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ABSTRACT  

   

This is a two-part thesis:  

Part 1 of this thesis tests and validates the methodology and mathematical models 

of the International Electrotechnical Commission (IEC) 61853-2 standard for the 

measurement of angle of incidence (AOI) effects on photovoltaic modules. Flat-plate 

photovoltaic modules in the field operate under a wide range of environmental 

conditions. The purpose of IEC 61853-2 is to characterize photovoltaic modules' 

performance under specific environmental conditions. Part 1 of this report focuses 

specifically on AOI. 

To accurately test and validate IEC 61853-2 standard for measuring AOI, 

meticulous experimental setup and test procedures were followed. Modules of five 

different photovoltaic technology types with glass superstrates were tested. Test results 

show practically identical relative light transmission plots for all five test modules. The 

experimental results were compared to theoretical and empirical models for relative light 

transmission of air-glass interface. IEC 61853-2 states "for the flat glass superstrate 

modules, the AOI test does not need to be performed; rather, the data of a flat glass air 

interface can be used." The results obtained in this thesis validate this statement. This 

work was performed in collaboration with another Master of Science student 

(Surynarayana Janakeeraman) and the test results are presented in two masters theses. 

Part 2 of this thesis is to develop non-intrusive techniques to accurately measure the 

quantum efficiency (QE) of a single-junction crystalline silicon cell within a commercial 

module. This thesis will describe in detail all the equipment and conditions necessary to 

measure QE and discuss the factors which may influence this measurement.  
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The ability to utilize a non-intrusive test to measure quantum efficiency of a cell 

within a module is extremely beneficial for reliability testing of commercial modules. 

Detailed methodologies for this innovative test procedure are not widely available in 

industry because equipment and measurement techniques have not been explored 

extensively. This paper will provide a literature review describing relevant theories and 

measurement techniques related to measuring the QE of a cell within a module. The 

testing methodology and necessary equipment will be described in detail. Results and 

conclusions provide the overall accuracy of the measurements and discuss the parameters 

affecting these measurements. 
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DEFINITION OF TERMS 

AOI = Angle of incidence (angle between solar beam and normal vector in degrees) 

PV = photovoltaic 

ASU-PRL = Arizona State University Photovoltaic Reliability Laboratory 

IEC = International Electrotecnical Commission  

Mono-Si = monocrystalline silicon 

Poly-Si = polycrystalline silicon 

a-Si = amorphous silicon 

CdTe = cadmium telluride 

CIGS = copper indium gallium selenide 

Isc = Short circuit current (A) 

Voc = Open circuit voltage (V) 

Ee = Solar irradiance actually captured and used by module (dim or suns)  

Edni = Direct normal solar irradiance (W/m
2
)  

Epoa = Global solar irradiance in the plane-of-array (module) (W/m
2
)  

Eo = Reference global solar irradiance, typically 1000 W/m
2
  

Tc = Measured module (cell) temperature (°C)  

αIsc = Short-circuit current temperature coefficient (1/°C)  

f1(AMa) = Empirical relationship for solar spectral influence on Isc versus air mass  

C-M-QE = Cell-module quantum efficiency measurement 

FF = Fill factor 

C-QE = Cell Quantum Efficiency 

M-QE = Module Quantum Efficiency 
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PART 1: ANGLE OF INCIDENCE EFFECT ON PHOTOVOLTAIC MODULES 
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1-1 INTRODUCTION 

About the IEC 61853-2 Standard 

The International Electrotechnical Commission (IEC) is a standard development 

organization (SDO) for the preparation and publication of International Standards for all 

electrical, electronic and related technologies. IEC 61853 is a standard governing 

photovoltaic (PV) module performance testing and energy rating. The overall scope of 

the IEC 61853 standard is to test and characterize PV modules over a wide range of 

temperatures, irradiance levels, angles of incidence, and solar spectra. 

Part 1 of IEC 61853: Photovoltaic Module Performance Testing and Energy Rating 

measures PV module power under specific conditions: air mass spectrum of 1.5, angle of 

incidence of 0°, seven different irradiance levels, and four different temperatures. Part 2 

of IEC 61853 aims to test and measure power ratings over a wide range of air mass 

spectrum and angle of incidences from 0° to 90°. Currently, IEC 61853-2 is a draft form 

and is projected to be finalized in the 2014/2015 timeframe. IEC Technical Group 82 

developed the procedures and mathematical models used in the first two parts of the 

standard (IEC 61853-1 and IEC 61853-2). The accuracy of these procedures and models 

must be independently tested and validated. 

Statement of the Problem 

The amount of sunlight reaching solar cells is dictated by the reflected and 

transmitted fractions of the incident light. The transmissions and reflections are 

influenced by the module design: reflections within superstrate and encapsulant, and at 
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the air/superstate, superstrate/encapsulant and encapsulant/cell interfaces; transmittances 

through superstrate and encapsulant. These reflections and transmittances are the 

functions of the solar incidence angle. The surface roughness and antireflective coatings 

of the superstrates heavily influence the incident angle effect.  

 As shown in Figure 1, there are two primary ways angle of incidence (AOI) 

influences the short circuit current of photovoltaic modules. The first is a purely 

mechanical/geometrical effect due to the module’s orientation with respect to the incident 

sunlight. It is often referred to as the ‘cosine effect’. It states that the irradiance incident 

on the module decreases with increasing AOI and it is proportional to cos(AOI). The 

second way AOI influences short circuit current is due to the optical effects or surface 

characteristics of the module itself and will be referred to as the ‘optical effect’. PV 

manufacturers go through great lengths to improve the optical characteristics of modules, 

specifically the superstrate, by incorporating anti-reflective coatings, rolled or textured 

glass, or other methods. 

 

Figure 1. Summary of geometrical and reflection losses for flat-plate PV modules 
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 This report presents the effects of AOI on short circuit current for five different 

module technologies: monocrystalline silicon (Mono-Si), polycrystalline silicon (Poly-

Si), amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium 

selenide (CIGS). The superstrate/encapsulant/substrate materials of these modules are 

respectively: glass/EVA/polymer (mono-Si); glass/EVA/polymer (poly-Si); 

glass/EVA/glass (a-Si); glass/EVA/glass (CdTe); glass/EVA/polymer (CIGS). All 

measurements were carried out on clear sunny days using a 2-axis tracker. A novel 

device, described later in this thesis, was used to accurately measure the angle of 

incidence (AOI) and three conventional reference devices were used to measure the 

irradiance: pyranometer (global irradiance), pyrheliometer (direct normal irradiance), and 

polycrystalline silicon reference cell (global irradiance). 

 The data collected during this experiment was then processed and analyzed 

according to equations specified by IEC 61853-1. To cross check this data analysis 

procedure, the data was also processed using the method developed by Sandia National 

Laboratory. Both results are plotted and compared to existing theoretical curves for the 

reflectance of an air-glass interface. A comprehensive uncertainty analysis was also 

calculated by quantifying the error for each measurement device used in the experiment.  

A major report based on this work was published by Solar ABCs and this report can be 

downloaded from SolarABCs website (solarabcs.org). 
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1-2 LITERATURE REVIEW 

Outdoor Measurement Procedure of IEC 61853-2 Standard 

The measurement procedure of IEC 61853-2 for AOI effects is based on collecting 

Isc data of the test modules over a wide range of incident angles. The required test 

apparatus, experimental setup, and measurement procedures are briefly presented below. 

For detailed and exact procedures, refer to the IEC standard. 

The standard identifies the use of various test apparatus and the technical 

requirements of these apparatus. Irradiance sensors are used to measure the global and 

direct irradiance levels (reference cell for global irradiance and direct irradiance level 

using shadowing/collimating method as described in the “measurement procedure” 

below; or a combination of pyranometer for global irradiance and pyheliometer for direct 

normal irradiance). Thermal sensors are used to measure the temperature of ambient, test 

module and reference cell. A data acquisition system collects and stores the output of 

thermal sensors and the short circuit current of the test modules and reference cell. Two-

axis trackers are used to mount the test modules and change the incident angles on the 

test modules. An AOI measuring device determines the tilt angle to the sun and verified 

the co-planarity of test modules and irradiance sensors 

If the diffuse component does not exceed 10% of the total irradiance, then directly 

measured Isc at various angles of incidence, Isc(θ), can be used to calculate the relative 

angular light transmission data, τ(θ), as given in (3). If the diffuse component exceeds 

10% of the total irradiance, then the measured Isc(θ) should be corrected before use in the 
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calculation of τ(θ). The Isc(θ) correction depends on the type of irradiance sensor used 

(PV reference cell or pyranometer). 

If a PV reference cell device is used as an irradiance sensor, the diffuse light 

component should not exceed 10% of the total irradiance during the Isc(θ) measurement 

period. If the diffuse component exceeds 10%, it can be subtracted after measuring the 

angular response with blocked direct light component or the diffuse component can be 

blocked to below 10% by reducing the field of view of the diffuse component; for 

example, by collimating the incident light reaching the test module. 

If the pyranometer and pyrheliometer are used as irradiance sensors, the diffuse 

component visible to the module is given in Equation (1). 

                         (1) 

Where Gdiff is global diffuse irradiance, Gtpoa is the total irradiance in the plane of the 

module (as measured by a pyranometer in the module plane), Gdni is direct normal 

irradiance as measured by the pyrheliometer and  corresponds to the tilt angle between 

the module normal and the direct solar irradiance. 

Isc induced by the direct incident light can be estimated in the presence of the diffuse 

light component in Equation (2). 

                   
   (  

     

     
)  (2) 

Use the two-axis tracker to rotate the test module with respect to the normal solar 

irradiance. Vary the angle between module normal and sunlight between -80° and +80° in 

steps of maximum 10°. Do a minimum of nine different angles to span the angles from 0 

to 80°. 
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The relative angular light transmission (or relative angular optical response) into the 

module is given by Equation (3). 

     
      

            
  (3) 

Sandia National Laboratory Method 

In June 2012, Sandia National Laboratory published a paper titled “Measuring Angle-

of-Incidence (AOI) Influence on PV Module Performance” [1]. This paper stated the 

difference between “mechanical” and “optical” effects and the contributing factors of 

angle of incidence losses. Mechanical effects deal strictly with the module’s orientation 

with respect to the incident sunlight. Mechanical effects have nothing to do with the 

material construction of the module; rather it is an unavoidable physical effect when 

changing the angle of incidence. The mechanical effect is proportional to the cosine of 

AOI and is often referred to as the cosine effect. The optical effect depends on the surface 

characteristics of the module and affects the PV module by increasing reflectance losses 

as AOI increases. All modules used in this report were of an air-glass interface. 

Both mechanical and optical influences apply mainly to the direct component of 

sunlight. Therefore, it was essential to perform the experiments on a clear sunny day 

when the direct component beam was greater than 90% of the total global irradiance. The 

Sandia model accounts for both mechanical and optical influences using an expanded 

expression to determine the effective solar irradiance. By taking to account the direct and 

diffused components of sunlight, the optical effect (f2(AOI)) can be measured empirically 

and calculated using the following Equations (4) and (5). 
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  (

   

(      (     ))    
) (                 )

             
  (4) 

     
     

    (             )
  (5) 

Empirical measurements for f2(AOI) were carried out at Sandia National Laboratory 

for conventional flat-plate PV modules with planar glass-air interfaces. The results for 

these tests are given in Figure 2. 

 

Figure 2. Empirical f2(AOI) measurements by Sandia National Laboratories for 

conventional flat-plate modules with a planar glass front surfaces [1] 

After sufficient data had been collected for the relative optical response of modules 

with an air-glass interface, Sandia National Laboratories fit a fifth order polynomial to 

the measured data. This polynomial is shown in red in Figure 2. The generic polynomial 

used to describe the typical optical response for modules with an air-glass interface is 

given in Equation (6) below. 
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f2(AOI) = 1-2.4377E-3(AOI)+3.1032E-4(AOI)
2
-1.2458E-5(AOI)

3
+ 

2.1122E-7(AOI)
4
-1.3593E-9(AOI)

5
  (6) 

 

Theoretical Models for Reflectance Losses 

The Sandia National Laboratory polynomial for typical optical response of air-glass 

interface PV modules gives an empirically derived model for the reflective behaviors of 

PV modules in the field. This study will also consider an analytical module to determine 

how they compare with measured data. “Angular Reflection Losses in PV Modules” by 

N. Martin and J. M. Ruiz was published in 2004 with the purpose of obtaining a universal 

model for calculating the annual angular reflection losses of PV modules in real 

conditions [2]. The calculation for the optical losses, developed by the authors, is given in 

Equation (7). 

 

         [
     [           ]

        
 

  
 

]  (7) 

Where:  

 = Angle of incidence 

   = angular loss coefficient (an empirical dimensionless parameter dependent on each 

technology; typical values range from 0.16 to 0.17 for commercial clean x-Si and a-Si 

modules, 0.20 if the modules’ surfaces have a moderate quantity of dust [for this 

report, 0.17 was used]) 
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Equation (7) was plotted and compared to the Sandia National Laboratory generalized 

polynomial as shown in Figure 3. Both the empirically derived curve and analytically 

derived curves are in good agreement with each other. The measured results from this 

experiment were plotted and compared to the Sandia National Laboratory generalized 

polynomial and the Martin and Ruiz theoretically derived polynomial to check accuracy. 

 

Figure 3. Comparison of relative optical response for Sandia National Laboratory 

polynomial and Martin and Ruiz model 
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1-3 METHODOLOGY  

Outdoor Measurement Procedure at ASU-PRL 

During the outdoor measurements at ASU-PRL, the measurement procedures of IEC 

61853-2 standard were closely followed. The test apparatus, experimental setup and 

measurement procedures used in this work are presented below.  

Test Apparatus 

 Test modules: The test modules of five different technologies were used: 

monocrystalline silicon (Mono-Si), polycrystalline silicon (Poly-Si), amorphous 

silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium selenide 

(CIGS). In all the five modules, glass was used as the superstrate. The 

superstrate/encapsulant/substrate materials of these five modules are: 

glass/EVA/polymer (mono-Si); glass/EVA/polymer (poly-Si); glass/EVA/glass (a-

Si); glass/EVA/glass (CdTe); glass/EVA/polymer (CIGS).  

 Irradiance sensors: A PV reference cell (poly-Si), two pyranometers from two 

vendors (Eppley PSP and Kipp & Zonnen) and a pyrheliometer (Kipp & Zonen) 

were used. All the irradiance sensors were calibrated. Only the data obtained using 

the pyranometers and pyrheliometer were processed for the data analysis in this 

report. The data obtained using the PV reference cell will be processed and 

presented in a future publication. 
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 Thermal sensors: Omega T-type thermocouples were attached to the center of the 

backsheet of each module using a thermal tape. The accuracy of the thermocouples 

is given by the manufacturer as +/- 1°C or 0.75% for temperatures above 0°C. 

 Short Circuit Current Measurement: CR Magnetic direct current (DC) transducers 

were used to measure the short circuit current for each module (Figure 4A). The 

transducers were kept in an air conditioned facility to maintain a constant operating 

temperature and to comply with the manufacturer rated accuracy of 1%. A linear 

relation is given between current passing through the transducer and the voltage 

output by the transducer. 

 Data acquisition system: A Campbell Scientific CR1000 data logger was used to 

record and store all the simultaneously collected data: module short circuit current; 

module temperature; and irradiance. Since temperatures of the five modules also 

had to be recorded, a multiplexer was used to provide the necessary number of 

inputs (Figure 4B). The CR1000 was also kept inside a temperature controlled 

facility to meet the manufacture rated accuracy of 1%. 

 



13 

(A)      (B) 

 
Figure 4. (A) DC current transducers (B) CR1000 data logger with multiplexer 

 Two-axis tracker: A two axis tracker was used to mount the test modules, irradiance 

sensors and AOI measuring device. Ideally, the tracker used should have full range 

of motion in both azimuth and elevation angles to achieve high angles of incidence 

for any time of day. The tracker used for this experiment was limited to 180° 

rotation about the azimuth angle and 65° of rotation about the elevation angle. High 

AOI could be achieved by starting the experiment at a certain time of day (around 

14:30 MST for this experiment) to allow the tracker to utilize its full azimuth range. 

Since it was necessary to obtain Edni measurements throughout the experiment, the 

pyrheliometer was allowed to track the sun using a manual 2-axis tracking method. 

 AOI measuring device: To determine the tilt angle to the sun for all modules and 

reference devices mounted on the two-axis tracker, a 3DM-GX3-25 miniature 

attitude heading reference system (Figure 5A) was used. This device is a high-
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performance, miniature attitude heading reference system purchased from 

MicroStrain (www.microstrain.com). It consists of a triaxial accelerometer, triaxial 

magnetometer, temperature sensors and processor that run an algorithm which 

provides static and dynamic orientation measurements with a manufacturer rated 

accuracy of +/- 0.5° static accuracy and a +/- 0.2 repeatability. To comply with the 

static accuracy of the device, the tracker was stopped for six seconds at each AOI. 

This allowed a stable AOI reading from the device. AOI software was used to 

calculate the position of the sun relative to the modules orientation, therefore 

providing the AOI. The device was mounted on the surface of a plastic platform 

(Figure 5B) at the end of a plastic bar extending from the tracker and coplanar to 

the modules. AOI data was measured and recorded by a laptop that was kept 

outside. The tracker operator manually rotated the two-axis tracker while referring 

to the laptop with the AOI software which displayed the AOI of the tracker and thus 

the modules and irradiance devices. The AOI data and data recorded by the 

Campbell Scientific CR1000 data logger were combined by synchronizing the 

laptop’s clock to that of the data logger. 

 



15 

 
(A)       (B) 

Figure 5. (A) AOI measurement device. (B) AOI device mounted on plastic arm 

Ideally, to ensure that all modules and reference devices are coplanar with respect to 

each other, the altitude heading reference device was placed on each module and the AOI 

was read from the software and checked for consistency. However, the accuracy of the 

device is greatly affected by any magnetic material. Care was taken to insure the device 

was mounted on a plastic platform with non-magnetic screws to avoid magnetic 

interference which may influence AOI measurements. When the AOI measurement 

device was placed near the modules, an accurate reading of AOI was unobtainable. To 

check that all modules where coplanar with respect to each other, the tracker was then set 

to automatic mode and allowed to track at an angle normal to the solar incidence beam. 

Both the AOI device and a sundial were placed on the plastic mounting arm of the AOI 

device and the tracker was ‘zeroed’ so that the AOI device measured a maximum AOI of 

0.3°or lower and there was no visible shadow on the sundial (Figure 6A). The sundial 

was then placed at the center and corner (Figure 6B) of each module. The shadow of the 

sundial was measured for each location. As shown in the equation below, the point on the 

tracker with the longest shadow length represented the least accurate point with respect to 
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AOI (AOImax error). This maximum shadow length was measured and the corresponding 

angle was calculated to be 0.7°. Given that the initial AOI reading was a maximum of 

0.3°, the projected maximum uncertainty for AOI was +/-1.0°. 

Test Setup 

The setup used for this experiment is shown in Figure 7. As required by the standard, 

all the modules were cleaned before beginning the measurements. The name of each 

module technology is labeled next to the respective module. All the components and test 

apparatus used in this work are identified in Figure 7.  

(A)       (B) 

Figure 6. (A) Sundial “zeroed” to AOI platform with essentially no shadow present (B) 

Sundail used to check the accuracy of the AOI for the mono-Si module 
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Figure 7. AOI measurement setup on two-axis tracker 

Measurement Procedure 

 To reduce the effects of module temperature, solar irradiance and solar spectral 

variations, the data was collected as quickly as possible. For this experiment, data was 

simultaneously collected from five different modules and irradiance sensors. These 

factors were given great importance and attention when performing the experiment: 

1. Soiling: Dust on the surface of the modules can be expected to influence the 

irradiance incident on the surface of the module. Therefore, all modules where 

cleaned before each experiment was performed. 
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2. Reflection from the surroundings: No objects of abnormally high solar 

reflectance were present at the test sight. Care was taken to prevent reflection 

from the surroundings. Any unnecessary devices on the tracker that protruded 

from the plane of array of the modules were removed. The ground surrounding 

the tracker was a flat gravel surface. 

3. Standard and constant irradiance: Ideally, if the entire global irradiance of about 

1000 W/m
2
 is made of direct irradiance, then AOI measurements on PV modules 

would become very simple. However, even on very clear days, there is always 

some diffused light. Clouds will further increase the ratio of diffused to direct 

irradiance. This ratio plays a prominent role on the measurement accuracy, 

especially at higher AOI. Therefore, all the tests were performed under clear sky 

conditions when the ratio of direct normal irradiance (measured by the normal 

incidence pyrheliometer) to global normal irradiance (measured by the 

pyranometer) was higher than 0.85. 

4. Standard and constant spectrum: Ideally, the test should be performed in a short 

period of time near solar noon to minimize the influence of spectral variation 

during the test period. Due to the physical limitation of the tracker, this test was 

performed around 14:30 MST to utilize the full range of the tracker. However, 

the test was done quickly (about 10 minutes) to maintain a constant spectrum 

throughout the experiment. The AOI was changed by rotating the tracker in 

azimuth and elevation from west to east, up to angles close to 90°. The data 

obtained in the opposite direction, east to west, is presented in Appendix F. 
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5. Standard and constant temperature: Ideally, the measurements shall be done at a 

constant module temperature. However, when AOI is changed, the module 

temperature cannot be kept constant due to varying irradiance levels on the 

module surface. The temperature of each module, under a very low wind speed 

condition, was measured by attaching a thermocouple to the center of the 

backsheet and recording the temperature throughout the experiment. Using the 

measured temperature coefficient for current of each module, the Isc values were 

corrected to 25°C to eliminate the influence of varying temperature during the 

test period. 

6. Maximum number of data points: A higher number of data points will improve 

the confidence level in the accuracy of measurements. The minimum time 

interval that the data logger could collect data was 30 seconds. To obtain enough 

data points, with nearly constant irradiance and air mass conditions, the tracker 

was moved 5° every 30 seconds up to AOI close to 85° (or as far as the tracker 

would allow). This allowed for a minimum of 18 data points to generate the Isc 

vs. AOI plots. The actual number of data points collected was 21 as the tracker 

was rotated slower at higher AOI to obtain more data points. 
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1-4 RESULTS AND DISCUSSION 

Relative Isc with Diffuse Component and Cosine Effects 

The first set of data was selected when the ratio of direct normal irradiance (Gdni) to 

total plane of irradiance (Gtpoa) was 87%. During this experiment, the Isc data of each 

module and the corresponding AOI was simultaneously measured. Figure 8 shows the Isc 

data relative to the Isc data obtained at zero AOI. This plot indicates the data is nearly 

identical for all the modules with glass superstrate regardless of the test technology 

(mono-Si, poly-Si, a-Si, CdTe, or CIGS). It is important to note that both optical and 

cosine effects of both the direct component and the diffuse component of the incident 

irradiance influence relative Isc data. To obtain the true Isc value (relative light 

transmission or relative optical response) free from the influence of the diffuse light 

component and the cosine effect, the Isc data shown in Figure 8 needs to be corrected. 

 

Figure 8 Relative Isc with diffused component and cosine effects 
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Relative Isc without Diffuse Component and Cosine Effects 

According to the requirements of the standard, the diffuse component of the incident 

light should not exceed 10% of the total irradiance during the experiment. If it does, then 

the data should be corrected to eliminate the influence of the diffuse component. This 

correction can be made using the reference cell method or the pyranometer/pyrheliometer 

method described in IEC 61853-2 [3].  

To make the correction using the reference cell method, follow the procedure 

delineated in the standard: “If the diffuse component exceeds 10%, it can be subtracted 

after measuring the angular response with blocked direct light component or the diffuse 

component can be blocked to below 10% by reducing the field of view of the diffuse 

component, for example by collimating the incident light reaching the test module.” The 

Isc data obtained with this correction method is now influenced only by the direct 

irradiance without any influence from diffuse irradiance, because the Isc contribution 

from diffuse irradiance is subtracted from the Isc value obtained with total irradiance. 

This Isc data, referred to as Isc(), can then be directly used in Equation (3) of this report 

(or Equation (2) of the standard) to obtain the relative light transmission (or relative 

optical response) data, which is the true corrected data after eliminating the cosine and 

diffuse component effects. 

For the correction using the pyranometer/pyheliometer method, the IEC 61853-2 [3] 

and Sandia [1] procedures/models were implemented. The Sandia procedure/model 

involves Equations (4) and (5) and the details of this procedure are provided in Appendix 

A. The relative optical response, f2(AOI), is given in Equation (4). 
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The plots obtained using the IEC Equations (1) (2) and (3) are provided in Figure 9 

and the plots obtained using the Sandia Equations (4) and (5) are provided in Figure 10. 

Both the IEC model and the Sandia model yield approximately the same results. As 

shown in Figure 11, the modeled data can be slightly influenced at higher AOI values 

(>60°) by the pyranometer type (Eppley or Kipp & Zonen) probably due to the AOI 

sensitivity of the calibration factors of the pyranometers above 60°. 

 

Figure 9. Relative Isc without diffused component and cosine effects – IEC Method 
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Figure 10. Relative Isc without diffused component and cosine effects – Sandia method 

 

 

Figure 11. Comparison between Eppley and Kipp & Zonen pyranometers – CdTe module 

Comparison between the models 

Based on the f2(AOI) data obtained for various PV module technologies with glass 

superstrate, Sandia developed a “generic” polynomial model as shown in (6). 
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f2(AOI) = 1 - 2.437E-3(AOI) + 3.103E-4(AOI)
2
 - 1.246E-5(AOI)

3 
+ 2.112E-7(AOI)

4  

- 1.359E-9(AOI)
5 

(6) 

The  data obtained was compared using the Sandia model and the IEC model for the 

CdTe module (glass superstrate) with the “generic” polynomial model of Sandia and 

glass/air AOI model of Martin and Ruiz (Martin & Ruiz, 2005). They all have an 

excellent match with each other, confirming that the relative optical response of all the 

glass superstrate modules is almost exclusively dictated by the glass/air interface. The 

draft standard states: “For modules with a flat uncoated front glass plate made of standard 

solar glass, the relative light transmission into the module is primarily influenced by the 

first glass-air interface. In this case, the test does not need to be performed; rather, the 

data of a flat glass air interface can be used.” The experimental and modeled data 

presented in this report fully validate this statement. 

 

Figure 12. Comparison between various models developed by different institutions 
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Laboratories [1]. Since all the models for the flat glass-air interface lead to identical 

results, the reference module (flat glass with matched cell technology) and test module 

may be tested side-by-side to quickly identify and eliminate experimental and data 

processing errors, if any. 

Uncertainty Analysis 

Great care was taken during the test setup and procedure to ensure accuracy, but 

minor errors are inevitable. For Equations (4) and (5), each uncertainty contributor was 

taken into account and the magnitude of the associated uncertainty was assigned based on 

the calibration report or manufacturer specifications. Table 1 lists the uncertainty 

contributors and their uncertainties. 

Uncertainty Contributor (Ui) Uncertainty 

Isc (UIsc) 1.00% 

Global Irradiance (Uepoa) 1.40% 

Temperature Coefficient (U) 0.01% 

Module Temperature (Ut) 0.75% 

Direct Irradiance (Udni) 1.10% 

Angle of Incidence (UAOI) 1.00% 

Table 1. Uncertainty of various uncertainty contributors in Equations (3) and (4) 

The combined standard uncertainty for f2(AOI) was quantified by taking the square 

root of the sum of the squares of the uncertainty estimates multiplied by the squares of 

their corresponding sensitivity coefficients. The sensitivity coefficients are determined by 

taking the derivative of the f2(AOI) equation with respect to the uncertainty contributor. 
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   √∑  
   

    (7) 

The resulting uncertainties are presented as error bars in Figure 13 for each module. 

As calculated from the equation, the combined uncertainty for f2(AOI) increases with 

increasing AOI. This can be attributed to a greater dependence on the accuracy of the 

pyranometer at higher AOI. For this experiment, a single sensitivity/calibration factor for 

the pyranometers was used for all AOI values. However, as discussed previously, the 

sensitivity factor is expected to vary slightly with an increase in AOI beyond 60
o
. 

Therefore, the accuracy of the pyranometer decreases with increasing AOI and the 

uncertainty of f2(AOI) is expected to increase. 

 

Figure 13. Relative optical response with error bars for all five module technologies  
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1-5 CONCLUSION 

This study related to the testing and validation of the IEC 61853-2 standard procedure 

for the measurement of incident angle effects on photovoltaic modules was successfully 

carried out using an outdoor test method for five modules of different technologies. The 

major conclusions resulting from this project are: 

1. The results show nearly identical relative light transmission plots for all the five 

test modules with glass superstrate irrespective of the type of PV cell technology 

(mono-Si, poly-Si, a-Si, CdTe or CIGS). This indicates that the reflective losses 

are governed almost exclusively by the air-glass interface of the PV modules. 

2. The relative light transmission plots obtained using the IEC 61853-2 model were 

in agreement with the plots obtained using the theoretical air-glass interface 

models and the empirical model developed by Sandia National Laboratories for 

the glass superstrate PV modules. 

3. Obtaining accurate results required careful experimental setup and rigorous test 

procedures. 

4. The standard states that “for the flat glass superstrate modules, the AOI test does 

not need to be performed; rather, the data of a flat glass air interface can be used.” 

The results obtained in the current study validate this statement. 

5. For more accurate and repeatable process to test non-glass or non-planar 

superstrate modules, the reference module approach suggested by Sandia National 

Laboratories should be followed. The reference module and test module should be 

tested side-by-side to quickly identify and eliminate the experimental and data 

processing issues, if any.  
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PART 2: NON-INTRUSIVE CELL QUANTUM EFFICIENCY OF PV MODULES 
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2-1 INTRODUCTION 

About Quantum Efficiency Measurements 

Quantum efficiency (QE) is defined as the ratio of the number of electron carriers 

generated by the solar cell to the number of photons of a given wavelength that are 

incident on the solar cell [4]. QE is a dimensionless ratio and can be directly correlated to 

the spectral responsivity of a solar cell. The spectral responsivity of a solar cell is 

measured as the output current over input intensity (A/W) as a function of wavelength. 

External quantum efficiency is calculated using the intensity of photons incident on the 

surface of the solar cell and includes optical losses such as transmission and reflection. 

Correspondingly, internal quantum efficiency is calculated from external quantum 

efficiency by factoring in the reflection and transmission of the particular device. This 

paper will focus explicitly on external quantum efficiency.  

The two primary ways QE measurements are made in the industry is at the cell level 

and the module level. At the cell level, individual cells are illuminated with light of a 

specific wavelength. When measuring the QE of a single-junction cell, the output current 

is measured by connecting directly to the positive and negative terminals of the device 

under test. In this way, the cell can be held at short circuit conditions and electrons 

generated by the light of a specific wavelength are directly collected by the QE system. 

The test method for measuring QE measurements of single-junction photovoltaic cells is 

defined by ASTM E1021-12 Standard Test Method for Spectral Responsivity 

Measurements of Photovoltaic Devices [5]. Module level QE measurements illuminate 

the entire module with light of a certain wavelength using a band-pass filter and white 
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light source. The short circuit current of the module is measured with respect to the 

intensity of the incident light. These two quantities are used to calculate the QE at that 

particular wavelength. The result is an external quantum efficiency measurement for the 

entire module.  

The focus of this report is to accurately measure the QE of a cell within a module 

using a non-intrusive procedure. The methodology and equipment needed to perform this 

non-intrusive cell-module QE (C-M-QE) will be explained in detail in this paper. 

Measuring C-M-QE is an intrinsically more difficult procedure than measuring cell QE 

(C-QE) or module QE (M-QE). C-M-QE measurements require the use of module bias 

light, cell bias light, and bias voltage. The cell under test is shaded to function as the 

current limiting cell. Each of the remaining cells in the module is illuminated with 

module bias light so they are forward biased. A voltage bias is applied to the module to 

bring the voltage of the cell under test close to zero voltage. With the device close to 

short circuit current (zero volts) the quantum efficiency system is able to extract the 

electrons from the cell under test through the module and thus measure QE. This paper 

discusses this process in detail and reports the optimal module bias lighting, cell bias 

lighting and bias voltage that should be applied to the module under test in order to obtain 

the most accurate results. 

However, even when the optimum module bias lighting and voltage bias are applied 

to the module under test, measurement artifacts can cause a decrease in the module 

quantum efficiency curve. This decrease is influenced by the series and shunt resistances 

of the cell under test as well as the component cells connected in series within the 

module. An absolute module QE measurement could be challenging for modules that 
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have experienced severe degradation via accelerated testing, field degradation, or 

potentially induced degradation. However, relative QE curves in conjunction with 

electroluminescence imaging, I-V curves, and dark I-V curves can provide useful 

information in determining cell failure modes of stressed modules. 

Statement of the Problem 

The purpose of this thesis is to explain the methodology for obtaining accurate 

module QE measurement on the module quantum efficiency system at Arizona State 

University Photovoltaic Reliability Laboratory (ASU-PRL). The testing focuses primarily 

on commercial size crystalline silicon PV modules. Analysis of module light bias, cell 

light bias and voltage bias settings and their effects on the quantum efficiency curve were 

studied and reported. Module QE curves were compared to direct cell QE curves by 

cutting into a module’s backsheet and accessing the cell’s positive and negative leads 

directly. Direct cell measurements (obtained without the need of module light bias and 

bias voltage) were used to determine the absolute quantum efficiency curve for a specific 

location on the cell. The methodology used for obtaining direct cell QE measurements is 

provided by ASTM E1021-12 Standard Test Method for Spectral Responsivity 

Measurements of Photovoltaic Devices. QE curves measured through the module were 

compared to the direct cell curves and checked for accuracy. 

The effects of measuring QE for cells with high and low fill factors (FF) were also 

investigated. The interconnects of each cell in the module under test were accessed by 

cutting into the backsheet and encapsulant. The installation of soldering ribbons to the 

positive and negative ends of each cell allowed the QE system to test any number of cells 
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within the module. Systematically increasing the number of cells connected in series 

allowed the cell under test to be measured under a variety of voltage bias conditions in 

order to further understand the effect of applying bias voltage. For cells measured at the 

module level that showed a low quantum efficiency curve compared to the direct 

quantum efficiency curve, an explanation for the loss is provided by correlating the 

results with light I-V, dark I-V, and electroluminescent imaging. 

It is important to understand that for this study, the module under test was affected by 

cutting into the backsheet to access individual cells. This is an intrusive test that would 

not be performed if the module was intended to undergo further rounds of 

characterization, field aging, or accelerated stress testing. However, the focus of this 

study is to determine and demonstrate the accuracy of cell-module QE by comparing with 

cell QE. Therefore, an intrusive test was also performed to compare QE curves at the 

module level with QE curves at the cell level. The relationship between cell level QE 

measurements and module level QE measurements will be discussed in detail in the 

results of this paper. Once this relationship is understood, future cell measurements will 

be performed at the module level and intrusive testing will not be necessary.  
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2-2 LITERATURE REVIEW 

Quantum Efficiency Measurements for Single-junction PV Cells 

In order to interpret the results for QE measurements for a cell within a module, a 

thorough understanding of QE measurements for single-junction PV devices is necessary. 

For this thesis report, the American Society for Testing and Materials (ASTM) 

Designation: E1021-12 Standard Test Method for Spectral Responsivity Measurements of 

Photovoltaic Devices was used to ensure that direct cell measurements (obtained by 

cutting into the backsheet and connecting directly to the cell under test) are obtained 

according to the standard. This section delineates the test methods outlined by ASTM 

E1021-12 and compares them to the equipment and measurement techniques for the 

module quantum efficiency system at ASU-PRL. The basic diagram of the optical 

components required for quantum efficiency measurements is given in Figure 14. Each 

component of the optical setup is discussed in this section. 

 

Figure 14. Diagram of basic optical components necessary for QE measurement [5] 
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Broadband Light Source: The broadband light source provides the initial 

polychromatic light that will be incident on the monochromator. The ASU-PRL Cell-

Module Quantum Efficiency (C-M-QE) system uses a xenon arc lamp for the broadband 

light source. An ellipsoidal reflector collects light from the xenon arc lamp and 

concentrates it on the monochromator. To maximize the intensity of broadband light 

incident on the monochromator, adjustments to the ellipsoidal reflector can be made via 

three set screws on the back of the device. Simultaneously adjusting the reflector screws 

and monitoring the output intensity measured by the reference photodiode ensured that 

the maximum intensity was incident on the monochromator. 

Chopper: Before the light from the xenon arc lamp is focused on the monochromator, 

it passes through a mechanical chopper mechanism. The chopper is a rotating disk with 

slits for light to pass through. The chopper modulates the light source at a specific 

frequency in order to provide a reference signal to the signal processor. The frequency 

range for the C-M-QE system is 4 Hz to 200 Hz. The reason that the light must be 

chopped at a certain frequency is that the monochromatic beam itself might not have 

enough intensity for the device under test to respond. Just shining a weak monochromatic 

light source on the module might not induce enough output current to be accurately 

measured apart for the inherent noise of the system. Therefore, the monochromatic light 

is chopped at a known frequency that can be identified by the signal processor. 

ASTM E1021-12 delineates that ‘the chopper blades should be designed to minimize 

stray light. To minimize modulation of room light or bias light, the chopper should be 

configured to be close to the monochromatic light source [5].’ The C-M-QE system 

incorporates all the optical components of the machine in an enclosed case that uses black 
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plastic to block out ambient room light. The chopper is mounted directly in between the 

xenon arc lamp broadband light source and the monochromator. A baffle between the 

xenon arc lamp ant the chopper serves to block light that is reflected off the chopper 

blades from reaching the test device. The chopper is also mounted as close as possible to 

the monochromatic light source and therefore complies with the standard.  

Monochromator and filter wheel: The monochromator separates the broadband light 

source into individual wavelengths by using dual-grating diffraction. The filter wheel 

positions a filter to attenuate stray light and pass the monochromatic light through to the 

device under test. The monochromatic light generated with the C-M-QE is approximately 

4 nm full width half maximum (FWHM). The associated wavelength uncertainty is +/- 2 

nm. 

ASTM E1021-12 states that “the monochromatic light source shall be capable of 

providing wavelengths that extend beyond the response range of the device to be tested 

[5]”. The C-M-QE system has a wavelength range of 300 nm to 1400 nm. For crystalline 

silicon modules, the response is measured from 300 nm to 1100 nm. The standard also 

states “a minimum of 12 wavelengths within the spectral response range of the device to 

be measured is recommended. All increments between wavelengths should be less than 

50 nm [5]”. The QE curves collected for this experiment were measured at 10 nm 

intervals and collected a total of 81 data points within the 300 nm to 1100 nm range. 

Monitor photodetector, beamsplitter, and associated optics: The C-M-QE system 

uses a photodiode as the monitor photodetector. A beam splitter directs a portion of the 

monochromatic light to the monitor photodiode. The signal generated by the monitor cell 

is amplified and provided to the digital signal processing equipment. Associated optics 
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then direct the monochromatic beam and focus it on the device under test. ASTM E1021-

12 delineates “the monitor photodetector can be a pyroelectric radiometer, a photodiode, 

or a solar cell [5]”. 

One unique aspect of the C-M-QE system is that it is designed to measure 

commercially available modules. Since the average size of a PV module is 1m x 1.9m, it 

was necessary to design the system so the module would remain on a stationary test 

fixture while the associated optical components are moveable to scan different locations 

on the module. Therefore, the optical components of the device are mounted in a 

moveable compartment that is covered with light-blocking plastic to prevent ambient 

light from interfering. The optical components move to the selected location via a set of 

x-y positioning motors that are controlled by the QE software. 

Cell bias light: A continuous cell bias light (also referred to as dc white light beam) is 

used to illuminate the device under test simultaneously with the chopped monochromatic 

light source. The biased light serves to amplify the dc current output and increase the 

photoconductivity of the photovoltaic device under test. Therefore, the PV device sees 

both chopped monochromatic light and white bias light. ASTM E1021-12 states, “the 

bias light should be of sufficient intensity to ensure the device under test is operating in 

its linear response region [5]”. 

Lockin a mplifier and signal processing equipment: The purpose of the Lockin 

amplifier is to accurately separate the current generated from the chopped 

monochromatic light from the white bias light. The frequency of light modulation 

dictated by the chopper is fed into the signal processing equipment. The signal processor 

then detects the signal that has a specific phase relationship with the chopper’s reference 



37 

signal. The signal generated by the monitor photodiode is also fed into the signal 

processing equipment to monitor the incident external light on the test device. The signal 

processing equipment is then able to quantify the alternating current producted by the 

device under test and generate the corresponding QE curve.  

Quantum Efficiency Measurements for Modules 

Module QE (or spectral responsivity) measurements are performed by illuminating 

the entire module with light of a selected wavelength. Band pass filters are commonly 

used to block out unwanted wavelengths. The module is then illuminated only by the 

wavelength range allowed to pass through the selected filter. Once the entire module is 

illuminated, the bias voltage is set to keep the module at zero volts [6]. The resulting QE 

measurement obtained is for the entire module, not individual cells. However, the 

problem with this method is that different cells may be current limiting at different 

wavelengths, and the bias point of the current-limiting cell whose QE is being measured 

is not at zero volts [6]. 

Quantum Efficiency in Multi-junction Cells 

A multi-junction cell is a device that consists of more than one photovoltaic junction 

stacked on top of each other and electrically connected in series. The individual 

photovoltaic junctions are referred to as component cells. Since a multi-junction cell 

consists of multiple component cells in series, measuring the quantum efficiency of the 

device cannot be achieved using the same procedure as single junction cells. When 
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connected to a single-junction cell, quantum efficiency measurements can be achieved by 

directly measuring the current extracted at the pn (positive-negative) junction by the 

monochromatic light for the cell under test. However, when measuring multi-junction 

cells, if only monochromatic light is incident on the component cells it will be absorbed 

by one junction while the other two junctions remain in the dark. The current from PV 

cells in series is dictated by the current-limiting cells (in this case, the cells left in the 

dark). Therefore, the output photocurrent will not represent the current of the junction 

under test. To resolve this issue, light bias and voltage bias must be applied to the 

junction under test. 

 
Figure 15. Structure of a triple-junction nip substrate type solar cell [7] source: Handbook of 

Photovoltaic Science and Engineering 
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In Figure 15, a blue light bias of around 475 nm is applied to the top cell 

corresponding with its band gap. A red light bias of around 675 nm is applied to the 

bottom component cell. This light bias illuminates the top and bottom component cell 

essentially leaving the middle component cell in the dark. The component cell with the 

lowest current will dictate the overall current flow out of the cell. Since the middle 

component cell is now the current-limiting cell, any current out of the cell from the 

monochromatic light is generated by the middle component cell. To quantify the current 

generated by the monochromatic light, the light is modulated by applying an optical 

chopper at a specific frequency. A lock-in amplifier then detects this frequency of current 

and separates it from the base current generated to give just the current generated from 

the middle component cell. 

A voltage bias must also be applied to the component cell under test in order to 

control its operating point. When the component cell under test is kept in the dark but 

connected to other component cells which are generating current, the component cell 

under test is under reverse bias conditions. The voltage of this reverse biased component 

cell will be equal and opposite to the sum of the Voc for the other two component cells. If 

the FF of the component cell is high, then the resulting QE curve of the reverse biased 

cell is very close to the QE under short circuit conditions [7]. Therefore, if the fill factor 
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(FF) for all cells is high, the cell under test operates close to short circuit conditions and 

an applied voltage bias will have minimal effect on the QE. However, when shunted cells 

resulting in a low FF are measured in series with the component cell under test, the 

resulting QE curve is lower than its true value. Therefore, a voltage biased must be 

externally applied to cancel the voltage of the other two cells and shift the component cell 

under test to short circuit conditions. 

ASTM E2236-10 Standard Test Methods for Measurement of Electrical Performance 

and Spectral Response of Nonconcentrator Multijunction Photovoltaic Cells and 

Modules defines the methodology for measuring spectral responsivity (quantum 

efficiency) for multi-junction photovoltaic modules. The scope of this test method 

provides special techniques needed to determine the electrical performance and spectral 

response of two-terminal, multijunction PV devices, both cell and module. In a series-

connected multijunction PV device, the incident total spectral irradiance determines 

which component cell will generate the smallest photocurrent and thus limits the current 

through the entire series-connected device. Light-biasing and voltage-biasing techniques 

of each component cell are necessary to successfully measure the spectral response of the 

device under test [7]. This section will summarize the contents of this standard that are 

relevant to the overall goal of measuring quantum efficiency of a single-junction module. 

Spectrally adjustable solar simulator - A spectrally adjustable solar simulator which 

has the additional capability of allowing different wavelength regions of its spectral 

irradiance to be independently adjusted is to be used. Ideally, the adjustable wavelength 
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ranges of the spectrally adjustable solar simulator should correspond to the spectral 

response ranges of each component cell in the multi-junction device to be tested. The 

cell-module quantum efficiency system at Arizona State University Photovoltaic 

Reliability Laboratory (ASU-PRL) has the capability to supply spectrally adjustable 

monochromatic light with a bandwidth of no more than five nanometers. The wavelength 

range of the MQES is from 300 to 1400 nm which allows for adjustable wavelength 

ranges corresponding to the spectral response ranges of the test device. 

Reference Cells – Photovoltaic reference cells are used are used to measure source 

irradiance in the wavelength regions that correspond to each component cell in the 

multijunction device to be tested. For best results, the spectral responses of the reference 

cells should be similar to the spectral responses of the corresponding component cells. 

The C-M-QE has two calibrated photodiode reference cells: mono-crystalline silicon and 

Germanium. For this experiment, the mono-crystalline reference cell was used to 

calibrate the equipment before each test was made. 

Module Bias Light Source – A dc bias light that is equipped with appropriate spectral 

filters to block wavelength regions corresponding to the expected spectral response range 

of the individual component cell being tested is to be used. The bias light source of the C-

M-QE system consists of 150 electrically isolated Indus Star
TM

 high-power LED light 

modules. Each light module is arranged in a tri-emitter configuration with an aluminum 

heat sink mounted to the back. Each light module emits a 6500K white light capable of 

supplying 0.17 suns at 100% intensity. This experiment will deal with single-junction 

crystalline silicon modules. Therefore, the bias light source corresponds to the expected 

spectral response range of the individual component cells being tested. 
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Figure 16 Indus StarTM high-power LED light modules mounted to the MQES 

Bias Voltage Source – A variable dc power supply capable of providing a voltage 

equal to the open-circuit voltage of the multijunction device to be tested is to be used. 

The C-M-QE system was designed to measure quantum efficiency of standard sized 

modules and was equipped with a variable dc power supply capable of providing a 

voltage up to +40VDC and -10VDC.  

Cell-Module QE Measurements 

Both cell QE measurements and module QE measurements are extremely useful data 

for characterizing solar cells and modules. However, measuring the QE of a specific 

location of a cell within a module using a non-intrusive measurement procedure is an 

extremely valuable characterization technique for reliability testing. Understanding 

single-junction cell, multi-junction cell, and module level QE measurement techniques 

lends insight to the methodology and equipment necessary to perform C-M-QE 

measurement. However, there are some significant differences present when extracting 

the current from a single cell that is connected in series with multiple cells in a 
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commercial module. This section will outline the methodology for obtaining cell-module 

quantum efficiency curves. 

The basic approach to measuring C-M-QE is similar to the methodology for 

measuring multi-junction cells. First, the cell under test must be forced to be the current 

limiting cell so that the current output of the module is dictated by the current passing 

through the test cell. For C-M-QE measurements, this can be achieved by partially 

shading the cell under test with a light blocking cover. The next step is to apply dc cell 

bias lighting to the portion of the cell that is to be measured. An AC monochromatic light 

generated using the same techniques specified by ASTM E1021-12 is also incident on the 

portion of the cell in addition to bias light. Next, the cells connected in series with the cell 

under test (the remaining cells in the module) must be illuminated so they are forward 

biased. This is achieved through the use of module bias light. Once the bias lighting is 

applied, the cell under test is reversed biased with a voltage equal to the summation of the 

open circuit voltage of all the other cells in the module. A voltage bias is applied to bring 

the cell under test close to zero volts. For devices with component cells that contribute 

similar voltages, the bias voltage is calculated according to (8). 

   
   

 
     (8) 

The current of the cell under test is then measured when the cell is operating near 

short circuit current (zero volts). A lockin amplifier isolates the current generated by the 

monochromatic light based on the chopping frequency. The C-M-QE system also 

monitors the intensity of the monochromatic light using a monitor photodiode. 

Calculating the output current (A) and the input intensity (W) for a specific wavelength 

will yield the absolute power spectral responsivity of the device. The absolute spectral 
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responsivity may also be converted to external quantum efficiency, with the 

dimensionless units of collected electrons per incident photon, using (9).  

       
  

 

      

 
  (9) 

The QE is then reported and plotted as a function of wavelength from 300nm to 

1100nm in 10nm increments.  

Cell-Module QE Measurements Artifacts 

Appling voltage bias, module light bias, and cell bias makes it possible to measure 

absolute quantum efficiency of a specific location on a cell within a module by 

connecting to the external leads of the module. However, even after optimizing all the 

input parameters some cases exist where an absolute QE measurement is not obtainable 

due to sever degradation. To further explain these measurement artifacts, consider the 

case of three cells connected in series where two cells have high FF and one cell is 

shunted (resulting in a lower FF) as shown in Figure 17.  

 

 

 

Figure 17. I-V curves of three cells where cells 1 and 2 have high FF and cell 3 is shunted 

(has a lower FF); cell 3 is shifted down to show that it is in the dark  
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A QE measurement is to be obtained for the shunted cell. The two high FF cells will 

be illuminated with a bias light so that they are operating in forward bias. Meanwhile, the 

shunted cell is kept in the dark and therefore its corresponding I-V curve is shifted down, 

where Isc is zero. When the monochromatic light is shined on the dark cell, the I-V curve 

is shifted slightly upwards and the Isc value is increased to 10 mA (shown as the dotted 

line in cell three). 

If measured as an individual solar cell, the QE system would hold the voltage at zero 

and measure a current of 10 mA which is the true current extracted from the cell as a 

result of the monochromatic light. However, the cell cannot be measured as an individual 

cell and must be measured in series with cells 1 and 2. When the QE system is connected 

to the three cells in series, the current passing through the lowest cell will dictate the 

current through cells 1 and 2. Therefore, the operating point on all cells will be at 10 mA 

as shown in Figure 18.  

 

 

 

 

 

Figure 18. Operating points for the three cells connected in series and their corresponding 

voltage shifts 

Equal current must 

pass through all cells 

The operating 

point for cell 1 

will decrease by 

about 10mV  

The operating 

point for cell 2 

will decrease by 

about 9mV  
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Since cells 1 and 2 are now passing 10mA, their voltage will decrease by an amount 

corresponding to the slope of the I-V curve near Voc (for this example 10mV for cell 1 

and 9mV for cell 2). The voltage of cell 3 must be equal and opposite to the sum of the 

Voc for cell 1 and 2. Therefore, the voltage of cell 3 will increase by 19mV. This shift in 

voltage for cell 3 will cause a drop in current proportional to the slope of the I-V curve 

near Isc as shown in Figure 19. 

 

Figure 19. The voltage increase of cell 3 and the corresponding shift in the operating point 

resulting in lower current 

Since cell 3 is shunted, a 19mV increase in voltage causes a significant drop in the 

current. In this example, the current decreases from 10mA to 7mA. Since the actual 

current is near 7mA instead of 10mA, the actual voltage shift due to cells 1 and 2 is 

smaller (around 14mV in this example). Since the current is decreased in cell 3, the QE 

curve will be affected. The expected results for the QE curve of a cell in this example 

would be about 7mA/10mA or about 0.7 times what it would be if measured individually.  

  

19mV 
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2-3 METHODOLOGY 

Measuring Direct Cell QE for Nine Isolated Cells  

The Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) Cell-

Module Quantum Efficiency (C-M-QE) system is novel equipment that measures the QE 

of a specific point on a cell within a module non-intrusively. The hardware and software 

of the C-M-QE was developed by PV Measurements and is shown in Figure 20. The C-

M-QE system measures external quantum efficiency of a cell within a module without 

having to cut into the backsheet to access the cell directly. This offers several advantages 

for PV module characterization and reliability testing. Although it is not necessary to cut 

into the backsheet to access individual cells for normal module QE measurements, this 

test is concerned with determining the accuracy between direct cell measurements and 

cell-module QE measurements. To understand this relation, individual cells within the 

module were accessed by cutting into the backsheet and soldering an interconnect ribbon 

to the positive and negative terminals. This section will focus on using the MQES to 

obtain direct QE cell measurements for an isolated portion of a module. These direct QE 

measurements will be compared to cell I-V curves and electroluminescent images for 

each cell within the isolated section. 
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Figure 20. The Arizona State University Photovoltaic Reliability Laboratory Cell-Module 

Quantum Efficiency (C-M-QE) System 

The module selected for this test was a 220W mono-crystalline silicon PV module 

(specifications given in Table 2). This module had previously undergone accelerated PID 

(potential induced degradation) stress testing in an environmental chamber at 85°C dry 

heat and was given a module code of Manufacturer 6 DH1. The history of this module 

was that it underwent PID stress testing at -400V for 35 hours under disrupted surface 

conductivity (a carbon paste applied to the front surface of the module except around the 

edges). The module did not show significant signs of degradation and the power after 

stress testing was at 96.9% of the original power output of the module. This module was 

selected for QE tests because the electroluminescence image showed that most cells 

within the module where in relatively good condition. However, cells 1 and 2 in the 

corner of the module showed significant signs of degradation/shunting as shown by the 

dark portions in Figure 21. This provided the ideal case study because healthy cells 
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within the module could be measured and compared to cells that showed signs of 

degradation.  

To determine the health of each cell in the module, an electroluminescence image was 

collected. The EL image is shown in Figure 21. The target cells are identified as cells 1 to 

9 on the lower side of the module. These cells were selected because cells 9 to 3 are in 

relatively good condition and show strong electroluminescence characteristics. Cells 1 

and 2 are in poor condition relative to the other cells in the string. Therefore, this PV 

module fits the initial criteria and was selected for further testing. 

PV Module 
Specifications 

Type Mono-crystalline 

Cells 60 

Pmax 220W 

Voc 35.4V 

Isc 8.36A 
Table 2. Specifications for the PV module selected for QE measurements 

 

Figure 21. Electroluminescence image of PV module showing healthy cells (white) and 

dead cells (black) 
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To obtain a more accurate measurement of the condition for each individual cell in 

the target string, individual cell I-V curves were measured. To measure the I-V 

characteristics of individual cells in a string, it was necessary to cut the backsheet of the 

module to access the interconnect ribbons between each cell. The backsheet and EVA 

encapsulant was carefully peeled away using a sharp precision razor blade. Once the 

interconnect ribbons between the cells where exposed, they were scrapped clean of EVA 

with the blade. Two inch lengths of new ribbon where then soldered onto the exposed 

ribbon interconnecting the cells. This new ribbon now serves as an open circuited contact 

point to access individual cells for measurements. To anchor the ribbon securely and 

ensure that it would not be pulled out when making connections, a piece of thermal tape 

was adhered to the backsheet and part of the ribbon. The thermal tape also served to 

protect open area of the cell to ensure that no moisture or dirt could penetrate. An image 

of the module with the ribbons connected is given in Figure 22. 

 

Figure 22. The PV module with ribbons soldered to the cell interconnects 
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The methodology for measuring QE of a single-junction cell is outlined by ASTM 

E1021-12 and was followed closely in this section for measuring direct cell QE. The 

leads of the C-M-QE system were connected directly to the cell under test. DC cell bias 

light and AC monochromatic light were shined on a specific location on the cell. For this 

module, the response as a function of bias light intensity was linear. Therefore, the QE 

curve did not change with increasing bias light intensity (results shown in appendix A). 

No module bias light was needed because the connections were made directly to the cell 

under test. No bias voltage was needed because the C-M-QE system holds the cell at 

short circuit current throughout the measurement. Since no other forward biased cells 

were connected in series, the cell under test was not reverse biased and the current could 

be measured directly. A diagram of the connections and input parameters is given in 

Figure 23.  

C-M-QE 
System

(no voltage bias)

Mono-
chromatic 
AC Light 
Source

Cell DC 
Bias Light

No module light bias

 

Figure 23. Diagram of connections and equipment setup for direct QE cell measurement 
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Measuring Cell QE through Multiple Cells 

This section explains the methodology used to measure QE for a specific location on 

one cell when that cell is connected to multiple other cells in series. Direct cell QE was 

obtained for the previous section by connecting the leads of the C-M-QE system straight 

to the cell under test. No module bias light or bias voltage was required. For this test, the 

current output of the cell under test was measured by connecting the C-M-QE leads to the 

positive and negative leads of a string of multiple cells connected in series. The negative 

terminal of the MQE system will remain anchored to the negative of the cell under test. 

The number of cells in the series connected circuit will be given by n. For direct cell QE 

measurements n = 1. This section explains the methodology for measuring QE through 

multiple cells up to n = 22. A diagram of the connections and equipment setup for the 

multiple cell QE measurement for n = 2 is given in Figure 24. 

 

C-M-QE 
System

(Voltage bias applied)

Mono-
chromatic 
AC Light 
Source

Cell DC 
Bias 
Light

Module DC Bias Light

Cell Mask (to block 
module bias light)

 

Figure 24. Diagram for connections of multiple cell QE for two cells (n = 2) 
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The methodology for measuring QE for multiple cells is discussed in this section. To 

make the cell under test the current limiting cell, a black vinyl mask was taped to the 

surface of the cell under test. The purpose of the mask is to block ambient light from the 

module bias lights from shining on the cell under test. A 2 cm x 4 cm opening was cut out 

of the vinyl material to allow the cell dc bias light and monochromatic ac light to shine 

on the cell. To further ensure that ambient light does not enter the rectangular opening, 

the C-M-QE system has a shroud that lowers when the system is collecting data. Figure 

25 shows an example of a cell under test with the vinyl mask covering the cell. This 

image was taken with the shroud in the ‘up’ position and it cannot be seen in the photo. 

The 0.4 x 0.6 cm monochromatic light with frequency of 530 nm (green light) is seen in 

the center of the rectangular opening. 

 

 

Figure 25. Cell 9 covered with vinyl material where the green dot in the center of the 

rectangular opening is the 530 nm monochromatic light. The white lights gleaming off the vinyl 

surface are due to the module bias lights that were set to 25% intensity 
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Once the cell under test has been covered to make it the current limiting cell, the C-

M-QE system leads are connected to the desired string of cells. For this example, n = 2 

and the leads are connected to the negative ribbons of the cell under test and the positive 

ribbons of the second cell in series.  

Module bias light is applied via manual controls in the C-M-QE system software. 

Bias light is applied to make the component cells in the string forward bias. When the 

component cells are forward bias, the cell under test becomes negatively biased with the 

voltage proportional to the sum of the Voc of the cells connected in series. Therefore, a 

positive voltage bias must be applied to bring the cell under test close to zero volts. The 

amount of voltage bias to be supplied is given by Equation (8). In this example, the Voc 

of each cell is 0.6 and there are two cells in the string (n=2). Using Equation (8), the 

voltage bias applied therefore becomes: 

   
   

 
    

   

 
            

It is important to note that Voc in this equation is the open circuit voltage of the series 

connected string of cells (in this case Voc for two cells). Testing conditions are not 

performed at the standard testing conditions specified by the module manufacturer data. 

The temperature of the module during the measurement will affect the Voc in Equation 

(8) and thus affect the amount of bias voltage applied to the circuit. Therefore, the Voc 

must be measured at the time of test then used in the Equation (8). After the module bias 

light and bias voltage is applied, the QE measurement can be collected. 
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Measuring Cell-Module Quantum Efficiency (C-M-QE) 

The same methodology for measuring multiple cells in series is applied when 

measuring the QE of a cell within a module. The cell under test is masked in the same 

way as the previous section. Module light bias is applied to illuminate the component 

cells in the module. Voltage bias is then applied to bring the cell under test to zero volts. 

The main difference in cell-module level measurements is that now the C-M-QE system 

leads are attached to the external module leads. Figure 26 gives the connection diagram 

for the 60 cell monocrystalline module used in this study. 

 

C-M-QE 
System

Module DC Bias Light

Mono-
chromatic 
AC Light 
Source

Cell DC 
Bias Light

 

Figure 26. Diagram for the connections and setup of C-M-QE measurements where the 

junction box is enlarged to show the bypass diodes 

One concern when connecting to the external leads of the module is that if the bypass 

diodes are activated, the signal will be lost. The bypass diode is connected in parallel 

with a string of series connected cells but with opposite polarity. If the string is operating 
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in forward biased, the bypass diode is in reverse bias and will effectively be an open 

circuit. There are three bypass diodes in the module used for this test. Therefore, one 

bypass diode is connected in parallel with 20 series connected cells. If one or more cells 

is reversed biased due to shading or mismatched current, the bypass diode will activate 

allowing the current from the good strings to flow in the external circuit. This will 

prevent reverse biased cells from hot-spot heating which may lead to severe problems 

within the cell and module. 

To ensure that the bypass diodes did not affect C-M-QE measurements, the leads of 

the QE system were connected to the external module leads and the internal module 

ribbons (Figure 27). For both cases, a voltage bias was applied according to Equation (2). 

Connecting to the internal module ribbons effectively circumvents the bypass diodes to 

ensure that they do not affect the measurement. The C-M-QE measurements for both 

cases were compared and it was shown that bypass diodes did not affect the QE 

measurement. 
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Figure 27. C-M-QE leads connected to ribbons directly from cells and successfully 

circumventing the bypass diodes. 

The three main adjustable parameters when measuring C-M-QE are: module light 

bias, cell light bias, and voltage bias. The goal is to adjust these input parameters so that 

the C-M-QE curve is equal to the direct cell QE curve. This report will present results for 

C-M-QE curves measured for various input parameter conditions. The C-M-QE curves 

with various module light bias, cell light bias, and voltage bias inputs will be compared to 

direct cell QE curves to determine the influence of each parameter.  
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2-4 RESULTS AND DISCUSSION 

Direct Cell Results  

To fully understand the results of C-M-QE measurements, data from three different 

characterization tests was used: I-V, EL, and Dark IV. The results for light I-V curves of 

cells 1 to 9 are given in Figure 28. To obtain these I-V curves, the terminal leads of the I-

V curve tracer where connected directly to the ribbons soldered to the interconnects of 

the cells. A class A solar simulator was used to illuminate the cell under test at 1,000 

W/m
2
. The simulator was calibrated for uniformity to within +/-2% before the I-V curves 

were measured to ensure a uniform distribution of intensity was incident on the cell under 

test. The I-V curves are plotted on one graph and shown in Figure 28. Table 3 provides 

the specification for each cell and Figure 29 provides the EL image for cells 1 to 9. 

 

Figure 28. Individual I-V curves for cells 1 to 9 1000W/m
2
 and approximately 25°C 
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Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 

Voc (V) 0.6041 0.6028 0.6045 0.6053 0.6046 0.6057 0.6087 0.6066 0.6041 

Isc (A) 8.00 7.74 8.45 8.46 8.47 8.48 8.47 8.40 8.26 

FF (%) 52.27 51.39 66.03 65.23 69.32 66.00 70.09 71.03 65.75 

Pmax (W) 2.53 2.40 3.37 3.34 3.55 3.39 3.61 3.62 3.28 

Table 3. Measured characteristics for cells 1 to 9 1000W/m
2
 and approximately 25°C 

 

 

 

Figure 29. Electroluminescence images for cells 1 to 9 

Direct cell measurements for cells 1 to 9 were obtained by the methodology 

previously outlined in this thesis. The results for direct cell measurements are given in 

Figure 30. 

 

1 2 3 4 5 6 7 8 9 
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Figure 30. Direct QE measurements for cells 1 to 9. 

The major conclusions drawn from analyzing I-V, EL and QE for cells 1 to 9 are 

discussed in this section. Observation of the light I-V curves for 1,000 W/m
2
 clearly 

shows that cells 1 and 2 are experiencing shunting effects. This is indicated by the 

deceased slope near Isc. This information also appears in the EL image. Cells 1 and 2 are 

much darker than cells 3 to 9 indicating a lower performance due to shunt resistance. 

Data from the QE curves shows that cells 1 and 2 have a lower QE for lower wavelengths 

(about 400nm to 500nm). However, the differences between shunted and non-shunted 

cells in the QE curves are a bit more subtle than the differences seen in I-V and EL 

images. 
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Multiple Cell Results (with module light bias, no voltage bias) 

This section will detail the results of QE measurements for multiple cells connected 

in series within the module. This test was performed with module light bias but no 

voltage bias. The purpose of measuring QE for multiple cells in series with no voltage 

bias is to determine the effect on the QE curves as more cells are added in series. The 

graph presented in Figure 31 displays nine QE measurements resulting in nine QE curves. 

The position of the monochromatic light on the cell under test remained constant 

throughout all nine measurements. Module bias lighting also remained constant. The 

different curves were measured by moving positive leads of the QE system to the positive 

ribbons of series connected cells to increase the number of cells in the string (starting 

with n=1 and ending with n = 9). The legend in the graph indicates the position of the QE 

leads. For example, if the QE of cell 9 were measured through 5 cells with the negative of 

the QE leads connected to cell 9 and the positive connected to cell 5, the legend would 

read: cell 9 to 5 (n = 5). 
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Figure 31. QE of cell 9 through multiple cells 

The results for this section show that all QE curves are identical when measured 

through 9 cells without applying voltage bias. This indicates that the cell under 

measurement (cell 9 in this case) can withstand a large negative voltage bias without 

decreasing current output. 

 To further explore QE curves without voltage bias applied, it was necessary to 

connect more cells in series to identify when the cell under test would reach the 

breakdown voltage. At the time of measurement, cell 9 could only be measured to cell 1 

(n=9) because of the difficulty accessing module interconnects. For this test, cell 22 

(good cell) was chosen as the cell under test because more cells could be connected in 

series. Direct cell measurements were obtained according to the methodology outlined in 
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this thesis. The QE system positive test leads were then moved to the adjacent cells 

connected in series. For this test, the voltage of the cell under test (cell 22) was also 

monitored with a voltmeter. The resulting QE curves are given in Figure 32. 

 

 

Figure 32. QE of cell 22 (good cell) through multiple cells 

The results of this test show that the QE curves for cell 22 (good cell) remained 

approximately constant until 28 cells were connected in series. Closer inspection of the 

graph shows that the QE curve actually varies slightly as more cells were connected in 

series. However, the fluctuation in QE was extremely small and within the +/-1% 

uncertainty value given by the manufacturer specifications. When the 28
th

 cell was 

connected, the QE curve dropped to zero for all wavelengths. The voltage of the cell was 

measured at this voltage as -12.44V.  
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To further explain the reason that the QE of cell 22 (good cell) could still be 

measured at -12.44V a dark I-V curve was measured. The results of the dark I-V are 

given in Figure 33. The dark I-V data shows that a negative voltage bias can be applied to 

cell 22 up to about -10 volts before the breakdown voltage is reached. 

 

 

Figure 33. Dark I-V for cell 22 (good cell) 

The major conclusions that can be drawn from these multiple cell measurements is 

that the same QE can be obtained even if the cell under test is reverse biased. Ideally, the 

cell under test should always be measured at zero volts. However, future tests will not 

have the advantage of cutting into the backsheet to monitor the exact voltage of the cell 

under test. This study shows that even if the cell under test is negatively biased, QE 

measurements can still be obtained. 
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Multiple Cell Results (with module light bias and voltage bias) 

Results from the multiple cell measurements show that QE measurement can be 

obtained even if the cell is negatively biased. However, QE measurements should always 

be measured as close to zero volts as possible. Also, C-M-QE tests will usually be 

performed for commercial modules where the number of cells connected in series will 

contribute to an extremely high negative voltage on the cell under test. Therefore, a 

voltage bias feature must be used for C-M-QE measurements. 

Voltage bias feature of the C-M-QE system at ASU-PRL was used in this experiment. 

The purpose of the voltage bias is to correct for the negative voltage across the cell under 

test caused by multiple cells connected in series. Applying a voltage bias as indicated in 

Equation (2) will effectively cancel the negative voltage across the cell under test. Figure 

32 shows the QE curve dropped to zero for all wavelengths when 28 cells were connected 

in series (corresponding to -12.44V across the cell under test). This section shows that the 

QE curve can be fully recovered by applying bias voltage. Figure 34 shows the resulting 

QE curves after bias voltage is applied. 
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Figure 34. QE curves for cell 22 (good cell) with voltage bias compared to direct and no 

voltage bias QE curves 

Figure 34 shows that applying voltage bias shifts the QE curve of the cell under test 

back to that of the original direct QE curve for cell 22. The voltage bias of 13.3 volts was 

determined by measuring the Voc of the test string and applying Equation (2). 

Measurements were continued by adding more cells in series and applying voltage bias 

according to Equation (2). Measurements were taken until the number of cells in the 

string reached 39 (n=39). Figure 35 shows that QE curves can be accurately measured for 

39 cells in series. 
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Figure 35. QE measurements for Cell 22 (good cell) with multiple cells connected in series 

from n=27 to n=39 

Cell-Module QE Measurements (with various module light biases) 

The C-M-QE system comes equipped with LED module light bias. The purpose of 

this light bias is to forward bias all the cells in the module (except the cell under test 

which is shaded to make it the current limiting cell). The light bias is controlled using the 

C-M-QE system software. The amount of module light bias can be adjusted from 0% to 

100%. The corresponding intensity for a range of light bias settings is given in Table 4. 

LED (%) 
Module Light Bias 
Irradiance (W/m2) 

25 68 

50 119 

75 156 

100 208 
Table 4. List of LED light bias percentages and the corresponding module light bias 

irradiance 
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The intensity of the LED module light bias was calculated using two calibrated 

crystalline silicon reference cells. The reference cells were mounded on flat metal surface 

and placed on top of the module under test inside the C-M-QE system. The spacial 

uniformity of the LED lights varies by an average of +/-8 W/m
2
. The values given in 

Table 4 are an average intensity with the spacial uniformity taken into account. 

C-M-QE measurements were taken for various module light bias intensities. The 

results are shown in Figures 36 and 37. 

 

Figure 36.  Cell 1 (Shunted cell) with increasing levels of module light bias intensity 
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Figure 37. Cell 22 (good cell) with increasing levels of module light bias intensity 

Both graphs of cell 1 (Shunted cell) and cell 22 (good cell) indicate that increasing 

the module bias light intensity also increases the QE curve. The reason for this increase is 

attributed to the module bias light increasing the slope of the series connected cells I-V 

curves near Voc. This will minimize the voltage shift in the cell under test and allow the 

C-M-QE curve to be measured closer to Isc. To ensure that increasing module bias light 

did increase the slope of the curve near Voc for the cells, I-V curves were measured. 

Figure 38 shows the I-V curves measured for cell 3 at module bias light intensities of 69, 

126, 174, and 214 W/m
2
. Figure 39 provides the slops of the I-V curves near Voc for high 

and low intensities of irradiance. 
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Figure 38. I-V curves for Cell 2 under LED module bias lights at various intensities 

 

Figure 39. Slope of the I-V curve for cell 2 near Voc for high irradiance (214 W/m
2
) and 

low irradiance (69 W/m
2
) 
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Cell-Module QE Measurements 

The previous sections showed QE measurements for a cell with an increasing number 

of cells connected in series. A PV module is nothing more than a certain number of solar 

cells connected in series. The module measured in this test had 60 monocrystalline cells 

connected in series. To measure C-M-QE, the QE leads were connected to the external 

module leads. Module light bias and voltage were applied according to the methodology 

described in the previous chapter. The C-M-QE curve measured for cell 22 (good cell) is 

plotted and compared to the direct cell 22 measurement in Figure 40. 

 

 

Figure 40. C-M-QE measurements for cell 22 (good cell) compared to direct cell 

measurements. 
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the C-M-QE curve from the direct QE curve was calculated between 400nm and 1000nm. 

The difference between the QE measurements in Figure 40 is 1.8%. The EL image and 

location of the monochromatic beam (shown in green) for the cell 22 is given below the 

legend in Figure 40. 

The same procedure was repeated for cell 1 (Shunted cell). However, cell 1 (Shunted 

cell) has a lower FF than cell 22 (good cell) due to shunting. The data for cell 1 (Shunted 

cell) is given in Figure 41 with the EL image and location of the monochromatic beam 

shown below the legend. The difference between the direct QE measurement and the C-

M-QE measurement is 6.2%. 

 

 

Figure 41. C-M-QE measurements for cell 1 (Shunted cell) compared to direct cell 

measurements. 
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The main difference between cell 1 and cell 22 is that cell 1 has a lower FF due to 

shunting. Therefore, the difference between the C-M-QE curve and the direct curve is 

larger for cell 1 because of the shunting effect. The difference between the curves was 

calculated between 400nm and 1000nm to be 6.2%. 
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2-5 CONCLUSION 

The data collected from this study shows that it is possible to obtain a reasonably 

accurate QE measurement for a cell within a module by implementing a non-intrusive 

testing methodology. Application of module light bias, cell light bias, and voltage bias 

are necessary to obtain C-M-QE curves. 

 Module Light Bias: Module light bias should be set to maximum intensity 

during the QE measurement. For the C-M-QE system, maximum efficiency 

corresponded to approximately 200 W/m
2
. Future tests should explore 

possibilities for increasing the module light bias intensity. 

 Cell Light Bias: Data from this study shows that cell light bias intensity does 

not affect QE measurements. C-M-QE curves were measured with cell light 

bias intensities ranging from 0 W/m
2
 to 485 W/m

2
. All the QE curves 

measured were within +/-1%. 

 Voltage Bias: This study showed that voltage bias is necessary when 

measuring C-M-QE curves. The correct voltage to be applied is given by 

Equation (1). When using this equation it is essential to use Voc at the 

operating conditions of the time of measurement (for example in this case for 

200 W/m
2
 and 25°C). If the QE curve is not maximized, decrease the voltage 

bias intensity until maximum QE is reached. For the shunted cells the C-M-

QE will need to be improved possibly by a pulse-voltage biasing technique 

which has been recently explored by other researchers.  

C-M-QE measurements were also performed for high and low FF cells within a 

module and compared to direct cell measurements. For high FF cells, the C-M-QE 
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measurement was within 98.2% of the direct cell measurement. For low FF cells, the C-

M-QE was within 93.8% of the original measurement.  
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APPENDIX A 

SANDIA PROCEDURE TO DETERMINE RELATIVE OPTICAL RESPONSE, 

f2(AOI) 
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Measuring Angle-of-Incidence (AOI) Influence on PV Module Performance 

Private Communication with David L. King (June 2012) 

 

There are two AOI influences that need to be considered, one is “mechanical” and the 

other is “optical.” The mechanical influence really doesn’t have anything to do with the 

module itself, but rather its orientation relative to the incident sunlight, often called the 

“cosine effect.” The beam solar irradiance incident on the module is reduced by 

cos(AOI). The optical effect is due to the surface characteristics of the module, which can 

be highly planar (float glass), dimpled (rolled glass), coated with anti-reflection (AR) 

coatings, heavily textured for light gathering at large AOI, or specifically patterned for 

optical concentration purposes. The primary influence on the optical effect is increasing 

reflectance loss as AOI increases. Both of these AOI influences apply primarily to the 

beam or direct component of sunlight, rather than the diffuse component of sunlight. The 

Sandia module performance model attempts to account for both these influences using an 

expanded expression for the solar irradiance, called the effective solar irradiance (Ee), 

which in turn determines the module’s short-circuit current (Isc).  Equation (A1) gives the 

Sandia expression for Ee, and Equation (A2) gives the resulting equation for Isc. The 

intent of this document is to provide a discussion of the procedures that can be used to 

empirically measure the optical effect, f2(AOI). 

 

Ee = [Edni*cos(AOI)*f2(AOI)+fd*(Epoa - Edni*cos(AOI))]/Eo   (A1) 

 

Isc = Isco * [1+αIsc*(Tc -25)]*f1(AMa)*Ee     (A2) 
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Where: 

 Ee = Solar irradiance actually captured and used by module (dim or suns) 

 Edni = Direct normal solar irradiance (W/m
2
) 

 Epoa = Global solar irradiance in the plane-of-array (module) (W/m
2
) 

 Eo = Reference global solar irradiance, typically 1000 W/m
2
 

 fd = Fraction of diffuse irradiance used by module, typically assumed = 1 (dim) 

 AOI = Angle between solar beam and module normal vector (deg) 

 Tc = Measured module (cell) temperature (°C) 

 αIsc = Short-circuit current temperature coefficient (1/°C) 

 f1(AMa) = Empirical relationship for solar spectral influence on Isc versus air mass 

 Isco = Module short-circuit current at STC conditions (A) 

 Isc = Measured short-circuit current (A) 

Direct Measurement of f2(AOI) 

 

The direct procedure for measuring f2(AOI) involves measuring module Isc as the 

module is moved in angular increments using a solar tracker through a wide range of AOI 

conditions, 0 deg to 90 deg. The challenge is to conduct the test in a way that either 

minimizes or compensates for all the factors in Equations (A1) and (A2) that influence 

the measured Isc values. The following bullets identify desirable conditions and 

approaches, depending on the capabilities of the test equipment available.  

Conduct test during clear sky conditions when the direct normal irradiance is the 

dominant component, e.g. when the ratio of direct normal divided by global normal 
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irradiance is greater than about 0.85.  This reduces the influence of diffuse irradiance on 

the determination of f2(AOI). 

Conducting the test near solar noon also has a couple advantages, variation in the 

solar spectrum during the test is minimized, and the full range for AOI can typically be 

achieved by changing only the elevation angle of a two-axis solar tracker. 

Measure Isc, Edni , Epoa , and Tc associated with each AOI increment. Edni should be 

measured with a thermopile pyrheliometer, and Epoa should ideally be measured using a 

thermopile pyranometer that has been calibrated as a function of AOI.    

Module temperature will vary during the test, so measured temperature should be used to 

translate measured Isc values to a common temperature, e.g. 25°C. 

If possible, record data over the full range of AOI as rapidly as possible, so that solar 

spectral variation can be ignored, less than 30-min test period is desirable. If the test 

period must be longer, then a spectral correction to measured Isc can be done using a 

previously determined f1(AMa) relationship. 

The Sandia model Equations (A1) and (A2) can be solved to provide an equation for 

the angle-of-incidence relationship, f2(AOI), as a function of the measured variables, 

Equation (A3).  

 

f2(AOI)={[Isc*Eo/(Isco*f1(AMa)*(1+αIsc(Tc-25)))]-fd*(Epoa-

Edni*cos(AOI))}/(Edni*cos(AOI))    (A3)  

 

In order to simplify, recognize that by definition f2(AOI)=1 when AOI=0 degrees. 

Therefore, Equation (A3) can be solved for the Isco value at the start and end of the 
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outdoor test period when AOI=0 degrees. The value solved for is not exactly Isco at STC 

because the air mass value may not be exactly AMa=1.5 at the time of day when the 

AOI=0 deg conditions were achieved. This calculated value is only intended to provide a 

reference value for short-circuit current in order to normalize f2(AOI)=1 when AOI=0 

deg, so to avoid confusion call the calculated value Iscr.  

 

Iscr = Isc*Eo/{f1(AMa)*(1+αIsc(Tc-25))*(Edni+fd*(Epoa-Edni))}   (A4) 

 

After determining the value for Iscr using the average value for several measurements 

when AOI=0 deg, the measured values for f2(AOI) can be determined using Equation (3), 

by substituting the Iscr value for Isco.  

Further simplification in the determination of f2(AOI) can be made for conventional 

flat-plate modules, depending on the test procedure and assumptions made. If data for the 

full range of AOI is recorded in a relatively short period of time, then the influence of 

varying solar spectrum is likely to be negligible. In addition, for conventional flat-plate 

modules the assumption is usually made that they capture both diffuse and direct 

irradiance; therefore fd=1. Under these simplified conditions, Equations (A3) and (A4) 

can be rewritten as Equations (A5) and (A6). 

 

Iscr = Isc*(Eo/Epoa)*(1+αIsc(Tc-25))    (A5) 

 

f2(AOI) = [Eo* (Isc/(1+αIsc(Tc-25)))/Iscr -(Epoa-Edni*cos(AOI))]/(Edni*cos(AOI)) (A6) 
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For conventional flat-plate glass modules, this procedure should result in empirical 

f2(AOI) relationships similar to those shown in Figure A1. As previously mentioned, AR-

coated glass or heavily textured glass will provide different results.  For the simple case 

with a planar glass surface, Snell’s and Bougher’s optic laws along with glass optical 

properties (index of refraction, extinction coefficient, thickness) can also be used to 

calculate a theoretical relationship for f2(AOI), as done by DeSoto in Reference [1].      

 

 

Figure A1: Empirical f2(AOI) measurements by Sandia National Laboratories for 

conventional flat-plate modules with a planar glass front surfaces. 

Although polynomial fits to measured data can be problematic, ten years ago when 

the procedure was developed and the Sandia module database initiated, a fifth order fit 

was used to represent the measured data. There are probably better ways to represent the 

data, but at this point the Sandia module database has gained enough inertia that it would 

be difficult to change the model coefficients used to match the measured data. The 
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“generic” polynomial used for the majority of typical glass-surface modules is given 

below.   

f2(AOI)=1-2.4377E-3(AOI)+3.1032E-4(AOI)
2
-1.2458E-5(AOI)

3
+2.1122E-7(AOI)

4
-

1.3593E-9(AOI)
5
 

Relative (Comparison) Measurements for f2(AOI) 

 

Although not presented in this document, an alternative test procedure providing 

simultaneous measurements of the Isc of a test module and a reference module may 

possibly provide a more accurate and repeatable process. The reference module is 

assumed to have “known f2(AOI)” characteristics. The reference device could be a 

module or an individual reference cell, ideally with matching cell technology to provide 

equivalent solar spectral sensitivity. For a reference device with ideally planar glass 

surface, the “known f2(AOI)” could be derived from optical laws, perhaps providing a 

more fundamental basis for the outdoor test procedure.   
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APPENDIX B 

CROSSCHECKING OF AOI DEVICE USING A MANUAL METHOD 
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In this study, the AOI was directly determined using an AOI device purchased from 

MicrStrain. However, in the absence of this device, the AOI value can also be determined 

using a manual calculation (Equation B1) provided by Sandia National Laboratories
2
. 

 

                                                      (B1) 

 

Where: 

 AOI = solar angle of incidence (degrees) 

 Tm = tilt angle of module (degrees, 0° is horizontal) 

 Zs = zenith angle of the sun (degrees) 

 AZm = azimuth angle of module (0°=North, 90°=East) 

 AZs = azimuth angle of sun (degrees) 

As shown in Figure B1 (azimuth rotation) and Figure B2 (elevation rotation) below, 

the accuracy of the AOI device used in this project was crosschecked with the manual 

method using Equation (B1) given above. These plots confirm that the AOI data obtained 

using the MicroStrain device was reliable and accurate. 
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Figure B1: Comparison of relative optical responses obtained using the AOI hardware 

and AOI calculation for a CdTe module with glass superstrate for azimuth rotation (direct 

to global ratio was 0.89) 

 

 

Figure B2: Comparison of relative optical responses obtained using the AOI hardware 

and AOI calculation for a CdTe module with glass superstrate for elevation rotation 

(direct to global ratio was 0.89) 
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For azimuth angle, the tracker was allowed to rotate to its full Westward rotation 

angle and tracked azimuthally to the East. The azimuth angle of the module was 

manually measured by dividing the diameter of the tracker pole into 360° and fixing a 

dial to the rotating head of the tracker to indicate its change in angle. Since the azimuthal 

rotation of the tracker was limited, azimuth verification could only be obtained for AOI 

up to 63°.  For elevation angle, the two-axis tracker was tilted to the maximum horizontal 

position of 11° (where 0° is horizontal) and tilted downward to a maximum angle of 

74.5°. The f2(AOI) data for elevation angle deviates  from the generalized polynomial for 

higher tilt angles due to the inconsistent reflectance throughout the measurement. When 

the modules are at 11° tilt (close to horizontal), they ‘see’ only the sky. As they are tilted 

downward, the ground reflection could interfere with the data accuracy. This 

phenomenon does not occur for azimuth angles because the modules are essentially 

seeing the same ratio of sky and ground (they were at 30° tilt angle for the duration of the 

azimuth rotation).  

The purpose of this experiment was to verify that the manual method and AOI device 

measurements were consistent. Both methods proved to be accurate. The standard 

deviation between manually calculated AOI and the AOI device measurement for 

azimuth angle was 1.66°. The standard deviation between manually calculated AOI and 

AOI device measurement for elevation tilt was 1.08°. 
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APPENDIX C 

LESSONS LEARNED 1: ROUND 1 MEASUREMENTS USING A MULTI-CURVE 

TRACER  
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The data presented in the main body (round 3; final round) of the report evolved from 

previous two rounds of data collections and reductions. Improvements to the 

experimental setup and data processing were made for each round. For round 1 of data 

collection, a DayStar (DS3200) multi-curve tracer was used to measure and record Isc, 

module temperature, and irradiance sensor readings. The main problems concerning 

round 1 measurements were: 

The fastest time the multi-curve tracer could record and store data was one minute 

intervals. This was due to a software limitation of the multi-curve tracer, not a hardware 

issue. The multi-curve tracer saves data files onto the harddrive by automatically 

assigning them a file name based on the time the data was collected. The data file is 

named only for the hour and minute it is stored (not for the second). The physical 

capabilities of the tracker allow it to take data for the five modules in ten seconds. 

However, since the files are automatically assigned a name based on the time they were 

taken, the minimum time interval the data could be recorded and stored was one minute. 

For this experiment, the tracker was rotated by 5° AOI every one minute until it reached a 

maximum of 77° AOI. The experiment was performed in 16 minutes and a total of 16 

data points were collected. The 16 data points in 16 minutes is sufficient to comply with 

the IEC 61853-2 standard which states for devices with rotational symmetry of the 

reflectivity with respect to the module normal, do a minimum of 9 different angles to 

span the angles from 0 to 80° for one direction. To confidently validate this statement, 

more data points were needed. Since data should be recorded as quickly as possible to 

reduce the spectral change during the experiment, round 2 was proposed to be carried out 

using equipment that could measure and record data in less than one minute intervals. 
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The irradiance sensors used for measuring global irradiance in the plane of array 

(pyranometers) and direct normal irradiance (pyrheliometer) had not been calibrated, and 

therefore, the accuracy of the measurements could not be confirmed and the uncertainty 

could not be calculated. 

The relative Isc obtained versus AOI plot is shown in Figure C1. Using Equation 

(A6) of Sandia, the relative optical response data, f2(AOI) data, was plotted (symbol) 

versus AOI as shown in Figure C2. The plotted data (symbols) was then compared to the 

“generic” polynomial curve (solid line) empirically derived by Sandia National 

Laboratories. As can be seen in Figure C2, there is a significant difference between the 

f2(AOI) data calculated using the experimental data and the generic polynomial curve 

(between 60
o
 and 75

o
). This difference warranted further investigation. 

A further investigation revealed a human error that was made in constructing the 

Equation (A6) in the Excel spreadsheet. This error was fixed in the final rounds of data 

processing.  

Nevertheless, the multi-curve tracer method, as opposed to the transducer/data logger 

method, was not continued for the second and final rounds of measurements due to the 

limitation on the number of data points that could be collected during the short duration 

of tracker rotation. 
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Figure C1: Round 1 – Relative short circuit current verses AOI for five modules (Multi-

curve tracer method) 

 

Figure C2: Round 1 - Data for five modules where f2(AOI) was erroneously calculated 

using Equation (A6) (Muti-curve tracer method)  
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APPENDIX D 

LESSONS LEARNED 2: ROUND 2 MEASUREMENTS USING TRANSDUCERS 

AND DATA LOGGER 
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Round 2 data used CR-magnetic DC current transducers and a Campbell Scientific 

CR1000 datalogger and multiplexer to measure and record Isc, module temperature, and 

reference cell readings. The problems apparent in round 1 were addressed in round 2 and 

are as follows: 

The fastest time interval the multi-curve tracer could measure and store data was one 

minute. For round 2, the fastest time interval that the datalogger and multiplexer could 

store data was 30 seconds. For round 2, 16 data points were collected where the total time 

for the experiment was 9.5 minutes. 

The human error that was present in round 1 when constructing Equation (A6) in the 

Excel spreadsheet was identified and corrected for round 2. Therefore, all plots presented 

in round 2 used the correct f2(AOI) equation. 

The reference devices had yet to be calibrated for this experiment. Therefore, 

uncertainty analysis of f2(AOI) could not be calculated.  

For round 2 measurements, the relative Isc obtained versus AOI is shown in Figure 

D1. The plot of f2(AOI) versus AOI which was correctly generated using the Sandia 

Equation (A6) is given in Figure D2.  
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Figure D1: Round 2 – Relative short circuit current verses AOI for five modules (Data 

logger method) 

 
Figure D2: Round 2 - Data for five modules where f2(AOI) was correctly calculated using 

Equation (A6) (Data logger method) 
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APPENDIX E 

INTER-COMPARISON AND CROSSCHECKING OF PYRANOMETERS 
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For this experiment, a calibrated Eppley PSP pyranometer was used to measure 

global irradiance in the plane of array and it was cross referenced with a Kipp & Zonen 

CMP21. The f2(AOI) calculation proved to be extremely sensitive to the accuracy of the 

global irradiance measurements. The pyranometers were mounted coplanar to the PV 

modules and in positions on the tracker so that no shading of the modules or the other 

reference devices occurred. The Epoa measurements for both devices were recorded 

simultaneously by the CR1000 datalogger and are shown in Table E1. The AOI 

experiment was performed on several different days with various ratios of direct normal 

irradiance to global irradiance (Edni/Epoa). For each case, the standard deviation of the 

pyranometers’ measured global irradiance in the plane of array (Epoa) increased as AOI 

increased. Figure E2 gives Epoa measured for both pyranometers and their standard 

deviation as measured for an 87% Edni/Epoa ratio.  

 

Figure E1: Global irradiance as measured by the Kipp & Zonen CMP21 and Epply PSP 

pyranometer for 87% Edni/Epoa  
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88% Edni to Epoa Ratio 

AOI 

(degrees) 

Kipp & Zonen Epoa 

(W/m
2
) 

Eppley Epoa 

(W/m
2
) 

Difference 

(%) 

0.6 1029.3 1038.6 0.9% 

5.1 1030.3 1036.4 0.6% 

10.1 1026.0 1029.5 0.3% 

15.1 1015.2 1018.2 0.3% 

20.2 1000.0 1000.0 0.0% 

24.9 979.4 976.1 0.3% 

29.8 949.1 940.9 0.9% 

34.9 913.3 901.5 1.3% 

39.9 868.9 854.4 1.7% 

44.8 819.7 804.4 1.9% 

49.2 764.8 747.8 2.3% 

54.5 700.4 681.5 2.8% 

59.5 629.9 610.2 3.2% 

64.2 559.0 537.4 4.0% 

68.3 489.3 468.4 4.5% 

71.4 437.2 418.3 4.5% 

75.2 381.8 359.9 6.1% 

76.8 351.1 329.2 6.7% 

79.4 302.6 282.5 7.1% 

83.5 233.9 215.8 8.4% 

89.6 146.0 109.2 33.7% 

Table E1: Comparison of Kipp & Zonen CMP21 verses Eppley PSP measured global 

irradiance in the plane of array for 87% direct to global irradiance ratio 
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The data presented above represents the data used in the main body of this report. 

However, experiments were also performed for other days with various direct to global 

irradiance ratios. Figure E3 gives a comparison of irradiance data for a direct to global 

irradiance ratio of 81%. This data also shows a higher standard deviation for higher AOI. 

For AOI from 0° to 66° the average standard deviation is 4% whereas for AOI from 67° 

to 90° the average standard deviation is 15%. Figure E4 gives a comparison of irradiance 

data for an overcast day where the ratio of direct to global irradiance was 2%. For this 

data, the standard deviation between the two pyranometers remained approximately 

constant, but higher, for all AOI. 

 

 

Figure E3: Comparison of Kipp & Zonen CMP21 verses Eppley PSP measured global 

irradiance in the plane of array for 81% direct to global irradiance ratio 
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Figure E4: Comparison of Kipp & Zonen CMP21 verses Eppley PSP measured global 

irradiance in the plane of array for 2% direct to global irradiance ratio  
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 APPENDIX F 

MEASUREMENT OF f2(AOI) VERSES AOI IN THE OPPOSITE DIRECTION 
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To obtain Figure 8 in the main body of this report, experimental data was collected at 

14:37:30 MST and the tracker was rotated from the West (starting at 0.59° AOI) to the 

East (ending at 83.50° AOI). This experiment took 10 minutes to complete. To verify the 

rotational symmetry of the reflectivity with respect to module normal as called for in IEC 

61853-2, the data was also collected for the five modules in the opposite direction (East 

to West). This experiment started at 14:47:30 MST. The tracker was set to automatic 

mode and allowed to track the opposite direction (from East to West). The data was 

processed using Sandia Equation (A6) and the corresponding graph of f2(AOI) is given in 

Figure F1. 

 
Figure F1: Round 3 - Data for five modules where f2(AOI) was calculated when the 

tracker was rotated in the opposite direction (East to West) 
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zero AOI, it first adjusted elevation angle, then tracked back azimuthally. This is not 

expected to affect the relative optical response of the module; however, it does limit the 

amount of data points collected. Tilting the tracker’s elevation changes the AOI much 

faster than rotating azimuthally. Since the tracker tilted the modules in elevation for the 

first 30 seconds, data could only be recorded for AOI of 83° (the starting point taken at 

14:37:30) and 63° (the next point taken at 14:38:00). After the tracker adjusted its 

elevation angle it began tracking azimuthally and more data points could be obtained. 

Figures F2 to F6 provide the plots for f2(AOI) calculated for each module technology 

tracking in both directions (East to West and West to East). The data for each technology 

is consistent for AOI when rotated in both directions from 0 to 63°.  

 

 

Figure F2: Round 3 - Data for f2(AOI) calculated for CdTe from West to East compared to data 

when the tracker was rotated in the opposite direction (East to West) 
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Figure F3: Round 3 - Data for f2(AOI) calculated for a-Si from West to East compared to data 

when the tracker was rotated in the opposite direction (East to West) 

 

Figure F4: Round 3 - Data for f2(AOI) calculated for CIGS from West to East compared to data 

when the tracker was rotated in the opposite direction (East to West) 
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Figure F5: Round 3 - Data for f2(AOI) calculated for Mono-Si from West to East compared to 

data when the tracker was rotated in the opposite direction (East to West) 

 

Figure F6: Round 3 - Data for f2(AOI) calculated for Poly-Si from West to East compared to data 

when the tracker was rotated in the opposite direction (East to West)  
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APPENDIX G 

DETERMINING HOW MUCH VOLTAGE BIAS TO APPLY 
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When measuring QE for more than two cells connected in series, it is essential to use 

voltage bias to keep the cell under test near zero volts. The amount of voltage bias that 

should be applied is provided in ASTM E1021-12 as: 

   
   

 
     (8) 

This equation was used when measuring M-C-QE for this experiment. It is extremely 

important to note that Voc in this equation must be measured at the time of test. 

However, even correct application of this calculation might not yield the maximum QE 

curve. Therefore, this equation was used as a starting point for voltage bias application. 

Once the voltage bias was applied, the QE at one wavelength was monitored. The voltage 

bias was then slightly increased or decreased until the QE was maximized. Also, if Voc at 

the time of test is not known, the manufacturer’s specified Voc can be used and the 

voltage bias can be adjusted according to the previous statement. An example of M-C-QE 

measurement with various voltage biases applied is given in this section. 

For this C-M-QE measurement, the manufacturer’s specified Voc was used as a 

starting point. The Voc for this module was 35.4V and the number of cells was 60. 

Equation (8) was used to determine the voltage bias.  

   
   

 
     

    

  
            

Once the voltage bias of 34.8V was applied, the voltage was decreased and QE curves 

were measured until a maximum QE curve was obtained. The resulting QE curves are 

given in Figure G1, where Vb indicated the applied voltage bias. 
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Figure G1. C-M-QE curves with various voltage bias (Vb) applied 

 

The results displayed by this graph show the ideal amount of voltage bias to apply for 

this case was between 30V and 28V. When a voltage bias of 31V was applied, the curve 

decreased a bit because the cell was slightly forward biased (the voltage at the end of the 

measurement was measured at 0.1V). When a voltage bias of 32V or higher was applied, 

the resulting QE curves were zero. The reason is that too much voltage bias was causing 

the cell under test to operate near Voc conditions (voltage measured near 0.44V). A 

summary of the voltage biases applied and the corresponding voltage of the cell under 

test (VCUT)is given in Table G1. 
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VBIAS Applied VCUT 

34.80 0.45 

34.00 0.44 

33.00 0.44 

32.00 0.44 

31.00 -0.16 

30.00 -0.85 

29.00 -1.10 

28.00 -1.90 

 Table G1. Module voltage bias applied to each cell and corresponding cell voltages 
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APPENDIX H 

THE EFFECT OF TEMPERATURE ON QE CURVES 
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During the test, the module is illuminated with module bias light of 200W/m
2
. This 

will increase the temperature of the module and the cell under test. An increase in module 

temperature will lead to a decrease in voltage for all cells in the module. The voltage of 

the cell under test is negative and equals the sum of all the other cells in the module. 

Therefore, if the voltage of the cells within the module decreases, the voltage of the cell 

under test will increase (or become less negative).  

The C-M-QE equipment at ASU-PRL incorporates heat sinks and fans to keep the 

testing temperature from getting too hot. However, the fans must be off during 

measurements to degrease the electrical noise inherent in ac fans. It takes five minutes to 

measure a full QE curve and the temperature of the module during the measurement is 

expected to increase during the QE measurement process. A slight increase in 

temperature during the test will not significantly affect the QE curve. However, the shift 

in voltage due to the increase in temperature will affect the QE curve.  

This temperature effect can be countered by ensuring the cell under test is measured 

at a starting voltage bias lower than zero volts. This will allow for the voltage of the cell 

under test to increase slightly during the measurement, but still remain below zero volts 

for the duration of the test. This can be achieved by applying voltage bias as indicated in 

the previous section, then decreasing the voltage bias by another 1V to account for the 

expected voltage shift due to the temperature effect. If the voltage bias is not set low 

enough, the QE curves will decrease at higher wavelengths (due to the module heating up 

as the test is running). An example of a QE curve decreased due to the temperature effect 

is given in Figure H1. 



112 

 

Figure H1. C-M-QE curves for cell 1 (Shunted cell) where the green curve shows the 

decrease in QE at higher wavelengths due to the temperature effect and the blue curve shows the 

recovered curve. 

For both curves shown in Figure H1, the change in temperature during the course of 

the measurement was the same (about a 2°C increase during the test). This 2°C increase 

in temperature corresponds to a 0.28V increase in the voltage of the cell under test. If this 

voltage causes the voltage of the cell under test to increase into the positive region, then 

the current will be lost because the cell in no longer operating at Isc. Therefore, to ensure 

that the voltage of the cell under test does not increase past zero, the voltage bias must be 

adjusted lower. The blue curve shows the recovered QE after the voltage bias is 

decreased from 31V to 29V.   
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APPENDIX I 

CELL BIAS LIGHT 
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The purpose of the cell bias light is to induce a dc current in the cell under test. The 

cell light bias is superimposed with the ac monochromatic beam to increase the 

photoconductivity of the cell under test. Since the intensity of the monochromatic beam is 

extremely low, it is sometimes necessary to induce a base amount of dc current so that 

the signal processor or lockin amplifier can accurately measure the current induced by the 

ac monochromatic light from the dc cell bias light. Increasing or decreasing the intensity 

of the cell bias light should not affect the QE curve because quantum efficiency is 

calculated based on the current inducted from the monochromatic light.  

For this experiment, various intensities of bias light were shined on the module and 

the corresponding C-M-QE curves were measured. The cell light bias of the C-M-QE 

system at ASU-PRL uses a 12V 75W halogen lamp. The lamp intensity is adjusted via a 

physical dial on the power supply stack for the system. The dial can be adjusted from 0V 

to 12V. The intensities of cell bias light at various voltages were measured using a 

monocrystalline silicon reference cell. The resulting values are given in Table I1. The C-

M-QE curves were compared to ensure that the measurements were consistent for 

different intensities of cell bias light. Figure I1 shows the C-M-QE curves for cell 22 

(good cell) at various levels of cell bias light. 

Voltage (V) Cell Bias Light Intensity (W/m2) 

2 1.5 

5 44.8 

10 328.6 

12.5 545.2 
Table I1. Voltage indicated by the C-M-QE system and the corresponding cell bias light 

intensity 
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Figure I1. QE curves for cell 22 (good cell) measured at various cell bias light intensities 

The C-M-QE curves measured at various light bias intensities matched each other 

within the 1% uncertainty specified by the manufacturer. Also, even if the cell bias light 

was turned off, an accurate C-M-QE curve could be generated. This result indicates that 

cell bias light intensity does not influence the C-M-QE measurement when measurements 

for a high FF cell were performed. 

Figure I2 shows the C-M-QE curves for cell 1 (shunted cell) at various levels of cell 

bias light. 
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Figure I2. QE curves for cell 1 (shunted cell) measured at various cell bias light intensities 

Figure I2 shows that the intensity of the cell bias light does not have a major impact 

on the C-M-QE of a shunted cell for lower intensities (below 24W/m
2
). However, for 

higher intensities of cell bias light (86W/m
2
 and above) the QE curve decreases slightly 

with increasing cell bias light intensity. Therefore, for accurate C-M-QE measurements 

the cell bias light should be set to a lower intensity (below 86W/m
2
). For this thesis, all 

C-M-QE measurements were performed with the cell bias voltage set to 1.5 W/m
2
.  
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APPENDIX J 

ADDITIONAL DATA FOR CELL 1 (SHUNTED CELL) AND CELL 22 (GOOD 

CELL) 
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The main focus of part 2 of this thesis was to measure the accuracy of C-M-QE 

measurements compared to direct cell measurements for good cells (high FF) and shunted 

cells (low FF). To accomplish this task, cell 22 (good cell) and cell 1 (shunted cell) were 

targeted for comparison measurements. The characterization tests performed for these 

two cells are presented in this section. 

First, the light I-V for cell 1 (shunted cell) and cell 22 (good cell) were measured. The 

I-V curves were measured by using a class A solar simulator to illuminate the target cells 

with 1,000 W/m
2
 light. The I-V curve for cell 22 (good cell) is given in Figure J1 and the 

I-V curve for cell 1 (shunted cell) is given in figure J2. 

 

Figure J1. I-V curve for cell 22 (good cell) at 1,000 W/m
2
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Figure J2. I-V curve for cell 1 (shunted cell) at 1,000 W/m
2
 

Dark I-V curves were also measured for cell 22 (good cell) and cell 1 (shunted cell). 

The results of the dark I-V curves are given in figures J3 and J4. The relevant data 

provided by the dark I-V curves and light I-V curves are provided in Table J1. 
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Figure J3. Dark I-V curve for cell 22 (good cell) 

 

Figure J4. Dark I-V curve for cell 1 (shunted cell) 
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Cell 1 
(Shunted Cell) 

Cell 22 
(Good Cell) 

Voc (V) 0.61  0.61  

Isc (A) 8.01  8.15  

Fill Factor (%) 48.8  59.30  

Pmax (W) 2.39  2.96  

Vmax (V) 0.41  0.42  

Imax (mA) 5.82  7.04  

LIV Rshunt (Ω) 0.48  2.70  

Dark Rshunt 25.70  55.60  

Dark Rseries 0.036  0.021  

Table J1. Specifications for Cell 1 (shunted cell) and Cell 22 (good cell) derived from light 

I-V and dark I-V measurements 

 

 

 



 

 


