

ARIZONA STATE UNIVERSITY

SCHOOL OF SUSTAINABLE ENGINEERING AND THE BUILT ENVIRONMENT

My Kingdom for a Toolsmith!
The IRIDIUM system specification

through the lens of Actor-Network Theory

Tom Roberts

ASU-SSEBE-CESEM-2010-RPR-001
Research Project Report Series

December 2010

http://cesem.asu.edu/

My Kingdom for a Toolsmith!

The IRIDIUM system specification through the lens of Actor-Network Theory

Tom Roberts

December 6, 2010

Abstract

Most would agree that telecommunications systems are socially constructed. Since

“communication” tends to involve people, it seems obvious that people should impact the

creation of such systems. But it is far less obvious that the specifications for such systems

should be noted for their social construction. As marvelous and technical as the system is,

we must not forget the important technological artifact known as the specification that

came before it. This paper tells the story of the social construction of the IRIDIUM

system specification as viewed through the eyes of a popular socio-technical systems

(STS) analysis tool. Actor-Network Theory (ANT) is employed to elucidate the culture of

the Motorola requirements engineering process while describing some of the primary

actors and their lively interactions as they strove diligently to produce the “perfect”

specification. Throughout, it will become obvious that just as the kingdom was lost “for

want of a nail,” so the IRIDIUM system specification was nearly lost for want of a

toolsmith.

Introduction

 The 1990s witnessed an unprecedented event in both the Space and Telecommunications

technology sectors: Motorola developed the world’s first (and only) global, space-based telephony system

boasting service anytime, anywhere on the planet. The system was dubbed IRIDIUM™ because the initial

plan called for 77 satellites in low-earth orbit and 77 is the atomic number of the element Iridium. Prior to

this announcement, cellular telephony systems in the U.S. were beginning to expand but still offered

limited (mostly urban) coverage, and the idea of “anytime, anywhere” was compelling. IRIDIUM was to

fill an important niche in this world of telecommunications.

 At the announcement, it was immediately clear to large systems engineering firms (e.g., TASC,

SAIC, Booz-Allen-Hamilton), who were regularly employed in large government programs that this

would be a target rich environment for their wares: system engineering services. This was because those

of that ilk knew that Motorola had limited experience specifying, designing, building, deploying,

operating, and maintaining a system of this magnitude. At the time, Motorola’s “comparative advantage”

(sensu Ricardo, 1817) was in designing and developing small devices: radios, phones, pagers, and

microprocessors. For their own government jobs, they would sometimes deploy communications

“systems” to outfit a large van or armored personnel carrier, but most Motorola systems remained small.

They simply didn’t know how to engineer a complicated system like IRIDIUM. So it was, then, that

Motorola added dozens of system engineering service providers to the IRIDIUM system team—which

already boasted big players like Raytheon, Lockheed-Martin, and McDonnell Douglas—each contributing

their experience, and each hiring as fast as it could to meet the demand of this huge development effort.

 During the mid-1990s, I supervised a staff of over 40 engineers working on the IRIDIUM system.

Each engineer performed analyses and research, and developed specification and requirements

documentation using a Motorola-mandated model-based system engineering (MBSE) tool known as

RDD-100 (a product of Ascent Logic Corporation at the time). This important mandate was the “make or

break” for a system engineer on the IRIDIUM program. Working with the cumbersome RDD-100

package was complicated, frustrating, and absolutely required. This led to the rise of a new breed of

system engineer who quickly mastered the quirks of RDD: the toolsmith. With so many engineers

My Kingdom for a Toolsmith! T. Roberts, December 2010 2

required to use so difficult a tool, the toolsmith became the MVP of the specification development effort.

But before I get too far into the story, I must fill in a bit of background.

Systems Engineering 101

 As a fresh-out, recently graduated engineer, still wet behind the ears, I walked into the first day of

my new job full of anticipation, eager to embark on a lifetime of learning. I was met by my supervisor

who guided me into a lab and introduced me to the senior engineer who would be my mentor. After

Byron said “Hi” and “Welcome aboard,” he walked over to a collection of equipment racks,

affectionately patted one, and said “Well Tom, I guess the first thing you need to know is that the PE arms

the RIU DMA every MFS.” I very politely interrupted and said, “Begging your pardon, I don’t think

that’s the first thing I need to know.”

 Obviously, that lesson has stuck with me for over 25 years. I would like to say I never did that to

a junior engineer, but it is probably not true. In fact, we have all been put in situations where we have

found it necessary to, as the saying goes, “sink or swim.” To a certain extent, a reader who is unfamiliar

with systems engineering principles might be lost in the sea of terminology and “specification practices”

that are outlined herein. In the interest of ensuring that you are doing more swimming than sinking, this

section will highlight some of the terminology and practices of a system engineer. While this by no means

constitutes a complete explanation of the discipline of systems engineering, this introduction to the

concepts will provide you enough background to understand what comes later, and will also allow me to

introduce the IRIDIUM system by way of example.

Figure 1. IRIDIUM System Overview Showing Primary Subsystems and Interfaces

(Source: IRIDIUM System marketing brochure, c. 1993. Illustration by Dale Glasgow)

 Jim Helm, Senior Systems Engineer in Motorola’s Satellite Communications Division, and

manager of the system engineering effort, described the purpose of IRIDIUM as follows:

My Kingdom for a Toolsmith! T. Roberts, December 2010 3

The IRIDIUM System will provide a worldwide communications service for voice and

subscriber data between any two IRIDIUM Subscriber Units (ISUs) as well as between

any IRIDIUM Subscriber Unit and a local [public switched telephone network] customer.

It will also provide paging for its customers (Helm, 1997, p. 1).

 This is aptly depicted in Figure 1 which shows an artist’s conception of the IRIDIUM system. As

the first entry in the system engineering lexicon, understand that the “system” is the highest level

representation of what is being built. Generally, a large system will be comprised of subsystems. It should

be noted that subsystems are themselves systems and system decomposition can continue down to an

arbitrarily small terminal system. Sometimes smaller subsystems are called other names, for example,

IRIDIUM referred to them as “segments”. The first goal of systems engineering is to completely

decompose the system into its component parts, the subsystems, and to identify the interfaces between

them. The $5B IRIDIUM system was comprised of four primary subsystems: the Space Segment which

contained the satellite vehicles (and also included the satellite launch vehicle interfaces), the System

Control Segment that managed the satellite network while in orbit, the Gateway that interfaced IRIDIUM

to the terrestrial telephone systems known as the Public Switched Telephone Network (PSTN), and the

IRIDIUM Subscriber Unit which was the IRIDIUM phone.

 For our purposes, it matters very little what each segment contributed to the overall system. What

is important to us is that once a system has been decomposed into its major subsystems, subsystem

engineers (SSEs) are assigned to be the specialists for the functions that occur within their respective

subsystems. They are also tasked with ensuring the interfaces between their subsystem and the other

subsystems are properly specified and in this effort are assisted by the system engineers. IRIDIUM system

engineers (SEs) maintained purview of the entire system, that is, they understood the system at the

highest level and were responsible for ensuring the system would function as intended once it was built.

 To ensure the system was built properly and functioned adequately, the system engineers used a

specification. A system specification is a detailed list of all the requirements for the system. Very simply,

it’s a definition of the function and performance of a system. Each of the system requirements must be

allocated to a subsystem and assigned to a subsystem engineer. The goal for a specification is that it be

“perfect” as defined by four keywords: complete (no required function is missing), consistent (no internal

conflicts), validated (the requirements are real and necessary), and verifiable (can be tested and proven to

be satisfied). For example, if someone suggested a requirement like “IRIDIUM shall provide personal

communications anytime, anywhere,” it becomes the job of a system engineer to decide what that means

and what parts of the system are involved in satisfying that requirement. This process of requirement

analysis and allocation to subsystems is iterative and collaborative, leading to the myriad small functions

and features of a system like IRIDIUM.

 To assist them in their jobs, system engineers use a variety of Computer-aided Design (CAD) and

Computer-aided System (or Software) Engineering (CASE) tools. One such tool was RDD-100, which

implemented a method known as Requirements Driven Development to ensure a “perfect” specification

in all the ways mentioned above. Usually referred to simply as RDD, this tool was very powerful,

capable, thorough, and complete, but it was also extremely complicated and difficult to master. Even after

extensive training, the tool could require months to use effectively.

 In summary, system engineers who have purview of the entire system first decompose the system

into subsystems for which subsystem engineers take ownership. Interfaces between subsystems are

identified and thereafter all system requirements are allocated to subsystems and interfaces in a process

of negotiation that will lead to appropriate functional and performance requirements. The goal is a perfect

specification: complete, consistent, valid and verifiable.

 Once the need for a system is established and the funding has been secured, it seems a simple

next step to write a specification and commence building the system. For a system of the immensity of

IRIDIUM, however, this is not a simple challenge. Due to their proprietary nature, specific costs were

never published, so it is somewhat difficult to provide an idea of the size of the effort. Based on my

My Kingdom for a Toolsmith! T. Roberts, December 2010 4

extended tenure and broad exposure within the effort, however, I estimate the specification development

effort alone involved hundreds of engineers, full-time, for several years. My conservative estimate

suggests that developing the specification for the IRIDIUM system cost over $100M. This kind of money

forces management to take the effort very seriously. Results were vital.

Actor-Network Theory and the IRIDIUM Specification

 My selection of ANT to analyze the development of the IRIDIUM system specification was

based on its similarities with software development and business process engineering methods with which

I am familiar (cf., Jacobson, 1992; Jacobson, 1995). Such methods are used regularly in the creation of

specifications, so the application of ANT to analyze the social construction of the specification artifact

seemed a natural next step.

 Though it is not likely ANT has been employed in the analysis of a specification development

effort (a literature search unearthed nothing similar), ANT’s utility is not foreign to the information

systems domain, and it has been successfully applied to a variety of other projects involving information

technology. For example, ANT has been used to analyze systems in the health care sector (Cho et al.,

2007) and Enterprise Resource Planning systems (Elbanna, 2008). Even the automated baggage handling

system at the Denver International Airport was evaluated using ANT (Mahring et al., 2004). In fact,

Walsham suggests “no particular context or information system type can be excluded as a possible

application area for the theory” (Walsham, 1997, p. 477). Further, it is clear that artifacts like a

specification should be considered in consort with the network of actors and artifacts surrounding them.

Law points out “the stability and form of artifacts should be seen as a function of the interaction of

heterogeneous elements as these are shaped and assimilated into a network” (Law, 1987, p. 113), making

ANT a logical selection.

 Callon’s presentation of the primary features of Actor-Network Theory (Callon, 1986) provides a

solid framework for analyzing the development of the IRIDIUM system specification. In the analysis

below I will rigorously follow his three principles. First, generalized agnosticism will be demonstrated

through my impartiality toward both scientific and social dimensions of the specification development

effort. No point of view is privileged. Second, generalized symmetry is observed as I employ a single

repertoire for both social and technical conversations. Finally, free association forces me to treat all actors

equally, whether they are natural or social, human or mechanical.

 I will employ Callon’s four moments of translation (Callon, 1986) in a somewhat linear manner

for purposes of clarity (though linearity is neither implied nor expressly required in Callon’s work).

Treating them as “stages” herein will allow me to explore each step in detail as it relates to the IRIDIUM

system specification. Callon’s final “step,” dissidence, also turns out to be very important as we approach

closure for the artifacts under analysis.

Problematization

 Callon’s first moment of translation involves inter-definition of the actors (Callon, 1986). That

the actors are inter-defined is an important feature that becomes more apparent in the interessement, but

the problematization reveals one of the more powerful features of ANT: the actors need not be human.

While ANT works effectively with human actors, it also enables considerable depth of analysis for non-

human actors—as long as they are given appropriate voice. The trick is to define them in such a way that

there is a hub where they all come together at an obligatory passage point (OPP).

 Due to the immensity of the IRIDIUM specification project, I’ll be forced to limit my remarks to

a mere handful of the actors involved; three of which are human, two non-human. While you’ve not yet

been introduced to the key player (the toolsmith), you have already been exposed to four of the actors in

passing in the introduction to system engineering principles: the system engineer, subsystem engineer,

specification, and RDD-100. Two other actors will appear in the discussion of dissidence (ConOps and

My Kingdom for a Toolsmith! T. Roberts, December 2010 5

Flowtool), but these will be further defined at that time. The actors in the analysis are described in the

paragraphs that follow.

 Management declared to all, “Thou shalt use RDD and make a perfect specification!” Recall that

RDD was a CASE tool that was incredibly powerful, yet extraordinarily difficult to master. This decree

struck fear in the hearts of the system engineering team because IRIDIUM was going to be hard enough

itself without adding the complexity of a new and sophisticated tool. These were engineers who

understood important details about the entire system so they could effectively orchestrate the competing

requirements and allocate them to appropriate subsystems. Most system engineers were senior and

experienced in large systems integration, but had no exposure to tools. Immediately individual SEs started

saying, “I have a system to design. I don’t have time to learn RDD!” And, lamenting the quirks of the

new specification tool, they’d wonder, “How can I write that requirement in RDD?” Once some alacrity

with the tool was gained, it seemed there was always some roadblock that would engender remarks like

“RDD won’t like that!” And eventually, once enculturation was complete, engineers would start

instructing others with, “You’re supposed to do that in RDD!” Amidst all this, the system engineers were

reminded that their role was limited to system level specification. They were not to force specific

implementation details on the subsystems. Instead, they were to communicate only what the system must

do and flow the requirements down to the subsystem engineers who would determine how it would be

accomplished.

 In the meantime, the subsystem teams were given high-level budget figures and were directed to

start conceptualizing what their respective parts of the system must do to deliver on the system-level

requirements. The subsystem engineers were individuals who focused their expertise on the functions and

performance of their specific segment and were qualified to contribute to the definition of the system

level interfaces. SSEs were instructed to cooperate with the SEs, but knew in the back of their minds that

budgets were becoming less flexible and schedules were being pushed. On many occasions they could be

heard to say to the SEs, “Skip your RDD modeling. Just tell us what you need!” Or, when presented with

a robust RDD model that portrayed important requirements but in RDD’s inscrutable manner, “What do I

do with this?” Eventually, as the schedule continued to burn, it was much more frequent for the SSEs to

simply refuse to take new requirements with “Stick a fork in me, I’m done!” which was usually followed

quickly by “Trust us! We know what we’re doing!”

 Giving the specification a voice in the problematization is an important feature of ANT. The

specification was a principal actor in that it was the end product of the effort. The specification was a

demanding taskmaster, always wanting to be perfect. It knew it must pass muster under the scrutiny of the

managers and engineers, so many times it demanded to be re-written to meet its own strict requirements.

There were also many computerized tests that the specification must pass to ensure it was formal and

complete, so frequently it would remind its authors to ensure each requirement was really verifiable, or

that each had a “shall” statement that could be satisfied. The specification was also aware of the fact that

it would eventually become the real system, so stray requirements had to be finalized and allocated. In

this regard, the specification considered RDD-100 its friend—because RDD could ensure the

specification was perfect.

 RDD-100 was the CASE tool selected to assist engineers in specifying the system. It was capable

of formally representing the most complicated of highly-interactive systems. Though it had some

noteworthy quirks, it was certainly up to the task. This tool could not only model the functional

requirements of the system, but it could also assist in defining the performance requirements, supporting

engineers through the entire system development effort and into integration and test (Roberts & Farley,

1998 provides a reasonable overview of RDD’s utility over the entire system lifecycle). The most difficult

feature was its “cost of entry.” RDD “contributed” to the specification development effort by being hard

to use and hard to get along with. While an uncompromising master, it was, in fact, capable of generating

the perfect specification. But it had an attitude. More frequently than not it stood in the way while the

engineers were reminded that it must be used. RDD frequently reminded engineers they were “doing it

wrong” or that they’d left something out, resulting in an incomplete specification.

My Kingdom for a Toolsmith! T. Roberts, December 2010 6

 If RDD was so hard to master, it’s valid to wonder why management would force its use. The

reality is that it was hard to use by the staid masters of the system engineering art. Their reluctance to

adopt the tool was largely because they’d “never done it that way before.” RDD’s power was

unquestioned. The pundits of the day were saying:

The object-oriented approach is ideal for system decomposition into subsystems—the

basis for systems-level analysis. The RDD-100 system includes an object-oriented

database that encapsulates complex system information. You can descend through

multiple levels of detail until you arrive at a component as basic as a resistor (Brown,

1995).

Using RDD was, in fact, a good decision, but, given the culture, it might not have been the right decision.

It is arguable that for the team developing IRIDIUM, “old school” might have been a less stressful

approach. But, the decision was made and the team was faced with a dilemma: How could they make it

work?

 This is where the toolsmith stepped in and provided a solution that was unrivaled. These were

among a younger generation of system engineers able to master RDD more quickly. Further, there were

specifically skilled engineers that could make RDD sing and dance in short order. Paraphrasing Langdon

Winner, these were engineers whose skill with tools “became woven into the texture of their everyday

existence; the devices, techniques, and systems had shed their tool-like qualities to become part of their

very humanity” (Winner, 1986, p. 12). These were known as toolsmiths. Usually, a toolsmith is a

software practitioner that specializes in software tool use and feature exploitation. Sometimes this is done

through a programmable interface; sometimes it can be accomplished with scripting languages that are

programmed to operate the tool like a software robot. In the case of IRIDIUM, the toolsmith mastered a

short list of tools and RDD was at the top of the list. Thankfully, when the dilemma reached crisis

proportions, the toolsmiths raised their hands and said, “Tell me what you want, I’ll drive the tool.”

Obligatory Passage Point (OPP)

 If the system engineers hoped to be successful in creating a worthy system, if the subsystem

engineers held onto any visions of being able to finish on time and on budget, if the specification

maintained its dreams of perfection and purity, and if RDD had any plans of being able to overcome its

antisocial behavior and actually be used on this project, then there must be a toolsmith. IRIDIUM needed

the toolsmith—someone who would stand in the gap and bring all the groups together to generate a

perfect specification. In this manner, the toolsmith became the ANT obligatory passage point (OPP) as

depicted in Figure 2.

My Kingdom for a Toolsmith! T. Roberts, December 2010 7

Figure 2. ANT Problematization showing Obligatory Passage Point

Interessement

 Interessement deals with the “interest” of each actor. Callon suggests it is how the actors are

locked into their roles (Callon, 1986). During this moment of translation we learn what draws the actors

together in a profit-sharing relationship. This step defines the mutual benefit they derive, the win-win

resolution.

 The system engineers (SEs) are responsible for the overall specification, but have no direct

authority to force subsystem engineers (SSEs) to contribute well. SEs can only “suggest” and attempt to

maintain a feel-good, influential approach to cooperation on the specification team. Their problem is that

they also must fulfill their duty to release a “perfect” specification containing all the salient details that

only the subsystem engineers can provide. SEs, then, become indebted to the toolsmith for off-loading the

tool responsibilities so they can manage the personal interface with managers and subsystem engineers

with whom they must collaborate. Further, the SEs can pour all their hopes and dreams for the system

onto the toolsmith and trust that they are faithfully rendered into proper RDD models and hence reflected

in the specification that is ultimately generated.

 Subsystem engineers must also contribute their part to the specification effort using the RDD-100

tool to analyze and provide inputs. Their problem is they have no time for training, and little support from

their management for such time away from work (even though training is provided). In this regard, the

toolsmith who can take raw information and enter it into RDD is a godsend to the subsystem engineers. If

subsystem engineers can “deliver” on their part, they will, in turn, be loved by the system engineers who

are desperately trying to release a perfect specification. In this manner, the toolsmith “weakens the links”

(Callon, 1985, p. 9) between the SE and SSE and becomes the solution to the problem.

 But interessement doesn’t end there. The specification loves the toolsmith because otherwise it

must languish in imperfection, struggle for well-being, and be relegated to obscurity. Though the

management mandate made it clear that the specification must exist, there was no guarantee its existence

System
Engineer

Delivery of
specification
that results in
working system

Subsystem
Engineer

Preservation
of budget and
scope so it’s
buildable

Can I save money
and have no more
requirements
allocated?

Specification

I must be
perfect
(enough)

Can I be perfect
and not despised?

RDD-100

I must be
used

Can I be used
and not despised?OPP

(Toolsmith)

My Kingdom for a Toolsmith! T. Roberts, December 2010 8

would be high quality. The toolsmith made it possible for the specification to excel toward perfection in a

way it could never have done otherwise.

 RDD also loves the toolsmith. Like a self-centered pet cat, RDD has its back scratched in all the

right places while continuing to heap “attitude” on the toolsmith. The toolsmith knows all the right

buttons to push and all the right features to exploit. He keeps RDD happy and fulfilled. And still, the

toolsmith finds his role fulfilling as well. Not only does he get to make everyone happy (SE, SSE,

managers, etc), he gets to learn sophisticated CASE tools, optimize their throughput, participate in

creating the biggest system in the world, and learn a bit about system engineering. Plus he gets to write

software while having some fun with tool automation. In these ways he makes himself indispensible, the

centerpiece of the team, as shown in Figure 3.

Figure 3. Interessement showing the Toolsmith as the Centerpiece

Enrolment

 Callon’s enrolment translation consists of an ongoing negotiation and engagement process that

leads to success (Callon, 1986). The manner in which the toolsmith accomplished this in the IRIDIUM

specification effort can be best explained as an implementation of the Kano methodology as adapted for

the business model known as The Phoenix Imperative (Roberts, 1997/2010; Boar, 1993).

 The toolsmith focused the actor-network by taking the central role. As shown in Figure 4, a Kano

threshold was established and the network coalesced around the toolsmith who met all the threshold

qualifications. Thereafter, by performing regularly in keeping the effort moving forward, the toolsmith

retained the engagement of all the actors. This constituted a period of linear return on investment (ROI)

where any tasking assigned to the toolsmith could be expected to bring quality results. Occasionally, the

toolsmith would deliver a Kano excitement driver and attract everyone’s attention by doing something

previously impossible (usually through scripting or tool automation). Such excitement drivers had

exponential ROI and would re-engage any actors whose interest may have flagged. Eventually, the truly

System
Engineer

RDD

SPEC

Subsystem
Engineer

Toolsmith

My Kingdom for a Toolsmith! T. Roberts, December 2010 9

clever toolsmith repositioned these advanced capabilities as entry-level threshold attributes effectively

locking out the competition and perpetuating his role. It was in this manner that the IRIDIUM

specification development effort made great strides. The toolsmith was able to optimize everyone’s (and

everything’s) performance.

Figure 4. "Enrolment" ala the Kano Method

Mobilisation

 Andrade interprets Callon’s mobilisation translation as “the stage when actants become

spokespersons representing the network” (Andrade, 2010, p. 363). While this is important, it is vital to

understand that mobilisation demands appropriate representation. Mahring adds the flavor of loyalty in

representation when he describes mobilisation as involving “use of a set of methods to ensure that allied

spokespersons act according to the agreement and do not betray the initiators’ interests” (Mahring et al.,

2004, p. 214).

 The interessement and enrolment instigated by the toolsmith was so strong for the IRIDIUM

specification effort that to the surprise and delight of all, the specification started speaking for the teams.

This marked a measure of maturity toward which specification development teams strive, but only

sometimes achieve. It was not uncommon to hear conversations containing phrases like “What’s the spec

say?” or “I’ll have to check the spec.” Highest honor is accorded the specification when it is deemed

“right” in lieu of a particular implementation, such as, “well, I don’t know how you did it, but the spec is

‘right’ so it needs to match the spec.”

 As the specification continued to mature, and as engineers began to trust it, more requests came to

the toolsmith for exported content, or even for training in how to locate and export the content

themselves. And so it was that the specification faithfully represented the team to the outside world. But

this successful mobilisation was all too brief. It wasn’t long until the dissidence set in.

reposition

Threshold attributes help to gain entry.

Performance attributes provide linear ROI.

Excitement drivers provide exponential ROI.

Repositioning excitement as threshold locks

out the competition.

excitement

performance

threshold

time

h
a

p
p

in
es

s

My Kingdom for a Toolsmith! T. Roberts, December 2010 10

Dissidence

 During Callon’s period of betrayal and controversy, the interessement and enrolment can often be

seen to fail. Sometimes the issues reach all the way back and call into question the problematization,

indicating, perhaps, that the actor-network was never established properly by the analyst. In these latter

cases, it is important to learn from this that it isn’t what actually happened that was “wrong” per se. Only

that the analyst failed to appropriately fit the reality into the model. More frequently, however, what is

witnessed is that the actor-network operates as expected for awhile and then dissolves, either due to

betrayal, or as a logical consequence of elapsed time (i.e., all projects end, but not all fail, in both cases,

however, the team dissolves). This is what was witnessed in the IRIDIUM specification effort.

 On times scales as long as the IRIDIUM specification development effort (several years), there

are many instances of dissidence. For our purposes, there are two important actors that appear later in the

game and are important to the discussion of dissidence. These actors were an alternative “CASE tool”

known as Flowtool, and an alternative “specification” document known as a Concept of Operations, or,

ConOps. It is noteworthy that I have conspicuously employed quotation marks around “CASE tool” and

“specification” in the previous sentence. This is intended to imply that Flowtool was not a CASE tool in

the sense that RDD was, and neither was the ConOps a specification in the same sense the real

specification was. Importantly, they were not charlatans masquerading as more sophisticated tools, they

were simply late entries that filled important roles and satisfied particular needs.

Figure 5. RDD Behavior Diagram (left) and "Identical" Flowtool Representation (right)

 Flowtool was a homegrown (developed internally by a Motorola contractor), text-based language

(picture a very simple software programming language) from which message sequence diagrams (see

Figure 5) could be generated as a product of compilation. This tool was anything but rigorous and was

incapable of adequately modeling a system of any significance. Its primary benefit was that the output

product was easily interpreted by just about anyone after a few minutes of instruction—and it “mostly

worked” for the goals of the subsystem engineers. As shown in Figure 5, not only does the Flowtool

representation appear cleaner, it is more quickly assimilated, and far easier to draw. It should be obvious

why such a pictorial representations soon were in general use and created dissidence within the

specification teams who were required to use RDD to make the equivalent figures. Almost as a testament

to their ongoing productivity and resilience, the toolsmiths were able to quickly develop software that

would convert one visual representation into the other with very little effort.

 Dissidence also came in the form of smallish documents known as Concepts of Operations, or

ConOps. These were informal, English language, prose documents that described with a broad brush how

a part of the system would work. Such documents are widely used as simple communications tools and

certainly have a place in system development, but they are insufficiently rigorous and far too informal to

A B C

1

2

3

My Kingdom for a Toolsmith! T. Roberts, December 2010 11

be the only source of requirements for a system. There are fundamental and important differences

between a specification and concept of operations, not the least of which is that a ConOps contains only

minimal performance requirements and still less requirement allocation and traceability. Still, engineers

started writing these simple documents and they began to gain a following. Senior engineers, who were

too proud to learn RDD or work with a toolsmith, were garnering RDD “exemptions” and plunging

headlong into the creation of operations concept documents, preferring the free-form, stream-of-

consciousness approach that communicated well to those not indoctrinated into the complexities of RDD.

 In addition to these, there was an RDD bottleneck that came from too many requirements and too

little time. This occurred primarily due to lack of planning on the part of management inexperienced with

RDD and the employment of such tools. Management also granted “overrides” that allowed subsystem

engineers to “figure it out” between themselves (without the involvement of system engineers) and with

only a promise that such “hallway baselines” would be recorded in the specification. Further there was a

tendency to suggest that difficult issues become “integration and test requirements” that could be figured

out as the subsystems were joined together into the larger system.

 In a nutshell, specification users started fleeing, finding the occasional ConOps to be more

interesting reading. Add to this the rumors that RDD was going to be replaced by some other tool and the

betrayal was complete. Once the mandate was called into question, RDD could no longer continue to

demand it be used. The specification had lost its voice. The system engineering teams had lost their

purpose. Or, had they? It was around this time that everyone looked up and realized the IRIDIUM system

was built, was being integrated, and was starting to deliver on its promised function.

Closure

 Closure was seen in early and extended success for the problematization. The toolsmith really did

save the day, drawing the team together and providing a mechanism for success. Interessement and

enrolment were also quite successful. The toolsmith was able to greatly extend the duration of use for the

RDD CASE tool and the period during which formal specification practices were employed by the

Motorola team. Mobilisation happened, but it was fragile and temporary. Still, it lasted long enough to be

observable and effective. The specification spoke, but it wasn’t long before dissidence set in and its voice

was lost in the sea of dissent. Fortunately, the IRIDIUM system itself was reaching closure, and the role

of the specification was diminishing anyway.

Summary

 Summarizing the ANT analysis reveals that all goals were satisfied. Generalized agnosticism was

demonstrated in that all actors had hopes, dreams, roles, dilemmas, victories, setbacks, and final

dispositions. Generalized symmetry was demonstrated as actors were given equal voice with equal

weight. Free association was demonstrated as actors were chosen from the human and non-human realms.

Callon’s four moments of translation were demonstrated and proven to be effective mechanisms for

analysis.

 Dissidence was obvious though it did not specifically refute the “problematization.” Instead, it

occurred at the relational “end of life” for the “interessement.” As the specification did its work of

defining the system and the system was “built to spec” the system engineers moved into new roles and the

specification teams were no longer compelling relationships to maintain.

Conclusion and Outcomes

 While it is clear that the IRIDIUM specification was socially constructed it is also clear that the

specification development effort and the processes and tools associated with it did a significant degree of

shaping the social dimension as well. Sheila Jasonoff makes this point strongly in defining co-production:

“the workings of science and technology cease to be a thing apart from other forms of social activity, but

My Kingdom for a Toolsmith! T. Roberts, December 2010 12

are integrated instead as indispensible elements in the process of societal evolution.... the realities of

human experience emerge as the joint achievements of scientific, technical and social enterprise: science

and society, in a word, are co-produced, each underwriting the other’s existence” (Jasonoff, 2003, p. 17).

Social construction is rarely a one-way street.

 In this analysis, both ANT and SCOT have shown their strengths. ANT has demonstrated its

power across the board from problematization through dissidence. It adds significant value in giving

artifacts a voice. ANT also highlights how the important relationships forged during interessement and

enrolment can be vital in the later stages of mobilisation and dissidence where trust between actors is

paramount. SCOT, in its turn, has demonstrated the importance of the evolution of artifacts. Artifacts do

evolve over their lifecycle. This can be obscured by the ANT approach which would tend instead to

model evolution through a change in voice or representation.

 Where are they now? The specification continued to shout to deaf ears and was last heard saying:

“Don’t forget to leverage me for IRIDIUM-NEXT!” RDD was sidelined because of its pride. It was

avoided due to its personality flaws and hubris led to its downfall. It did receive some minimal follow-on

work on Teledesic, but its reign of terror ended with the demise of that system. The system engineers

became the system test team. That transition was fostered by the thought that “You specified IRIDIUM,

now make it work!” and it was more of a punitive sentence. The subsystem engineers reverted to

development work within the subsystem teams or moved to the test team. Essentially they were

assimilated by the IRIDIUM development army—which was massive.

 And what happened to the toolsmiths? They prospered. They were useful to the end and went on

to serve in a variety of roles on many other programs and with many other tools.

 No. IRIDIUM was not lost for want of a toolsmith!

Future Work

 Future efforts on the analysis of IRIDIUM system development would bear fruit if focused in

four primary areas: (1) the inclusion of additional actors in the analysis, (2) employment of the latest

growth and expansion of actor-network theory itself, (3) exploration of other socio-technical themes, and

(4) use of other analysis tools and approaches.

 First, additional actors could be analyzed to provide for a richer set of interactions. No effort was

made herein to analyze the role, for example, of contractors v. employees of Motorola—and there were

significant issues to overcome in this area (see Roberts, 1997/2010). Managers should be included in

order to explore the directive and mitigating influences they made. The role of the tool vendor was also

important. A specification review board held considerable sway in defining allowable levels of perfection.

Finally, including non-human actors like budget and schedule would be illuminating.

 Second, in his later work, Callon appears to have augmented ANT to include the concept of

devices. There are three kinds of devices: substantial (what flows around the actor-network), material (the

substance of the substance—if you will—that flows, that is, what it is made of, how it is shaped), and

procedural (what instigates and promulgates the flow). The inter-relationships of these devices establish

the network (Callon, 1991; Callon, 1999). These concepts are worthy of pursuit in the IRIDIUM space.

For example, for the IRIDIUM specification effort, the substantial device might be “system knowledge,”

the material device is the specification itself, that is, system knowledge codified in the RDD tool, and the

procedural device represents the many interactions between engineers, the toolsmiths, and the RDD tool.

This analysis could be fruitful and might actually instruct the industry on potential improvements to the

process of specification development.

 Third, other socio-technical themes such as the politics of the specification, the tools, and the

practices should be analyzed. The artifacts (e.g., Flowtool charts) gained political power of their own and

exerted influence in the daily machinations of the development effort. Technological optimism and

momentum could be evaluated to determine the extent to which they carried and thwarted the team.

Women’s themes should be explored. Of the several hundred system engineers in the Motorola Satellite

Communications (SATCOM) division, only a few percent were women. To not comment briefly on the

My Kingdom for a Toolsmith! T. Roberts, December 2010 13

feminist agenda at work within SATCOM seems negligent, but in the interest of space and focus, these

must be relegated to future research.

 Finally, the specification development effort should be analyzed from the standpoint of Jasonoff’s

co-production. There is no question the “shaping” was bi-directional.

References

Andrade, A. & Urquhart, C. (2010). The affordances of actor network theory in ICT for development

research. Information Technology & People. 23(4) 352-374.

Boar, B., (1993). The Art of Strategic Planning for Information Technology, John Wiley & Sons, Inc. pp.

210-211.

Brown, C. (1995, September). Détente comes to systems engineering. Electronic Engineering Times. p.

40. Retrieved December 1, 2010, from ABI/INFORM Trade & Industry. (Document ID:

10803439).

Callon, M. (1986). Some elements of a sociology of translation. In Law, J. (Ed.) Power, Action and

Belief. London: Routledge. Pp. 196-223.

Callon, M. (1991). Techno-economic networks and irreversibility. In Law, J. (Ed.), A Sociology of

Monsters: Essays on Power, Technology and Domination. London: Routledge. Pp 132–161.

Callon, M. (1999). Actor-network theory – the market test. In Law, J. (Ed.), Actor Network Theory and

After. Oxford: Blackwell.

Helm, J. (1997). IRIDIUM Worldwide Personal Communication System. AIP Conference Proceedings.

387(1) 979-984.

Jacobson, I. (1992). Object-Oriented Software Engineering – A Use Case Driven Approach. Reading,

MA: Addison-Wesley and ACM Press.

Jacobson, I. (1995). The Object Advantage – Business Process Reengineering with Object Technology.

Reading, MA: Addison-Wesley and ACM Press.

Jasanoff, S. (Ed.) (2003). Ordering Knowledge, Ordering Society. States of Knowledge: The Co-

Production of Science and Social Order. New York: Routledge.

Law, J. (1987). Technology and Heterogeneous Engineering: The Case of Portuguese Expansion. In

Bijker, W., Hughes, T. & Pinch, T. (Eds.) The Social Construction of Technological Systems.

Cambridge, MA: MIT Press. Pp. 111-134.

Mahring, M., Holmstrom, J., Keil, M. & Montealegre, R. (2004). Trojan actor-networks and swift

translations – bringing actor-network theory to IT project escalation studies. Information

Technology & People. 17(2) 210–238.

Pinch, T. & Bijker, W. (1987). The Social Construction of Facts and Artifacts. In Bijker, W., Hughes, T.

& Pinch, T. (Eds.) The Social Construction of Technological Systems. Cambridge, MA: MIT

Press. Pp. 17-50.

Ricardo, D. (1817). On the Principles of Political Economy and Taxation. London: John Murray.

My Kingdom for a Toolsmith! T. Roberts, December 2010 14

Roberts, T. (1997/2010). The Phoenix Imperative: An Alternative Maturity Model for Systems

Engineering Service Providers. Available at: http://hdl.handle.net/2286/R.A.106179.

Roberts, T. & Farley B. (1998). Regenerative Verification and Validation: Moving Forward from Reverse

Engineering. Proceedings of the 6th International Conference on Reengineering. IEEE Press.

Smith, S., Rose, M., & Hamilton, E. (2010). The story of a university knowledge exchange actor-network

told through the sociology of translation. International Journal of Entrepreneurial Behaviour &

Research. 16(6) 502-516.

Walsham, G. (1997). Actor-network theory and IS research: Current status and future prospects. In

Information Systems and Qualitative Research, Lee, A., Liebenau, J., & DeGross, J. (Eds.).

London: Chapman and Hall. Pp. 466–480.

Winner, L. (1986). The Whale and the Reactor. Chicago: University of Chicago Press.

