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2.1.2.2 - Power Output of Recirculating Cooling Facilities 
Recirculating cooling systems reject heat by evaporating water, rather than discharging it directly 

into a nearby water body1,2,3. Water that is not evaporated during the cooling process is re-used, meaning 

that much less water is withdrawn overall compared to open-loop cooling. For these facilities, cooling 

water requirements are determined primarily by atmospheric conditions—such as air temperature and 

humidity—while the intake temperature of water plays a smaller role1. Water withdrawals are required to 

make up for three types of losses in the cooling system: evaporation losses, blowdown losses, and drift 

losses. 

 

 �̇�𝑚𝑢 =  �̇�𝑒𝑣𝑎𝑝 + �̇�𝑏𝑑 + �̇�𝑑 (1) 

 

Where �̇�𝑚𝑢 represents the makeup water requirement (m3/s), �̇�𝑒𝑣𝑎𝑝 represents evaporation losses 

(m3/s), �̇�𝑏𝑑 represents blowdown losses (m3/s), and �̇�𝑑 represents drift losses (m3/s). Evaporation losses 

comprise the majority of makeup water requirements. These losses are mainly a function of the heat load 

into the condenser1: 

 
�̇�𝑒𝑣𝑎𝑝 =

�̇�𝑙𝑜𝑎𝑑(1 − 𝑘𝑠𝑒𝑛𝑠)

𝜌𝑤ℎ𝑓𝑔
 (2) 

 

Where �̇�𝑙𝑜𝑎𝑑 is the heat load to the condenser (MJ/s). The quantity 𝑘𝑠𝑒𝑛𝑠 represents the fraction 

of the heat load that is rejected through sensible heat transfer—that is, heat transfer from the liquid water 

to the air, and not from evaporation. The fraction of heat rejected through sensible heat transfer is mainly 

a function of the temperature of the incoming air, although it also depends on humidity and ambient air 

pressure1. The quantity 1 −  𝑘𝑠𝑒𝑛𝑠 represents the fraction of heat load rejected through latent heat 

transfer—that is, heat transfer involved in the phase change of water from a liquid to a gas (evaporation). 

The parameter ℎ𝑓𝑔 represents the latent heat of vaporization of water, which is assumed to be constant at 

2.45 MJ/kg1. The quantity 𝜌𝑤 represents the density of water (1000 kg/m3). 

Blowdown losses consist of small releases of water required to prevent the buildup of 

contaminants (namely chlorides) in the cooling system. These losses can be expressed in terms of the 

evaporation rate2: 

 
�̇�𝑏𝑑 =

�̇�𝑒𝑣𝑎𝑝

𝑛𝑐𝑐 − 1
 (3) 

 

Where 𝑛𝑐𝑐 represents cycles of concentration—a measurement of the relative concentration of 

chlorides in the recirculating water: 

 
𝑛𝑐𝑐 =  

[𝐶]𝑟𝑐

[𝐶]𝑚𝑢
 (4) 
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Here, the parameter [𝐶]𝑟𝑐 represents the chloride concentration in the circulating water, while 

[𝐶]𝑚𝑢 represents the concentration of chlorides in the makeup water. The number of cycles of 

concentration ranges from 3 to 6, with a typical value of 62: 

Drift losses consist of sprays of liquid water that escape the cooling tower. Given that drift losses 

are typically less than 0.005% of circulation flow, they can be considered negligible2. Thus, the amount of 

makeup water required is equal to evaporation losses plus blowdown losses: 

 �̇�𝑚𝑢 ≈  �̇�𝑒𝑣𝑎𝑝 + �̇�𝑏𝑑 (5) 

 

Having developed the water inputs to the cooling tower, the heat load to the condenser can be 

determined by performing an energy balance around the cooling tower. Energy inputs to the tower include 

the heat load from the condenser, the makeup water, and the stream of air used to cool the hot process 

water. Outputs from the tower include the hot, humid air stream leaving the tower, and blowdown losses. 

Altogether, the energy balance can be expressed as follows: 

 �̇�𝑙𝑜𝑎𝑑  + 𝜌𝑤�̇�𝑚𝑢ℎ𝑚𝑢 = 𝜌𝑎�̇�(ℎ𝑎,𝑜𝑢𝑡 − ℎ𝑎,𝑖𝑛) +  𝜌𝑤�̇�𝑏𝑑ℎ𝑏𝑑 (6) 

 

 Where �̇�𝑚𝑢 and ℎ𝑚𝑢 are the mass flow rate (kg/s) and enthalpy (MJ/kg) of the makeup water 

entering the cooling tower, respectively; 𝜌𝑎 is the density of air (kg/m3); �̇� is the dry air mass flow rate of 

cool air entering the tower (m3/s); ℎ𝑎,𝑜𝑢𝑡 and ℎ𝑎,𝑖𝑛 are the enthalpies (MJ/kg) of the hot air exiting the 

tower and cool air entering the tower, respectively; and �̇�𝑏𝑑and ℎ𝑏𝑑 are the mass flow rate (kg/s) and 

enthalpy (MJ/kg) of the blowdown water. To solve the energy balance around the tower, a mass balance 

must also be constructed. Performing a mass balance around the cooling tower yields the following 

expression: 

 𝜌𝑤�̇�𝑚𝑢 = 𝜌𝑤�̇�𝑒𝑣𝑎𝑝 +  𝜌𝑤�̇�𝑏𝑑 =  𝜌𝑎�̇�(𝜔𝑜𝑢𝑡 − 𝜔𝑖𝑛) +  𝜌𝑤�̇�𝑏𝑑 (7) 

 

 Where 𝜔𝑜𝑢𝑡 is the humidity ratio of air exiting the tower, and 𝜔𝑖𝑛 is the humidity ratio entering 

the tower. Substituting blowdown requirements with the expression developed in Equation 5 yields 

makeup water requirements as a function of the evaporation rate: 

 
�̇�𝑚𝑢 = �̇�𝑒𝑣𝑎𝑝 + 

�̇�𝑒𝑣𝑎𝑝

𝑛𝑐𝑐 − 1
=  

𝑛𝑐𝑐�̇�𝑒𝑣𝑎𝑝

𝑛𝑐𝑐 − 1
 (8) 

 

The energy and water balances developed in the preceding equations can be solved by generating 

an expression for the dry air mass flow rate. Because data on dry air mass flow rate is rarely available, the 

water-air mass flow ratio is specified instead: 

 
𝜎 =

𝜌𝑤�̇�𝑐𝑖𝑟𝑐

𝜌𝑎�̇�
 (9) 
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𝜌𝑎�̇� =

𝜌𝑤�̇�𝑐𝑖𝑟𝑐

𝜎
 (10) 

  

Where 𝜎 is the water-air mass flow ratio, �̇�𝑐𝑖𝑟𝑐 is the flow rate of water circulating through the 

condenser (m3/s), and �̇� is the dry air flow rate (m3/s). The value of 𝜎 ranges between 0.5 and 1.5 with a 

typical value of 0.81. 

The heat load into the condenser can now be expressed in terms of the circulating water rate and 

the enthalpy difference through the cooling system: 

 

 
�̇�𝑙𝑜𝑎𝑑 =

𝜌
𝑤

�̇�𝑐𝑖𝑟𝑐

𝜎
[ℎ𝑎,𝑜𝑢𝑡 −  ℎ𝑎,𝑖𝑛] =  𝑐𝑝.𝑤𝜌

𝑤
�̇�𝑐𝑖𝑟𝑐  ∆𝑇 (11) 

 

 Where  ∆𝑇 is the temperature difference across the condenser and 𝑐𝑝.𝑤 is the heat capacity of 

water (MJ/kg-K). Recognizing that the available electricity generating capacity is a function of the heat 

load and the plant efficiency, Equation 11 can be rearranged to yield the generating capacity as a function 

of water circulation rate and meteorological parameters: 

 
𝑃𝑟𝑐 =

𝑐𝑝.𝑤𝜌
𝑤

�̇�𝑐𝑖𝑟𝑐  ∆𝑇

(1 − 𝜂𝑛𝑒𝑡,𝑖 − 𝑘𝑜𝑠)
𝜂𝑛𝑒𝑡,𝑖

 
(12) 

 

 Where 𝜂𝑛𝑒𝑡,𝑖 is the net plant efficiency for a given month, and 𝑘𝑜𝑠 is the fraction of heat lost to 

sinks other than the condenser (such as flue stack losses). To account for constraints on water availability, 

an expression is developed to relate makeup water requirements to the total rate of water recirculating 

through the system. Equations 7-10 can be rearranged to yield the relationship between makeup water 

flow and circulating water flow for a given humidity differential: 

 min (�̇�𝑚𝑢, 𝛾𝑄𝑖)  

�̇�𝑐𝑖𝑟𝑐

=  
(𝜔𝑜𝑢𝑡 − 𝜔𝑖𝑛)

𝜎
∙  (1 + 

1

𝑛𝑐𝑐 + 1
)  (13) 

 

 Thus, when the makeup water requirement (�̇�𝑚𝑢) is greater than available streamflow (𝛾𝑄𝑖), the 

volume of water passing through the condenser (�̇�𝑐𝑖𝑟𝑐) decreases such that the ratio of makeup water to 

recirculating water remains the same for a given set of humidities. Accordingly, as �̇�𝑐𝑖𝑟𝑐 decreases, the 

heat load (and thus, the available capacity) decreases in turn, as per Equation 13. For each facility, �̇�𝑐𝑖𝑟𝑐 

at 100% load is taken from EIA Form 860 data4. The temperature range is calculated using reported 

values from EIA Form 860 and 9234,5. The fraction of streamflow available for withdrawal is determined 

using the method of Tennant6. For the average case, this fraction is taken to be 0.7 for summer months 

and 0.9 for winter months. 
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Atmospheric parameters related to humidity can be calculated using VIC full-energy outputs, 

using the empirical methods of Kimball et al. and Thornton et al.7,8. The primary parameters of interest 

include the humidity ratios of incoming and outgoing air (𝜔𝑖𝑛 and 𝜔𝑜𝑢𝑡). These parameters are derived 

from the following full-energy outputs from the VIC model: dry-bulb air temperature (𝑇𝑑), total ambient 

pressure (𝑃𝑡𝑜𝑡), vapor pressure (𝑃𝑤), and relative humidity (𝑅𝐻). 

To calculate 𝜔𝑖𝑛 and 𝜔𝑜𝑢𝑡, the saturated vapor pressure for each time step must first be 

determined. Saturated vapor pressure is calculated using relative humidity and vapor pressure at each time 

step, using the definition of relative humidity9: 

 
𝑅𝐻 =   

𝑃𝑤

𝑃𝑤𝑠

∙ 100% (14) 

 

 
𝑃𝑤𝑠 =   

𝑃𝑤

𝑅𝐻
∙ 100% (15) 

 

Where 𝑅𝐻 is the relative humidity, 𝑃𝑤 is the vapor pressure and 𝑃𝑤𝑠 is the saturated vapor 

pressure. Relative humidity and vapor pressure are provided from VIC full-energy outputs. Humidity 

ratios (sometimes called mixing ratios) can be calculated through the following formulae, assuming that 

the outgoing air is fully saturated9: 

 
𝜔𝑖𝑛 =

𝐵 ∙ 𝑃𝑤

𝑃𝑡𝑜𝑡 −  𝑃𝑤

  (16) 

 

 
𝜔𝑜𝑢𝑡 =

𝐵 ∙ 𝑃𝑤𝑠

𝑃𝑡𝑜𝑡 − 𝑃𝑤𝑠

  (17) 

 

 
𝐵 =

𝑀(𝐻2𝑂)

𝑀(𝐴𝑖𝑟)
 ∙ 1000 = 621.9907 𝑔/𝑘𝑔 (18) 

 

Where 𝑀(𝐻2𝑂) represents the molecular weight of water, and 𝑀(𝐴𝑖𝑟) represents the molecular 

weight of air. Outputs from Equations 16 and 17 are combined with Equations 12 and 13 to calculate 

power output from vulnerable facilities employing recirculating cooling. 

For steam turbine facilities employing recirculating cooling, we do not consider discharge 

temperature regulations as a constraint on generating capacity. First, for recirculating cooling facilities, it 

is difficult to determine how blowdown is discharged. Blowdown can be discharged into a holding pond, 

or into a nearby stream1. If blowdown is discharged into a holding pond, it is considered to be a 

consumptive use of water, and may not be subject to environmental regulations regarding maximum 

discharge temperatures1. Currently, EIA form 860 does not contain sufficient data to accurately assess 

how blowdown is disposed. Second, many of the facilities listed in EIA form 923 report discharge 

temperatures much higher than the 32 ℃ maximum required by most states (often 10 to 20 ℃ higher). 

Thus, it is unclear whether reported maximum discharge temperatures refer to the temperature of the 

blowdown water, or to the temperature of the hot water exiting the generator. Finally, because the cooling 
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water is cooled through latent heat transfer, the temperature of the blowdown water will generally only be 

4-8 ℃ hotter than the ambient wet-bulb air temperature, which is lower than the ambient air temperature 

for unsaturated conditions. Given the relatively small amount of blowdown released by the cooling 

system, and the relatively low temperature of the blowdown, it is unclear whether blowdown discharge 

temperatures warrant reductions in plant capacity for many of the plants included in this study. For these 

reasons, we do not include blowdown discharge temperatures as a constraint on generating capacity for 

recirculating cooling facilities. 

2.1.2.2.1 - Selecting Vulnerable Recirculating-Cooling Steam-Turbine 

Facilities 
Steam turbine facilities utilizing recirculating cooling are selected in two steps. First, the following 

prime mover types are selected from EIA forms 860 and 923: (a) steam turbine, (b) combined cycle steam 

turbine, and (c) binary cycle turbine. These prime movers are shown in Table 1, along with their 

EIA/eGRID field codes: 

Table 1. Prime movers for steam turbine facilities utilizing recirculating cooling systems 

Field Code Prime Mover Type 

ST Steam turbine 

CA Combined cycle steam turbine 

BT Binary cycle turbine 

 

 From this set of steam-condensing plants, plants relying primarily on recirculating cooling are 

selected. A plant is considered to use recirculating cooling if its primary cooling system type is one of the 

technologies shown in Table 2: 

Table 2. Recirculating cooling systems for steam turbine facilities 

Field Code Cooling System Type 

RC Recirculating with cooling pond(s) or canal(s) 

RF Recirculating with forced draft cooling tower(s) 

RI Recirculating with induced draft cooling tower(s) 

RN Recirculating with natural draft cooling tower(s) 

 

 Next, vulnerable facilities are isolated by determining the water source of the cooling system. 

Cooling systems relying on surface water are considered to be vulnerable, while cooling systems relying 

on groundwater, ocean water or municipal water are not considered to be vulnerable. Water sources of 

power facilities are identified using data from the Union of Concerned Scientists’ EW3 database10. 

Facilities are considered “at-risk” if the reported water source is “Surface Water”, “Unknown 

Freshwater”, or “GW/Surface Water”.  

 Many plants contain a steam turbine generator in addition to another prime mover. To account for 

the partial contribution of steam turbines to some plants, EIA forms 860 and 923 are used to determine 

the capacity contributed by each generator at each plant. First, the total nameplate capacity of each plant 

in the WECC region is determined; next the capacity contributed by steam turbine generators (field codes 
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ST, CA, BT) is determined for the same set of plants. Dividing the steam turbine contribution by the total 

capacity yields the fraction of capacity contributed by steam turbine generators to each plant that utilizes 

recirculating cooling. 
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