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Working Paper Objective and Disclaimer: www.sustainable-transportation.com 
This working paper is intended to provide the preliminary methodology used to assess the life-
cycle energy consumption and air emission effects of Los Angele Metro’s Orange bus rapid transit 
and Gold light rail transit lines for upcoming reports and peer-reviewed journal publication. The 
methodology is subject to future updates during the peer-review process as we incorporate 
feedback. Before using the information in this working paper, the reader is strongly advised to 
visit the research project website () for notification of the release of our final results, and for a 
listing of related publications. 
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1 Acronyms 

 
BRT Bus Rapid Transit 
BTU British Thermal unit 
CARFG California Reformulated Gasoline 
CNG Compressed Natural Gas 
CO Carbon Monoxide 
CO2 Carbon Dioxide 
CO2e Carbon Dioxide Equivalence 
EIOLCA Economic Input-Output Life Cycle Assessment 
GHG Greenhouse Gas 
LADWP Los Angeles Department of Water and Power 
LCA Life Cycle Assessment 
LRT Light Rail Transit 
MJ Megajoule 
NMHC Non-Methane Hydrocarbons 
NOx Nitrogen Oxides 
PM Particulate Matter 
PMT Passenger Mile Traveled 
PWP Pasadena Water and Power 
SCE Southern California Edison 
SO2 Sulfur Dioxide 
SOx Sulfur Oxides 
THC Total Hydrocarbons 
VMT Vehicle Mile Traveled 
VOC Volatile Organic Compounds 
WECC Western Electricity Coordinating Council 

 

2 Document Background 

The goal of this working paper is to provide the methodological background for several upcoming reports 

and peer-reviewed journal publications. This manuscript only provides background methodology and does 

not show or interpret any of the results that are being generated and interpreted by the research team. The 

methodology is consistent with the transportation LCA approach developed by Chester and Horvath (2009). 

The discussion in this working paper provides the detailed background data and steps used by the research 

team for their assessment of Los Angeles Metro transit lines and a competing automobile trip. 
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3 Methodology 

Orange and Gold line travel are compared to a competing automobile trip. In phase one, a life cycle inventory 

of energy consumption and air emissions is developed for the Orange line, Gold line, and a 35 mile per gallon 

sedan. While current average automobile fuel economy in these transit corridors is likely lower, the use of this 

improved economy is meant to consider how a typical automobile is expected to perform in the future, 

especially given the long lifetimes of transit systems. In phase one, per PMT life cycle inventories are 

presented to illustrate the effects of including indirect and supply chain processes not typically included in 

vehicle energy or environmental footprints. The inventory will be the cornerstone of our phase two corridor 

assessment to be completed in future work. 

3.1 System Boundary Selection 

System boundary selection is a critical first step in LCA to establish a consistent scope for comparing the 

three modes. LCAs that do not establish a consistent system boundary are likely to compare uncommon 

components across systems of interest leading to results that cannot be contrasted. Recent transportation 

LCAs have established system boundaries that include vehicle, infrastructure, and energy components 

[Chester et al. AE 2010, Chester and Horvath 2009]. These studies have shown that for many air emissions, 

the majority of emissions often occur from life cycle components and not vehicle operation. Furthermore, 

these studies establish the need to include upstream supply chains. For example, aggregate use for concrete 

and asphalt, requires mining raw materials, processing to final form, and distribution, and these processes can 

dominate certain emissions [Chester and Horvath 2009]. A system boundary consistent with that used in 

these aforementioned studies is applied including upstream supply chain requirements. For this report, the 

terminology of life cycle grouping and life cycle components is used. A grouping refers to the aggregation of 

several components. For example, the Gold Line infrastructure construction grouping includes extraction and 

processing of raw materials into final products (e.g., steel and concrete), excavation and construction activities 

for different track segment types (e.g., aerial and at-grade), station construction, and so on. There are roughly 

150 components evaluated for each mode and the groupings (used in the discussion of the analysis 

methodology and reporting of results) are designed to relay critical information in the most usable form to 

readers. This analysis builds on existing research and in-depth discussion of fundamental approaches used to 

determine process effects is available in other literature (and cited where appropriate). Table 3 shows the 

system boundary of analysis with life cycle groupings and generalized life cycle components for each of the 

modes. 
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Table 1 – Life Cycle Assessment System Boundary 

Life Cycle Grouping Sedan Orange Line Gold Line 

Vehicle    

Manufacturing  Sedan 
 Transport to Point of Sale 

 Bus 
 Transport to Point of Sale 

 Train 
 Transport to Point of Sale 

Operation  Propulsion 
 Idling 

 Propulsion 
 Idling 

 Propulsion 
 Idling 

Maintenance  Typical Sedan Maintenance 
 Tire Replacement 
 Battery Replacement 

 Typical Bus Maintenance 
 Tire Replacement 
 Battery Replacement 

 Typical Train Maintenance 
 Train Cleaning 
 Flooring Replacement 

Insurance  Sedan Liability  Bus Liability 
 Operator Fringe Benefits 

 Train Liability 
 Operator Fringe Benefits 

Infrastructure    

Construction  Roadway Construction  Roadway Construction 
 Station Construction 

 Track Construction 
 Station Construction 

Operation  Roadway Lighting 
 Herbicide Use 

 Road and Station Lighting 
 Herbicide Use 
 Control and Signaling 

 Track, Station, and Parking 
Lighting 

 Herbicide Use 
 Train Control 
 Miscellaneous (Escalators, 

Equipment) 

Maintenance Roadway maintenance is the 
result of heavy duty vehicles and 
thus not charged to small cars. 

 Road and Station 
Maintenance 

 Track and Station 
Maintenance 

Parking  Curbside Parking  Dedicated Parking  Dedicated Parking 

Insurance  Road Workers Fringe 
Benefits 

 Non-vehicle Workers Fringe 
Benefits 

 Infrastructure Liability 

 Non-vehicle Workers Fringe 
Benefits 

 Infrastructure Liability 

Energy Production    

Extraction, Processing, 
& Distribution 

 Gasoline Extraction, 
Processing, & Distribution 

 Natural Gas Extraction, 
Processing, Distribution, 
& Compression 

 Raw Fuel Extraction and 
Processing, Electricity 
Generation, Transmission 
& Distribution 

 

3.2 Energy and Environmental Indicators 

We evaluate energy inputs and air emission outputs including greenhouse gases and conventional air 

emissions. Reporting energy use is challenging because of the many forms that may be valuable to the 

research question asked. Energy use can be reported as primary, end-use, fossil, non-fossil, renewable, non-

renewable, electrical, non-electrical, and so on. We report energy use as end-use, a useful metric for 

transportation decision makers who have some control over the energy consumption of their system. 

Greenhouse gases (GHGs) include CO2, CH4, and N2O normalized to CO2-equivalence (CO2e) using IPCC 
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100 year radiative forcing factors of 25 for CH4 and 298 for N2O. Conventional air pollutants is a term used 

to describe the primary air emissions of particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), 

volatile organic compounds (VOCs), carbon monoxide (CO), and lead. These conventional air pollutants are 

either directly or indirectly (through atmospheric chemistry where secondary pollutants such as ozone are 

formed) responsible for significant human health and environmental impacts. PM is disaggregated to 2.5 

micron diameter or less (PM2.5), and greater than 2.5 microns to 10 microns (PM10), to capture their differing 

human health impacts. Conventional air pollutants are evaluated (with the exception of lead due to lack of 

data) for all life cycle components. Including a broad suite of environmental indicators is necessary for 

understanding the comprehensive impacts of transportation systems. By evaluating multiple indicators, it is 

sometimes the case that a decision that decreases one emission may increase another. 

3.3 Development of Modal Life Cycle Inventories 

The approach for generating the life cycle inventories of the three modes is based on existing work by the 

authors. Detailed methodological discussions are available in existing literature [Chester and Horvath 2009, 

Chester 2008] and the following discussion identifies the critical factors and approaches for evaluating the 

three Los Angeles modes and their geographic-specific processes. For each mode, vehicle, infrastructure, and 

energy production groupings are discussed with the fundamental assumptions for critical parameters.  

3.3.1 Los Angeles Sedan 

3.3.1.1 Vehicle 

The LA sedan is a 3,200lb automobile similar to a Toyota Camry. The conventional gasoline vehicle is 

specified with a baseline fuel economy of 35 miles per gallon, consistent with 2020 Corporate Average Fuel 

Economy standards. There are several challenges when evaluating a single fuel economy in the life cycle 

inventory. First, while the Orange line started operation in 2005 and the Gold line 2003, evaluating the sedan 

with a typical fuel economy in these years is not useful comparison against transit systems that will last 

decades. Next, it is likely that some vehicles will have lower fuel economies and some higher (e.g., hybrids). 

Lower fuel economies would include older vehicles, vehicles that were not required or chose not to meet 

2020 standards, and even congestion effects. Congestion effects for Los Angeles automobiles are important 

when vehicles are operating in stop-and-go traffic. While the cumulative distribution may produce some 

average speed, in reality the vehicle may have spent time above or below this speed. Below 40 miles per hour, 

the lower the speed, the more fuel is consumed and emissions produced per VMT [Chester et al. AE 2010, 

Ross 1994]. If congestion worsens in Los Angeles then average vehicle speeds will decrease. As fuel 

economies improve, it is difficult to say without additional study the extent to which congestion-affected fuel 

economy will change. To illustrate life cycle effects, the 35 mile per gallon baseline is used as an expected 
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reasonable middle ground. We acknowledge that average future fuel economies may affected by a breadth of 

factors, including congestion, and our corridor analysis future work will explore the surrounding range. 

Vehicle and battery manufacturing energy use and air emissions are determined with GREET2 (2007). The 

sedan is estimated to travel 160,000 miles in its lifetime and manufacturing is assumed to occur in an average 

U.S. electricity mix to capture the possibility of vehicle import to Los Angeles from a generic U.S. 

manufacturing location. It is assumed that two battery replacements will occur during the vehicle’s lifetime 

and current lead-acid battery technology is evaluated. Replacement battery manufacturing is assigned to the 

vehicle maintenance life cycle grouping. Furthermore, transport from the manufacturing plant to point of 

sale/use is included assuming a distance of 2,000 miles by a Class 8b heavy duty truck. 

Operational emissions include gasoline fuel combustion, brake wear, tire wear, and evaporative VOC losses. 

The LA sedan is evaluated with CA Reformulated Gasoline (CARFG). Automobile PM emissions from brake 

and tire wear have been shown to produce non-negligible health impacts and are included. Furthermore, the 

volatilizing of liquid gasoline to gaseous form where it escapes from vehicles as VOCs is also included. CA-

GREET1 (2009), a model adapted from GREET1 (2010) to more accurately capture California conditions, is 

used to evaluate operational emissions. 

Vehicle maintenance includes general maintenance (parts replacement, general servicing), tire replacement, 

and battery replacement (previously discussed). The American Automobile Association reports that in 2010, 

maintenance costs were ¢4.29 per VMT and tire costs ¢1.11 per VMT [AAA 2011]. Evaluating these costs 

within EIOLCA (2011)’s Automotive Repair and Maintenance and Tire Manufacturing sectors produces 

maintenance impacts from general maintenance services and parts production, and the production of tires. 

Following Chester and Horvath (2009), automotive repair shop emissions are included, based on the 

California Air Resources Board’s 1997 Consumer and Commercial Products Survey (see Chester (2008) for 

additional discussion). 

The provision of vehicle liability insurance including energy for administrative facilities and waste generation 

produces significant emissions in the vehicle life cycle [Chester and Horvath 2009]. AAA (2011) reports that 

in 2010 insurance costs for a medium size sedan were $948 per year. Evaluating this cost within EIOLCA 

(2011)’s Insurance Carriers sector allows for the determination of energy use and emissions from the physical 

insurance infrastructure. 

3.3.1.2 Infrastructure 

An automobile trip that is substituted for an Orange or Gold Line trip reduces onroad infrastructure 

dependence. Onroad infrastructure includes roadway construction and maintenance, roadway operation, 

parking, and associated roadway worker requirements. While all of these groupings are considered, there is a 
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necessary distinction between average and marginal effects. The removal of a single automobile trip does not 

result in transportation engineers reducing road capacity and therefore reconstruction, maintenance, or new 

construction requirements. The reduction in capacity will occur according to a step-wise function where a 

certain number of auto trips shifted to the Orange and Gold lines would result in a future roadway capacity 

disinvestment commitment by Los Angeles. Distinguishing life cycle effects between average and marginal is 

important for deciding which components actually occur because of a decision in order to determine the true 

environmental footprint of the decision to build and operate the public transit lines. When establishing 

baselines however, average effects are necessary. We choose to first establish the comprehensive life cycle 

footprint of all modes and in our corridor assessment, evaluate consequential effects by considering only 

marginal life cycle effects. 

Roadway construction and maintenance for the 21 mile trip are evaluated with PaLATE (2004) and coupled 

with VOC and PM2.5 emissions [Chester et al. ERL 2010a, Chester 2008]. The automobile trip would likely 

include local, collector, and arterial roadways. A typical Los Angeles collector is evaluated with asphaltic 

cement with a width of 32 feet and depths of 6 inches for the wearing layers and 12 inches for the subbase. 

This width includes only the traveled way and excludes multi-purpose area for parking (parking effects are 

evaluated independently). The road is assumed to have a lifetime of 10 years for the wearing layers and 50 

years for the subbase. While routine roadway maintenance is determined, its energy use and emissions are not 

allocated to the automobile. Damage to roadways occurs based on a fourth-power relationship to axle loads 

[Huang 2004]. This means that roadway damage is the result of large vehicles, particularly freight trucks. 

Roadway capacity on the other hand is dictated by automobile demand and therefore construction effects 

should be attributed to the sedan. 

Herbicide use and lighting are evaluated for roadway operation. Herbicide use is assumed to be negligible 

given a general lack of roadside greenery. Lighting is evaluated based on data from nationwide roadway 

lighting estimates [Chester 2008]. Nationwide estimates include urban and rural roads and applying these 

factors to Los Angeles is expected to produce a conservative estimate since the collector we consider is fully 

lit. 

Parking spaces are generally grouped as curbside (onstreet), surface (offstreet), parkade (or multi-story 

garage), or home driveway or garage. Following Chester et al. ERL (2010a), an energy and emissions 

inventory is determined for each parking space type. The multi-use nature of asphalt surfaces produces 

challenges for evaluating parking effects in regions or along roadway segments. By first establishing the per-

space inventories, several scenarios can be considered in later analyses. This includes evaluating parking 

spaces along the 21 mile trip as well as the marginal effects of a single trip shifted from automobiles to the 

Orange or Gold lines. 



 
Mikhail Chester Page 8 of 25 

3.3.1.3 Energy Production 

The lifetime use of CARFG by the sedan is evaluated from raw material extraction through delivery to the 

point of sale. Crude oil extraction, transport, refining, and additives are evaluated with CA-GREET1 (2009) 

assuming a 9.4% mix of oil sands. With refineries located near major population centers in California, a 

delivery distance of 30 miles is used to capture fuel tanker transport from the refineries to refueling stations 

[CA-GREET1 2009]. 

3.3.2 Los Angeles Metro’s Orange Line 

3.3.2.1 Vehicle 

The Orange line uses 60 foot articulated buses manufactured by North American Bus Industries (NABI). The 

buses have Compressed Natural Gas (CNG) engines and can seat 57 passengers [Callaghan and Vincent 

2007]. There are approximately 200 “Metro Liner” buses in the fleet, with each weighing 48,000 lbs unloaded 

and can operate up to 60,000 lbs at full passenger loads [LA Metro Personal Communications 2011 Note A]. 

For vehicle manufacturing energy use and emissions, the Ecoinvent (2010) Bus Manufacturing process is used. 

Ecoinvent (2010) provides estimates for a 18 Mg Volvo 8500 bus manufactured in the European electricity 

mix. To determine the manufacturing effects of the Orange line buses, energy and emissions are scaled with 

weight and the Western Electricity Coordinating Council (WECC) mix is applied. LA Metro uses 

conventional lead-acid batteries weighing 51 lbs with an expected lifetime of 13 months in Orange line buses 

[LA Metro Personal Communications 2011 Note D]. Bus manufacturing occurs in Hungary and Anniston, 

Alabama. NABI relies on Hungarian manufacturing for certain components and ships these components for 

final assembly to Anniston. After final assembly, buses were driven to Los Angeles, a distance of 2,100 miles. 

54% of the bus, by weight are shipped by ocean going vessel from Hungary to Alabama, a distance of 5,000 

miles [LA Metro Personal Communications 2011 Note A]. LA Metro expects buses to last 15 years and 

would not consider replacing them before 12 years [LA Metro Personal Communications 2011 Note C]. 

Existing literature is used to estimate the operational fuel use and emissions of Orange line buses. Several 

CNG buses have been deployed in the past decade around the U.S. including New York City and Washington 

DC. Touted as a cleaner fuel than diesel, a body of literature has emerged to quantify the tradeoffs of each 

and conditions in which CNG outperforms diesel. Synthesizing the CNG bus literature [NREL 2006, NREL 

2005, ICCT 2009, Nylund 2004, Ayala et al. SAE 2003, Ayala DEER 2003, Ayala et al. 2002, Clark et al. 1999, 

Kado et al. 2005, Lanni et al. 2003], a range and characteristics of energy use and emissions are determined 

(see Table 4). 
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Table 2 – Synthesis of Diesel and CNG Energy Use and Emissions from Literature 

 Energy CO2 CH4 CO NOx NMHC THC PM SO2 
 VMT/DGE g/VMT g/VMT g/VMT g/VMT g/VMT g/VMT mg/VMT mg/VMT 
Diesel          
Min (Best) 3.7 2,586  0.10 18 0.002 0.01 10 9.7 
Median 3.2 2,990  0.16 26 0.01 0.08 47 13 
Mean 3.3 2,892  0.84 28 0.02 0.08 97 17 
Max (Worst) 2.8 3,369  7.2 52 0.07 0.21 631 28 
CNG          
Min (Best) 3.5 1,952 6.0 0.1 8.2 0.1 6.3 0.02 8.5 
Median 2.7 2,535 8.3 11 19 1.2 18 24 18 
Mean 2.4 2,832 9.6 18 23 1.8 26 33 18.7 
Max (Worst) 1.3 5,254 17 69 73 5.4 78 102 36 

DGE = Diesel Gallon Equivalent. 

With a broad range of vehicles and operating conditions, a median (representative) value is chosen and used 

for Orange line emissions. The implications of such a broad range of fuel consumption and emissions are 

discussed throughout this report. 

Brake and tire wear are included from EPA Mobile6 (2003). Brake wear produces 13 mg PM10 and 3.7 mg 

PM2.5 per VMT. Tire wear produces 12 mg PM10 and 5.4 mg PM2.5 per VMT.  

Maintenance incudes general servicing, tire replacement, battery replacement, and vehicle repair facility 

processes. Evaluating CNG buses in the Washington Metropolitan Area Transit Authority’s fleet, NREL 

(2006) reports maintenance costs between ¢52 and ¢58 per VMT, including tire replacement. Tire-specific 

replacement costs are evaluated independently from NREL (2006) and are determined from the NTD (2009), 

based on Metro’s total bus fleet, at ¢79 per VMT. These costs are evaluated with within EIOLCA (2011)’s 

Automotive Repair and Maintenance and Tire Manufacturing sectors to determine energy use and emissions from 

these maintenance activities. Following Chester and Horvath (2009), vehicle repair shop CO2 and VOC 

emissions are determined from statewide inventories reported by the California Air Resources Board’s 1997 

Consumer and Commercial Products Survey (see Chester 2008 for additional discussion) allocated by vehicle 

VMT. 

The provision of fringe benefits for bus operators and liability insurance requires energy and produces 

emissions in the insurance infrastructure. Combining fringe benefit and casualty and liability cost data 

reported for Metro buses in NTD (2009) with employee counts produces per bus annual costs. For a single 

bus in one year, operator fringe benefits amount to $39,000 and casualty and liability insurance costs $4,300. 

These costs are evaluated with the Insurance Carriers sector of EIOLCA (2011). 

3.3.2.2 Infrastructure 

The Orange line infrastructure is 14.2 miles of two-way road, landscaping, and a bike path in North 

Hollywood. The BRT system is primarily East-West connecting North Hollywood (and the Red line metro) 
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with the Woodland Hills neighborhood. The line commenced service in 2005 and was constructed on existing 

Southern Pacific Railroad right-of-way. 

Figure 1 – Los Angeles Metro Orange Line Route Map

 
Source: LA Metro Orange (2011). 

There are 14 stations in the Orange line system. Stations are fairly minimal with a raised concrete platform 

from the roadway, approximately 15 feet in width and 200 feet in length, with awnings for weather protection 

(see Figure 2). 

Figure 2 – Typical Orange Line Station and View of Roadway 

 

Photo by Mikhail Chester on April 6, 2011, Van Nuys station. 
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Roadway construction and maintenance are evaluated by asphalt and concrete segments. For the entire 14.2 

miles, a subbase with dimensions of 24 feet width and 12 inch depth is applied. The last mile (Canoga Station 

to the Warner Center Transit Hub) of the bus system uses city streets. Because roadway construction is 

dictated by automobile throughput, this segment is not allocated to the Orange line. The traveled-way and 

turnoffs at each station are concrete, each approximately 550 feet in length. As a result, of the 13.2 dedicated 

miles, 11.7 miles are asphalt and 1.5 miles are concrete. These wearing layers are evaluated with a 20 feet 

width and 6 inch depth. The subbase and wearing layers are evaluated with the PaLATE (2004). The subbase 

is specified with a 100 year lifetime, asphalt segments 20 years, and concrete 15 years. The subbase is 

constructed with recycled materials [LA Metro Personal Communications 2011 Note F] and the PaLATE 

(2004) material production life cycle component is assumed to be zero so only materials transport and 

subbase installation equipment are accounted for. Future work will evaluate the material recycling 

requirements for avoided virgin material use. Opening for service in 2005, the initial construction of the 

Orange line used traditional asphalt for the respective segments. Due to greater than expected wear, Metro 

resurfaced these segments in shortly after initial operation using Superpave asphalt. Superpave is an asphalt 

program for the improved selection of component materials, asphalt mixture design, analysis, and pavement 

performance prediction, to control stiffness at high temperatures and reduce fatigue cracking at intermediate 

temperatures ultimately improving wear and increasing the surface lifetime [FHA 1995]. The initial paving is 

included in the infrastructure construction life cycle component. The Orange line also includes dedicated bike 

paths and greenery on one or both sides of the traveled way. The Class 1 bike paths are often separated from 

the road by roughly 20 to 60 feet of landscaping. Bike path construction energy and environmental effects are 

not allocated to the Orange line. The paths and greenery provide visual, aesthetic, community enhancement, 

and natural barriers, all of which are not primarily aimed at the functionality of the Orange line. Also, the 

benefits of these qualities are realized primarily by bicyclists, pedestrians, and the surrounding homes. It is 

acknowledged that the bike paths would not exist without the Orange line. Furthermore, they likely provide 

additional energy and environmental benefits from motorized trips shifting to biking and walking. However, 

these additional benefits are not captured in this analysis.  

Orange line stations are evaluated as bus turnoffs from the traveled-way, and platforms. Bus turnoffs are 

approximately 200 feet long and 10 feet wide with concrete wearing layers. Their depth is specified as 6 

inches, consistent with the traveled-way, and a subbase of 12 inch depth is used. It is estimated that each 

station has two turnoffs, a total of 28 inches the system. For each station, elevated from the roadway are rider 

platforms, also 200 feet long and 10 feet wide, primarily concrete material. These platforms are modeled with 

a 12 inch depth.  
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Figure 3 – Orange Line Section at Topham Street 

 

Source: LA Metro Orange (2000). 

The Orange line operates roughly 22 hours per day requiring nighttime lighting of the roadway [LA Metro 

Orange 2011]. In 2010, 1.2 GWh of electricity was consumed for infrastructure operation including roadway, 

station, and parking lot lighting [LA Metro Personal Communications 2011 Note B]. This electricity was 

purchased from LADWP and is evaluated in the current LADWP mix for baseline infrastructure operations 

emissions [LADWP 2010]. Water for landscaping around the traveled-way is evaluated but ultimately 

excluded from the system boundary because greenscape effects are allocated to bicycling, walking, and the 

homes around the line. LA Metro planted xeriscape vegetation resulting in minimal water and landscaping 

requirements [City of Los Angeles 2011]. Assuming that landscaping requires 6 inches of water per year, 

based on data reported by McPherson (1990) for arid urban environments, water effects (determined from 

Stokes and Horvath 2009) would be negligible in the life cycle of the Orange line. 

There are 4,709 park and ride surface lot spaces at Orange line stations [LA Metro Orange 2011]. Using the 

approach from Chester et al. ERL (2010a) and the PaLATE (2004) model, surface lot construction and 

maintenance energy use and emissions are determined. A 20 year lifetime is assumed for the parking 

infrastructure.  

3.3.2.3 Energy Production 

CNG use by the Orange line includes extraction, processing, transport, and compression. Orange line natural 

gas consumption is evaluated with CA-GREET1 (2009) which evaluates all major components involved with 

natural gas production and use. To evaluate Orange line specific consumption, recovery, processing, and 

long-distance transmission are first evaluated as the fuel feedstock.  Short distance delivery to Metro refueling 

stations is captured as well as compression of natural gas using electricity. While Metro has traditionally used 
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natural gas-fueled compressors to produce CNG, they are in the process of switching to electrical 

compressors. Compression energy of 8.2 kWh per mmBTU is applied for this final step [CA-GREET1 2009]. 

3.3.3 Los Angeles Metro’s Gold Line 

3.3.3.1 Vehicle 

The Gold line operates AnsaldoBreda P2550 and Siemens P2000, the latter of which are being transitioned to 

other lines. The AnasaldoBreda trains are used for the analysis of vehicle life cycle components and are not 

expected to produce significantly different results than an analysis of the Siemens trains. The Italian-made 

AnsaldoBreda P2550 Gold line trains are six-axle articulated light rail vehicles with steel structures and 

dimensions of 8.7 feet width by 90 feet length [AnsaldoBreda 2011]. Trains weigh 54 Mg and can seat 76 

passengers [AnsaldoBreda 2011]. Manufactured in Italy, shipment at 10,000 miles by ocean going vessel was 

evaluated [GREET1 2010]. Train manufacturing energy use and emissions were evaluated with SimaPro 

(2006)’s light rail train processes in an Italian electricity mix. A 30 year lifetime is assumed for trains. 

LA Metro does not collect propulsion energy consumption information so electricity consumption of 10 kWh 

per VMT reported for aggregated LA Metro LRTs is used [NTD 2009]. In addition to the Gold line, LA 

Metro operates the Blue and Green LRT lines. The Blue line currently uses Nippon Sharyo trains and the 

Green line Siemens P2000. The aggregate electricity consumption factor is assumed to be a reasonable 

approximation for the Gold line because of the similarity in train size and models. Furthermore, the electricity 

consumption factor is similar to those reported for other AnsaldoBreda trains [Chester and Horvath 2009]. 

Additionally, when system-wide annual Gold line propulsion electricity is calculated, the energy consumed 

corresponds with the total electricity (vehicle propulsion plus infrastructure operation) reported by LA Metro 

(this is discussed in the Infrastructure section). The propulsion energy consumption and corresponding power 

plant emissions are assessed in the Energy Production life cycle component. This accounting is different from 

previous electric train LCAs [Chester and Horvath ERL (2010b), Chester and Horvath (2009), Chester 

(2008)]. 

Vehicle maintenance requirements include servicing of trains, cleaning, and replacement of flooring. General 

servicing maintenance (replacement of glass, fabric, aluminum, copper, steel, paint, and plastics in standard 

wear and tear) is evaluated with SimaPro (2006) in a City of Pasadena Water and Power 2008 electricity mix 

[PWP 2009]. Daily cleaning of trains including electricity use and cleaning supplies is considered. The 

replacement of composite flooring for the 660 ft2 of train passenger area is included at a lifetime of 20 years. 

Operator fringe benefits and liability are evaluated for vehicle insurance. Combining fringe benefit and 

casualty and liability cost data reported for Metro light rail trains in NTD (2009) with employee counts 

produces per vehicle annual costs. For a single train in one year, operator fringe benefits amount to $4,239 
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and casualty and liability insurance costs $13,576. These costs are evaluated with the Insurance Carriers sector of 

EIOLCA (2011). 

3.3.3.2 Infrastructure 

The Gold line infrastructure consists of 19.7 miles of two-way track and 21 stations. The line starts in East 

Los Angeles, travels through Union Station in downtown Los Angeles, and ends in Pasadena (see Figure 4). 

The current infrastructure is phase one of several potential extensions. Ultimately, Pasadena would be 

connected with Ontario airport, a distance of roughly 30 miles. The current infrastructure is assessed and we 

do not estimate the effects of potential future extensions.  

The infrastructure assessment is fundamentally an engineering analysis that estimates material use and 

processes involved with each life cycle component. Given the unique design attributes and large-scale nature 

requiring many design and construction actors of rail transit infrastructure construction, it is generally the case 

that detailed total construction inputs are consolidated. The approach for estimating energy inputs and 

emission outputs from construction materials and processes is reported in extensive detail by Chester and 

Horvath (2009) and Chester (2008). Additional refinement is reported by Chester and Horvath ERL (2010b). 

While the methodology, material data, and process data in this study are consistent with those developed in 

the aforementioned study, the infrastructure design, operational requirements, and maintenance requirements 

are unique. In this section, the critical infrastructure station and track parameters are identified. 
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Figure 4 – Los Angeles Metro Gold Line Route Map 

 

Source: LA Metro Gold (2011). 

 

Of the 21 current stations, one is aerial (Chinatown), one is below grade (Memorial Park), and the remainder 

are at-grade. Satellite imagery was used to evaluate the dimensions of stations [Google Earth 2011]. In 

general, station platforms are roughly 300 feet in length and 10 to 27 feet wide. The aerial station platform is 

300 feet in length and 25 feet wide. The platform slab is evaluated with a 3 feet depth. The columns and 

elevated track are not allocated to stations but to the aerial track segments. For the below grade station, 

platforms, floor caps, footings, structural columns, and walls are included. A roof cap is not considered since 

this station has a transit oriented development apartment structure above. The Memorial park station is 

evaluated with a 330 feet length, 50 feet width, and 30 feet height, with all primary structure elements 
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evaluated as reinforced concrete. At-grade stations are treated as simple platforms with an average length of 

330 feet and width of 15 feet [Google Earth 2011]. The platforms are evaluated a structural steel-reinforced 

concrete with a depth of 3 feet (see Figure 5). An additional 3 feet subbase is also implemented. The inclusion 

of ancillary infrastructure like buildings, other structures (e.g., walkways, coverings), and fixtures are not 

included due to lack of data and would only increase the inventory effects. The tracks themselves through 

stations are not attributed to the station but to the track infrastructure life cycle components. Excavation 

activities are attributed to the track. There are 2,334 dedicated parking spaces across the Gold line stations 

[LA Metro Gold 2011]. All spaces are treated as surface lots and evaluated with PaLATE (2004). This is likely 

a conservative estimate as parkade or garage spaces have greater effects than surface lots. 

Figure 5 – Typical Gold Line Platform Station 

   
Photos by Mikhail Chester on April 6, 2011. 

Track segment materials and processes are evaluated by engineering segment type: aerial, elevated on fill, 

open cut, and at-grade. For each segment type, aggregate, concrete, and steel are considered in detail as 

primary materials, including their associated life cycle effects and placement processes. Soil work construction 

activities are also included for excavation and amendments. The use of wiring and electrical equipment for 

power delivery, train control, and signaling is also included. For all materials, raw material extraction through 

production and delivery are modeled. Using Google Earth (2011) it is estimated that there is 1 mile of 

elevated structure, 1 mile of elevated on fill, 2 miles of open cut, and the remainder of track segments at-

grade. 
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Figure 6 – Gold Line Aerial Track Segment 

  
Source: LACTC (1988) and Google Earth (2011). 

An engineering design takeoff is performed for each segment type. For aerial segments, both supports and 

platforms are evaluated. Supports are placed every 100 feet and are designed at a minimum height of 11 feet, 

and cross sectional area of 15 square feet [LACTC 1988, Google Earth 2011]. Support footings and piers are 

included. The two-way tracks are supported at the pier and have a cross sectional area of 50 square feet each. 

Figure 6 shows an aerial segment near the Chinatown station. 

The assessment of elevated on fill and open cut segments include earthwork activities in addition to the 

aforementioned factors. Retained filled segments are designed with a cross sectional area of 390 square feet. 

For open cut segments, and excavation volume cross sectional area of 300 square feet is used. Structural 

concrete volumes are determined from engineering drawings [LACTC 1988]. Retaining walls and concrete 

bases are included (see the designs in Figure 7 and Figure 9). 

Figure 7 – Retained Fill and Open Cut Gold Line Segments 

  

Source: LACTC (1998). 

At-grade segments are generally ballasted track but some segments are integrated with local roadways serving 

as the median (see Figure 8 and Figure 9). For ballasted segments, width of 26 feet and depth of 20 inches is 

used. For concrete segments serving as roadway medians (see Figure 8), a subbase of ballast is used followed 
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by a concrete covering with a cross-sectional area of 26 square feet. Concrete ties are evaluated where 

applicable and assumed to be every 24 inches on center. 

Figure 8 – At-Grade in Roadway Median Gold Line Track Segment 

 

Photo by Mikhail Chester on April 6, 2011. 

Power structure and substations are determined from existing light rail literature (see the discussion in 

Chester 2008). These components are evaluated based on their initial costs with the EIOLCA (2011) Other 

Communication and Energy Wiring Manufacturing and Electric Power and Specialty Transformer Manufacturing sectors. 

Figure 9 – At-Grade in Freeway Median Gold Line Track Segment 

 
Photo by Mikhail Chester on April 6, 2011. 

LA Metro tracks electricity consumption at meters generally located at stations or maintenance yards. Gold 

line electricity is purchased from LADWP, PWP, and SCE and is not disaggregated to propulsion and non-

propulsion uses. In 2010, 27 GWh of electricity were consumed including 5 GWh at Union Station which 

serves both the Gold and Red lines [LA Metro Personal Communications 2011 Note B]. LA Metro gathers 



 
Mikhail Chester Page 19 of 25 

monthly station, traction power, signals, crossings, and maintenance yard electricity data from meters. 

Assuming that one-half of Union Station’s electricity consumption can be attributed to the Gold line results 

in 20 GWh of electricity purchased from LADWP, 3.2 GWh from PWP, and 1.2 GWh from SCE. Stations 

are responsible for 15 GWh of the 27 total GWh electricity consumed. 

Station and track maintenance are evaluated including routine replacement of materials and associated 

reconstruction activities. For stations, it is assumed that roughly 5% of concrete, steel, and power/electrical 

components are replaced each year. Station cleaning is also included. Track maintenance is evaluated with 

SimaPro (2006)’s light rail train track maintenance processes. Track maintenance includes energy use and 

emissions for maintaining and replacing materials as well as the effects of herbicide and lubricant use.  

Non-operator fringe benefits are evaluated for infrastructure employee insurance. Combining fringe benefit 

cost data reported for Metro light rail trains in NTD (2009) with employee counts produces per vehicle 

annual costs. For a single train in one year, non-operator fringe benefits amount to $46,918. This cost is much 

larger than the operator per-vehicle cost because it captures the many employees needed in the system for the 

handful of train operators. This cost is evaluated with the Insurance Carriers sector of EIOLCA (2011). 

3.3.3.3 Electricity Production 

The PWP electricity mix is used to evaluate Gold line emissions. In 2008, the PWP mix was 14% natural gas, 

62% coal, 5% nuclear, 4% hydro, and 15% other renewables [PWP 2009]. Using GREET1 (2010) electricity 

upstream and at-plant generation emission factors, life cycle electricity emissions are determined. An 8.4% 

transmission and distribution loss is assumed. As noted earlier, vehicle operation electricity consumption and 

emissions at electricity generation facilities are assessed in the energy production life cycle component.  

3.3.4 Functional Unit and Occupancy Variation 

Results are normalized to per VMT and PMT for leveled comparison of modes. These life cycle inventories 

will serve as the basis of our phase two analysis, the development of a consequential assessment of the travel 

corridors the transit systems serve. The life cycle inventory results for phase one are presented in average and 

marginal attributional forms, and will serve as the basis of phase two’s consequential assessment. 

Attributional inventories evaluate the full system (in this case the vehicle, infrastructure, and energy 

production life cycle components) and allocate energy and emissions to the sedan, Orange line, and Gold line 

per VMT and PMT. The goal of this approach is to identify and understand the comprehensive footprint of a 

transportation system to evaluate the critical life cycle processes that should be targeted for energy and 

emissions reductions. When decision analysis is included in life cycle scoping then consequential assessment 

must be used. Consequential assessment evaluates what has changed from the status quo and is better suited 

for informing policy. While understanding the comprehensive footprint with attributional assessment is 
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important, questions related to effects of decisions and policy on the integrated transportation system must 

be answered with consequential assessment. The phase one attributional results presented here are designed 

to inform transportation decision makers of the life cycle components that should be targeted for energy and 

emissions improvements. These results are presented in both average and marginal forms. Average results 

show all life cycle components and assume that a decision to use a transportation mode results in long-term 

effects including the need to construct, operate, and maintain all aspects of the system. The marginal results 

assume that the fixed cost components are in-place and the decision to use a transportation mode generates 

additional effects that do not require the expansion of infrastructure or the manufacturing of a new vehicle. 

The average and marginal results are useful for particular questions and the goal of presenting both is to 

provide the appropriate information for a broad range of decision interests. In phase two future work, 

consequential results will be generated to determine the energy and emissions effects to Los Angeles from the 

decision to construct and operate the Orange and Gold lines. The goal of the phase one results is to present 

the current system, in 2010. Data collection was focused on this year but it is sometimes the case that the 

most recent reporting was for an existing year (e.g., the latest LADWP electricity mix reporting was for 2009). 

In phase two, we plan to evaluate future forecasts of car travel, the Orange line, and the Gold line. 

Several functional units can be used depending on the question that is being informed and we start with per 

VMT. Using the methodology described, life cycle component energy consumption and emissions are first 

evaluated with inconsistent temporal resolution. For example, bus manufacturing energy consumption is 

determined for a vehicle with a 15 year lifetime, bus operation CNG consumption is determined per VMT, 

and Orange line infrastructure electricity consumption is determined for 2010. The Sedan lifetime VMT is 

used to normalize vehicle life cycle components. Los Angeles roadway infrastructure components are 

normalized to a per VMT functional unit based on urban roadway classification VMTs reported by FHA 

(2008). Using LA Metro’s Scheduled Service Operating Cost Factors Reports [LA Metro 4-24 2010], all life cycle 

components are first normalized to a per VMT common functional unit for aggregation. LA Metro 4-24 

(2010) reports weekday, Saturday, and Sunday VMT for the Orange and Gold lines as well as the number of 

vehicles in operation. 

A primary goal of passenger transportation modes is to provide mobility for people and the per PMT 

functional unit is the most appropriate for evaluating this. Normalizing public transit life cycle inventories per 

VMT produces results that are often an order-of-magnitude larger than automobiles. The per VMT 

functional unit is useful for evaluating corridor or regional emission profiles but does not provide a ground 

for comparing the energy and environmental effectiveness of moving individual passengers. Results in 

Chapter 4 are ultimately normalized to a per PMT functional unit to provide a fundamental comparative unit 

for readers. For the baseline results, the sedan is evaluated with an occupancy of 1.58 passengers [SCAG 

2003]. Like any public transit mode, occupancy rates can vary significantly depending on the position on the 
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line and time of day. The Orange line, with 57 seats, is operating with 38 passengers on average. Figure 10 

shows how this occupancy changes between time of day and weekdays or weekends. 

Figure 10 – Orange Line Bus Occupancy by Hour of Day 

 

Source: LA Metro Orange Ridership (2011). 

Similarly, Figure 11 shows the variations in Gold line occupancy. The median ridership for Gold line trains is 

43 passengers [LA Metro Gold Ridership 2011]. 

Figure 11 – Gold Line Train Occupancy by Hour of Day 

  

Source: LA Metro Gold Ridership (2011). Solid lines are averages. Dotted lines are maximum observed. 

While reporting averages is useful, it masks the variations in ridership that may inform more intelligent 

policies or decisions, and it implies that modes are universally better or worse than others. Average 

occupancies are used to report baseline inventory results and the relative contribution of life cycle 

components. Ultimately, however, life cycle results are reported across low to high occupancies to illustrate 

the ridership conditions under which modes are energy and environmentally competitive.  
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4 Forthcoming Results and Future Work 

This methodology will be used to develop an attributional and consequential LCA of Los Angeles Metro systems 

with the goal of informing climate change goals and urban sustainability transitional strategies. The research team 

is preparing several reports and manuscripts that show and discuss the results and readers should contact the 

author or visit his research project website (www.sustainable-transportation.com) for further information. 

  

http://www.sustainable-transportation.com/
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