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The Pika and the Watershed:  The Impact of Small Mammal Poisoning on 31 

the Ecohydrology of the Qinghai-Tibetan Plateau 32 

 33 

Abstract   With approximately 20% of the world’s population living in its 34 

downstream watersheds, the Qinghai-Tibetan Plateau (QTP) is considered 35 

“Asia’s Water Tower.”  However, grasslands of the QTP, where most of Asia’s 36 

great rivers originate, are becoming increasingly degraded, which leads to 37 

elevated population densities of a native small mammal, the plateau pika 38 

(Ochotona curzoniae).  As a result pikas have been characterized as a pest 39 

leading to wide-spread poisoning campaigns in an attempt to restore grassland 40 

quality. A contrary view is that pikas are a keystone species for biodiversity and 41 

that their burrowing activity provides a critical ecosystem service by increasing 42 

the infiltration rate of water, hence reducing overland flow.  We demonstrate that 43 

poisoning plateau pikas significantly reduces infiltration rate of water across the 44 

QTP creating the potential for watershed-level impacts.  Our results demonstrate 45 

the importance of burrowing mammals as ecosystem engineers, particularly with 46 

regard to their influence on hydrological functioning. 47 

 48 
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INTRODUCTION 52 

 53 

Approximately 20% of the world’s human population lives in watersheds that 54 

originate on the Qinghai-Tibetan Plateau (QTP), thus this region is considered 55 

“Asia’s Water Tower” (Xu et al. 2009; Immerzeel et al. 2010). However, the 56 

grasslands of the QTP, which serve as the headwaters for many of Asia’s great 57 

rivers, are becoming increasingly degraded (Holzner and Kriechbaum 2001; 58 

Zhou et al. 2005; Harris 2008, 2010; Dong et al. 2013; Li et al. 2013).  One agent 59 

of change is overgrazing by domestic livestock (yak, sheep, goats), which has 60 

resulted in elevated population densities of a native, small, burrowing mammal, 61 

the plateau pika (Ochotona curzoniae) (Shi 1983; Fan et al. 1999; Holzner and 62 

Kriechbaum 2001; Zhou et al. 2005; Harris 2010; Dong et al. 2013; Li et al. 63 

2013). The presence of high density pika populations on degraded grassland has 64 

led local authorities to classify them as pests and initiate poisoning campaigns in 65 

an attempt to restore grassland quality.  Poisoning began in 1958, and the first 66 

wide-spread attempts to control pika populations were initiated in 1962 with 67 

applications of the rodenticide zinc phosphate (Smith et al. 1990; Fan et al. 68 

1999). By 2006, an area of 357 060 km2 had been poisoned in Qinghai province 69 

alone (An 2008).  In 2006 poisoning operations utilizing type C botulinum toxin 70 

were a central feature in the allocation of a special 7.5 billion yuan ($925 million; 71 

2006 exchange rate) fund for ecosystem management in the recently gazetted 72 

Sanjiangyuan National Nature Reserve in Qinghai province (Ma 2006).  By 2013 73 

the first phase of this extermination work directed at pikas had been carried out 74 



on 78 500 km2 of land at a cost of 157 million yuan ($25.5 million; 2014 exchange 75 

rate); over 31 000 km2 were targeted for extermination in 2014 (Gan 2014). Thus, 76 

this poisoning has gone on for over five decades, is massive in scale, yet has not 77 

improved rangeland health (Smith and Foggin 1999; Harris 2008; Smith et al. 78 

2006; Delibes-Mateos et al. 2011).   79 

An alternative view is that many native burrowing mammals represent 80 

keystone species for biodiversity and function as ecosystem engineers (Delibes-81 

Mateos et al. 2011; Davidson et al. 2012), roles that have also been attributed to 82 

plateau pikas (Smith and Foggin 1999; Bagchi et al. 2006; Badingqiuying 2008; 83 

Hogan 2010; Delibes-Mateos et al. 2011).  Plateau pikas occupy open alpine 84 

meadow habitat and live in adjacent social family groups, each of which occupies 85 

a large warren of burrows (Smith and Wang 1991; Dobson et al. 1998, 2000). 86 

Burrow densities may range from 120 – 500 ha-1 (Dong et al. 2013) to as high as 87 

2000 ha-1 (Dobson et al. 1998; Pech et al. 2007). These high plateau meadows 88 

support few trees, thus most endemic plateau birds (e.g. snow finches 89 

Montifringilla spp; Tibetan ground-tit Pseudopodoces humilis) breed almost 90 

exclusively in pika burrows; when pikas are poisoned their burrows collapse and 91 

these bird species disappear or their populations are greatly reduced (Lai and 92 

Smith 2003). Plant species richness is also higher in pika colonies compared with 93 

poisoned sites (Smith and Foggin 1999; Bagchi et al. 2006; Hogan 2010). 94 

Additionally, pikas are the main source of food of nearly every mammalian and 95 

avian carnivore on the QTP (Schaller 1998; Smith and Foggin 1999; 96 

Badingqiuying 2008).  As the carnivore guild suffers in areas where pikas have 97 



been poisoned, there have been concomitant knock-on effects to human 98 

populations. For example, with pikas making up as much as 60 - 78% of the diet 99 

of brown bears (Ursus arctos) on the QTP (Xu et al. 2006), bear attacks on 100 

property (primarily homes of local nomads) have increased where pikas have 101 

been eliminated (Worthy and Foggin 2008). 102 

The plateau pika may be considered the most characteristic mammal of 103 

the QTP (Wei et al. 2007).  Its current distributional range coincides with the 104 

geographical limits of the QTP, including the headwaters of all aforementioned 105 

rivers (2.5 million km2)(Smith et al. 1990; Smith and Xie 2008).  Additionally, the 106 

phylogeographic history of the plateau pika tracks the changing uplifting and 107 

periods of glaciation across the QTP from the late Pleistocene to the present (Ci 108 

et al. 2009; Yu et al. 2012).    109 

Within the QTP watershed, plateau pikas ubiquitously occupy the open 110 

alpine grassland/desert steppe niche, extending from flat bottomland upslope to 111 

the edge of the shrub (Potentilla fruiticosa, Caragana jubata) zone, where they 112 

tend to be replaced by the smaller Gansu (O. cansus) or Thomas’s pika (O. 113 

thomasi).  This available area of natural grassland on the QTP covers about 1.4 114 

million km2 (Fan et al. 1999), or over half of the extent of the QTP. One of us 115 

(ATS) has investigated plateau pikas on the QTP since 1984 at a variety of 116 

localities and has driven thousands of km across the QTP in Qinghai province 117 

(Smith et al. 1986; Smith and Wang 1990; Dobson et al. 1998, 2000; Smith et al. 118 

2006; Qu et al. 2007; 2008; ongoing investigations).  In drainages where pikas 119 

had not been poisoned, active pika families have been observed in all open 120 



landscapes: in wetlands, dry xeric regions, alpine meadows in flat bottomlands, 121 

on steep slopes, and in areas dominated by sedge vegetation (Kobresia spp.) 122 

and by grasses (such as Stipa spp. or Leymus).  Plateau pikas even extend into 123 

the shrub zone where Gansu pikas are absent.  124 

Historically plateau pikas were considered abundant by early explorers as 125 

reported by Prejevalsky (1876:146):  “Hundreds and thousands may be seen on 126 

a fine day disporting themselves in the open…” and Ekvall (1968:6): “…countless 127 

mouselike pikas…”  Contemporary measures of density of plateau pikas vary 128 

considerably depending on time of year, severity of overwinter conditions, and 129 

most important, rangeland condition – but generally range from about 50-200 ha-130 

1 (Smith and Wang 1991; Dobson et al. 1998; Qu et al. 2013).  With other factors 131 

controlled, plateau pika density (thus burrow density) is highest on heavily 132 

overgrazed rangeland, and may approach or exceed 300 pikas ha-1 (Shi 1983; 133 

Fan et al. 1999; Holzner and Kreichbaum 2001; Zhou et al. 2005; Harris 2010; 134 

Dong et al. 2013; Li et al. 2013). 135 

Despite being the most abundant native mammal in the region, our 136 

understanding of the potential role plateau pikas may play in ecosystem 137 

processes, including their ecohydrological impact on this ecosystem, is limited. In 138 

the QTP hydrologic system where the plateau pika occurs, precipitation can 139 

account for as much as 40% of annual flow and 100% of dry season flow of 140 

downstream rivers (Immerzeel et al. 2010).  Thus, infiltration, runoff, and 141 

groundwater storage in this headwaters ecosystem can potentially impact 142 

downstream ecosystems and communities, including those of the 1.4 billion 143 



people living in the QTP’s watersheds (Xu et al. 2009; Immerzeel et al. 2010). 144 

Here we hypothesized that the burrowing activity of pikas might act to increase 145 

the infiltration rate of water, particularly during summer monsoonal storms, thus 146 

providing a critical ecosystem service in this headwaters ecosystem. We show 147 

that poisoning plateau pikas significantly reduces the infiltration rate of water 148 

across the QTP with potential watershed-level impacts.  These findings suggest 149 

that to help ensure the long-term sustainability of the watershed on the QTP, the 150 

indiscriminate and wide-spread poisoning of plateau pikas should be curtailed.  151 

Further, our results demonstrate the broader importance of burrowing mammals 152 

as ecosystem engineers worldwide, particularly with regard to their influence on 153 

hydrological functioning. 154 

 155 

METHODS 156 

 157 

To test the hypothesis that plateau pikas, through their burrowing activity, 158 

increase infiltration rates we measured this parameter directly at three treatment 159 

sites. These were defined as: (1) adjacent to an active pika burrow entrance (On 160 

Burrow) (Fig. 1a); (2) between two (or more) active pika burrows, but at a 161 

distance of at least 1 m from an active burrow entrance and its surface 162 

disturbance (On Colony)(Fig. 1b); and (3) areas where pikas had been 163 

thoroughly eradicated due to poisoning campaigns and absent for more than two 164 

years (where burrows had collapsed; Poisoned Site)(Fig. 1c). 165 



Measurements of infiltration rate of water were obtained using a double-166 

ring infiltrometer (Turf-Tech International – Model IN8-W; http://www.turf-167 

tec.com/) with an inner ring diameter of 15.24 cm and an outer ring diameter of 168 

30.48 cm, and accompanying Mariotte tubes. Infiltrometer placement at each site 169 

was randomly determined by throwing a piece of yak dung over one’s shoulder in 170 

a randomly determined direction. The apparatus was then situated adjacent to 171 

the closest site meeting the specifications of the treatment.  All placements were 172 

approximately level as the thick sod mat inhibited driving the apparatus more 173 

than 1-2 cm deep, and leakage could only be prevented on nearly flat surfaces.  174 

To assure consistency of measurement, the constant head (ponded) method was 175 

used, and testing sites were brought to, or near, saturation by allowing a 176 

minimum of 20 cm of water to infiltrate into the soil before measurements were 177 

taken (Bodhinayake 2004; Wu et al. 2007). To assure precision, infiltration rates 178 

were measured and averaged over two or three, 15 minute periods, depending 179 

on local conditions (i.e. availability of water, etc.).   180 

Data were collected from 16 May to 15 July 2010 and 18 May to 23 June 181 

2011. This experiment took place at five localities broadly spread across Qinghai 182 

Province in the Sanjiangyuan (“Three Great Rivers”) region, which serves as the 183 

headwaters for the Huang (Yellow), Yangtze, and Mekong rivers (Fig. 2). Special 184 

consideration was given to site selection. All active colony sites were located in 185 

flat bottomland meadow and central to a surrounding large population of pikas in 186 

all directions.  Poisoned sites were areas which had supported pika colonies 187 

before poisoning campaigns and which were physically similar to areas with 188 

http://www.turf-tec.com/
http://www.turf-tec.com/


currently established pika populations.  Due to the influence of livestock grazing, 189 

vegetative characteristics were similar in structure among the three treatment 190 

sites (Fig. 1).  As shown by Shi (1983) at the landscape scale, due to livestock 191 

grazing there is no significant variation in structure of ground cover (height, 192 

percent cover) between areas where pikas have been eliminated and where 193 

healthy populations occur.  Similarly, Pech et al. (2007) determined 194 

experimentally that grazing by livestock appeared to have a stronger influence 195 

than plateau pikas on the biomass of standing vegetation in alpine meadows on 196 

the QTP. 197 

 198 

RESULTS 199 

 200 

We found that the infiltration rate of water varied significantly across treatment 201 

sites (Fig. 3; Blocking-Factor ANOVA (two tailed): F2,8 = 16.992; α < 0.001).  The 202 

lowest infiltration rate was consistently recorded at poisoned sites (95% CI [0.08 203 

mm hr-1, 0.58 mm hr-1]). Intermediate infiltration rates were observed at sites 204 

within a colony but away from burrows (95% CI [1.25 mm hr-1, 1.88 mm hr-1]), 205 

and the highest rates of infiltration were consistently measured at sites adjacent 206 

to burrow openings (95% CI [3.01 mm hr-1, 5.02 mm hr-1]; see Fig. 3 for Tukey-207 

Kramer comparisons).  208 

 209 

DISCUSSION 210 

 211 



These data confirm that through its burrowing activity, the plateau pika is an 212 

ecosystem engineer; the infiltration rate of water was consistently higher in areas 213 

occupied by pikas.  Hogan (2010), using a more primitive single-ring infiltrometer 214 

protocol which did not control for initial soil moisture, similarly determined that 215 

infiltration rates were higher in areas on the QTP with active pika colonies than 216 

areas where they had been poisoned and all burrows had collapsed.  Li and 217 

Zhang (2006) investigated moisture content of soil in alpine meadows on the 218 

QTP by comparing a medium density pika population with an area from which 219 

pikas had been eliminated 18 years previously.  They found increased soil 220 

moisture in the top 10 cm of soil, but similar soil moisture content in deeper soil 221 

horizons (to 50 cm in depth).  In this respect the biopedturbation of plateau pikas 222 

leading to increased rates of infiltration is similar to that of burrowing mammals in 223 

other ecosystems (Whitford and Kay 1999; Eldridge and James 2009). 224 

 Increased infiltration rates on pika-occupied sites (compared with 225 

poisoned sites) could lead to less local runoff during the intense summer 226 

monsoonal rains on the plateau. This effect, in turn, should minimize the potential 227 

for down-slope water erosion.  However, it has become a shibboleth in much of 228 

the literature on plateau pikas that their presence, hence their burrowing activity, 229 

leads to increased erosion (Fan et al. 1999; Limbach et al. 2000; Zhou et al. 230 

2005; Wei et al. 2007; Dong et al. 2013; Li et al. 2013).  The assumption of 231 

increased erosion is then given as a further justification for controlling plateau 232 

pikas.  In none of these cited papers is erosion defined, and none of them offers 233 

any experimental evidence for the claim that the presence of pikas leads to 234 



increased erosion.  Fan et al. (1999:286) state:  “Rodents [n.b. pikas are 235 

lagomorphs, not rodents] also dig and destroy vegetation causing many serious 236 

problems such as soil erosion, and reductions in livestock carrying capacity and 237 

ecosystem diversity” [n.b. the later claim is clearly contravened by Smith and 238 

Foggin (1999); Lai and Smith (2006); Delibes-Mateos (2012)].  Wei et al. (2007) 239 

cite only reports by “local herdsmen” for their contention that pikas cause 240 

erosion.  Li et al. (2013) cite Zhou et al. (2005) and Limbach et al. (2000); and 241 

Zhou et al. (2005) cite Limbach et al. (2000) to support this claim.  Limbach et al. 242 

(2000:515) present no experimental evidence, and present only the following 243 

unsupported narrative concerning the plateau pika:  “…its burrowing activity 244 

exacerbates erosion by loosening the Kobresia sod and killing its roots, its 245 

burrows form paths of preferential flow of snowmelt, runoff, and storm waters 246 

thereby exacerbating these erosive forces…” While we also did not measure 247 

erosion directly, our controlled experiments conducted across much of the range 248 

of the plateau pika consistently showed an increase in infiltration rate in active 249 

pika colonies compared with poisoned sites, and all water has to go somewhere.  250 

The observed increase in infiltration rates on occupied sites does not support a 251 

hypothesis of increased water erosion potential caused by the burrowing of 252 

plateau pikas, and it is highly likely that runoff and the potential for downslope 253 

erosion is higher on poisoned sites. 254 

It seems unlikely that pikas “choose” sites with the potential for higher 255 

infiltration rates, as each poisoned site had, in the recent past, supported a pika 256 

population. Further, as noted above, the natural history of plateau pikas indicates 257 



that their distribution includes all open habitat types across the QTP, thus 258 

indicating that they do not select areas with a high infiltration potential.  These 259 

trends are particularly relevant when the lack of confounding processes is 260 

considered. Previous studies have shown that ground cover on and off pika 261 

colonies varies little (Shi 1983; Pech et al. 2007), eliminating possible interactions 262 

between ground cover and infiltration rates, groundwater recharge, and surface 263 

runoff (compare Fig. 1b and 1c).  Thus our observed variation in infiltration rates 264 

appears representative of local-level ecohydrological processes.   265 

Though impossible to quantify accurately due to gaps in geographical data 266 

(i.e. maps of now-contracted pika ranges, fine-grained precipitation data, fine-267 

grained soil moisture data) and the extremely complex geology of the QTP, the 268 

additive impacts of an increased infiltration rate across the range of the plateau 269 

pika (nearly the entire QTP; Smith et al. 1990; Smith and Xie 2008) on both 270 

groundwater retention and runoff control could be large and should be taken into 271 

consideration by policy-makers. Many contemporary factors enter into the 272 

hydrological profile on the QTP, including changes in grazing intensity, fencing, 273 

“ecological migration,” and climate change (Bauer 2005; Yan et al. 2005; Yeh 274 

2005; Foggin 2008; Xu et al. 2009; Immerzeel et al. 2010; Liang et al. 2013; 275 

Yang et al. 2014).  The difference in runoff potential between poisoned and un-276 

poisoned areas should be considered contributory to these factors.  However, to 277 

the best of our knowledge, the negative consequences of an increased potential 278 

for overland flow, including flooding in downstream watersheds, due to the 279 

poisoning of pikas, has not been considered by Chinese policy-makers. 280 



We argue that the policy of poisoning plateau pikas should be 281 

reconsidered.  Not only does this policy lead to critical losses of biodiversity on 282 

the QTP (Smith and Foggin 1999; Lai and Smith 2003; Badingqiuying 2008; 283 

Hogan 2010, Delibes-Mateos et al. 2011), but it ignores the ecosystem services 284 

pikas provide. Our precise experiments using the infiltrometer approach 285 

conducted across much of the range of the plateau pika demonstrate that the 286 

radical reduction in infiltration rates that accompanies pika poisoning exhibits the 287 

potential to alter the hydrologic regime of this headwaters region. Future 288 

research should focus on closing the data gaps necessary for directly quantifying 289 

these risks; however, in the absence of such data, these results are compelling 290 

evidence that pikas play a key role not only in biodiversity on the QTP, but in the 291 

flow of the rivers that originate throughout their geographic range.  292 

 293 
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 FIGURE LEGENDS 502 

 503 

Figure 1.  Portrayal of sites identified for ecohydrological measurements on the 504 

Qinghai-Tibetan Plateau.  (a) “On Burrow.”  Infiltrometer was placed centered in 505 

disturbed area outside the plateau pika burrow entrance; (b) “On Colony.” 506 

Infiltrometer was placed at least 1 m from an active pika burrow; (c) “Poisoned 507 

Site” showing the condition of pika-free grassland.  Infiltrometer placement at 508 

each site was randomly determined (see text).  509 

 510 

Figure 2.  Map of the study area on the Qinghai-Tibetan Plateau, People’s 511 

Republic of China.  Locations for measurements were broadly spread across the 512 

alpine meadows of eastern Qinghai Province (average elevation = 4,000 m), and 513 

encompassed the drainage systems of the Mekong (Nangqian = map site 1), 514 

Yangtze (Chendou = 2, Zhenqin = 3), and Huang He (Dawu = 4; Sendou = 5) 515 

rivers. 516 

 517 

Figure 3.  Average infiltration rate of water by treatment and location. Error bars 518 

represent 1 SEM. Blocking-Factor ANOVA was used to test for significant 519 

variation in mean infiltration rate of all three treatments across localities.  520 

Treatments included measurements On Burrow (adjacent to an active pika 521 

burrow), On Colony (at least 1 m from active burrows, but within an active pika 522 

colony), and Poisoned Site (a location where pikas had been poisoned and old 523 

burrows had collapsed).  Total sample size for the project was 54 trials with 524 



sample sizes varying from nine (three per treatment) to 15 (five per treatment) by 525 

locality.  Blocking-Factor ANOVA (two tailed): F2,8=16.992; P<0.001.  Tukey-526 

Kramer comparisons between sites:  Poisoned Site v. On Burrow = P<0.001; 527 

Poisoned Site v. On Colony = P<0.004; On Colony v. On Burrow = P<0.001. 528 


