

Modeling Long-Term Dynamics of Complex Socioecological Systems

C. MICHAEL BARTON

CENTER FOR SOCIAL DYNAMICS & COMPLEXITY SCHOOL OF HUMAN EVOLUTION & SOCIAL CHANGE

- Just enough water in the right places
 - Not too little
 - Not too much

Water & Society

- Water & landscapes
 - Most powerful, long-term impacts of social practice on the earth
 - Transformed most of earth's surface and altered its productivity
 - Reshaped rivers and coasts

Flowing Water & Land-Use Practice

- Balance of
 - Amount & velocity of water
 - Surface topography
 - Soil characteristic
- Farming alters
 - Vegetation
 - Soil
 - Topography

Flowing Water & Land-Use Practice

- Water flow well understood in abstract, but is complex in real landscapes.
- Complexity compounded by human land-use.
- Small-scale activities can have large-scale consequences over long time frames but are difficult to predict
- Complex socioecological systems

Mediterranean Landscape Dynamics

 Computational modeling laboratory for socioecological systems research

Parameterization and empirical testing against

archaeological record

Eastern Spain

Western Jordan

Neolithic – Bronze Age

Mediterranean Landscape Dynamics

- Hybrid modeling approach
 - Human communities and decisions: ABM
 - Landscape dynamics: GIS cellular automata
 - Climate and vegetation: regression-based models

Modeling Landscape Dynamics

- Hillslope erosion/deposition (HED) model
 - Extension of USPED and RUSLE
 - Not applicable to larger channels and streams

$$HED = \frac{d(T \cdot \cos(a))}{dx} + \frac{d(T \cdot \sin(a))}{dy}$$

- HED = net erosion/deposition per landscape cell
 - a = topographic aspect [flow direction]
 - $T = R K C A^m (\sin \beta)^n$ [modified RUSLE]
 - R = rainfall coefficient
 - K = soil erodibility coefficient
 - C = landcover coefficient
 - A = upslope area contributing to flow
 - m,n = empirical coefficients for different flow regimes
 - β = slope

Modeling Landscape Dynamics

- Basic assumption
 - flowing water carries sediment at capacity
- Dynamics
 - Changes to hydrology affect transport capacity
 - Water will erode or deposit sediment until its load reaches its new capacity

- Recursive scripts in open source GRASS GIS
 - Start with DEM of topography
 - Calculate HED (net erosion/deposition) for each landscape cell
 - Add/subtract net erosion/deposition to DEM

Modeling Human Land-Use

Experimental design

Settlement	Precip. & Soil	Agropastoral Land-Use Experiments	
Small village with 5-20 families. Like Tell Rakkan ca. 8400 cal BP (PPNB)	918.5 mm/yr R-factor = 6.69 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing
Hamlet with 1-5 families. Like Tabaqat al-Bûma ca. 7400 cal BP (PN)	783.7 mm/yr R-factor = 5.26 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing

Modeling Human Land-Use

Stochastic land-use modeling

Modeling Human Land-Use

Agent based land-use modeling

Visualization

Coupled with open source WorldWind (NASA)

- Results of initial experiments (40 & 200 year simulations)
 - Barton, C. M., Ullah, I., & Mitasova, H. (in press)
 Computational modeling and socioecological dynamics: a case study from southwest Asia. American Antiquity.

Photo by I. Ullah

Control model

Settlement	Precip. & Soil	Agropastoral Land-Use Experiments	
Small village with 5-20 families. Like Tell Rakkan ca. 8400 cal BP (PPNB)	918.5 mm/yr R-factor = 6.69 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing
Hamlet with 1-5 families. Like Tabaqat al-Bûma ca. 7400 cal BP (PN)	783.7 mm/yr R-factor = 5.26 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing

 Control model after 40 years. Landscape dynamics without people

Small village, shifting cultivation, grazing

Settlement	Precip. & Soil	Agropastoral Land-Use Experiments	
Small village with 5-20 families. Like Tell Rakkan ca. 8400 cal BP (PPNB)	918.5 mm/yr R-factor = 6.69 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing
Hamlet with 1-5 families. Like Tabaqat al-Bûma ca. 7400 cal BP (PN)	783.7 mm/yr R-factor = 5.26 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing

Small village, shifting cultivation, grazing (40 years)

Comparing consequences of population change

Settlement	Precip. & Soil	Agropastoral Land-Use Experiments	
Small village with 5-20 families. Like Tell Rakkan ca. 8400 cal BP (PPNB)	918.5 mm/yr R-factor = 6.69 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing
Hamlet with 1-5 families. Like Tabaqat al-Bûma ca. 7400 cal BP (PN)	783.7 mm/yr R-factor = 5.26 K-factor = 0.42	No cultivation	No grazing
		Intensive cultivation	No grazing
			Grazing
		Shifting cultivation	No grazing
			Grazing

- Hamlet
 - Cultivation limited to wadi bottoms
 - Grazing causes most erosion
 - Erosion primarily in uncultivated uplands
 - Redeposited sediment in cultivated zones is 53% of erosion
- Village
 - Cultivation in uplands; more extensive grazing
 - Cultivation causes most erosion
 - Erosion in cultivated and uncultivated zones
 - Redeposited sediment only 29% of erosion

- Long-term outcomes
- 200 years of land-use around village
 - Erosion continues for 200 years
 - Rate of erosion increas
 - Ratio of redeposited sediment to erosion continues to decline

- Comparisons with the archaeological record
 - Growth of Neolithic communities through the PPN
 - Villages to larger "megasites" by end of PPNB
 - Subsequent disappearance of large communities
 - Prevalence of smaller communities
 - Initial appearance of pastoralism
 - Înitial appearance of significant socioeconomic differentials

Long-Term Socioecological Dynamics

- Indirect interactions of society and water
 - Have had great impact
 - But may only be visible in hindsight
 - Difficult to trace causation or predict consequences due to complex interactions in SES
- Need time depth to understand Mediterranean SES

Archaeology & Socioecological Dynamics

- Potential for understanding long-term change
- But archaeological record problematic for studying SES
 - Static, fragmentary, mostly missing
 - Archaeological data recovery sophisticated
 - But still leaves enormous gaps filled with stories

Archaeology & Socioecological Dynamics

- Computational modeling offers
 - New tools to study dynamics of human societies
 - Experimental protocols needed for testing ideas about SES
- Can compare model outcomes against empirical record
- Modeling provides platform to build cumulative understanding

Archaeology & Socioecological

Dynamics

- Changing archaeological practice
 - Create theory-driven models of human action
 - Translate into computational models of social dynamics
 - Test outcomes against archaeological record

Interdisciplinary & International Collaboration

- ASU: School of Human Evolution and Social Change, Center for Social Dynamics & Complexity, School of Earth and Space Exploration, School of Computing Informatics and Decision Systems Engineering, School of Geographical Sciences and Urban Planning, School of Sustainability
- Partners: Universitat de València, Universidad de Murcia, University of Jordan, North Carolina State University, University of Wisconsin, Hendrix College, Geoarchaeological Research Associates, GRASS GIS Development Team

