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This manuscript reviews biological abnormalities shared by autism spectrum disorder

(ASD) and epilepsy. Two neuropathological findings are shared by ASD and

epilepsy: abnormalities in minicolumn architecture and γ-aminobutyric acid (GABA)

neurotransmission. The peripheral neuropil, which is the region that contains the inhibition

circuits of the minicolumns, has been found to be decreased in the post-mortem

ASD brain. ASD and epilepsy are associated with inhibitory GABA neurotransmission

abnormalities including reduced GABAA and GABAB subunit expression. These

abnormalities can elevate the excitation-to-inhibition balance, resulting in hyperexcitablity

of the cortex and, in turn, increase the risk of seizures. Medical abnormalities

associated with both epilepsy and ASD are discussed. These include specific genetic

syndromes, specific metabolic disorders including disorders of energy metabolism

and GABA and glutamate neurotransmission, mineral and vitamin deficiencies, heavy

metal exposures and immune dysfunction. Many of these medical abnormalities can

result in an elevation of the excitatory-to-inhibitory balance. Fragile X is linked to

dysfunction of the mGluR5 receptor and Fragile X, Angelman and Rett syndromes are

linked to a reduction in GABAA receptor expression. Defects in energy metabolism

can reduce GABA interneuron function. Both pyridoxine dependent seizures and

succinic semialdehyde dehydrogenase deficiency cause GABA deficiencies while urea

cycle defects and phenylketonuria cause abnormalities in glutamate neurotransmission.

Mineral deficiencies can cause glutamate and GABA neurotransmission abnormalities

and heavy metals can cause mitochondrial dysfunction which disrupts GABA

metabolism. Thus, both ASD and epilepsy are associated with similar abnormalities that

may alter the excitatory-to-inhibitory balance of the cortex. These parallels may explain

the high prevalence of epilepsy in ASD and the elevated prevalence of ASD features in

individuals with epilepsy.
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INTRODUCTION

Autism spectrum disorders (ASD) is a behaviorally defined
disorder that has recently been estimated to affect as many as 1
out of 45 individuals (Zablotsky et al., 2015). Although, ASD is
defined by behavioral features, it is associated with co-occurring
medical conditions. For example, epilepsy is more prevalent in
ASD than in the typically developing children with a prevalence
ranging from 5 to 38% (Deykin and Macmahon, 1979; Volkmar
and Nelson, 1990; Tuchman and Rapin, 2002; Danielsson et al.,
2005; Hara, 2007). Data from surveys performed by the Autism
Research Institute on over 1200 participants suggests that the
prevalence is between 15 and 19%. Epilepsy is one of the most
disabling ASD co-morbidities as children with ASD and epilepsy
are more likely to have intellectual disability (Tuchman, 2013)
and increased mortality (Shavelle et al., 2001; Pickett et al.,
2011) as compared to children with ASD without epilepsy. In
addition, epilepsy in ASD tends to be more treatment-resistant
as compared to epilepsy in typically developing children (Sansa
et al., 2011).

One of the major questions in ASD research is its etiology.
Much ASD research concentrates on genetic causes (Rossignol
and Frye, 2012b) even though inherited single gene and
chromosomal defects only account for a minority of ASD cases
(Schaefer et al., 2013). However, genetic etiologies may be
overrepresented in children with ASD and epilepsy as many
genetic syndromes and gene mutations associated with ASD
include epilepsy as a common feature (Murdoch and State, 2013;
Tuchman et al., 2013).

Although some have suggested that clinical seizures do not
have any special causative significance in ASD (Tuchman and
Rapin, 1997), ASD coexists with epilepsy in several disorders
(see Section Specific Medical Disorders Associated with Both
ASD and Epilepsy) suggesting that the same neuropathology may
result in both ASD and epilepsy. Thus, this manuscript reviews
the shared biological abnormalities in ASD and epilepsy in two
sections. The section called Basic NeuropathologicalMechanisms
of Seizures in ASD discusses two neuropathological mechanisms
that have been described in ASD that can also cause epilepsy.
Both mechanisms involve an abnormal reduction in inhibitory
mechanisms of the brain, thereby resulting in an increase in
the excitatory-to-inhibitory balance. The section called Specific
Medical Disorders Associated with Both ASD and Epilepsy will
review specific clinical disorders that have been described in
both ASD and epilepsy with special reference to underlying
neuropathological mechanisms that can cause seizures.

Overall, our review finds that many disorders associated with
ASD increase the excitatory-to-inhibitory balance by either (1)
reducing inhibitory circuits in the brain through a decrease in
the inhibitory neurotransmitter γ -aminobutyric acid (GABA),
or (2) increasing excitatory circuits in the brain through
an increase in glutamate neurotransmission. Elevation in the
excitatory-to-inhibitory balance in the brain can lead to seizures.

Abbreviations: AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid;

NMDA, N-methyl-D-aspartate; ASD, autism spectrum disorder; ATP, adenosine-

5′-triphosphate; CNS, central nervous system; GABA, γ-aminobutyric acid.

By carefully outlining these disorders, insight into the etiologies
that underlie ASD may be better understood.

BASIC NEUROPATHOLOGICAL

MECHANISMS OF SEIZURES IN ASD

Several neuropathological processes associated with ASD are
also associated with epilepsy. Here we review two such
neuropathological processes: (1) minicolumn architecture and
(2) GABA neurotransmission.

Minicolumn Architecture
The minicolumn is a radially-oriented assembly of neurons
and cellular elements considered to be an elemental modular
microcircuit of the neocortex (Buxhoeveden and Casanova, 2002;
Casanova et al., 2006). The minicolumn core contains pyramidal
cell arrays surrounded by a peripheral neuropil space that
contains GABAergic inhibitory interneurons and other cells such
as the double-bouquet cell (Mountcastle, 1997; Buxhoeveden
and Casanova, 2002; Defelipe, 2005). Double-bouquet cells
feature axonal bundles which provide a vertical stream of
inhibition (Mountcastle, 1997). This inhibitory stream insulates
the minicolumn core from the excitation from other surrounding
minicolumns (Defelipe et al., 1990; Favorov and Kelly, 1994;
Defelipe, 1999).

The peripheral neuropil space has been shown to be
reduced in post-mortem brain tissue from ASD individuals
(Buxhoeveden and Casanova, 2002), with this reduction most
prominent over the prefrontal cortex (Casanova et al., 2006).
The neuropil space is reduced within the region that contains
the inhibition circuits of minicolumns (Defelipe et al., 1990;
Favorov and Kelly, 1994; Defelipe, 1999). These architectural
changes should, theoretically, disrupt the normal balance
between excitation and inhibition influences within the columnar
organization of the cortex (Casanova et al., 2003). A reduction
of GABAergic inhibitory activity has been proposed to result
in hyperexcitability of minicolumn circuits and can explain
some of the symptomatology observed in ASD, including the
high incidence of seizures and auditory-tactile hypersensitivity
(Rubenstein and Merzenich, 2003). Networks of inhibitory
interneurons acting as GABA gated pacemakers are also
critically involved in gamma oscillations (Grothe and Klump,
2000). Abnormalities in gamma oscillations are associated
with problems with binding and the coactivation of neural
assemblies. A deficit in binding and gamma oscillations has been
proposed to explain many of the symptoms related to ASD (e.g.,
visuoperceptual defects, understanding and using context; Grice
et al., 2001; Brock et al., 2002; Brown et al., 2005; Rippon et al.,
2007; Tommerdahl et al., 2007).

GABA Transmission
GABA is the major inhibitory neurotransmitter of the
central nervous system (CNS). Abnormalities in GABA
neurotransmission have been associated with epilepsy.
GABBR1A, GABBR1B, and GABBR2 receptor subunits are
reduced in the hippocampi of patients with temporal lobe
epilepsy (Princivalle et al., 2003), and animal models have also
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shown a link between GABA receptor expression and epilepsy
(Schuler et al., 2001; Han et al., 2006). Individuals with ASD
have been shown to have abnormalities in GABAergic brain
systems (Blatt et al., 2001; Dhossche et al., 2002; Fatemi, 2008),
as well as a reduction in GABAA(Fatemi et al., 2009) and GABAB

(Fatemi et al., 2009) receptor subunits in both the frontal and
parietal cortices, as compared to controls, with the ASD group
also demonstrating a markedly higher rate of epilepsy than the
controls. In addition, the GABA subunits found to be reduced
in individuals with ASD (i.e., GABRα1 and GABBR1) have been
associated with childhood absence epilepsy, juvenile myoclonic
epilepsy, and atypical absence seizures (Delgado-Escueta, 2007;
Kang et al., 2009).

SPECIFIC MEDICAL DISORDERS

ASSOCIATED WITH BOTH ASD AND

EPILEPSY

Genetic Disorders
The neurobiological mechanisms leading to seizures in genetic
syndromes that are associated with ASD are diverse and complex.
Imbalances in GABA and glutamate have been suggested to
underlie CNS dysfunction in several of these genetic syndromes.
Defects in GABAA function has been implicated in Fragile
X (D’hulst and Kooy, 2007) and recent studies on Fragile
X suggest that mGluR5 dysfunction results in heightened
excitability and secondary alterations in GABA function (Frye,
2014). Dysfunction in GABAA receptor function has also
been implicated in Angelman syndrome (Pelc et al., 2008).
Indeed, a cluster of genes coding for three GABAA receptor
subunits lie adjacent to the critical Angelman region (i.e.,
UBE3A).Mutations within the Rett syndrome gene (i.e., MECP2)
decreases expression of GABRB3, a gene responsible for encoding
the beta3 subunit of the GABAA receptor, and DLX5, a gene
which regulates the production of enzymes responsible for GABA
production.

Some genetic syndromes associated with epilepsy and ASD
are associated with metabolic abnormalities. For example, mouse
models of both Angelman and Rett syndromes demonstrate
mitochondrial dysfunction (Kriaucionis et al., 2006; Su et al.,
2011) and mitochondrial dysfunction is reported in a Rett
syndrome case (Condie et al., 2010). Phelan-McDermid
Syndrome (PMS) and duplication of the 22q13 region are both
associated with ASD and mitochondrial dysfunction (Frye,
2012b; Frye et al., 2016a). As mentioned below, disruption
of mitochondrial metabolism can result in changes to the
excitatory-to-inhibitory balance.

Single gene disorders associated with both ASD and
epilepsy have been associated with abnormalities in the
excitatory- to-inhibitory balance (Srivastava and Schwartz,
2014). Mutations in CNTNAP2 (Peñagarikano et al., 2011) or
CNTNAP4 (Karayannis et al., 2014) result in reduced GABAergic
neurotransmission. The SYNGAP1 haploinsufficiency animal
model shows an increase in neuronal excitability and an increase
in seizure susceptibility (Clement et al., 2012). Other genes are
associated with a relative decrease in the excitatory-to-inhibitory

balance. Animal model with NLGN3 mutations demonstrates
increased inhibitory neurotransmission (Tabuchi et al., 2007).
Cellular (Shcheglovitov et al., 2013) and animal models (Bangash
et al., 2011; Wang et al., 2011b) demonstrate a reduction in
excitatory neurotransmission when SHANK3 is disrupted.
Animal models with decreased synapsin I (SYN1) demonstrate
reduced glutamate release (Li et al., 1995).

Metabolic Disorders
Disorders of Energy Metabolism
Disorders of energy metabolism have been associated with ASD
(Giulivi et al., 2010; Frye and Naviaux, 2011; Frye, 2012c; Rose
et al., 2014a,b) and epilepsy (Frye, 2015). Some children with
ASD have mitochondrial dysfunction that is different than classic
mitochondrial disease (Frye and Rossignol, 2011; Rossignol and
Frye, 2012a; Frye, 2012a). Of children with mitochondrial disease
and ASD, 41% have seizures (Rossignol and Frye, 2012a).

Other disorders of energy metabolism are associated
with ASD and epilepsy, including disorders of creatine
metabolism (Póo-Argúelles et al., 2006; Longo et al., 2011) and
adenylosuccinate lyase deficiency (Spiegel et al., 2006; Jurecka
et al., 2008). Creatine and phosphocreatine play important roles
in energy storage and transmission of high-energy phosphates.
Adenylosuccinate lyase deficiency is a rare autosomal disorder
of de novo purine synthesis (Spiegel et al., 2006; Jurecka et al.,
2008). The purine nucleotide cycle regulates cellular metabolism
by controlling levels of fumarate, a citric acid cycle intermediate,
and adenosine, the precursor to adenosine-5′-triphosphate
(ATP) (Spiegel et al., 2006).

An energy deficiency can result in seizures. Neurons with high
firing rates, such as inhibitory GABA interneurons (Anderson
et al., 2008), are disproportionally affected by an energy deficit. In
addition, processes critically involved in the release and reuptake
of neurotransmitters and maintenance of the neuronal resting
potential, such as calcium homeostasis, are critically dependent
on mitochondrial function (Li et al., 2004; Quiroz et al., 2008;
Chen and Chan, 2009).

Disorders of GABA Neurotransmission
Several metabolic disorders directly lead to GABA metabolism
abnormalities. Pyridoxine and its primary biologically active
form, pyridoxal-5-phosphate, are essential cofactors for
over 110 enzymes, including glutamic acid decarboxylase
(GAD), the enzyme that produces GABA from glutamate.
Pyridoxal-5-phosphate depletion reduces GAD activity which,
in turn, increases glutamate, decreases GABA synthesis and
decreases cortical inhibition (Gospe et al., 1994; Gospe, 2002;
Mills et al., 2006). This occurs in pyridoxine dependent seizures.

Succinic semialdehyde dehydrogenase deficiency is an
autosomal recessive disorder of GABA metabolism. It results
from a defect in the aldehyde dehydrogenase gene (ALDH5A1;
Jakobs et al., 1981). Aldehyde dehydrogenase is partially
responsible for the degradation of GABA and when this enzyme
is deficient GABA is degraded through an alternative pathway,
resulting in the formation of gamma-hydroxybutyric acid and
GABA elevations in the brain. Positron emission tomography
studies suggest that chronic elevation in GABA down-regulates
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GABAA receptors, leading to a deficit in cortical inhibition and
an elevation in the excitatory-to-inhibitory balance (Pearl et al.,
2009a,b).

Disorders of Glutamate Neurotransmission
Two types of metabolic disorders (urea cycle defects and
phenylketonuria) may result in dysfunction of glutamate
neurotransmission. Glutamate is the major excitatory cortical
neurotransmitter and excess glutamate results in an elevation in
the excitatory-to-inhibitory balance, leading to seizures.

Urea cycle defects result in ammonia elevations. Astrocytes
exposed to ammonia do not express glutamate reuptake
transporters that normally reduce extracellular glutamate (Rose,
2006). Thus, increased ammonia levels in the brain can result in
elevated extracellular glutamate.

Neurological consequences of phenylketonuria are usually
avoided by dietary treatment starting at birth (Williams et al.,
2008). However, epilepsy and ASD may develop in untreated
children and in those noncompliant to the prescribed diet
(Baieli et al., 2003). Such children demonstrate high levels
of phenylalanine in the brain. Phenylalanine antagonizes
both N-methyl-D-aspartate (NMDA) and non-NMDA
glutamate receptors (i.e., α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA) receptors; Glushakov
et al., 2003). Chronic elevation in phenylalanine leads to an
upregulation of several NMDA and AMPA receptor subunits
(Glushakov et al., 2005), increased glutamate receptor density
and increased glutamate release (Martynyuk et al., 2005).
Such changes in glutamate neurotransmission predispose the
brain to heightened excitability and seizures, especially if the
phenylalanine level is transiently lowered (Martynyuk et al.,
2005).

Mineral Deficiencies
Magnesium is essential in neurotransmitter metabolism and
in modulating neurotransmitter receptor function. Ionized
magnesium is important in seizure control. Ionizedmagnesium is
a NMDA antagonist (Ault et al., 1980; Hallak, 1998) and may be a
factor in some epilepsies (Hallak et al., 1992; Mathern et al., 1998;
Mikuni et al., 1999). NMDA receptor activation by glutamate
results in calcium influx (Macdermott et al., 1986; Delorenzo
and Limbrick, 1996), which is pro-epileptogenic (Delorenzo,
1986; Heinemann andHamon, 1986). Low ionizedmagnesium or
altered balance between ionized magnesium and ionized calcium
may precipitate seizures (Chaistitwanich et al., 1987). Patients
with epilepsy have been shown to have significantly lower mean
ionized magnesium levels and an increase in the ionized calcium
to ionized magnesium ratio in spite of normal total serum
magnesium levels (Sinert et al., 2007).

The role of zinc in epilepsy is not clear. Low zinc levels
has been associated with seizures in children (Ganesh and
Janakiraman, 2008; Mollah et al., 2008) and in the EL epileptic
mouse (Fukahori and Itoh, 1990). Zinc acts as an anticonvulsant
(Williamson and Spencer, 1995; Cole et al., 2000) and decreases
seizure susceptibility (Fukahori and Itoh, 1990). However, zinc
has been shown to be proconvulsant in a mouse model (Pei
et al., 1983). Zinc co-localizes with glutamate where it inhibits

the reuptake of synaptic GABA, thereby increasing the cortical
inhibitory tone (Cohen-Kfir et al., 2005). Thus, a zinc deficiency
could increase the relative excitatory-to-inhibitory balance.

Vitamin Deficiencies
Children with ASD have been shown to have abnormalities
in cobalamin dependent pathways (Frye and James, 2014),
and cobalamin supplementation improves metabolites in these
pathways (James et al., 2009a; Adams et al., 2011; Frye et al.,
2013a; Hendren et al., 2016) and behavior (Adams et al.,
2011; Frye et al., 2013a,b; Hendren et al., 2016). The exact
mechanism in which cobalamin deficiency causes seizures is
unclear but infants with cobalamin deficiency manifest seizures
(Benbir et al., 2007; Erol et al., 2007). Cobalamin is essential for
myelin synthesis and methylation (Kumar, 2004). Neurons with
damaged myelin sheaths are more susceptible to the excitatory
effects of glutamate (Akaike et al., 1993).

Cerebral folate deficiency (CFD) is characterized by low
5-methyltetrahydrofolate in the CNS and is associated with ASD
and seizures (Ramaekers et al., 2002; Ramaekers and Blau, 2004).
Children with idiopathic ASD have a high prevalence of folate
receptor alpha autoantibodies that causes CFD (Frye et al.,
2013c, 2016b). Folate is essential in a wide range of metabolic
processes, including redox and homocysteine metabolism and
gene methylation (Obeid et al., 2007). Disruption in these
processes could disrupted redox metabolism, thereby depleting
glutathione which, in turn, can decreased glutamate degradation,
leading to increased cortical excitability (Deepmala et al., 2015).

Heavy Metals
Several epidemiologic studies support a relationship between
ASD and exposure to mercury or other heavy metals (Rossignol
et al., 2014). Epilepsy has been associated with exposure to toxic
levels of heavy metals including lead (Silbergeld et al., 1979;
Swartzwelder, 1985; Lockitch et al., 1991; Arrieta et al., 2005)
and mercury (Torres et al., 2000). Heavy metals may have toxic
effects on the brain by reducing mitochondrial function (James
et al., 2009b; Belyaeva et al., 2011; Wang et al., 2011a; Rose et al.,
2015), causing apoptosis (Wang et al., 2011a; Pal et al., 2012),
and increasing levels of reactive oxygen species (James et al.,
2009b; Furieri et al., 2011; Wang et al., 2011a). Although the
mechanism(s) by which heavy metals cause epilepsy are not clear,
both mitochondrial dysfunction (Rossignol and Frye, 2012a) and
high levels of reactive oxygen species (Riazi et al., 2010; Specchio
et al., 2010; Waldbaum and Patel, 2010), have been linked to
epilepsy.

Immune Dysregulation
Multiple studies have demonstrated evidence of abnormal
immune system activation in individuals with ASD. Unusually
high levels of proinflammatory cytokines have been found in
the cerebrospinal fluid of individuals with ASD (Vargas et al.,
2005). Abnormal activation of the intrinsic immune system
in the cerebral cortex, white matter, and cerebellum has been
demonstrated in individuals with ASD at autopsy (Vargas et al.,
2005).
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Children with ASD manifest autoantibodies implicated
in childhood epilepsy syndromes associated with language
regression (Connolly et al., 2006) and cognitive and behavioral
changes (Ganor et al., 2004; Vincent et al., 2004) and drug-
resistant epilepsy (Majoie et al., 2006) as well as autoantibodies
to critical brain elements, such as myelin basic protein, brain
derived neurotrophic factor and endothelial cells (Connolly
et al., 1999). GAD65 autoantibodies are associated with several
neurological disorders including drug-resistant epilepsy (Blanc
et al., 2009). One study found GAD65 autoantibodies in 15% of
children with ASD (Rout et al., 2012) but other studies have failed
to find these autoantibodies in ASD children (Kalra et al., 2015).

Certain autoantibodies, such as the folate receptor alpha
autoantibody, could result in specific syndromes like CFD
and a recent study suggests that the folate receptor alpha
autoantibody may also interfere with cobalamin metabolism
(Frye et al., 2016b). Autoantibodies associated with specific
seizure syndromes could also result in the dysfunction of specific
neural elements. Autoantibodies can also be an epiphenomenon
of underlying immune dysregulation.

SUMMARY

Many of these disorders associated with both seizures and
ASD increase the excitatory-to-inhibitory balance. Some
disorders reduce brain inhibition by reducing the inhibitory
neurotransmitter GABA by a reduction in GABA production,
metabolic failure of inhibitory GABA neurons or dysfunction
of GABA receptors. Other disorders increase brain excitation
by increasing the excitatory neurotransmitter glutamate
through increased production, alterations in degradation, or
altering glutamate receptors. Independent of these disorders,
neuropathological research on ASD points to abnormalities in
inhibitory GABA pathways.

A few studies suggest that some gene mutations are
associated with a reduction in the excitatory-to-inhibitory
balance. This appears to contradict the classic association

of seizures with cortical excitability. It may be that these
changes cause instability in neuronal networks or compensatory
changes at the neuronal level that may create abnormalities
in neural excitability. For example, although brain GABA is
increased in patients with succinic semialdehyde dehydrogenase
deficiency, GABA receptors are down regulated, leading to an
elevation in the excitatory-to-inhibitory balance (Pearl et al.,
2009a,b).

Clearly further research examining these pathways in more
detail could help guide the development of targeted treatments
and improve our understanding of the clinical implication of
these changes. This review suggests that neurological dysfunction
in at least a subset of children with ASD is based on alterations in
the excitatory-to inhibitory balance in the brain.
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