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Executive Summary 
 
 The local food movement has grown in response to concerns of corporate consolidation and the 

environmental impact of food in the current food system, particularly “food miles,” or the distance food 

travels from farm to plate. Advocates of local food assert positive claims about social and environmental 

benefits of a more localized food system (Halwell, 2002). However, there is a growing critique of 

localization as the most appropriate response due to: 1) inefficiencies in transporting food at the local 

scale, and 2) food production in areas where climate, soil quality, and/or energy mix may be more 

resource intensive than other regions (Mariola, 2008; McWilliams, 2009). In response to this debate, 

researchers suggest more of a life cycle assessment (LCA) approach. 

Our study calculates the estimated difference in water use, energy demands, and CO2 emissions 

of head lettuce associated with the production (land preparation and growing operations, chemical inputs, 

irrigation) and the transportation (diesel demand) to the Phoenix metro area from: 1) a local level, defined 

here as within Maricopa County, Arizona (AZ) and 2) from the central coast of California (CA) in Monterey 

County.  

Our research results demonstrate that local lettuce is more resource intensive than non-local or 

regional produce. Production in Maricopa County has significantly higher (more than double) energy 

demands and emissions than Monterey County. Irrigation and chemical inputs are the greatest 

contributors to energy demand in Maricopa, but it is primarily irrigation that contributes to emissions. 

Comparatively, transportation and chemical inputs are the greatest contributors to energy demand in 

Monterey, and it is primarily transportation that contributes to emissions.   

This LCI suggests that we need to reconsider the “food miles” framing of the local food debate 

and whether local food production is a viable sustainable alternative to the current food system in the arid 

Southwest. However, we also recognize that factors beyond resource-use and emissions affect 

policymakers’ and consumers’ demands for local foods. Future studies ought to provide a more nuanced 

look at the issue that also includes social, psychological, and economic factors that influence food policies 

and purchases. These results have important implications for future water management and suggest the 

need to pursue more water efficient practices in AZ. 
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Introduction 
 

The local food movement has grown in response to concerns of corporate consolidation and the 

environmental impact of food in the current food system, particularly “food miles,” or the distance food 

travels from farm to plate. Advocates of local food assert positive claims about social and environmental 

benefits of a more localized food system (Halwell, 2002). However, there is a growing critique of 

localization as the most appropriate response due to: 1) inefficiencies in transporting food at the local 

scale, and 2) food production in areas where climate, soil quality, and/or energy mix may be more 

resource intensive than other regions (Mariola, 2008; McWilliams, 2009). In response to this debate, 

researchers suggest more of a life cycle assessment (LCA) approach—that is, a closer look at the 

resource flows from cradle to grave (Edwards-Jones et al., 2008). A comparative life cycle inventory of 

head lettuce from Arizona (AZ) and head lettuce from California (CA) can help illuminate the resource-use 

and emissions trade offs between local and regional food in Phoenix, AZ.  

Methodology 
 

Our study calculated the estimated difference in water use, energy demands, and CO2 emissions 

of conventionally grown head lettuce transported to the Phoenix metro area from: 1) a local level, defined 

here as within Maricopa County, AZ and 2) a regional level, defined here as from the central coast of CA 

in Monterey County, one of the major lettuce production centers in the US (Turini et al., 1996). We then 

explored the implications of this analysis for policymakers’ and consumers’ decision-making related to 

local versus regional foods.  

System boundary 

 
Figure 1. The life cycle of food products and the focus areas of this study. Adapted from Andersson 
(2000). 
 

Food products are a result of a larger, complex series of processes as shown in Figure 1. 

However, for this study, our system boundary constituted “farm to market,” that is, all agricultural 
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production processes plus transportation to Phoenix, AZ. We chose to omit retail, 

preparation/consumption, and disposal phases of the food system for several reasons: 

1. Research on retail travel distances, personal consumption behaviors, and food waste is notoriously 

difficult to gather and may be relatively unreliable (Weber & Matthews, 2008). 

2. Furthermore, it is the production and transportation phase that contribute 83% and 11% 

respectively of an average U.S. household’s 8.1 T CO2e/yr footprint for food consumption, while the 

final delivery from producer to retailer is only 4% (Weber & Matthews, 2008). 

3. Finally, we are assuming that average retail travel distances, consumption behaviors, and disposal 

behaviors are not dependent on the geographic origin of the product. While we acknowledge that 

there may be differences in values, socioeconomic status, and culture between those who choose to 

purchase local food and those who do not, there is currently no research on whether or not significant 

differences exist between them. 

The majority of lettuce grown in AZ and CA are field-packed meaning that “the product is 

harvested, packaged in the field, and shipped to market with no further processing” (Kerns et al., 1999). 

Since packaging is fairly comparable and there is virtually no processing, we also chose to omit these two 

phases from our assessment as well. 

Within the Agriculture sub-system, we explored the effects of land preparation, growing 

operations, chemical inputs, and irrigation on water and energy demands (inputs), and CO2 emissions 

(output) (Figure 2). A certain amount of energy does go into the production of lettuce for seed and the 

transportation of that seed. However, we will not be including seed production within our system 

boundaries for three reasons: 

1. “A great number of varieties [of lettuce] are successfully grown in the lower desert of AZ. New 

varieties are released or removed from commercial production each year...The variety a grower may 

use is based both upon physiological considerations and personal preferences for a particular variety” 

(Kerns et al., 1999). Therefore, it would be impractical and extremely time consuming to look at each 

variety of seed utilized. 

2. There are only a few international and national commercial seed suppliers. Thus, we assume that 

farmers in CA and AZ source their seeds from many of the same places. 
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3. Finally, the embodied energy incorporated into the seeds is quite small compared to the rest of the 

processes -- irrigation, chemical applications, operation of machinery etc. For example, an LCA of 

cabbage in AZ shows that a range of 0.05 - 0.08 gallons of diesel is required per acre of cabbage 

seeds where the operations total is 79.06 gal/acre (Acker et al., 2008). 

Within the Transportation sub-system we evaluated the energy input, that is diesel for fuel and 

cooling purposes, as well as the associated CO2 emissions per head of lettuce.  

We recognize there are significant processes both in the ecological and technological spheres of 

the food system not captured in this system boundary. However, it was not necessary to expand the 

boundary to elemental flows (i.e. nitrogen and phosphorus for fertilizer or iron ore for machinery) since we 

used existing LCI studies to determine the water and energy footprints of the components of the system. 

Similarly, while there are other outputs of the system (i.e. chemical/nutrient runoff), these were not points 

of interest given the study objectives. 

 
Figure 2. Overview of the key processes, inputs, and outputs in the system boundary. 
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Research Methods 
 

We performed a comparative LCI of water and energy demands, and CO2 emissions of head 

lettuce grown within Maricopa County, AZ versus head lettuce grown in Monterey County, CA. Our 

functional unit and reference flow throughout the analysis was a head of lettuce. 

1. Agricultural Processes 

Using reports from the University of Arizona Cooperative Extension (Acker et al., 2008) and the 

University of California Cooperative Extension (Turini et al., 1996) as well as AZ and CA crop budgets 

(Univeristy of Arizona Cooperative Extension, 2002; Smith, Klonsky & Moura, 2009; Tourte & Smith, 

2001) we estimated the acreage and yield of head lettuce in Maricopa and Monterey counties, as well as 

the respective application rates of chemical inputs, irrigation, and machine hours/fuel demands. When 

County-level data was unavailable, we used state-level data or peer-reviewed literature as appropriate. 

a. Land preparation and growing operations 
  
In order to quantify land preparation and growing operations, we used crop budgets of iceberg 

lettuce from both Maricopa and Monterey counties (University of Arizona Cooperative Extension, 2002; 

Smith, Klonsky & Moura, 2009; Tourte & Smith, 2001) to determine the operations required for head 

lettuce production in each County, the machine hour requirements of each operation, and the number of 

times the operation is performed (Acker et al., 2008). While the AZ report dates from 2001-2002 and the 

CA report was from 2009, the AZ reports were cross-checked with other USDA survey data and reviewed 

by large producers for validity in 2008 (Acker et al., 2008). Non-fossil fuel activities (e.g. hand thinning, 

weeding, soil testing) were not included. CA’s crop budgets report machine hours per acre and diesel use 

per acre. In the case of AZ’s crop budget, we converted estimated operating costs per acre to diesel use 

per acre using a per gallon cost of fuel (in accordance with Acker et al.’s (2008) estimate of $.778/gal for 

the report year). From the resulting data, we estimated energy demands of a head of lettuce: 

diesel/acre = machine hours/acre * diesel/hours 
diesel/head of lettuce = diesel/acre * head of lettuce/acre (yield) 

 
We then used the EPA’s Diesel Emissions Quantifier tool to estimate corresponding CO2 emissions of 

agricultural tractors given the respective fuel volume and usage rates (assuming a 175 HP Regular Diesel 

(3,400 ppm) engine).  
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b. Chemical inputs 

In order to quantify the emissions and embodied energy of fertilizer, pesticide, herbicide, and 

fungicide use, we used crop budgets of iceberg lettuce from both Maricopa and Monterey counties 

(University of Arizona Cooperative Extension, 2002; Smith, Klonsky & Moura, 2009) to determine the total 

quantities of chemicals applied per acre. Maricopa County crop budgets listed fertilizer amounts in total 

pounds of N and P but the Monterey County extension reports listed pounds of 8-8-8 and URAN 32 per 

acre. These values were converted to total pounds of N, P, and K per acre using conversion factors found 

in Flynn and Siepel (2003). The figures for fertilizer use per acre were translated into embodied energy 

quantities based on Nagy (1999), potash energy requirements from Gellings and Parmenter (2004), and 

fungicide energy requirements from West and Marland (2002). Emissions figures were then generated 

using conversion data from West and Marland (2002). 

Dozens of various chemicals are used in pesticides, herbicides, and fungicides. As there is little 

data available on the embodied energy and CO2 emissions of the production of specific chemicals, these 

chemicals were aggregated into their respective categories to come up with a single quantity (i.e. total 

pesticide use in Maricopa County, total herbicide use in Central Coast Region). This involved several 

assumptions: 1) the specific gravity of each chemical product is 1.0 and, 2) aggregating these chemicals 

by pounds applied per acre is a sufficient estimation of overall chemical usage. These assumptions will 

be discussed in more detail in the discussion section. The embodied energy and emissions of pesticides, 

herbicides, and fungicides were calculated using figures from West and Marland (2002). 

c. Irrigation 

We used reports from both AZ and CA cooperative extensions (Acker et al., 2008; Turini et al., 

1996) to estimate a range of irrigation demand (in acre feet) for a head of lettuce in each locale. Maricopa 

County primarily uses furrow irrigation, but both furrow/sprinkler irrigation and drip irrigation are common 

in Monterey County. Thus, we explored both minimum and maximum water demands given different 

irrigation systems in Monterey County. Agriculture in Maricopa and Monterey counties use ground water 

irrigation pumped by electricity (Acker et al., 2008; Burt, Howes & Wilson, 2003). Using estimates of 

electricity demand per acre foot pumped (1037 kWh/acre foot in AZ and 441 kWh/acre foot in Monterey 
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County), we were able to calculate estimated energy use for the irrigation of a head of lettuce (Acker et 

al., 2008; Burt, Howes & Wilson, 2003): 

 
irrigation energy/acre foot = acre feet of water * kWh/acre foot 

irrigation energy/head of lettuce = irrigation energy/acre foot * head of lettuce/acre foot (yield) 
 

Using state-specific estimates of CO2 emissions per kilowatt of energy from the EPA’s eGRID2006 (1.219 

lbs CO2/kWh in AZ and 0.7 lbs CO2/kWh in CA), we calculated the corresponding CO2 emissions.  

2. Transportation 

d. Fuel 

      In order to determine the energy associated with transportation of leaf lettuce, we utilized data 

from PE Americas (2009) on truck transportation in the US. This data provided the miles per gallon of 

refrigerated transportation trucks, 5.65 mpg, which includes diesel utilized for cooling operations. In order 

to determine total amount of fuel consumed for each trip, we divided the travel distance by the mpg for 

both counties. Monterey County is approximately 650 miles from Phoenix, and we assumed that local 

lettuce produced in Maricopa County would travel a maximum of 100 miles, a common assumption of 

‘local’ food (Mariola, 2008). 

 
Miles traveled/truck mpg= total gallons of diesel used  

Maricopa County: 100miles/5.65mpg= 17.6 gal diesel 

Monterey County: 650miles/5.65mpg= 97.7 gal diesel 

 
These conversions determined the total amount of diesel fuel utilized for transportation in both 

scenarios. In order to determine the amount of fuel utilized per 100 heads of lettuce, we divided the total 

fuel consumption by assumed number of heads transported, and then multiplied it by 100. In order to 

determine kWh associated with diesel consumption, the following conversion was used: 37.95 kWh/gal. 

We were unable to find any literature that specified the average amount of lettuce heads or 

cartons transported per trip. Thus we had to make a few assumptions and conversions to determine this 

quantity. PE Americas’ (2009) data is based on a 47,000 lb truck. In order to determine the weight of 

cargo, we subtracted the weight of an empty refrigerated truck (33,473 lbs) from the total assumed 

weight.  

Assumed weight of truck – weight of empty truck= weight of cargo  

47,000 lbs – 33,473 lbs = 13, 527 lbs of cargo 

       In order to determine the average weight of lettuce, we used the equation: 

weight of carton/heads of lettuce= weight of one head of lettuce 

 

Drawing from the California crop budgets (2001), the average carton is 24-count and 42 pounds. Thus we 

assumed a weight of 1.5 lbs per lettuce head, which takes into account the weight of the carton. We then 
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assumed that approximately 9,000 heads of lettuce were shipped in this scenario, totaling 13,500 lbs. 

This allowed approximately 27 lbs to be allocated to the cartons. Thus in order to determine energy used 

per 100 heads of lettuce, the energy demand was divided by 90 (9,000/100). 

  For CO2, we utilized the EPA’s Diesel Emissions Quantifier tool to determine CO2 emissions for a 

refrigerated truck given the respective fuel volume and usage rates. The calculations were based on a 

class 8a delivery truck. 

 
Results 
 
1. Agricultural Processes 
  

 Agricultural processes were converted to the functional unit of 100 heads of lettuce based on the 

estimated yields in Maricopa and Monterey County (Table 1). Note the significant difference in the 

estimated yield figured, discussed more below.  

 

Table 1. Estimated Yield Per Acre 

 Estimated Yield (cartons/acre) Estimated Yield (heads/acre)* 

Maricopa County 210 5,040 

Monterey County 850 20,400 

* Based on a 24-count, 42 pound carton 

Data Sources: University of Arizona Cooperative Extension Crop Budget (2002); University of California 

Cooperative Extension Crop Budge (2001) 

 
a. Land Preparation & Growing Operations 
 
 While the machine hours were nearly double in Monterey County (11.1 hrs/acre) compared with 
Maricopa County (5.4 hrs/acre), energy demands and associated emissions related to land preparation 
and growing operations per 100 heads of lettuce were actually higher for Maricopa given the difference in 
yields (Table 2).  
 
Table 2. Machine Hours, and Associated Energy Demand and CO2 Emissions 

 

Machine Hours (hrs/acre) 
Diesel  
(gal/ 
100 heads) 

Energy 
(kWh/ 
100 heads)^ 

Emissions  
(lbs CO2/  
100 heads)** 

MaricopaCounty 5.4 0.4* 15.2 9.1 

Monterey County 11.1 0.3 11.4 6.5 

*Based on $.788/gal diesel cost (2001) 
^Based on 37.95 kWh/gal diesel 
**Based on 175 HP Regular Diesel (3,400 ppm) agricultural tractor 
Data Sources: University of Arizona Cooperative Extension Crop Budget (2002); Smith, Klonsky & Moura 
(2009); EPA Diesel Quantifier 
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b. Chemical Inputs 

 

Although the quantity of chemical inputs for Maricopa and Monterey counties are comparable, 

with similar pounds per acre of nitrogen (192.3 lbs/acre in Maricopa and 190 lbs/acre in Monterey), 

overall energy use and emissions figures are much higher for Maricopa County, as shown in Table 4, due 

to the lower yield of lettuce per acre (5,040 heads per acre in Maricopa, 20,400 heads per acre in 

Monterey). 

 

Table 4. Chemical Inputs, and Associated Energy Demand and CO2 Emissions  

 Quantity (lbs/acre) Energy (kWh/100 heads) Emissions (lbs CO2/100 heads) 

Maricopa County 

Nitrogen 192.3 36.4 0.9 

Phosphorus 156 6.2 0.1 

Potash -- -- -- 

Pesticides 24.9 20.3 0.7 

Herbicides 2 1.2 0.1 

Fungicides --  -- 

TOTAL  64.1 1.7 

Monterey County 

Nitrogen 190 8.9 0.2 

Phosphorus 49 0.5 0.0 

Potash 49 0.4 0.0 

Pesticides 7.94 1.6 0.1 

Herbicides 4.13 0.6 0.0 

Fungicides 16.07 2.9 0.1 

TOTAL  14.9 0.4 

* From Gellings & Parmenter (2004) 
^ From West & Marland (2002) 
Data sources: University of Arizona Cooperative Extension (2002); Nagy (1999); Acker et al. (2008); West 
& Marland (2002); Smith, Klonsky & Moura (2009); Nagy (1999); Acker et al. (2008); Gellings & 
Parmenter (2004); West & Marland (2002) 
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c. Irrigation 
 
 Irrigation amounts were higher in Maricopa County (3.4-4.3 acre feet/acre) compared with 
Monterey County--even when considering maximum estimates in Monterey (1.0-2.5 acre feet/acre) (Table 
5). Again, given the difference in yields and given Arizona’s higher state-level irrigation energy demand 
and CO2  emission factors, Maricopa County’s inputs and emissions are significantly higher.  
 
Table 5. Irrigation Amount, and Associated Energy Demand and CO2 Emissions 

  Irrigation Amount  
(acre feet/ acre) 

Energy  
(kWh/  
100 heads) 

Emissions  
(lbs CO2/ 
100 heads) 

Maricopa County 

Minimum 3.4 70.0* 84.0^ 

Maximum 4.3 88.0* 108.0^ 

Monterey County 

Furrow/sprinkler system 

Minimum 1.5 3.2** 2.3^^ 

Maximum 2.5 5.4** 3.8^^ 

Drip system 

Minimum 1.0 2.2** 1.5^^ 

Maximum 1.5 3.2** 2.3^^ 

*Based on an estimated 1037 kWh/acre foot 
^Based on 1.219 lbs CO2 /kWh in AZ 
**Based on an estimated 441 kWh/acre foot  
^^Based on 0.7 lbs CO2/kWh in CA 
Data Sources: Acker et al. (2008); Turini et al. (1996); Burt, Howes & Wilson (2003); EPA eGRID2006 
Version 2.1 (2007) 
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Graph 1. Irrigation: Water usage 

 
 

2. Transportation  

 

d. Fuel 

 

As expected, Monterey County has higher fuel and energy requirements as well as greater CO2 

emissions associated with travel than Maricopa County. This is due to the significant difference in travel 

required for Monterey County lettuce, approximately 650 miles to reach Phoenix, opposed to local lettuce 

in Maricopa County, which is assumed to travel a max of 100 miles. 

 

Table 6. Transportation Fuel Amount, and Associated Energy Demand and CO2 Emissions 

  
Diesel  

(gal/100 heads)* 

Energy  

(kWh/100 heads)^ 

CO2 

Emissions 

(lbs/100 heads) 

Maricopa County 

  

  

0.2 

  

7.4 

  

4.3 

Monterey County 

  

  

1.2 

  

41.2 

  

24.1 

Based on 24-count, 42 pound cartons 

*Based on 5.65 mpg diesel refrigerated delivery trucks 

^Based on 37.95 kWh/gal diesel 

Data Sources: University of California Cooperative Extension Crop Budget (2001); University of Arizona 

Cooperative Extension Crop Budget (2002); PE Americas (2009); EPA Diesel Quantifier  
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Synthesis 

 

 When we synthesize the results, we notice that even given the different scenarios of irrigation 

amounts, lettuce production in Maricopa County has significantly higher (more than double) energy 

demands and emissions than Monterey County (Graphs 2 & 3). Irrigation and chemical inputs are the 

greatest contributors to energy demand in Maricopa, but it is primarily irrigation that contributes to 

emissions. Comparatively, transportation and chemical inputs are the greatest contributors to energy 

demand in Monterey, and it is primarily transportation that contributes to emissions.  

 

Graph 2. Worst Case Scenario  

(Assuming maximum water usage and all furrow irrigation in Monterey County) 

 
 

Graph 3. Best Case Scenario  

(Assuming minimum water usage and all drip irrigation in Monterey County) 
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Discussion 

While this study provides a reasonable range of estimates of the energy and water demands and 

associated CO2 emissions of 100 head of lettuce, our calculations are extensive, subject to measurement 

error, and exhibit several areas of parameter uncertainty. 

Most of the estimates for agricultural processes were based on crop budget data from the 

respective counties. Given the micro-spatial scale of our research, we needed to use extremely 

geographically specific and relevant data. County-level crop budgets provide an enormous amount of 

data relevant to the life cycle that would not otherwise be available at that level of resolution. However, 

crop budgets do not capture differences in cultural practices or farm-level variations since they are based 

on assumptions about “average” farm operations. Even with County-specific estimates, some factors 

depend on extremely localized conditions (i.e. water demand depends on irrigation method, soil type, 

weather, time of year, etc.). Given these limitations, crop budgets are reviewed by producers to ensure 

they are representative of their experiences and operations (Acker et al., 2008). Thus, we feel confident 

that the crop budgets provide a valid approximation of the agricultural processes. Future studies may 

consider direct measurements of sample farms in order to ensure the reliability and validity of the data. 

In addition, there are a number of data collection differences between AZ and CA that present 

challenges in availability and comparability of data. For example, while both budgets report in cartons per 

acre, only CA reports the carton size. We were also unable to find carton size or yield information for 

head lettuce in Maricopa through other cooperative extension reports, the Internet, etc.. Since it is likely 

that carton size follows an industry standard and is not particular to CA, we assumed this same carton 

size to calculate AZ’s yield. While differences in carton size would significantly affect our results, since 

Monterrey’s yield is estimated to be fourfold Maricopa’s yield, we do not think this is simply a function of 

differences in carton size (i.e. at most, AZ’s cartons would be 48-count, and Monterey’s yield would still 

be double Maricopa’s). This difference in yield also likely reflects the relatively poor soil quality in AZ and 

the climatic stresses present in the desert (McWilliams, 2009).  

For land preparation and growing operations, we used the estimated machine hours from each 

County’s crop budget. One inconsistency in the data was that Monterey reports the amount of diesel 

required per acre while Maricopa only reports the total cost of diesel. Thus, we had to convert cost to an 
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amount based on the per gallon cost of fuel for the County and for the year of the crop budget (which we 

found in Acker et al. (2008)). These energy calculations do not include manual labor (non-machine hours) 

or work that is contracted out (e.g. some harvesting/packing processes) since these factors do not 

contribute directly to fossil fuel use. Diesel emission calculations were based on an assumed model of 

agricultural tractor  (175 HP Regular Diesel (3,400 ppm) agricultural tractor, 1990 model) that may or may 

not be representative of a particular farm’s machine fleet. We made the same assumption across both 

counties, but this may not reflect engine upgrades, newer technologies, or different machinery standards 

between the counties. Some crop budgets are also dated (over 10 years old) and may not represent the 

current state of agricultural technologies and practices. Given these uncertainties, we did our best to use 

commensurable measures (in terms of place, time, etc.). 

Chemical inputs encompassed all fertilizers, pesticides, herbicides, and fungicides. However, we 

omitted analysis of the compost, which was broadcast over the fields in the Monterey County cost budget 

analysis at two tons per acre. While this is a large mass of chemical input to ignore, we feel that the 

inclusion would not have radically altered our results as the NPK content of compost is very low and the 

processes used to create compost are generally not as energy or emissions intensive as the Haber-

Bosch process for Nitrogen fixation, for example. Furthermore, it was not within the scope of this paper to 

deal with the allocation issues that an analysis of compost -- a “recycled” product, would present. 

While we could analyze NPK fertilizer components separately, data for other chemical inputs was 

aggregated at the pesticides, herbicides, and fungicides level, despite the fact that a variety of different 

chemicals and active ingredients were used. There is simply no emissions or energy use data available 

for products as specific as “Zeta cypermethrin”, “Spinosad”, or “Methomyl”. For sake of simplicity and due 

to data availability, we aggregated these chemicals by converting to mass used per acre and assuming 

the specific gravity of water if figures were unavailable. This introduces uncertainty in the analysis as we 

make the assumption that mass relative effects of these chemicals are equivalent. 

Furthermore, some of the data on embodied energy and emissions were quite old, although more 

recent papers such as Acker et al. (2008) and Gellings and Parmenter (2004) continue to cite these older 

sources, indicating that the data may still be relevant. Overall, there is also a quite a bit of uncertainty in 



16 

regards to fertilizer GHG emissions, as evidenced by the spread of numbers compiled by Wood and 

Cowie (2004). Fertilizer emission factors can vary widely depending on production technology. 

One impact we did not explore but is likely significant is the extent of nutrient leaching (based on 

application rates, irrigation amount and method, etc.) since there does seem to be notable differences in 

these factors between Monterey and Maricopa counties (i.e. more drip irrigation in Monterey County). 

Given that toxicity and eutrophication are major environmental concerns--particularly in agricultural 

systems--future studies may want to include these important impacts.   

The irrigation estimates were based on a County average amount, but the energy required for 

pumping the water and the associated emission factors were based on state averages which are “grossly 

estimated” (Acker et al., 2008). While these estimates hopefully provide higher resolution than national or 

regional data (i.e. they do not depend on the national average energy mix), they still may not be 

translatable to particular operations/cases. Future studies need to pursue better estimate strategies for 

“local” energy demands and energy mixes. 

Given the lack of available data for transportation specific to our case study, as most numerical 

data on lettuce production stops at the farm gate, many assumptions were made.  For one, it is assumed 

that producers in both counties utilize the same mode of transportation for distributing their lettuce. This 

assumed mode is a refrigerated heavy-duty diesel truck, which is the preferred mode for transporting 

agricultural goods that are temperature sensitive. However, a difference in truck type has implications for 

associated fuel usage and CO2 emissions. It is also assumed that the refrigerated trucks utilize diesel fuel 

for cooling, as opposed to a minority of refrigerant trucks that utilize water instead. Thus we assume that 

water is not a factor in the transportation sub-system, when depending on the type of truck used in each 

County, it may be relevant. 

 There is a lack of data on the average number of cartons of lettuce transported, which may vary 

between counties. This study assumes that the same amount of lettuce is transported from both counties, 

however a difference in distribution could greatly influence energy requirements and CO2 emissions on a 

per capita basis. Due to the omission of data on average cartons transported, the number of heads of 

lettuce had to be calculated by weight. This raises concerns as the average head of lettuce varies in its 

weight, often between 1.5 and 2 pounds. Further, it is unknown how much weight should also be 
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allocated to the cardboard cartons. Thus the amount of lettuce transported is merely an estimate. Further, 

this estimate is based upon an average cargo truck weight that PE Americas (2009) utilizes for their 

calculations of fuel consumption and emissions, and is not specific to refrigerated trucks alone. 

 CO2 emissions were calculated utilizing the EPA Diesel Quantifier. This tool does take into 

consideration many specific traits such as the class equipment, in this case class 8a delivery truck, as 

well as model year, retrofits, fuel type, fuel volume, and vehicle miles traveled. However, these are still 

based on national averages and we had to make assumptions about the average model year of the trucks 

and retrofits. Had more specific data been available on the average model year and retrofits of 

refrigerated trucks used for transportation of agricultural goods in these counties, our CO2  emissions 

calculations would be more valid. 

Implications 

Our results show that indeed, if we only look at “food miles” the local lettuce outperforms the 

Monterey lettuce. However, as Weber & Matthews (2008) suggest, transportation is only a small slice of 

the ecological footprint of food, and when we examine comprehensive energy use, water consumption, 

and emissions, the local Maricopa lettuce is twice as inefficient as the Monterey lettuce. Thus, in creating 

a more ecologically sustainable food system, the “food mile” focused, geographically defined “local 

movement” is insufficient as it stands now. We must take into account the impacts of food production, 

especially in areas such as AZ where climate, soil quality, and/or energy mix may necessitate more 

resource intensive practices than in other regions. 

Many advocates of localism argue that shifting one’s habits to purchasing local food creates a 

more economically resilient, socially equitable, and environmentally friendly food system (Mariola, 2008). 

While this study’s findings discount the latter benefit in this specific case study, there does appear to be 

social and economic values of local food that are either difficult to measure or not traditionally captured in 

LCA. For example, a key argument for purchasing local food is that it keeps money in the local economy, 

therefore creating a more resilient economy and also supports the small, family-owned, American farms 

threatened by large agri-business (Mariola, 2008; Mount, 2012). Others note that localism increases 

correspondence between producers and purchasers, often cutting out the middleman, and these direct 

agricultural markets benefit both farmers and consumers economically (Hinrichs, 2000; Morris & Buller, 
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2003). Local food is also noted for increasing embeddedness and transparency, therefore advancing 

social sustainability by addressing issues of injustice that are common in today’s disconnected, highly-

mechanized and global food system (Morris & Buller, 2003; Mariola, 2008). Depending on one’s values, 

these potential social and economic aspects to localism may outweigh any adverse environmental 

impacts of a local diet. It should however be noted that some scholars are critical of the extent to which 

these described benefits occur and argue that people should remain cautious of their food choices, 

despite their origin (Mariola, 2008).  

Since local agricultural production will likely continue in AZ, it is also important that producers and 

policymakers make a concerted effort to increase efficiency. According to the Arizona Department of 

Water Resources (ADWR), agriculture in AZ accounts for about 68% of the available water supply 

(ADWR). Given the uncertain water future in AZ (Gober et al., 2010), as well as our findings that irrigation 

is a major contribution to both energy demand and emissions in agricultural production, AZ ought to 

pursue best practices in water management and consider more efficient—and thus more sustainable—

practices. Besides mandated conservation efforts, these practices might also include: 1) a focus on native 

and desert-adapted plants and 2) more efficient irrigation methods (e.g. drip irrigation).  
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