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Abstract 

 
Essay scoring is a difficult and contentious business. The problem is exacerbated when there are no 

“right” answers for the essay prompts. This research developed a simple toolset for essay analysis by 

integrating a freely available Latent Dirichlet Allocation (LDA) implementation into a homegrown 

assessment assistant. The complexity of the essay assessment problem is demonstrated and illustrated 

with a representative collection of open-ended essays. This research also explores the use of “expert 

vectors” or “keyword essays” for maximizing the utility of LDA with small corpora. While, by itself, 

LDA appears insufficient for adequately scoring essays, it is quite capable of classifying responses to 

open-ended essay prompts and providing insight into the responses. This research also reports some 

trends that might be useful in scoring essays once more data is available. Some observations are made 

about these insights and a discussion of the use of LDA in qualitative assessment results in proposals 

that may assist other researchers in developing more complete essay assessment software. 

 

 

Introduction 

 

Experimenting with new ideas is an important feature of learning. Despite inconsistent and conflicting 

empirical support, it is still thought by many that among the best ways to grapple seriously with concepts 

and learn to effectively communicate is through writing about them (Klein, 1999; Kieft et al., 2006). In 

fact, in a provocative and clever move to make this argument, Pearson (pearsonkt.com) has named its 

essay tutoring package WriteToLearn. Universities frequently offer classes in which students write essays 

to demonstrate their grasp of concepts and their ability to explain, critique, integrate, augment, and extend 

important ideas. Generally, the scores of these essays contribute to a student’s overall assessment for the 

course. When such classes are large, essay scoring can be a daunting task for the teaching staff and 

automated essay scoring (AES) dangles a tempting carrot in front of any such team. But AES has received 

mixed reviews in the literature, with strong proponents (usually selling products) facing off against 

equally strong opponents arguing for the purity of a craft that cannot be assessed by a machine (Deane, 

2013; Perelman, 2012). 

 

The problem is exacerbated when the required essays address open-ended prompts that have no single 

correct answer. While some might suggest that an essay approach can never legitimately expect a single 

“right” answer, it is easy to see the difference between asking a student to discuss the causes of the US 

Civil War (which must include a discussion of the economics of slavery to be “right”) and one that asks a 

student to predict the ascendant culture in 100 years. In the latter case, there are certain elements and 

trends that must be addressed in a high quality essay, but depending on the manner in which the essay is 

approached, there can be many wildly divergent and equally defensible arguments. 

 

This research was prompted by such a situation and the resulting scoring dilemma faced by the 

instructional team. In a series of courses (ASU’s CEE 181, 400, 581) designed to demonstrate the 

complexity of the world of the future and equip engineers to face it, the assignments require students to 

interact with complex ideas through essay writing. But the dilemma of the teaching team extends far 

beyond simply assessing the quality of the essays. The forces to resolve in the grading problem can be 

grouped into four major categories as shown in Figure 1. 
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First, for such expansive and open-ended topics, teaching assistants (TAs) tend to need multi-disciplinary 

training and more life experiences in order to perform well in both classroom discussion and essay 

grading duties. Further, with the growing class size, it is difficult to find and train enough skilled TAs 

willing to invest the required time. Second, the course themes are provocative and require integration of 

ideas across multiple disciplines—a skill engineers need now more than ever. In discussing the impact of 

technology on culture (with all its tentacles, including political discourse, religion, economics, etc.), the 

courses expose a category of problems referred to by Rittel & Webber (1973) as “wicked.” This leads to, 

third, a group of essay prompts that have decidedly no correct answer, but still require intelligently 

structured responses. Finally, for the assignments to be effective, students must receive high quality 

feedback that not only points out their communication issues (grammar, spelling, thesis, sentence and 

paragraph structure, argument flow, etc.), but also steers their growth in acquiring the content they need to 

address such complex problems. 

 

 
Figure 1. Forces to resolve in the CEE 181, 400, 581 Essay Grading Problem 

 

Given this complicated array of forces, the primary research question centered on whether or not a 

software package could in any way alleviate the burden of the teaching team in scoring the essays for this 

suite of courses. While a one-size-fits-all package might still be a pipedream, and machine scoring still 

has significant hurdles to overcome, it is clear that software tools can assist in the effort. 

 

As might be expected, there were important qualifications on that goal including the need to contain costs 

and limit impact to the team. For example LightSIDE labs (lightsidelabs.com) of Pittsburgh, PA, a 2013 

startup company specializing in essay assessment, boasts “instant feedback to students” and “lightened 

workloads for graders” but the service they provide requires a minimum startup fee of $2,000 and a 

regular monthly service charge of $500 (lightsidelabs.com/enterprise) for essay grading. Even given what 

could be considered a very reasonable cost structure, adopting LightSIDE’s solution requires a 

commitment and a long term investment. Indeed, most of the solution they offer is available for download 

free of charge, but requires significant software expertise and system management support to make it 

operational. 
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The Waikato Environment for Knowledge Analysis (Weka) is a popular workbench of machine learning 

software developed at the University of Waikato, New Zealand. Weka is also free software available 

under the GNU General Public License (see fsf.org and gnu.org/licenses/gpl.html), but comes with a 

significantly high price tag when integration time and learning curve are considered. Toolsets like Weka 

(upon which many tools—including the LightSIDE solution—are layered) are costly in both time and 

resources. They are time consuming for system integration, learning curve, training, and tuning. They are 

resource intensive because they require special equipment (servers and workstations), and trained human 

staff in the form of webmasters, and IT administrative support. Further, they are workflow-altering—an 

impact that is sometimes rewarding but only if the package is fully adopted and becomes a “way of life” 

for the instructional team. All of these are invasive and costly and therefore not suitable for instructional 

teams that are attempting to do more with less (for the good of the student!) during a period of budget 

cutbacks. 

 

Hence, an important goal of the research was to explore what software elements might be freely available 

for integration into a minimalist package, specifically optimized for the needs of the instructional team. 

As a consequence the specific contributions of this research include: 

 

 Demonstration of integration, exploitation, and improvement of open source software, 

 Development of a dashboard interface for the instructional team that fits the current workflow, 

 Exploration into optimizing the value of small training sets, 

 Evaluation of potential use of “expert vectors” (short, bulleted, keyword-only “essays”) as 

training tools, and 

 Demonstration of the utility of Latent Dirichlet Allocation (LDA) in both qualitative and 

quantitative assessment of essays. 

 

Specifically, if a software package could be developed with a part-time focus in a two-month period that 

provided assistance of any kind, it was worth attempting. That assistance could even be in the form of 

better understanding the data set and learning how much new data would be needed in the future. Such 

was the goal of this research effort. 

 

Background 

 

A hugely contentious issue (Ben-Simon & Bennett, 2007; Condon, 2013; Grimes & Warschauer, 2010; 

Patterson, 2005; Vojak et al., 2011), Automated Essay Scoring (AES) is starting to see widespread use in 

high-stakes grading, ranking, and qualification exams (GRE, GMAT, TOEFL, etc.). Because of this, the 

controversy has reached beyond academia into the public square (Mathews, 2004). The debate underlying 

application of AES belies a much deeper argument over what is actually being assessed. As Perelman 

(2012) and Deane (2013) argue, it really boils down to the “definition of the writing construct” (Deane, 

2013, p. 9) and disagreement over whether something so entirely “human” can ever be properly assessed 

by a machine. 

 

It is helpful to think of essay scoring systems in tiers or layers of progressively complex function (cf. 

ETS, Pearson & The College Board, 2010): 

 

• Tier 1, where most current automated scoring packages reside, targets aspects of grammar, usage, 

mechanics, spelling, and vocabulary. Products at tier 1 are generally well-positioned to score 

essays which are intended to measure text production skills. Tier 1 packages are frequently 

helpful in such courses as the archetypical “English 101” which trains, practices, and measures 

such skills. 
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• Tier 2 systems add evaluation of the semantic content of essays, relevance to the prompt or 

suggested topic, and aspects of organization and flow. Far fewer tools are in this category, two of 

which are discussed below. 

• Tier 3 systems (of which none exist) will (eventually) assess creativity, figures of speech, poetry, 

irony, or other more artistic uses of writing. These systems might also assess rhetorical voice, 

logic of an argument, extent to which particular concepts are accurately described, or whether 

specific ideas presented in the essay are well founded. Depending on how the “construct” of 

writing is defined (Deane, 2013), these are arguably the most difficult and most important areas 

for essay scoring—and this is the basis of the argument against a machine’s ability to ever 

adequately assess the written form. 

 

ETS’s Criterion is an essay-writing tutor at Tier 1+ that appears to focus more on form than it does on 

content. Criterion’s e-rater provides automated scoring of writing quality including: 

 

• errors in grammar (e.g., subject-verb agreement), 

• usage (e.g., preposition selection), 

• mechanics (e.g., capitalization), 

• style (e.g., repetitious word use), 

• discourse structure (e.g., presence of a thesis statement, main points), and 

• vocabulary usage (e.g., relative sophistication of vocabulary) (ETS, 2013a). 

 

ETS’s c-rater is purported to provide automated scoring of written content, but note that this differs from 

the content assessments of Tier 2 systems outlined above. ETS defines their content assessment as 

including: 

 

• correcting student’s spelling, 

• determining the grammatical structure of each sentence, 

• resolving pronoun reference, and 

• reasoning about words and their senses (ETS, 2013b). 

 

Despite calling them “content”, these items seem to reside squarely in the “form” camp. Note that ETS 

specifically differentiates its so-called “deep linguistic analysis” from “purely statistical approaches based 

on words, such as latent semantic analysis (LSA)” indicating that including grammatical information as 

they do (and by implication, as their competitors do not—since LSA ignores grammar) reduces the 

chance that students will be misled by the assessments (ETS, 2013b) if, say, their vocabulary was solid 

and relevant while their grammar was deficient. While ETS remains reticent about sharing their 

technological approach, it appears they are exploring something beyond simple unigram semantic models. 

 

Criterion can be compared to Pearson’s WriteToLearn product which embeds the Intelligent Essay 

Assessor (Landauer, Laham & Foltz, 2003). This product originally focused on Tier 2 functions (content) 

but integrates other tools to deliver its tier 1 functions. To accomplish the content analysis IEA employs 

Latent Semantic Analysis (LSA), “a machine-learning model of human understanding of text” (Landauer 

et al., 2003, p. 297). They continue: 

 
While the LSA model of verbal meaning at first appears to be an implausible over-simplification, it turns 

out to yield remarkably accurate simulations of a wide spectrum of language phenomena, and robust 

support for automation of many language-dependent tasks (p. 297). 

 

Obviously, in the ten years since the cited publication, Landauer et al. have significantly augmented their 

self-styled “implausible” yet “remarkably accurate” approach. This likely includes expansion into n-gram 

semantic models, but they are equally reticent about sharing their approach. 
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While AES approaches are many and varied, it is clear that based on these two arguably state-of-the-art, 

commercially available systems, the writing construct’s easy decomposition into “form” and “content” 

has forced their convergence from disparate paths. That is, ETS’s Criterion may have started with a focus 

on form, but has recently added content to the mix, while Pearson’s WriteToLearn started in the content 

analysis world (with IEA) and has since added form to its marketable bag of tricks. 

 

This distinction between form and content is important to the CEE 181/400/581 instructional team. Our 

goal is not specifically to provide what English 101 should have given to students (form skills). Though 

we want all our students to be good writers and effective communicators, it is more important to us that 

they can integrate complex ideas and concepts (content skills). Though we want clear, concise and 

eloquent prose that makes a point and argues persuasively, we are more interested in credible content than 

we are in the form of the essay. Still, since these are college students, we demand that the form be at least 

adequate. We rely on English 101 to deliver students who are adept at text production, and we hope to 

take them to next level. Not only do we want them “to be able to say it,” but we want them “to have 

something important to say.” This need for balance—and the huge grading burden—has driven the team 

to seek something that can assist in measuring the content of the essays. 

 

Exploring Latent Dirichlet Allocation (LDA) 

 

This research chose to explore the potential value of Latent Dirichlet Allocation (LDA) in assessing essay 

content for the CEE 181/400/581 suite of classes. LDA is a bag-of-words approach that is similar to the 

LSA approach employed by IEA, but it has proven to be demonstrably better at topic elicitation and 

classification tasks (Chang et al., 2009; Blei, Ng & Jordan, 2003). While LDA has important applicability 

in a broad range of data processing functions (including image processing), it is used in this effort strictly 

in processing text: words, documents, corpus (a collection of documents), and corpora (multiple 

collections). 

 

In a nutshell, documents contain a mixture of topics, and topics are represented by groups of words. What 

I refer to herein as an “LDA Estimate” or a “model” is a generative probabilistic model of a collection of 

documents (a corpus)—the probabilities that certain words in the documents are associated with certain 

topics discussed in those documents. More formally, documents (essays) are probabilistic collections of 

latent topics (with measures of degree), and a topic is a distribution of words. As Blei et al. (2003) put it, 

“LDA posits that each word of both the observed and unseen [(held out)] documents is generated by a 

randomly chosen topic which is drawn from a distribution with a randomly chosen parameter” (Blei, et 

al., 2003, p. 1002).  

 

Figure 2. LDA Overview provides an overview of the mechanics of the LDA concept. It shows a 

collection of essays which represents a typical corpus for which an LDA model is to be generated. Prior 

to generating the model, some documents are held out (solid line) so they can later be used to “inference” 

against the model. The LDA software then processes the corpus and generates a model with a user-

specified number of topics (illustrated here with six, numbered 0 through 5). This is the estimation 

process. Once the model is generated (estimated), the held out essay(s) can be processed (dashed lines) 

and the LDA software will assign probabilities of fit to each inferred topic (illustrated here with 12%, 

33%, 21%, etc.). The highest probability allocation (e.g., 33%, shown in a dashed circle) generally 

indicates the best match of topic keywords. It is these allocation probabilities (think of it as a degree of 

match) that are used throughout this analysis. 
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Figure 2. LDA Overview 

 

Overview of the data set 

 

The CEE 181/400/581 instructional team believes in the power of essays to assist students in coming to 

terms with their beliefs about certain complex problems. Further, we find that writing essays helps 

students understand and communicate the beliefs of others—an important first step in managing any 

wicked problem. For this reason we assign a significant writing load each semester (for undergraduates, 

around eight 400-word essays, and one 4000-word term paper; there are similar requirements for graduate 

students but with higher required word count). The essay prompts force students to grapple with the world 

they will face after leaving the university—the world they will have the chance to shape should they 

decide to engage. 

 

The essays we see can be broken into a few categories—each providing a unique challenge to the LDA 

classifier (an appendix provides a listing of the prompts for essays used in this research): 

 

1. Some essay prompts result in responses that contain a general discussion of several relevant 

issues followed by recommendations to pursue a specific approach (e.g., how to manage 

environmental impact of electronic waste, or, how to manage bio-engineered soldiers in civil 

society). These essays generally require students to provide an overview of topics (technology, 

ethics, law, etc.) and then conclude by making recommendations. For this reason the keyword 

content of each essay is similar, but the recommendation must be supported by the argument. For 

these, a “bag of words” approach (either LSA or LDA) can be problematic since much of the 

content is identical and the recommendation might be very brief or consist entirely of common 

stop words (e.g., “we should proceed with X” v. “we should not proceed with X”). 

2. Other essay prompts result in a discussion of one of a number of specific outcomes (e.g., predict 

the ascendant culture in 100 years, or, discuss how climate change is a carbon cycle management 

problem). These essay prompts generally lead to up to a dozen arguably “right” answers 

depending on the angle an author takes, and depending on the approach, such essays could be 

wildly different (imagine, for example, the semantic differences between two essays outlining 
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carbon cycle management; one which suggests we promote tree planting campaigns in social 

media and one which proposes the rollout of carbon capture and sequestration technologies). This 

kind of essay also poses challenges to “bag of words” grading approaches due to the broad 

dispersion of terminology present in high quality and responsive essays. 

3. There are also essays which require students to define terminology or distinguish between certain 

terms and provide examples that support their definitions. For example, students must define 

“technology” or distinguish between concepts like “science” and “faith.” In many cases students 

resort to dictionary definitions and then append a commentary with examples. In other cases, the 

examples themselves lead to student-derived definitions. The latter are more thoughtful essays, 

but the semantic content is quite similar. 

4. Some essays require students to comment on the complex interactions of technologies and social 

systems. For example, writing about how the technology of film can depict an integrated view of 

technology, culture, and the economy, allows the student to easily grasp the idea that movie 

producers have an agenda that often extends beyond entertainment into social issues. Also, 

discussing common cultural discourses like “how do you measure sustainability?” frequently 

serves to reveal the student’s own agendas. While each student may be responsive to the prompt, 

their individual essays are generally only related by the specific examples or domains of 

discourse chosen by the student. 

 

In addition to the wide range of “right” answers, there are a couple other factors which limit the potential 

success of the LDA classifier in our particular case. One of these is the relative dearth of data. LDA 

generally requires large data sets, and to date a maximum of approximately 400 essays has been collected 

for each prompt (each essay is 400 to 1000 words). On average the number is far less (around 50). This is 

much fewer than is usually used in LDA research and may be too few to establish a sound model. A 

second factor is that some of the student essays are of poor quality, so instead of contributing to the 

model, they tend to detract by including misleading terms. These latter factors have driven the 

development of the “expert vectors” approach that is discussed later. 

 

Still, despite the high number of degrees of freedom in the legitimate answer space, the LDA experiment 

has generated some interesting trends that are reported herein. 

 

Method and Approach 

 

Beyond the interest in creating a low impact, low cost automated essay scoring solution, there were two 

primary goals of this research: 

 

1. First, there was a desire to understand the essay prompts and responses better, and determine if 

LDA could provide new insight into them, or whether or not LDA could even resolve the many 

similar responses to the essay prompts. This is essentially a question of experimenting with 

LDA’s already well-attested classification benefits and determining if they could assist with the 

CEE 181/400/581 corpora. 

2. Second, there was a desire to resolve the question of whether or not adequate essay scoring could 

be automated with a smallish, homegrown software package, or whether a larger (and longer) 

investment would be required to derive these benefits from LDA (and other tools). 

 

The goal of “understanding” 

 

Once the software was built (see Appendix B and related presentation for details), all essays available 

from CEE 181 and CEE 400 were imported (CEE 581 essays were not investigated for this effort, but will 

be reviewed at a later date). Corpora were assembled that contained all essays from each class (that is, 
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responses to all prompts), as well as corpora consisting of essays written in response to individual 

prompts. This is depicted in Figure 3. Corpora used in the analysis are described in Appendix A. 

 

 

 
Figure 3. Corpora Construction 

 

Corpora were constructed for whole-class essay groups and prompt-specific essay groups because, as 

mentioned above, there are many possible answers to each prompt. For this reason, it was important to be 

able to test the LDA in its ability to not only isolate the within-prompt answer differences (of which there 

are, on average, around 10) as well as being able to distinguish essays based on the prompt they answered 

(13 prompts for CEE 181, 9 for CEE 400). 

 

Two outcomes were hypothesized. First, LDA should be able to distinguish and classify the whole-class 

essay corpora into specific prompt topics (that is, LDA should be able to generate a list of topic keywords 

that were recognizable by human reviewers to be related to each specific prompt). Second, LDA should 

be able to distinguish and classify prompt-specific corpora into specific student answer approaches (that 

is, LDA should be able to generate a list of topic keywords that were recognizable by human reviewers to 

be valid answers to the specific prompt). Evaluation of the results was expected to provide new insights 

into the quality of the essay prompts and help the instructional team understand potential overlaps in 

essay content. 

 

Further, it was of interest to determine if specific instruction regarding the prompts ever resulted in 

students taking all the approaches anticipated by the instructor. For example, the instructions for the 

“climate change/carbon cycle” essay (see appendix) implies there are at least ten approaches that can be 

taken in answering the prompt and these general approaches are overviewed for the students to help them 

see the scope. Seldom, however, are more than three or four of the approaches employed in actual essays. 

 

The goal of “grading” 

 

Wading into the contentious waters of automated essay scoring was facilitated by a very simple 

hypothesis: LDA topic allocation probabilities (see Figure 2) would (in general) be lower for lower 

quality essays. That is, bad essays would not very well match the (presumably high quality) essays used 

to build the model (via the LDA estimation process). This reflects the assumption that lower quality 

essays are, on the whole, less targeted, more “confused” and therefore more “confusing” to the LDA 

.

.

.

Collection of Essays
(grouped by prompt)

.

.

.

.

.

.

Built into prompt-
specific corpora

held out essays (for test)

built into
whole-class

corpora
(all prompts)



T. Roberts No Right Answer 9 

classifier. Figure 4 provides a schematic of the idealized hypothetical outcomes. It was anticipated that 

high confidence allocations would be dominated by high quality essays and the occurrence of “A” grade 

essays would taper off with a very sharp slope as indicated in Figure 4. Further, it was expected that lower 

quality essays would be disproportionately represented in the lower confidence allocations. Even in this 

caricature it is obvious from the significant overlap of the curves (viz. A, B, C, D) that there are 

complications in differentiating essays by grade. This was mitigated in several ways. 

 

 
Figure 4. Hypothesis: LDA topic assignment confidence slopes will differ by essay grade 

 

First, models were built on a variety of corpora and inferences were performed on held-out essays 

(typically 5-10% of the essays). For example, five separate models were built around the “ascendant 

culture” essay, each holding out a different 5% of the essays (see appendix). Piloting was done with the 

CEE 400 corpus to gain familiarity with the results. Ultimately, the expert vectors were used to evaluate 

the entire CEE 181 corpus (discussed later). To gain familiarity with the approach and to learn about the 

quality of the allocations, a human expert rated confidence in the LDA topic allocation for each inference 

using a five point Likert scale. Table 1 outlines the general approach (0 was reserved for “unassigned”). 

 
Table 1. Explanation of Confidence Assignments 

Ordinal Ranking Explanation 

1 Very Low expected topic is not ranked first or second 

2 Low ranked second but greater than ~2% away from first 

3 Moderate ranked second and within ~2% of first 

4 High ranked first but nearest topic is within ~2% 

5 Very High ranked first by greater than ~2% 

 

 

While occasionally an essay was wondrously confusing, most essays were easily ranked using this 

approach. Expert judgment was employed when “ties” occurred, but in general, familiarity and long 

experience with the data set simplified the rankings. It is likely this specific approach would be more 

successfully employed by someone who was less familiar with the nuances of the essay answers, but 

since these specific rankings were used to pilot the study and establish trends, and were not directly used 

in the statistical analysis, this was not noted to be a confound. 

 

Second, it was postulated that the standard deviation of all the topic allocation percentages (generated by 

the LDA inference, see Figure 2) might indicate a “spread” or a “confusion” factor that could be used as a 

quality metric. Figure 5 demonstrates how each essay is allocated to each corpus topic with a certain 

probability (these sum to 100 percent—not all are shown). The standard deviation of these probability 

assignments would indicate how “tight” the ranking was. Smaller standard deviations across the 
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population would indicate a “closeness” or “blurriness” that could be considered a measure of lack of 

clarity or a famine of appropriate keywords, and hence a lower quality essay, while larger standard 

deviations would indicate significant “space” between the allocation probabilities. This would imply 

significant topic isolation and hence better clarity of the essay. 

 

 
Figure 5. Example of Essay topic allocation probabilities 

 

Figure 6 depicts how this hypothesis might be demonstrated in the data. Note that even with this 

postulated outcome, it would be difficult to specifically assign a letter grade to specific essays due to the 

overlap of the curves. 

 

 

 
Figure 6. Hypothesis: SD of topic assignment probabilities reflects essay quality 

 

Third, it was noted from the pilot trials with the CEE 400 data set that the absolute difference between the 

two highest LDA topic allocation probabilities (i.e., the “top two”) seemed more definitive in driving user 

confidence (again, refer to Figure 5 and note the absolute difference between the first two probabilities in 

the list is approximately 0.331 – 0.188 = 0.143). For this reason, this measure was investigated as well, 

and all three of these measurements are pursued in the analysis discussed herein. 
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Special efforts 

 

Importantly, part of both the insight/understanding and grading goals involved the use of specially 

constructed “expert vectors.” This novelty is discussed here in more detail. 

 

Expert vector corpora were generated from keyword lists and short phrases. Only rarely is a complete 

expert essay available for our prompts, and even then, such an essay would generally take one of the 

many allowed approaches to the answer—and specifically not address them all. The point of creating the 

expert vectors was to provide answers that covered all the expected angles, but without requiring the 

significant effort that goes into writing an essay for each. In a sense, the goal was to “game” the LDA. 

That is, the keyword essays contained concepts that a human grader would be expected to look for in an 

essay that took a particular tack in answering. For example, the prompt which asks the students to predict 

the ascendant culture in one hundred years has many legitimate answers, one of which includes predicting 

a Chinese hegemony for any of a number of reasons. The keyword essay written for this answer is shown 

here: 

 
China economy, military 

China economic progress, holds USA debt 
Chinese production and manufacturing 

Growth in population, largest labor force in world 

Manufacturing leadership 

China developing quickly, huge energy producer 
Growing technology producer 

Rare-earth elements 

Chinese people want products, jobs 

Chinese want wealth and economic development 
Chinese spend money in domestic and global markets 

Investing in foreign debt 

Rapid social development 

 

It is obvious that the many factors that lead to a possible ascent of China to cultural dominance are listed 

here in bullet form without concern for complete sentences or even deep rationale. In fact, the words in 

this vector could just as well be alphabetized since the LDA classifier does not pay attention to word 

order. This constitutes an expert vector. Similar vectors were developed for other answers to this prompt, 

and the many possible answers to all the other prompts. These expert vectors were employed to 

specifically address the manner in which poorly written essays would dilute the corpus and skew results. 

In theory, if the LDA is trained on only expert vectors, the ability to adequately grade student essays is 

greatly enhanced. 

 

Another of the problems facing this research was the limited supply of essays. Because LDA is a 

statistical approach, larger corpora deliver better results. For this reason, the over-weighting features of 

the software tool were developed to provide a way to exploit LDA as a high quality classifier even in the 

absence of huge corpora. The trick is simple: When generating the model, the classifier is directed to 

include higher quality essays additional times (user-configurable). This allows better quality essays (each 

a “bag of words”) more weight in the model generation process. This is facilitated through the user 

interface which allows the user to specify the degree of over-weighting that is to be done (see Figure 7). 

Using this feature, the user can specify that each “A” and “B” essay be included additional times as 

desired. 
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Figure 7. Portion of the user interface that controls over-weighting 

 

As shown in Figure 7, each “A” essay would be included 3 times in a model estimation, while each “B” 

essay would be included twice. As expected, “C” and “D” essays would be included once each. The 

success of this feature is still being evaluated and will be reported elsewhere, but the pilot trials on the 

CEE 400 data set were encouraging. Perhaps obviously, expert vectors would receive “A” grades since 

these contain the keywords a grader is using to measure quality. Also note that in a corpus generated 

solely on expert vectors, the over-weighting is not necessary since all the vectors are designed to contain 

high quality keywords. 

 

Results 

 

As anticipated in the hypothesis, LDA alone is insufficient for grading essays. Complete automated essay 

scoring solutions will require a variety of machine learning techniques. While LDA is unlikely to be able 

to do it alone, there are some compelling trends noted in the discussion below. Ultimately, both research 

goals were satisfied. 

 

The goal of understanding 

 

The first goal (understanding and insight into the data set) was readily accomplished. Table 2 shows that, 

based on the top word lists, latent topics detected by the LDA reflect the expected outcomes (note, the 

words are stemmed). Here, for example, it is clear that topic 0 relates to Chinese dominance for reasons 

including manufacturing and economic growth, while topic 1 predicts continued US dominance for 

numerous reasons including culture, innovation, etc. 

 
Table 2. Top 15 words for six topics in the "400 Ascendant Culture - roberts vector" corpus 

0 1 2 3 4 5 

china usa natur india world islam 

develop corpor russia econom global popul 

manufactur econom lead market leadership growth 

debt leader leader workforc citizen influenc 

progress innov gas reward unit domin 

strong cultur energi technolog rise cultur 

quick busi signific respect govern muslim 

chines firm reserv success intern polit 

industri global power popul care social 

lag lead largest progress human religion 

inform brand start capit communiti power 

economi compani ethic social discours democraci 

militari workforc hindu landscap shift live 

rapid live resourc erad hegemon strong 

econom soft democrat indian cooper birth 
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The LDA was quite successful at classifying and identifying topics within the data set. Table 3 shows a 

representative sampling of LDA topic allocation confidence. In general, the LDA inference was 

“correct”—that is, Very High (VH) or High (H)—93% of the time. In several cases, the LDA pointed out 

essays that had been incorrectly labeled. 

 
Table 3. Representative Sample of Inference Confidence 

Corpus Inferences % Very High Confidence VH H M L VL 

181 All - roberts vector* 703 94% 651 8 8 26 9 

181 All - mattick vector 703 90% 604 27 13 29 29 

181 All AB only 84 86% 71 1 2 9 1 

181 All overweighted 38 95% 36 0 2 0 0 

181 All Prompts 29 100% 29 0 0 0 0 

400 All Prompts 113 93% 101 4 7 1 0 

  Average: 93%      
*Both the “roberts” and the “mattick” vectors had one essay “unassigned” for special circumstances 

 

Interestingly, there were several specific prompts that resulted in significant overlap in essay content. This 

caused the classifier to “confuse” essays and assign the highest probabilities to the “wrong” topic (here, 

the use of quotation marks around words like “confuse” and “wrong” reflect human value judgments on 

an activity the software was doing quite “correctly”). These specific prompts (namely, “impact of tech 

clusters” and “impact of railroads” in the CEE 181 corpus summarized in the appendix tend to overlap 

because railroads and their concomitant technologies are an excellent example of a technology cluster) 

have also been indicted by students for being very similar. When the students confuse the response space, 

it is likely the software will as well. In this regard, LDA can assist the instructional team in designing 

better prompts, or at least in understanding some of the student confusion. 

 

The goal of grading 

 

The second goal (analysis of how LDA might facilitate essay assessment) was also accomplished and 

important trends were found in even the limited data set under study. Both grading hypotheses were 

validated (see Figures 4 and 6 and compare to Figures 9 and 10). 

 

The analysis presented here was done with the “181 All – roberts vector” corpus which consists of 13 

expert vector essays. Note that while other experts would design their answers differently, it was expected 

that the overlap would be significant and that the results would be similar (this is demonstrated later when 

the results of the “181 All – mattick vector” corpus are compared). Use of this expert vector allowed all 

703 of the student essays to be analyzed without potential confound. That is, none of the student essays 

were used in the training set for the LDA model estimation (they were all “held out”). This means they all 

could be used for inference against the model and, hence, be assessed for grading. 

 

Based on analysis of corpus “181 All – roberts vector”, Figure 8 demonstrates the trend that confirms 

LDA’s capability to deliver high confidence topic allocations (703 inferences, average absolute difference 

of top two LDA allocation probabilities=0.23, SD=0.12). Note that nearly all the topic assignments 

receiving a “very low” confidence are two standard deviations away from the mean. These outliers 

indicate that the metric of “absolute difference between the top two allocation probabilities” compares 

well with the user assigned quality of the topic allocation. 
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Figure 8. Allocation confidence based on absolute difference of top two topic assignment probabilities 

 

Figure 9 demonstrates the trend that higher quality essays (as graded by human experts) generally deliver 

higher confidence topic allocations. Note the grades (vertical lines in Figure 9) are overlaid based, once 

again, on the average absolute difference of the top two allocation probabilities (A=0.24, B=0.22, 

C=0.19, D=0.19). That is, those essays receiving an “A” grade had an average absolute difference of the 

top two allocation probabilities of 0.24 (similarly, this applies to essays receiving B, C, and D grades). 

 

 

 
Figure 9. Grades based on absolute difference of the top two LDA topic allocation probabilities  

(vertical lines are positioned at average absolute difference for each grade level) 

 

The limited data set prevents real confirmation of the trends predicted in Figure 4, though a fit of the 

slopes can be observed to reflect the idea proposed. (Note that the data is plotted here with the difference 

shrinking to 0 on the right, so the slopes would be reversed). 
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Figure 10 shows the standard deviation of all LDA topic allocation probabilities (averages indicated in 

light gray: A=0.084, B=0.082, C=0.076, D=0.072, SD=0.023). This demonstrates the expected trend that 

higher quality essays generally deliver higher confidence topic allocations but employs the standard 

deviation over all allocation probabilities instead of focusing on the difference of the top two. 

 

Note that this confirms the second grading hypothesis, though more statistics would be required to derive 

the isolation of curves projected in Figure 6. Note as well that in Figure 6 the standard deviation is 

increasing toward the right. As plotted in Figure 10 the standard deviation decreases toward the right, so 

the order of curves is reversed. That is, as indicated in the figure, the “A” curve peaks first and the “D” 

last. 

 

 
Figure 10. Grades based on standard deviation of all LDA topic allocation probabilities  

(vertical lines are positioned at average standard deviation for each grade level) 

 

In the interest of independent confirmation and reproducible results, a similar analysis was done with an 

expert vector developed by an independent expert (corpus: “181 All – mattick vector”). As shown in 

Figure 11, this analysis resulted in a nearly identical set of curves when the standard deviations were 

plotted (averages indicated in light gray: A=0.077, B=0.074, C=0.072, D=0.070, SD=0.026). 

 

It is worth pointing out that the “mattick vector” contained 240 unique words while the “roberts vector” 

contained 351 unique words. Interestingly, though the “mattick vector” was significantly shorter than the 

“roberts vector” there was no appreciable difference in the overall outcome of the analysis. This implies 

that the count of keywords is not as important as the selection of the keywords. This could be a fruitful 

area for further investigation. Note, however, that the “roberts vector” resulted in a significantly higher 

number of user-assigned “very high” confidence assignments (651 v. 604, see Table 3), and the “mattick” 

vector significantly more “very low” confidence assignments (29 v. 9). This might have something to do 

with the limited keyword set. 
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Figure 11. Grades based on standard deviation of all LDA topic allocation probabilities  

(NOTE: Independent expert vector) 

 

Other details 

 

One confound was identified that involved students who leave the essay prompt in their essay. This tends 

to augment the essay with a corresponding word set that may have been otherwise under-represented. 

This can be resolved easily with editing, but was not done for this study due to the effort involved in 

editing so many essays. 

 

Further, it is clear that including a “references” or “works cited” section artificially inflates the vocabulary 

of each essay. References contain many important keywords since paper and journal titles are 

purposefully dense with meaningful words. Further work should be done and comparative studies 

performed that analyze the influence of these confounds. 

 

Finally, it should be noted that some essays were ranked high by the LDA because they were “on prompt” 

and used a significant number of required keywords, but were still graded very low because they were 

unacceptable for other reasons (too short, submitted late, excessively poor grammar, etc.). In the future, 

these details might be tracked separately to provide higher significance in the data. 

 

Future research might include training a multi-layer neural network on this highly overlapping data and 

see if it could manage the non-linearity with a Least-Mean-Square approach. 

 

Discussion 

 

It is clear that LDA alone is insufficient for a complete essay grading package. At the very least, however, 

LDA can point out essays that largely answer a prompt in a manner that the instructional team might find 

“responsive.” That is, based on the terminology employed by the student, LDA is quite useful in 

categorizing an essay as an answer to a particular prompt that reliably reflects the desired keywords (as 

opposed to an essay that is about some other random topic). This is an important outcome since it means 

that the LDA toolkit could be employed to validate minimum acceptable content requirements for the 

student essays. If the instructional team finds that the topic allocation probabilities are adequate to classify 
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an essay as “responsive” in this manner, it might mean that that the “content” requirement can be 

managed electronically (automatically) and that lower cost essay graders can be employed to worry about 

the grammar, spelling, and sentence structure elements of good writing. 

 

Conclusion 

 

A custom LDA toolkit was built by incorporating freely available software into a simple user interface 

that supported the workflow of the instructional team. The software was piloted on the CEE 400 corpus 

and data analysis was performed on the CEE 181 corpus and reported. The toolset satisfied the two goals 

of the effort by increasing understanding of the corpus and demonstrating a method by which expert 

vectors can be used for grading. The research validated the hypothesis under investigation: LDA topic 

allocation probabilities were, in fact, lower (on average) for lower quality essays. This was demonstrated 

with several mechanisms including (1) calculating the absolute difference between the top two LDA topic 

allocation probabilities and (2) the standard deviation of all the LDA topic allocation probabilities. The 

research did, however, underscore the notion that this trend is not enough to assign a specific grade to a 

student essay. Still, the trends found in even the small dataset under investigation lend themselves to 

future investigation. 
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Appendix A: Data Sets 

 

CEE 181 Data Set 

 
Topic Tag Abbreviated Essay Prompt Essays 

the anthropocene Why do you think scientists increasingly refer to our modern era as the 

“Anthropocene”? 

59 

technology clusters Why do you think technology clusters have institutional, social and 

cultural effects, rather than just economic impacts? 

53 

sustainable cell phone Explain how you intend to design a “sustainable cell phone.” 57 

simple v. complex systems What do you think are the most important differences between complex 

and simple systems, and why? 

56 

railroad impacts As a US villager in the early 1800’s exposed to your first railroad, discuss 

how many of the changes the railroad subsequently caused you think you 

could have predicted. Are the important changes technological, or are they 

economic, political, and cultural? 

54 

sustainable auto products As vice president of engineering at an automotive firm, design a process 

that will lead to more sustainable products and write a summary of your 

proposed process for the company’s annual report. 

54 

mine operation in 

developing country 

As a responsible major mine operator in a developing country, your mine 

still is causing environmental changes in local ecosystems. Write an op-ed 

piece for your local newspaper defending your operation against 

environmental activists who demand that you be shut down. 

56 

matrix v. reality How do you know either reality in The Matrix is more “real” than the 

other? And if even someone in those realities can’t tell which is which, 

what do you think of the morality of Neo’s decision to destroy the Matrix? 

54 

world different from 200 

years ago 

In what major ways does the world we live in now differ from the world 

200 years ago? 

58 

grid and electric cars Why should I need to worry about the grid if all I want to do is buy a plug-

in vehicle because it’s good for the environment? 

57 

green chemistry How would you redefine “green chemistry” so that it would be 

“sustainable chemistry”? 

53 

ender's game v. iraq war Compare Ender’s Game with the war in Iraq, with its heavy reliance on 

robotic ground, sea, and air platforms. Do you still think Ender’s Game is 

science fiction? Why or why not? 

50 

bioengineered soldier The Army has proposed a technology package that would bioengineer 

soldiers to be permanently altered to have 200% greater strength, nervous 

system function, cognitive capability, and skeletal strength. As a senior 

Pentagon analyst for emerging technologies, write a memo to the 

Secretary of Defense outlining the potential implications of this set of 

technologies. 

55 

 

 

CEE 400 Data Set 

 
Topic Tag Abbreviated Essay Prompt Essays 

ascendant culture in 100 

years 

Predict the ascendant culture in 100 years. 285 

defining technology Define “technology” taking into consideration the relationship of 

technology to culture and human interaction with the physical 

environment. 

347 

how sci-fi shapes the future Discuss how science fiction impacts and shapes the development of future 

technologies. Use Old Man’s War as an example. 

270 

film as means to give Discuss film as a method for presenting an integrated vision of future 250 



T. Roberts No Right Answer 19 

integrated view of future technologies in a social, cultural and economic context, using The Matrix 

as an example. 

implications of merging 

ICT and human 

consciousness 

Discuss the implications of human intelligence becoming integrated with 

software systems, and thus subject to viral attack. Use Ghost in the Shell 

as an example. 

338 

science and faith Discuss the difference between faith and science. Provide an example 

from environmental science. 

341 

climate change as C-cycle 

management 

Discuss how climate change can be understood as a carbon cycle design 

and management challenge 

340 

short term implications of 

ICT waste 

Write a memorandum to the EPA Administrator discussing the short term 

environmental implications of information and communication 

technologies. 

174 

enhanced ICT in urban 

environment 

Discuss the anticipated effects as enhanced ICT capabilities, including 

autonomic computing, are introduced into urban systems at all scales. 

247 

 

Corpora Used in Testing 

 

 Corpus names are abbreviated tags that allow specific reference. Corpus numbers are simply 

unique identifiers assigned by the database. 

 Similarly named corpora may vary in the number of essays based on the random number of 

essays held-out 

 The number of topics modeled is a research choice and generally reflects a “best-fit” based on 

several trials. Several corpora were duplicated and modeled based on differing number of topics 

to determine what might be a best fit. 

 
Corpus (#) Essays Held 

out 

Topics Notes 

181 All - roberts vector (56) 13* 703 13 This is a special “expert vector” corpus designed to 

be compared to ALL CEE 181 essays 

181 All - mattick vector (60) 13* 703 13 This is a special “expert vector” corpus designed to 

be compared to ALL CEE 181 essays 

181 All AB only (52) 619 84 13 This corpus was made to enable comparison of all 

the C and D grade essays since these are more rare 

and rarely appear in the random hold outs 

181 All overweighted (55) 665 38 13 This corpus weights the A and B essays greater than 

the C and D essays by including the A essays three 

times and the B essays twice 

181 All Prompts (47) 664 29 13  

181 All Prompts – 2 (48) 649 44 13 These (2-5) are alternatives to “181 All Prompts” 

which held out a different random selection of 

essays for test 

181 All Prompts – 3 (49) 654  13  

181 All Prompts – 4 (50) 660  13  

181 All Prompts – 5 (51) 654  13  

181 All Prompts – duplicate 

(59) 

664  13 This is an exact duplicate of “181 All Prompts” used 

to compare the differences in the generated LDA 

models (model differences were negligible—

analysis available upon request) 

181 Essay 01 (41) 56 3 5  

181 Essay 01 A (43) 16 43 5 181 Prompt 1 only A grade essays 

181 Essay 01 B (42) 36 23 5 181 Prompt 1 only B grade essays 

181 Essay 01 overweighted 

(54) 

55 4 5 This corpus weights the A and B essays greater than 

the C and D essays by including the A essays three 

times and the B essays twice 
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Corpus (#) Essays Held 

out 

Topics Notes 

181 Essay 02 (44) 52 6 -  

181 Essay 02 A (45) 17 41 -  

181 Essay 02 B (46) 31 27 -  

181 Essay 10 (38) 50 5 -  

181 Essay 10 A (39) 26 29 -  

181 Essay 10 B (40) 22 33 -  

181 tech cluster only (53) 52 0 2 This special test was configured to determine if 

LDA could discern two distinct approaches taken by 

students in defining technology clusters: groups of 

technologies (e.g., computers and communications), 

and geographical groupings. 

400 All Prompts (30) 2458 375 9 Nine (of about a dozen) distinct prompts were used 

400 Ascendant Culture - 

roberts vector (58) 

11** 274 10 Ten topics reflects approximately 10 legitimate 

approaches that can be taken with this prompt. 

Using more made it difficult to discern specific 

topics. Using less “cramped” the answer space. 

400 Ascendant Culture 100 

years (17) 

261 13 10  

400 Ascendant Culture 100 

years – 2 (26) 

262 12 10  

400 Ascendant Culture 100 

years – 3 (27) 

264 10 10  

400 Ascendant Culture 100 

years – 4 (28) 

258 16 10  

400 Ascendant Culture 100 

years – 5 (29) 

261 13 10  

400 Define technology (20) 336 11 5  

400 Enhanced ICT impacts 

(23) 

235 12 5  

400 Env impacts of ICT (25) 164 10 6  

400 Film and integrated vision 

of future (21) 

239 11 -  

400 GITS and implications of 

downloaded consciousness (24) 

323 15 -  

400 Manage C-Cycle (18) 319  8  

400 Op-ed at 5 years (57) 160  12 This “special” essay asks students to suggest what 

was missing from their university education. Over 

time, students have identified a short list of ~20 

topics with a solidly recurring top ~10. Due to the 

free Op-Ed approach, the essay content was such 

that the LDA was able to recognizably identify only 

about half. 

400 Sci Fi impact on future 

tech (22) 

259  -  

400 Science and Faith (19) 326  -  
 

* Each of the “181 All…” corpora must specifically exclude the 13 “expert vector essays” in the “181 All - roberts vector” and 
“181 All – mattick vector” corpora when they are estimated. 

** Each of the “400 Ascendant…” corpora must specifically exclude the 11 “expert vector essays” in the “400 Ascendant Culture 

- roberts vector” corpus when they are estimated. 
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Appendix B: Software 

 

The software package was written in C# for Windows (.NET 4.0) and deployed as a Windows Forms 

application. The database was developed for Microsoft SQL Server, but deployed on MS-Access 2013 for 

ease of use and portability. 

 

The software consists of approximately 1500 lines of C/C++ code which implements the LDA model, and 

approximately 3500 lines of custom C# that became the user interface and provided the toolset on which 

this research was based. 

 

Use Cases for the custom software development effort: 

 

1. Manage essay documents 

1.1. Clean essays: remove stop words, special characters, perform stemming, etc. 

1.2. Load essays from file (MS-Word doc or text) 

1.2.1. Assign “class”, “prompt”, “year”, “special tags” (for later filtering) 

2. Manage corpora 

2.1. Create corpus 

2.1.1. Filter essays by class, prompt, year 

2.1.2. Select essays from list (allow for “hold outs” for testing) 

2.1.3. Describe corpus for ease of reference 

2.2. Append essay documents to extant corpus 

2.3. Duplicate corpus from extant corpus 

2.4. Compare similar corpora 

2.4.1. Optionally map topic names 

2.5. Delete corpus 

3. Perform LDA estimation (build model) and inference (matching) 

3.1. Estimate 

3.1.1. Select corpus 

3.1.2. Run LDA estimate (support “over-weighting” concept) 

3.1.3. Review topic selection 

3.1.4. Name LDA-identified topics (for human use) 

3.2. Infer 

3.2.1. Select held-out essay(s) (that is, essays NOT in corpus) 

3.2.2. Run inference 

3.3. Review results 

3.4. Assess confidence 

 

Software used under the GNU General Public License as published by the Free Software Foundation: 

 

Phan, X-H. (2007). A C/C++ Implementation of Latent Dirichlet Allocation (LDA) using Gibbs Sampling 

for Parameter Estimation and Inference. Retrieved from: http://gibbslda.sourceforge.net. 

Bartocha, K. (2007). C# implementation of the Porter2 stemming algorithm as described at 

http://snowball.tartarus.org/algorithms/english/stemmer.html. 

 

The stemmer operates as expected by generating “stemmed” words that are not always readable but 

represent multiple words. For example economi can match economy, economics, and economical, while 

manufactur can match manufacture, manufacturing, manufactory, etc. 

 

A more extensive look at the software can be found in the accompanying PowerPoint presentation. 
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Appendix C: Database 

 
Table Column Notes 

corpus  Maintains the essay ID lists that identify specific corpus 

 essayid  

 corpusid  

corpusDescription  Contains a short description of the corpus 

 corpusid  

 description  

corpusTopicAssign  Maps essay words to latent topics found in a corpus 

 corpusid  

 essayid  

 wordid  

 topicid  

corpusTopicNames  Maintains the user given topic names 

 corpusid  

 topicid  

 topicname  

corpusTopics  Maintains all the LDA estimation (model) data 

 corpusid  

 topicid  

 word  

 probability  

essayPrompt  Contains the essay prompts 

 prompttext  

 promptid  

 class  

inferTheta  Maintains all the LDA inference probabilities 

 corpusid  

 essayid  

 topicid  

 probability LDA topic allocation probability 

 allocationQuality User-assigned confidence in LDA topic allocation 

studentEssay   

 essayid Each essay receives a unique identifier 

 promptid Each essay is written in response to a specific prompt 

 essayYear The calendar year in which the essay was written 

 class The class for which the essay was written 

 grade The grade assigned to the essay by the instructor 

 file The disk file name that contains the original essay 

 tag Used for specific identification of special essay groups 

 essayText The stemmed essay 

 processedLength Stemmed length (words) 

 originalText The original essay 

 originalLength Original essay length (words) 
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