

point dominates. 

Q=1 for weak  

zero inputs. 

(1,2) 

Clkb3_1; 

M11_On 

M11 keeps on. N1 gets pulled down 

in evaluation. Large current in 

evaluation if input network has 

non-zero sum of weights 

Large current in 

evaluation for all 

inputs except (0,3). 

(3,2) 

Clkb4_0; 

M12_Open 

Right discharge device does not 

work. In reset phase, N6 can only be 

pulled down to Vthp instead of zero. 

In the next evaluation phase, N6 

start with higher voltage in the 

charging competition with N5. For 

weak inputs, this advantage of 

starting point dominates. 

Q = 0 for weak  

one inputs. 

(3,2) 

Clkb4_1; 

M12_On 

M12 keeps on. N2 gets pulled down 

in evaluation. Large current in 

evaluation if threshold network has 

non-zero sum of weights 

Large current in 

evaluation for all 

inputs except (5,0). 

(1,2) 

From Table 6, it is obvious that the minimum required vectors for fault modeled 

in this part contain the weakest one input and weakest zero input.  
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4.2.4 Fault analysis on the part of clock buffer 

 
Figure 21. Model of the clock buffer. 

 

Figure 21 shows the fault model of the clock buffer part. Detailed fault analysis is 

listed in Table 7 below. Note that the Clkb here means clock bar. This part controls the 

whole cell to be in either reset phase or evaluation phase. Consequently, faulty results do 

not change with vectors.  
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Table 7. Fault analysis on clock buffer part. 

Faults Effect Analysis Faulty result 

Cp_0; 

clkb_1; 

Cp2_0; 

M14_Open 

Always reset Q is constant 

Cp_1; 

clkb_0; 

Cp1_1; 

M13_Open 

Always evaluation Q is constant 

Cp1_0; 

M13_On 

M13 keeps on.  

Always large current in evaluation. 

Always large current in 

evaluation. 

Cp2_1; 

M14_On 

M14 keeps on.  

Always large current in reset. 

Always large current in 

reset. 

Clkb1_0; 

M15_On 

M15 keeps on.  

Always large current in reset. 

Always large current in 

reset. 

Clkb1_1; 

M15_Open; 

Clk_0 

Clk cannot be pulled up. Reset works well. 

N1 and N2 cannot be discharged, which are 

always high. Q always keeps its value. 

Q is constant 

Clkb2_0; 

M16_Open 

; clk_1 

Clk cannot be pulled down. Discharge 

device works well. Large current appears in 

reset phase, flowing through input network 

to discharge device. 

Large current in reset. 

 

Clkb2_1; 

M16_On; 

M16 keeps on. Always large current in 

evaluation. 

Always large current in 

evaluation. 

 

In Table 7, there are only two kinds of faulty effects, large current and constant 

output. Both are irrelevant to the input vectors. Since the scan chain operation shares the 

same clock control, discharge device and reset operation as the normal mode parts do, 

faults existed in the clock buffer part are fully tested in the scan chain test beforehand. No 

further input vector is needed in the normal mode cycle.  
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4.2.5 Conclusion of structural fault analysis 

From the analysis above, it is known that the first and third part require the 

dynamic patterns of weakest one input and weakest zero input as the minimum vector set, 

while the second part demands all weak inputs. And the fourth part is the responsibility of 

the scan chain test beforehand.    

To conclude, it is approved that the general test vectors for all the three types of 

structural faults are all weak inputs by means of dynamic patterns. Sequence of them does 

not matter. Same scheme also works for other function in other cells, from TLL3_21 to 

TLL9_54.  

Depending on the feeder and the signal assignment to the TLL, undetectable faults 

sometimes exist in the input and threshold networks. It is also possible in the practice that 

some input vectors in the truth table of the TLL function can never be activated through 

the feeder and signal assignment. If, for example, the weakest input does not exist, the 

secondary weakest input takes its place. This is also the reason of representing all weak 

inputs as dynamic patterns rather than merely the pair of weakest inputs. Moreover, if no 

weak input is available, strong inputs kick in, which lead to untested faults such as the 

stuck-open faults on discharge devices. Coverage of faults changed by the absence of 

some vectors can be checked from the complete test set for each fault in the column of 

fault result.   
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More importantly, it is proved that the set of vectors generated for structural faults 

in the TLL cell are the subset of vectors for functional test on the TLL cell. Hence the 

functional test on the TLL cell provides a satisfactory coverage of the structural fault 

detection.  

 

4.3 TEST GENERATION OF HYBRID CIRCUIT 
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Figure 22. General structure of a hybrid cone. 

Figure 22 shows the general structure of one cone of a hybrid design. The 

flip-flop in the left can be scanned. So <a1:am> is the only lines that can be directly 

controlled. As one cone, the combinational logic together with the TLL cell on the right 

forms a function. Only Q can be observed, while <b1:bn> as the input of the TLL 

cannot. 
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Start

Step 1. Scan chain test generation.

Step 2. Test generation for the combinational feeder 
and other scan elements except TLLs. 

Step 3. Test generation for TLL cells. 

End
 

Figure 23. Test generation procedure for hybrid circuits.  

Figure 23 shows the test generation flow. To begin with, the scan chain is tested. A 

sequence of transitions of ones and zeros applied continuously in scan mode detects all 

possible faults, along the scan chain, which include stuck-at faults, dynamic transition 

faults, and the functional defect of the latch and test branch in the TLL cell. Typical static 

sequence generated is repeating “00110011”. This tests all possible four cases, 0->0, 0->1, 

1->1, and 1->0, for scan elements, in which the function of the latch in TLL cells is also 

tested. And dynamic sequence, if any, is typically repeating “00111100”. As is known, the 

worst case for a slow transition is when the initial state fully settled down. In all, correct 

operation of the scan chain lays the foundation of all other following tests.  

Second, assuming that the TLL cell is fault-free, generate tests for all 

combinational logic blocks and other scan elements, where conventional ATPG 

algorithms can be used. The fault-free TLL cell ensures exact fault propagation.    
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Third, generate test patterns for TLL cells, assuming that all other gates are 

fault-free. In Figure 22, the input of the TLL cell is <b1:bn>. Find the relationship 

between <b1:bn>. Drop one from each pair of lines with inverted relationship and build 

the truth table. Then functional truth table test is conducted on each TLL cell. For one 

thing, to prove that the reset function works, dynamic pattern test should be generated for 

each weak input, where the required pattern information contains the initial value on the 

output of the TLL cell to launch a transition, the vector of <b1:bn> itself, and the 

expected output after transition. Weak inputs can be identified by selecting those vectors 

which achieve one weighted sum difference between the two sides of networks. When the 

vector is scanned in, the initial output value is also scanned in and held to its steady state. 

It is followed by the normal mode to trigger the transition, which should be observed by 

the end of this cycle. For another, static pattern test is generated for each one of all other 

remaining inputs in the truth table, where the required pattern information contains the 

vector of <b1:bn> itself, and the expected output in steady state. Finally, note that each 

test vector derived for <b1:bn> should be transferred backward across the combinational 

logic feeder to the lines of <a1:am> for controllability.   
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CHAPTER 5 

AUTOMATIC TEST PATTERN GENERATION FOR HYBRID CIRCUITS 

5.1 ENCOUNTER TEST ATPG FLOW  

Cadence Encounter Test (ET) is a professional ATPG tool [22]. The goal is to 

make use of ET to work for hybrid circuits. The fault types under consideration include 

static stuck-at fault and dynamic pin fault for the combinational logic block, and specific 

pattern fault (static pattern fault and dynamic pattern fault) for the TLL cell functional 

test. More detail about each fault type can be found in the following part, Build fault 

model.  

Figure 24 shows the general ATPG flow for CMOS circuits [22]. ET runs ATPG 

only for traditional CMOS circuits. To get the test pattern for hybrid designs, it is 

necessary to change or synthesize the hybrid design to a pure CMOS netlist, which is 

discussed later.  
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Figure 24. Encounter Test ATPG Flow [22].  

 

5.1.1 Build model 

To build the logic model used by Encounter Test, the Verilog netlist is read in. 

After the top level cell is determined, instances and their relevant cell definitions are 

searched recursively. 
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5.1.2 Edit model 

After building the model, the edit model file containing all commands is read in to 

provide more updates. On one hand, circuit structure can be further edited. Normally, a 

net, pin, or block can be added or deleted. On the other hand, the attributes of cells, 

instances, etc., can be set. It is proved helpful to set the attribute, faults, to “no” on the 

instance, when the demand arises for masking some part of the netlist as fault-free, which 

is widely used for testing of the combinational logic block of hybrid circuits.   

 

5.1.3 Build testmode 

The testmode refers to configuration of the scan chain. ET recognizes the scan 

chain and its controllability and observability. What needs to prepare here is the assign 

file, which states the information of functional pins. Among all pins in the netlist, the 

scan input, scan output, scan enable and system clock are necessary to specify.  

 

5.1.4 Verify Test Structures 

This procedure tests the controllability and observability of the scan chain, control 

of memory elements, and conditions which result in a drop of coverage or manufacturing 

problems.  
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5.1.5 Build fault model 

In defaults, static stuck-at fault for each wire and dynamic pin fault for each pin of 

gates are targets for test generator. Note that static stuck-at faults here have been 

pre-collapsed. The static stuck-at faults only care about the steady state result after fault 

activation. Unfortunately, it cannot detect the spot defect, which results from variation in 

resistance or capacitance when impurities or etching problems kick in. This type of 

dynamic spot fault is modeled as transition fault (slow to rise and fall faults). The 

apparent difference between the tests for the transition fault and the stuck-at fault is that 

the former one requires an additional vector to initialize the value on the pin before 

applying the fault activation vector and observes the single transition after one clock 

cycle in the downstream scan element. Actually the transition fault is the two-pattern test.  

For more specific pattern faults, the fault rule file can be read in to build a custom 

fault model, which is suitable for the TLL cell functional test. In the fault rule file, both 

dynamic and static pattern can be described with initialization (merely valid for dynamic 

pattern), activation, and propagation specifications. For other purposes, the OR ring or 

AND ring can also take part in.  

It is optional to include automatic pattern fault for primitive logic gates. For 

instance, pattern fault for XOR and DFF detect a comprehensive set of faults, which 

ensures the correct static and dynamic function. More detail about this type of faults can 

be found in the manual.  
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5.1.6 Create tests 

 Static faults and dynamic faults introduced above can be detected using logic test 

and logic delay test respectively. Before these two tests, scan chain test (static) and scan 

chain delay test (dynamic) should be conducted respectively. It is because the generation 

of logic tests has pre-assumed the scan chain works precisely. And the stuck-at fault and 

the transition fault along the scan chain and corresponding scan input pins of each scan 

elements cannot be tested without applying scan tests.  

 

5.1.7 Commit tests 

Commit a test means saving the test data. When the test data is committed, it is 

appended to the set of committed vectors. Once committed, the test data is isolated from 

any further operation and other uncommitted test data.  

 

5.1.8 Write vectors 

After committing all required test vectors, they are ready to be written out and the 

testbench is then generated. Common vector formats include Verilog, Standard Test 

Interface Language (STIL), Waveform Generation Language (WGL), and Tester 

Description Language (TDL).  
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For convenience of showing the flow of test sequences, the cycle map should be 

created for all output vectors, that is, both scan outputs and primary outputs. Most useful 

information that the cycle map provides includes the cycle count, test sequence number 

and event type.  

 

5.1.9 Report faults 

Reporting faults produces a list of each fault being modeled, together with its 

specification of fault activation, fault propagation, and, if any, fault initialization. In 

addition, the testing status of each fault is also presented in the report. For example, some 

faults are marked detected, while others are marked undetectable.   

 

5.2 PYTHON ATPG SCRIPT FOR HYBRID CIRCUITS  

Python script can be written to automate the ATPG flow for generic hybrid 

circuits. It is the readability and concise coding style that makes Python the appropriate 

choice [23]. Before writing the script, it is vital to clarify the tasks step by step. In order 

to make sure that each task can be accomplished, manual operation on each step is 

supposed to begin with.  
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Chapter 4.3 proposes the general test generation method for hybrid circuits. In 

practice, however, the ATPG tool cannot take the TLL gate. The solution (step 1) is to 

re-synthesize the hybrid netlist to an equivalent pure CMOS netlist and run further test 

generation on it, where the non-TLL gates are preserved. Another problem is that the gate 

names and the wire names of TLL inputs change during re-synthesis. Step 2 collects the 

names of new gates generated and creates the logic model edit file to set them fault-free. 

Step 3 find the new names of those wires originally connected to the TLL input pins for 

each TLL cell. Moreover, as a matter of fact, it is difficult to get the function of the TLL 

gates and their feeders. So does the relationship between input wires for each TLL, as a 

pair of wires with mutual inversion may not be simply connected by an inverter. 

Exhaustive patterns are generated for TLL inputs with weak inputs identified to use 

dynamic pattern and others static pattern. Step 4 builds such fault model for each TLL. 

The final step is to run the ATPG and generate the executable testbench.  

Overall, the idea is to re-synthesize the part of all TLL cells in the hybrid netlist 

into a new netlist made of pure CMOS gates, set those gates representing the original 

TLL cells as fault-free, and build the truth table functional pattern test for each original 

TLL cell, and finally run the regular ATPG for the netlist.  
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Start

Step 1: Re-synthesize the part of TLL cells in the hybrid netlist to its 
CMOS version (CMOS Netlist). 

Step 2: Generate the logic model edit file, in order to mask the           
original TLL part as fault-free.

Step 3: Take the next unprocessed TLL cell. Find in the CMOS netlist 
the corresponding wire name for each TLL input.

Step 4: Build static and dynamic pattern fault model for original TLL 
part in the CMOS netlist.

Step 5: Run ATPG and the testbench.  

End

All TLL cells has
been traversed?

Yes.

No.

 

Figure 25. Python automation flow of ATPG for generic hybrid circuits.  

Figure 25 shows the actual flow of ATPG automation. All tasks are grouped into 

five steps, among which the step 3 and step 4 should traverse all TLL cells. The 

procedure for each step is introduced in more detail as follows.  



64 

5.2.1 Re-synthesize hybrid netlist to CMOS netlist 

Start

Add the path of verilog lib file of TLL cell to the netlist.

Preserve all instances except the TLL cells. 

Set the new instances prefix, which gives the new generated CMOS 
logic gates the same instance prefix.

Run RTL Compiler test synthesis flow. 

Delete the old scan chain, and specify the name of the fault rule file. 

New CMOS netlist is generated.

End
 

Figure 26. Step 1: Re-synthesize to the CMOS netlist.  
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As is shown in Figure 26, Step 1 takes the raw hybrid netlist, re-synthesis TLL 

cells to CMOS gates, and clean up the output netlist. Since the ET tool cannot understand 

the TLL gates, it is practical to use synthesis tool to change each TLL cell to its 

equivalent CMOS gates. Here the equivalence means that the CMOS gates should 

implement the same truth table as the original TLL cell, which ensures same fault 

propagation properties.  
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Figure 27. Re-synthesize the TLL cell to CMOS gates.  
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In Figure 27, it can be seen that the TLL cell is replaced by an equivalent CMOS 

multi-input logic and an edge-triggered flip-flop. If the test synthesis flow, as is discussed 

in chapter 2, is regarded as the core task, other tasks in step 1 can be divided as 

pre-synthesis and post-synthesis. For convenience, the generated output netlist in step 1 

can be called “the CMOS netlist”, as comparison with the original hybrid netlist. 

Pre-synthesis prepares the requisite settings to control the synthesizer. Starting 

from the raw hybrid netlist full of CMOS gates and TLL cells, the path of the Verilog 

description file of those TLL cells should be added in front of the netlist. Secondly, 

anything except the TLL cell should be preserved. Third, considering that the CMOS 

replacement of TLL cells should be marked later as fault-free, the prefix of newly 

generated gates should be set specifically for the purpose of easier identification.   

Post-synthesis transform the raw output of synthesis to the equivalent pure CMOS 

version of hybrid netlist (the CMOS netlist). Test synthesis preserves the pre-existing 

scan chain and builds another scan chain due to the change made to the TLL cell. As a 

result, the remaining part of the original scan chain should be removed and the new scan 

chain with related gates should be named according to the old one.  
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5.2.2 Generate the logic model edit file 

Start

In the hybrid netlist, find the instance name of all TLL cells.

In the CMOS netlist, find all instances with the prefix of the instance 
name found above (New scan flip-flops).

In the CMOS netlist, find all instances with the prefix specified in 
Step 1 (new logic gates).

Mask all instances found as fault-free by adding the attribute, 
FAULTS, with its inactive value to each instance.

Write the attribute adding statements to the logic model edit file.

End
 

Figure 28. Step 2: Generate the logic model edit file.  

 

Figure 28 shows the flow of second step, generating the logic model edit file. The 

logic model edit file is read in after building the model to add more detailed 

modifications. The essential purpose of this step is to set the CMOS replacement of TLL 

cells as fault-free, since those faults do not exist in the real circuit under test, the hybrid 

netlist. Importantly, that part in the CMOS netlist guarantees that it implements the same 
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function as the original TLL cell does, so that the fault propagation properties are 

equivalent.   

To mask those new gates as fault-free, all new gates should be identified first. 

Regular expression can be used to search a specific pattern of characters, digits or 

symbols. On one hand, those new logic gates shares the same prefix as defined in step 1. 

Instance names with those prefix are selected from the CMOS netlist. On the other hand, 

each new flip-flop uses the original TLL instance name as prefix. So the procedure is that 

search for all TLL instance names in hybrid netlist, save them, and find those gates whose 

instance names start with them in the CMOS netlist.  

When all instance names of newly generated gates are collected, their attribute of 

“FAULTS” with the assignment of inactive value should be added. Note that different 

modules can have same instance names. So the module name to which each instance 

belongs should be included. Finally, all the attribute adding statements are written into the 

logic model edit file. It is read when ATPG runs.  

 

5.2.3 Find in CMOS netlist the corresponding wire names for each TLL input  

This step, followed by step 4, should be executed for each TLL cell in the hybrid 

netlist. All discussion below about step 3 and step 4 is based on a specific TLL cell.  
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To build the pattern fault model for the TLL part in CMOS netlist, the wire 

connected to each of TLL inputs should be identified. However, from the hybrid netlist to 

the CMOS netlist, since the TLL cell is removed, the wires connected to the original TLL 

inputs change their name. What remains the same is the other terminal of those wires, the 

surrounding gates and pins. Under this condition, it is viable to follow the steps: (1) find 

an unprocessed TLL cell in the hybrid netlist; (2) find the wires connected to TLL inputs; 

(3) for each of those wires, find at least one connected gate other than TLL cell and the 

related instance name and pin name; (4) According to the names of instance and pin 

found previously, find in the CMOS netlist the connected wire name; (5) build a new 

mapping from each TLL input pin to the corresponding wire in the CMOS netlist.   
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Start

Parse the hybrid netlist. Find all TLL cells. For each cell create a 
dictionary, with cell name and pin name as keys and instance name 

and net name as values. Count the TLL cells as num_tll.

In the hybrid netlist, find other non-TLL cells. For each cell create a 
dictionary, with cell name and net name as keys and instance name 

and pin name as values

Append all cell dictionaries in the hybrid netlist to the list, H_list. The 
first num_tll of items are TLL cells while others are non-TLL cells.

Parse the CMOS netlist. For each cell create a dictionary, with 
instance name and pin name as keys and cell name and net name as 

values. Append them to a list, C_list.

For each cell in H_list[:num_tll], for each key in that cell, if the key 
contains “I” or “T”, get the value of that key in cell as the net name 

connected to that TLL input pin.

Use that net name to find the connected cell in H_list[num_tll:]. If 
found, update two mappings, from TLL input pin name to the current 

instance name (gate_dic) and to the current pin name (port_dic). 

End

For each cell in C_list, if the instance name is found in the keys of 
that cell, check the corresponding pin name of that cell. Then the net 

name in the CMOS netlist is found. 

Mapping from each TLL input pin name to its corresponding net 
name in CMOS netlist is created for each TLL cell (postsyn_dic). 

 
Figure 29. Step 3: Find the wires in the CMOS netlist correspond to the original TLL inputs.  

 

Figure 29 shows the detailed flow of this step. Lists and dictionaries are used as 

the data structure to store or search the data.  
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First of all, for each instance in the netlist, a dictionary is built. The mapping 

direction from instance name to cell name, and pin name to wire name can be adjusted 

based on the demand for searches. Instances in hybrid netlist are grouped into one list, 

H_list. The first num_tll items are dictionaries of TLL cells, and the others are CMOS 

gates. Similarly, instances in CMOS netlist are group also into one list, C_list.  

Secondly, use the H_list to find the mapping from each TLL input pin to its wire 

and then find the connected CMOS instance. Next, build the mapping from each TLL 

input pin to its connected CMOS instance name and its associated pin names. Then, these 

two names are used in the C_list to update the mapping from each TLL input pin to the 

new wire name. This mapping is notated as postsyn_dic.  

Note that the output wire of TLL cell does not change its name during synthesis. 

So no operation is required.  
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5.2.4 Build static and dynamic pattern fault model for TLL cells   

Start

Read postsyn_dic, build a mapping  for input networks of each 
connected line name and its times of appearance. Do the same for 

threshold network. Generate ip_weight_dic and th_weight_dic.

Create exhaustive vector tuples. Number of item in each tuple is 
according to the number of wires connected to TLL inputs.

For each tuple, calculate the weighted sum of input network and 
that of threshold network. Then the expected output is obtained.

If two sums equal, drop this tuple. Else if their difference is one, 
write dynamic pattern fault to the rule file. Else write static pattern 

fault to the rule file.

End
 

Figure 30. Step 4: Build static and dynamic pattern fault model for TLL cells 

As is discussed in the previous chapter, to generate the functional truth table test 

for the TLL cells, for weak inputs, dynamic patterns are built for reset function test and 

the TLL function itself. Then static patterns are built for remaining vectors in the truth 

table.  

In the realistic scenario, the functions of the TLL and its feeder are unknown. 

Analogously, the relationship between TLL inputs, such as inversion, is uncertain. 

Analysis on such information is sometimes very complicated and not worthwhile. 

Therefore, the idea of exhaustive pattern on all inputs is proposed.  
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Figure 30 shows the flow for step 4. In detail, for all wires as inputs, ignore the 

relationship between them and treat them as separated lines. Generate the exhaustive 

pattern for them. To obtain the weighed sum, the dictionaries, ip_weight_dic and 

th_weight_dic, are built to represent the weight for each input wire by counting the 

appearance in postsyn_dic for that wire. Based on the truth table of weighted sum of each 

side, the weak inputs are identified and the expected output with faulty output is 

calculated. Note that the initial output is equal to the faulty output. Hence all dynamic 

patterns are generated and written into the fault rule file. Afterwards, the remaining 

vectors in the truth table, with the calculated expected output and faulty output, are 

written as static pattern faults in the fault rule file. The design rule that the weighted sums 

can never be equal helps reduce some obvious invalid vectors.   

The Encounter Test tool can read in the fault rule file and build the fault model as 

stated in the pattern specifications, when running ATPG. Those invalid patterns, for 

instance, same value for two wires with inversed relationship, are dropped by ATPG. So 

exhaustive patterns do not impact the efficiency of testing and are actually reduced to 

regular functional truth table test.  
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5.2.5 Run ATPG and the testbench  

Start

Run Ecounter Test ATPG flow.

Resume the modification to the hybrid netlist in Step 1.

Add the path of hybrid netlist and its cell description file to the 
testbench.

Run the testbench

End
 

Figure 31. Step 5: Run ATPG and the testbench 

 

Figure 31 shows the flow for step 5. All preceding four steps provide the 

configuration for the ATPG flow. Note that the ATPG is executed on the CMOS netlist. 

Since it is functionally equivalent to the hybrid netlist and their external structure are 

same, all vectors and the testbench generated are also effective to the hybrid netlist.  
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Combinational feeder 
and other scan element

TLL Cell

Dynamic pattern 
fault for weak inputs

Static pattern fault 
for other inputs

Static stuck-at fault 
for each wire

Transition fault for 
each pin of gate

Automatic pattern 
fault for some 

primitives (optional)

 

Figure 32. Fault types under consideration.  

 

Figure 32 presents the common fault types to which tests are generated. Firstly, 

ATPG is run on the whole CMOS netlist except the fault-free part set by step 2. For a 

fault in the feeder, it is activated by applying the inversed value to that line. The ATPG 

algorithm can calculate the controllable primary input and scan input vector which 

activate that fault and ensure that faulty effect propagates to the observable output. When 

any fault effect propagates to one or more inputs of the CMOS replacement of a TLL, the 

tool looks for the combination of other TLL inputs to which the fault does not propagate, 

where the faulty and fault-free version of all the TLL inputs result in different output, 

according to the truth table of the TLL. If such vector can be found, it is stored and the 

next fault is analyzed. Otherwise, the fault is marked undetectable.  
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Secondly, the patterns provided by step 4 are read in to build the fault model and 

the corresponding vector to apply to the primary input and scan input is then derived by 

ATPG algorithms. The automatic pattern provided by the tool can build more complex 

fault models for some Verilog primitives. More detail about it can be found in the manual 

of Encounter Test.  

The next task is to delete the path added in the beginning of the hybrid netlist in 

step 1.  

Before running the testbench, the paths of the hybrid netlist and its cell 

description file should be included. Besides, the command to run the testbench requires 

the information of start range, end range, and the names of test files. The start and end 

range refers to the pattern odometer.  
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CHAPTER 6 

CONCLUSIONS 

This thesis proposed the procedure of test generation of threshold logic latch 

based hybrid circuits. For the scan chain, static and dynamic sequences of zeros and ones 

were applied to test the function and structural faults along the scan chain. For the feeder 

and other scan elements, conventional ATPG algorithms were used with the TLL cells set 

fault-free in order to ensure fault propagation across the TLL. For each TLL cell, 

functional truth table test generation was presented, where weak inputs and strong inputs 

were defined and tested by dynamic pattern and static pattern respectively, which 

simultaneously detects all testable static structural faults including stuck-at faults, 

stuck-open faults, and stuck-on faults.  

Based on the Cadence ATPG Encounter Test (ET) tool [22], an ATPG flow for 

hybrid circuits were proposed and automated by Python script. The fault types under 

consideration included static stuck-at fault and dynamic pin fault for the combinational 

logic block, and specific pattern fault (static pattern fault and dynamic pattern fault) for 

the TLL cell functional test. Given the netlist, the function of TLL and the feeder was 

unknown, and the TLL cell cannot be recognized by the tool. They are solved by 

exhaustive pattern and re-synthesize respectively, with the help of ATPG algorithms in 

the ET tool. The complete flow is then presented with python automation, by which the 

test patterns and the testbench are generated. 
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