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Abstract
Contemporary human populations conform to ecogeographic predictions that animals will

become more compact in cooler climates and less compact in warmer ones. However, it re-

mains unclear to what extent this pattern reflects plastic responses to current environments

or genetic differences among populations. Analyzing anthropometric surveys of 232,684

children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and

the Americas, we confirm that body surface-to-volume correlates with contemporary tem-

perature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28).

However, far more variation in body surface-to-volume is attributable to genetic population

structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly

all of the observed relationship between contemporary temperature and body surface-to-

volume among children and adults. Indeed, after controlling for population structure, con-

temporary temperature accounts for no more than 4% of the variance in body form in these

groups. This effect of genetic affinity on body form is also independent of other ecological

variables, such as dominant mode of subsistence and household wealth per capita. These

findings suggest that the observed fit of human body surface-to-volume with current climate

in this sample reflects relatively large effects of existing genetic population structure of con-

temporary humans compared to plastic response to current environments.

Introduction
Bergmann’s and Allen's rules are perhaps the best-known of all ecogeographical principles.
They propose that animal body forms adapt to local climates so that cold-adapted populations
tend to have more compact bodies and shorter limbs that reduce the ratio of surface area to
heat-producing mass or volume. Conversely, heat-adapted populations tend to have less com-
pact frames and longer limbs that improve the capacity for dissipating heat. While differing in
focus—on body size and limb proportions, respectively—both rules hinge on a deeper ecogeo-
graphic prediction that an organism's surface area to volume will increase in warmer climates
and decrease in cooler climates. Numerous studies have shown this general pattern to hold in
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humans, with populations living in the tropics having less compact frames and those in colder
climates having more compact builds [1–12]. This is also consistent with experimental evi-
dence that taller and thinner human bodies are better at dissipating heat [13, 14].

Though ecogeographic predictions have been confirmed many times in humans, the proxi-
mate pathways driving the implied adaptive fit in humans and other animals are poorly under-
stood [1, 13–15]. Contemporary variation in body form can arise from genetic differences
across human populations that have arisen through a variety of processes, including natural se-
lection (either stabilizing or directional), gene flow, genetic drift, and mutation. For example, if
there has been a long-term correlation between a population's past and current climates and
natural selection has also favored genetic adaptations for body form that regulate heat loss and
conservation, then we would expect to see some fit between contemporary climate and body
form. It is also possible that an observed fit could arise due to patterns of migration and gene
flow that are correlated with geography and climate [16, 17].

Contemporary variation in body form can also arise from plastic responses to current envi-
ronments. For example, moderate and chronic undernutrition—more common in warmer
tropical areas—can produce thinner adult bodies [13, 18–20]. Human bodies are also proposed
to respond over the course of development to thermic stress in a way that fits the local environ-
ment [1, 14]. These arguments are consistent with findings from other animals. For example,
experimentally increasing ambient temperature leads to increased long bone growth in mice
[21]. Similarly, a longitudinal study of body mass among red-billed gulls showed that the mean
population body size declined over 47 years of increasing temperatures, but there was no evi-
dence that this was due to directional genetic selection, suggesting a plastic response to climate
change [22]. Recent evidence from human populations constrains the timing of these plastic
responses by showing that population variation in body build among humans emerges in in-
fancy and early childhood. This suggests that observed climate-related differences in human
body form likely arise in utero or very early in development [10, 11].

To the degree that plastic responses to the current environments are responsible for some of
the observed fit between climate and human body form, we would expect that two groups with
close genetic affinity but living in different climatic conditions should exhibit different body
forms that reflect these differing climatic conditions. Specifically, the body shapes of people liv-
ing in a warmer climate should exhibit greater average surface area to volume than the average
body shapes of genetically similar people living in a cooler climate. On the other hand, if most
of the differences in body form are due to genetic differences, then we would expect: (1) that
when comparing groups with similar genotypes, there should be little or no additional effect of
contemporary climate on body form, and (2) that groups with similar genotypes should have
more similar body forms.

Our goal here is to assess the degree to which the contemporary fit between human body
form and climate can be attributed to plastic responses to current conditions independent of the
genetic affinity among populations. To do this, we integrate anthropometric, genetic, and cli-
matic data from 80 ethnolinguistic populations in Africa, Asia, and the Americas. To assess the
relative compactness of human bodies, we use standard measures of weight relative to height in
humans—body mass index (BMI) for adults and weight-for-height for children—that have been
used in prior studies of ecogeographical rules in humans [1–3, 10, 11]. Widespread increases in
adiposity are a very recent but globalizing phenomenon that mask underlying variation in body
form, making unadjusted body form a noted limitation of prior studies of ecogeographical rules
[2, 23]. To deal with this issue, we apply the novel concepts of basal body mass index for adults
and basal weight-for-height in children as comparative population measures of body mass rela-
tive to height that largely removes the effects of recent nutrition transitions [11, 24]. Prior re-
search has shown that there is a lower limit to the mean BMI of populations surviving with
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extremely scarce resources [24], and basal body mass index (or basal weight-for-height) is de-
fined as the mean body mass index (or weight-for-height) of populations without sufficient re-
sources to accrue additional mass. These estimates of basal body mass have been shown to be
independent of country-level wealth and fat-linked disease prevalence [24].

For a measure of genetic affinity between populations, we use estimated proportion of an-
cestry from 14 genetic clusters identified by Tishkoff et al. [25]. A number of models of human
genetic population structure have been proposed [26, 27]. We use Tishkoff's 14 cluster model
for two reasons: (1) it contains publicly available estimates that can be linked to a large number
of ethnic groups in existing Demographic and Health Surveys, and (2) the estimates are suffi-
cient to account for a very large portion of variation in human body form as will be
shown later.

For measures of heat and cold stress, we use three measures of mean, minimum, and maxi-
mum local temperature from ecological databases. The systematic anthropometric data from
Demographic and Health Surveys is a strength of the study, but it also limits the sample to
tropical- and subtropical-dwelling humans and thus excludes populations living in colder tem-
perate regions. This restricted sample still shows ecogeographical associations of similar mag-
nitudes to those observed in studies including populations from colder climates. However,
given that two different adaptive processes may influence body build—adaptations to heat
stress and adaptations to cold stress—the current findings are limited to theories based on ad-
aptations to heat stress.

In this paper, we combine these estimates of genetic affinity, basal BMI and weight-for-
height, and local climate, as well as environmental variables from 80 contemporary populations
in Africa, southern Asia, and the Americas, to assess if current fit between climate and body
form in tropical and subtropical-dwelling human groups is best explained as plastic responses
to current conditions, a reflection of existing genetic diversity, or combinations of these.

Materials and Methods

Sample inclusions and data sources
Data on height and weight, household wealth, age, education and rural-urban residence were
available for populations from nationally representative, repeated cross-sectional household
Demographic and Health Surveys (DHS) datasets in 64 countries, standardized to permit
cross-country comparisons [28] (available at measuredhs.com). DHS surveys conducted be-
tween 1991 and 2011 were included. To minimize wealth effects, we also restricted our analysis
to individual households with estimated wealth less than 4000 USD per capita (2011 interna-
tional units, purchasing power parity). For each country, there were between one and five sur-
veys conducted in different years. Detailed protocols for DHS surveys as well as survey data are
available at measuredhs.com.

For genetic population structure, we use estimates from Tishkoff et al. [25]. We analyzed 80
unique populations reported by Tishkoff et al. with comparable populations measured by the
DHS. In addition to 18 populations from South Asia and 58 populations from Africa, genetics
and anthropometric data exist for two populations from the Americas (Guatemala and Colom-
bia) and two from southeast Asia (Cambodia and Timor L'Este) [25]. Although there are other
models of human population structure [26, 27], the Tishkoff et al. paper provides readily avail-
able estimates of genetic affinity. We will also show that despite potential errors introduced by
this model, the estimates still provide very good fit to morphological data.

For estimates of basal BMI in women, we excluded pregnant women as well as women with
more than primary education, and include a dummy variable controlling for urban residence
[24]. To control for lactation, we also include a dummy variable for whether women were
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currently breastfeeding on the day of the interview. For men, we excluded individuals with
more than primary education and include a dummy variable controlling for urban residence.
For children, we included most recently born living children (ages 0 to 59 months) of women
ages 20–49 who have no more than primary education [11]. We also include a control for
urban residence.

The anthropometric (Demographic and Health Surveys), economic (World Bank Indica-
tors), genetic (supplementary materials in Tishkoff et al.), and climatic data (WorldClim) are
all publicly available. The study was approved by Arizona State University's Office of Research
Integrity and Assurance IRB (Protocol #1302008836).

Variables
Body Mass Index. In each of the country samples, height and weight measures were taken

by trained technicians. BMI was calculated as weight (kg)/height (m)2 and weight-for-height
was calculated as weight (kg)/height (m). We analyzed data on BMI for young adults (20–34
years) and weight divided by height for children (0–59 months). These measures are highly
correlated (R2 > 0.90) with body surface-area-to-volume estimates in both adult [29] and child
[30] samples.

Household wealth per capita. We use estimates of household wealth that integrate infor-
mation about: (1) relative household wealth in a country in each survey year, (2) the wealth
Gini coefficient approximating the percentage of total country wealth owned by each house-
hold based on its relative rank in wealth [31], and (3) country-level wealth in the survey year
approximated from country-level gross domestic product [24, 32]. This procedure provided a
measure of household wealth in terms of internationally and inter-temporally comparable
units—purchasing power parity in constant 2011 international units [24]. We use the loga-
rithm of this wealth measure as the key predictor for partialling out effects of wealth, as body
mass has been shown to scale logarithmically with wealth in prior analyses [24].

Ethnolinguistic populations. Ethnolinguistic populations were defined by respondent's
ethnicity or language as recorded in the Demographic and Health Survey. We focus on those
ethnolinguistic populations in Africa, southern Asia and the Americas analyzed by Tishkoff
et al. (2009) where the DHS surveys include relevant data (S1 Fig. and S1 Table). We matched
groups from Tishkoff et al. with ethnolinguistic designations in the DHS surveys based on
common ethnic identification and native language (S1 Table). For Hausa, Fulani, and Maasai
groups that show considerable geographic spread, we matched those DHS data by country and
region to three Fulani groups, two Hausa groups, and two Maasai groups in Tishkoff et al.'s
sample (S1 Table).

Genetic affinity. Using 121 African and 60 non-African ethnolinguistic populations,
Tishkoff et al. inferred 14 ancestral population clusters using 1327 nuclear microsatellite and
insertion/deletion markers. Tishkoff et al. labeled these clusters in terms of related regional and
linguistic groupings [25]. Nine of the clusters were associated with groups in sub-saharan Af-
rica (labeled Fulani, Nilo-Saharan, Chadic, S. African Khoesan, Niger-Kordofan, Cushitic,
Hadza, Sandawe, W. Pygmy), three were from Eurasia (East Asia, India, European), one was
associated with Oceania (Oceania) and one with the Americas (Native American). For each
modern ethnolinguistic population, Tishkoff et al. also estimated the proportion of genetic an-
cestry from each of these 14 inferred ancestral clusters. These 14 clusters do not necessarily re-
flect bounded historical populations, but they do provide a straightforward tool for estimating
the genetic affinity of current ethnolinguistic groups. Specifically, two ethnolinguistic groups
that have on average more similar proportion of estimated ancestry from these 14 clusters are
also more likely to have closer genetic affinity. Here, we focus on the proportion of genetic
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ancestry from the thirteen clusters for which at least one of the ethnolinguistic groups available
in the DHS datasets had at least 10% inferred ancestry from that cluster. These thirteen
clusters include Fulani, Nilo-Saharan, Chadic, S. African Khoesan, Niger-Kordofan, Cushitic,
W. Pygmy, Sandawe, Oceania, East Asia, India, European, and Native American. This excludes
the Hadza subcluster.

Latitude and longitude. The latitude and longitude for each ethnolinguistic unit was iden-
tified as the value at the sampling longitude and latitude from Tishkoff et al. [25].

Local climate. The following climatic variables were extracted from the WorldClim global
climate database of average values between 1950–2000—mean annual temperature, minimum
temperature of coldest month, and maximum temperature of warmest month [33]. The value
for each ethnolinguistic unit was identified as the value at the sampling longitude and latitude
from Tishkoff et al. [25].

Operationalizing basal BMI and basal weight-for-height. We operationalize population
basal BMI as the expected body mass index of an adult with insufficient resources to accrue ex-
cess body mass. Body mass index is often used as a measure of obesity or excess body fat. How-
ever, human populations can also differ substantially in the quantity of fat free mass per unit
height. Thus, at low levels of body fat, body mass index is also a measure of lean compactness
or stockiness. Studies that have measured fat and lean mass using x-ray methods in select pop-
ulations have demonstrated that population variation in compactness is primarily variation in
lean mass [34, 35].

There are several environmental factors that can lead to increasing fat mass and thus bias
BMI (or weight-for-height among children) as a measure of underlying body compactness [2,
5]. To assess a population's basal BMI, we estimate the BMI of a young adult (ages 20–34) re-
moving the effects of key contemporary environmental variables known to influence BMI, in-
cluding household wealth, urban residence, and educational attainment [24, 36]. When applied
to populations in low and middle income countries, this method produces reliable estimates of
population differences consistent with direct measures of lean body composition, which is in-
dependent from country-level wealth and the prevalence of fat-linked disease [24].

As in prior validated work, we estimate population basal BMI of an ethnolinguistic group as
the expected BMI of young adults with little education (primary education or less) living in
rural households with very little household wealth (cash equivalent of 300 USD per capita in
constant 2011 PPP international units). We focus on young adults (ages 20–34 years) who
have presumably reached full height, but have not yet been able to store much excess fat [24].
Among women, we exclude pregnant individuals and adjust for current lactation. Basal BMI is
formally estimated with a mixed model predicting BMI with the following fixed effects: log
(wealth), age in years, breastfeeding status, rural residence, and an interaction between log
(wealth) and age. We include ethnolinguistic group as a random effect. Our estimate of basal
BMI for an ethnolinguistic group is the empirical best linear unbiased predictor (EBLUP) for
that group [24]. Our approach here is identical to that described in earlier work, except for
three modifications [24]. First, it uses improved wealth measures that are in 2011 PPP interna-
tional units [32]. Second, it includes 20-34-year-olds as well as urban populations to ensure suf-
ficiently large samples for each ethnic group. Finally, it uses ethnolinguistic unit rather than
country as a random effect to capture between-group variation in basal body mass index.

We use a similar approach to estimate basal weight for height (bWH) among children (0–60
months) [11]. Basal weight-for-height is formally estimated with a mixed model predicting
weight-for-height with the following fixed effects: log(wealth), age in months, rural residence,
and an interaction between log(wealth) and age. Due to non-linear relationships between age
andWH in children, we include age in months as a categorical variable with 24 months as the
reference category. We include ethnolinguistic group as a random effect and use the empirical

Genetic Population Structure and Ecogeographic Patterns in Humans

PLOS ONE | DOI:10.1371/journal.pone.0122301 March 27, 2015 5 / 17



best linear unbiased predictor (EBLUP) for each ethnolinguistic group as the estimate of
basal WH [24].

Analysis: Assessing effect of climate on body form after controlling for
genetic similarity
We assessed the effects of climatic variation and genetic affinity on population variation in
bBMI and bWH across ethnolinguistic groups in each of four demographic categories (male
children, female children, male adults, female adults). For the crude effect of climatic variation
we regressed population bBMI and bWH on the three climatic variables using OLS regression.
Due to collinearity between these three climatic variables, we considered each climatic variable
in an independent regression.

To assess the potential effect of genetic affinity on bBMI and bWH, we fit OLS regressions
predicting bBMI and bWH from the proportion of an ethnolinguistic group's genetic ancestry
derived from each of 13 genetic clusters identified by Tishkoff et al.—Fulani, Nilo-Saharan,
Chadic, S. African Khoesan, Sandawe, Niger-Kordofan, Cushitic, West Pygmy, East Asia,
India, Oceania, and Native American. For example, Kikuyu were estimated by Tishkoff et al.
to have 43% ancestry from the Niger-Kordofan cluster, 36% from Cushitic, 8% from Nilo-
Saharan, 6% from Sandawe, and 1% or less from each of the other clusters. We fit a regression
including each of these cluster percentages as an independent variable. Since the percentage of
genetic ancestry from these 13 genetic clusters adds to 100% in each ethnolinguistic group, we
regressed bBMI and bWH on percentage of ancestry from twelve of the genetic clusters (e.g.,
12 variables), excluding the proportion of Niger-Kordofan ancestry for use as a reference cate-
gory. We use Niger-Kordofan ancestry as the reference category given that it represents the
component with the largest share of ancestry in this sample of ethnolinguistic groups.

The regression model for bBMI without other covariates would be:

bBMIj ¼ b0 þ
X12

i ¼ 1

biXij þ "j

Here βi is the regression coefficient for cluster i, and Xij is the proportion of ancestry of ethno-
linguistic group j from cluster i. Based on this, the regression intercept β0 is the bBMI estimate
for an idealized individual of 100% ancestry from the Niger-Kordofan component. By similar
logic, the parameter estimate for Fulani genetic ancestry is the degree to which a hypothetical
individual of 100% ancestry from the Fulani cluster diverges from the reference Niger-
Kordofan value.

For each ethnolinguistic group, we refer to the predicted values of bBMI and bWH from
this regression model as genetic affinity-predicted bBMI and affinity-predicted bWH. We use
these genetic affinity-predicted values for mediation analyses (described later) examining how
body form predicted from genetic affinity accounts for the observed relationship between con-
temporary temperature and current body compactness.

As stated earlier, if ecogeographical associations arise in part from plastic responses to con-
temporary climate, then we expect that genetically similar groups living in different contempo-
rary climates should show body form differences consistent with ecogeographical rules. On the
other hand, if ecogeographical associations largely reflect genetic population structure, arising
from past processes of selection, drift, or gene flow, then we should see little difference in body
forms between genetically similar groups that are living in different contemporary climates. To
assess these hypotheses, we compare the following models, (1) temperature alone, (2) genetic
affinity alone, (3) temperature and genetic affinity together. There were 12 temperature alone
models (body mass outcome for each of 4 age/gender groups x 3 temperature variables). There
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were 4 models for genetic affinity alone (one for the body mass outcome for each of 4 age/
gender groups). Just as there were 12 temperature alone models, there were also 12 temperature
and genetic affinity models. We use two assessments of fit, both of which penalize for adding
parameters to the model—Adjusted R2 and the Akaike Information Criteria (AIC).

To assess how much of the effect of climatic variables on body form is accounted for by
affinity-predicted body mass, we use a bootstrap mediation analysis. While model comparison
using AIC allows us to select models with minimal complexity that best fit the data, mediation
analysis gives information about how the addition of one variable to a model reduces the effect
of another variable. In this case, the mediation analysis identifies how much of the raw effect of
temperature on body form is reduced when including genetic affinity-predicted body form as a
covariate [37]. In this way, it gives the direct effect of climatic variables as well as the portion of
this effect accounted for by genetic affinity [37]. Due to the small number of cases (n = 20) for
male adults relative to the number of genetic ancestry variables (k = 12), we use the affinity-
predicted value of bBMI from females in the mediation analyses for adult males. All analyses
were conducted in SPSS 22.0 [38].

One concern when comparing populations with varying degrees of genetic relatedness is the
problem of non-independent observations. Given that a phylogenetic tree does not exist for
these populations, it is not feasible to use phylogenetic methods to adjust inferences [39]. In-
stead, we used the variables capturing genetic affinity among groups—Tishkoff's cluster mem-
bership variables—to assess to what degree the effect of climatic variables can be accounted for
by genetic affinity among groups.

A number of processes, including selection and neutral processes such as gene flow, genetic
drift, and mutation, could lead to genetic variation in body form [16]. Selection for adaptive
body forms may create the current fit with ecogeographic predictions. However, a fit between
body form and climate might also arise from neutral processes of migration that are correlated
with climate and geography. We assess the degree to which current variation may have arisen
from neutral processes as follows. The expansion of our species out of the African continent
has created a global pattern of neutral variation in both genetic variants and morphological
traits [16, 17]. To assess the degree to which the observed variation in body form can be attrib-
uted to this expansion out of Africa, we use the approach laid out by Betti et al. that examines
the degree to which within-population variation in body form declines with distance from Cen-
tral Africa [16]. We do this by including the distance between an ethnolinguistic group's cur-
rent location and Central Africa in an OLS regression predicting within-population variance in
basal body mass (bBMI and bWH). Following Betti et al., we calculate the Haversine distance
between Central Africa (8S, 25E) and the location of each ethnic group, using Sinai Peninsula
(30.07N, 33.7E) as the waypoint out of Africa, Bering Strait (65.78N, 169.97W) as the waypoint
to the Americas, Panama (13.5N, 86.2W) as the route to South America, and Thailand
(16.13N, 98.35E) as the route to Oceania.

Results

Sample characteristics
There were 80 ethnolinguistic groups identified in Demographic and Health Survey datasets
available from MEASURE DHS with information on genetic ancestry from Tishkoff et al. [25].
A total of 52886 female and 55605 male children (0 to 60 months) and 107296 women (20 to
34 years) from these 80 linguistic groups were analyzed. Data were limited to 20 ethnolinguistic
groups for men (n = 16897, 20 to 34 years). Samples ranged from 3 to 8898 in female children,
1 to 9782 in male children, 6 to 19812 in women and 2 to 5587 in men (S1 Table).
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Associations across gender and age group
Basal WH estimates were highly correlated between boys and girls (R2 = 0.86, n = 80,
p< 0.001). Across the 20 ethnic groups with data for men and women, estimates of bBMI were
also correlated across sexes (R2 = 0.80, n = 20, p< 0.01). The correlation between child bWH
and adult bBMI was high for females (R2 = 0.70, n = 80, p< 0.001) and moderate for males
(R2 = 0.59, n = 20, p< 0.01). The moderate to strong relationship between adult bBMI and
child bWH, especially among females, confirm earlier findings that a large portion of cross-
population differences in body form arise very early in development [11].

Regional variation in bBMI
The average adult bBMI varied substantially across major world regions and was consistent
with prior estimates of bBMI conducted at the country level [24] (Table 1). These regional esti-
mates are also highly correlated between boys and girls, and between women and children, al-
though the sample size is small (R2 = 0.80–0.99, n = 4).

Ethnolinguistic variation in bBMI
In addition to these reliable macro-regional differences, there is considerable variation across
the 80 ethnolinguistic groups within both Africa and South Asia. The Nuer, a population com-
monly used to exemplify slender body builds in anthropological textbooks, had the lowest esti-
mated value for women (bBMI = 18.4) and men (bBMI = 18.5), and one of the lowest for
children (average bWH = 12.1) in the African sample. These values are 4.8–5.2 kg/m2 lower
than female bBMI and 1.3–1.5 kg/m lower than the average child bWH found in the Bamoun
andWimbum groups in central Cameroon, which have the highest values in the African sam-
ple. The differences across South Asian samples were also substantial. Groups from northern
India, such as Punjab, Kashmiri, Pathan, and Balochi, had body masses much greater than pop-
ulations from other parts of South Asia (bBMI = 19.7 to 23.4 for women, bBMI = 19.4 to 20.0
for men, average bWH = 12.0 to 12.6 kg/m). The South Asian group with the highest basal
body mass (Brahui female bBMI = 23.4 and average bWH = 12.6) was 5.5 kg/m2 higher in
adults and 1.1 kg/m higher in children than Gujarat populations from midwestern India (Guja-
rat female bBMI = 17.9 and average bWH = 11.5), which had some of the lowest values in the
South Asian populations.

Associations with temperature
Both maximum temperature in the hottest month and mean annual temperature were moder-
ately correlated with bBMI in adults and bWH in children (Adj. R2 = 0.14–0.28, Table 2).
There was no relationship between body build and minimum temperature of the coolest

Table 1. Average adult basal BMI (kg/m2) and child basal WH (kg/m) by major world region.

Adults Children

Female bBMI Male bBMI Female bWH Male bWH

South Asia 19.5 (1.8, 18) 19.0 (0.5, 14) 11.1 (0.4,18) 11.7 (0.4,18)

Southeast Asia 20.0 (0.4, 2) 11.9 (0.0,2) 12.3 (0.0,2)

Sub-Saharan Africa 21.3 (1.0, 58) 20.2 (1.2, 6) 12.5 (0.4,58) 12.9 (0.4,58)

Americas 23.7 (0.9,2) 12.8 (0.2,2) 13.2 (0.2,2)

Numbers in parentheses are standard deviation and number of ethnolinguistic groups.

doi:10.1371/journal.pone.0122301.t001
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month (Adj. R2 < 0.01 for all four samples, p> 0.10). The lack of association with cold stress
in this sample may result from the sample's restriction to tropical and subtropical populations.
However, it is also consistent with past results from samples drawn from a much wider range
of latitudes [40]. Fig. 1a shows the relationship between maximum temperature of the hottest
month and female bBMI among 80 ethnolinguistic groups (see S2 Table for the same results
for child bWH).

Controlling for Genetic Affinity
When we regress female bBMI on the twelve variables indicating percentage of ancestry from
the twelve inferred genetic clusters identified by Tishkoff et al. [25], we achieve a much better
prediction of bBMI than the temperature-based model (Adj. R2 = 0.74, n = 80, p< 0.001) with
a substantial improvement in model fit (AICc = 155.2 compared to 275.2 for best-fitting model
based on maximum temperature). This is also true for the other two large child samples (male
child Adj. R2 = 0.50, female child Adj. R2 = 0.58, n = 80, p< 0.001) with comparable improve-
ments in model fit (AICc = 48.1 and 58.5 compared to 106.6 and 109.1 for best-fitting model
based on maximum temperature). Because the adult male sample was not sufficiently large
to run the full regression with 12 parameters, we predicted adult male bBMI from affinity-
predicted bBMI from the full adult female sample. Again we find substantial model improve-
ment over the temperature-based model (AICc = 40.9 compared to 55.5 for the best-fitting
model based on maximum temperature). Adding temperature to the genetic affinity model did

Table 2. Coefficient of determination (Adjusted R2) of models predicting basal bodymass based on climatic variables and genetic affinity (n = 80
for all except adult male populations, n = 20).

Adults Children

Model Female bBMI Male bBMI Female bWH Male bWH

1. Maximum temp. 0.21 0.22 0.28 0.25

2. Mean temp. 0.14 0.21 0.18 0.14

3. Minimum temp. 0.00 0.00 0.00 0.00

4. Genetic Affinity 0.74 0.60a 0.58 0.50

5. Affinity+Max temp. 0.77 0.62a 0.62 0.54

a Model based on affinity-predicted bBMI from full adult female sample due to small sample size in adult males.

All effects statistically significant at alpha = 0.05 level, except for associations with minimum temperature

doi:10.1371/journal.pone.0122301.t002

Fig 1. Relationship between basal Body Mass Index among adult females and (a) maximum
temperature of hottest month, (b) genetic affinity-predicted values.

doi:10.1371/journal.pone.0122301.g001
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slightly improve fit among women and girls (AICc = 149.9 vs. 155.2, 46.3 vs. 48.1) but not boys
or men (AICc = 59.1 vs. 58.5, 40.9 vs. 40.9).

The affinity-predicted values of bBMI and bWH for each ethnolinguistic group are strongly
correlated across the three full samples—adult females, female children, and male children
(R2 = 0.88 to 0.97, n = 80, p< 0.001). These affinity-predicted values of adult females and chil-
dren also strongly correlate with bBMI values in the smaller male sample (Adj. R2 = 0.54 to
0.61, n = 20, p< 0.001). Taken together, these findings suggest these affinity-predicted values
of basal body mass capture similar variation in child and adult samples of both sexes across
ethnolinguistic groups. Fig. 1b illustrates the high degree to which bBMI modelled by genetic
affinity approximates measured bBMI (see S2 Fig. for similar results for child bWH). The clus-
tering of basal BMI values around 22 are groups with high levels of Niger-Kordofan ancestry
that are not differentiated on genetic affinity.

In addition to providing affinity-predicted estimates of bBMI for each of the 80 ethnolin-
guistic units, the genetic affinity model gives us some insight into how bBMI and bWH are as-
sociated with the 13 genetic clusters inferred by Tishkoff et al. [25]. Specifically, the regression
intercept and 12 regression slopes provide estimates of bBMI and bWH for each of the 13 an-
cestral clusters inferred by Tishkoff et al [25]. The regression intercept from the model predict-
ing female bBMI provides the expected bBMI for a woman of hypothetical 100% ancestry from
the reference cluster of Niger-Kordofan (22.2 (95% CI = 21.8,22.5)). The remaining twelve re-
gression coefficients provide the expected basal BMI (or WH) of a hypothetical individual with
100% ancestry from each of the remaining twelve genetic clusters. Fig. 2a depicts the bBMI de-
viation of each of the twelve remaining genetic clusters from Niger-Kordofan. Fig. 2b shows
the comparable values for children's bWH. These coefficients show considerable and consistent
variation across the genetic clusters in both the female adult sample and the child samples.
Among predominantly African clusters, there is a substantial reduction in bBMI and bWH for
the Chadic and Fulani genetic clusters (between -4.3 to -4.5 kg/m2 and -1.0 to -1.9 kg/m) and
less so for Khoesan, Sandawe, Cushitic and West Pygmy components (-0.4 to -2.7 kg/ m2 and
-0.2 to -1.0 kg/m). The one notable discrepancy is Nilo-Saharan which has substantial reduc-
tions in bBMI for adults (-4.3 kg/m2), but not for children (-0.4 kg/m). Among Asian and
Pacific-associated components, Indian and Oceanic have values comparable with Chadic, Fula-
ni and Nilo-Saharan, while East Asian values are closer to Cushitic, Sandawe and W. Pygmy.
The Native American component is the one component that is statistically larger than the
Niger-Kordofan reference in adults, consistent with past findings of higher bBMI among
American populations [24].

When accounting for the effect of affinity-predicted body build, the direct effect of contem-
porary climate on contemporary bBMI or bWH is small (Additional Adjusted R2 explained by
temperature variables is 0%-4%). Moreover, the AICc increases among males and decreases
only slightly among females when including temperature in the genetic affinity model. This
suggests that temperature variables do not substantially improve model fit over and above ge-
netic affinity. Formal mediation analyses show that affinity-predicted bBMI mediates most of
the effect of maximum temperature on adult bBMI (73% of the effect for women and 44% of
the effect for men) and child bWH (70% of effect among both boys and girls). Bootstrap tests
of mediation indicate that all of the indirect effects of genetic affinity are highly significant
(p< 0.01 in all cases). Conversely, the direct effect of contemporary temperature on body form
was not statistically significant among boys or men and was significant, though weak, among
girls and women (p< 0.05) [37]. These results are similar when considering mean tempera-
ture. Given the low correlations between body build and minimum temperature, we did not
conduct the mediation analysis for that climatic variable.
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Fig 2. Estimated adult basal BMI and child basal WH for an individual of 100% ancestry from each of
Tishkoff's genetic components. Niger-Kordofan is the reference category. Bars are 95%
confidence intervals.

doi:10.1371/journal.pone.0122301.g002
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Alternative hypotheses
It is possible that the association with genetic affinity is accounted for by correlated ecological
variables such as diet or economic resources. However, across the 80 ethnolinguistic groups,
neither dominant subsistence strategy nor mean household wealth significantly predicts basal
BMI or WH (Adj. R2 = 0.01) for any of the three full samples in women or children of either
sex. Adding subsistence type or wealth to the model based on genetic ancestry does not change
estimates or inferences of the effect of genetic subcluster membership on bBMI. Indeed, adding
these variables uniformly worsens model fit (e.g. AICc goes up). Another possibility is that
these associations are due exclusively to macro-regional variation. However, the genetic ances-
try model also predicts substantial variation within continents (n = 20 for southern Asia in-
cluding Cambodia and East Timor, n = 58 for sub-Saharan Africa) for—adult females (Adj.
R2 = 0.71 in southern Asia, Adj. R2 = 0.59 in sub-Saharan Africa, p< 0.01), female children
(Adj. R2 = 0.43 and 0.32 respectively, p< 0.01) and male children (Adj. R2 = 0.21 and 0.32 re-
spectively, p< 0.01). As a macro-level check on the possibility that other ecological variables
(drought frequency, suitability of soils for especially nutritious crops, or incidence of disease)
may confound the relationship between genetic affinity and body form, we included latitude
and longitude of ethnolinguistic groups in a regression with the genetic affinity variables. Nei-
ther the coefficients nor the inferences for the genetic affinity variables changed substantially
with the inclusion of these variables (S2 Table).

Assessing divergence from neutral models
Among women and children, there was no significant correlation between the distance from
Central Africa and within-group variance in bBMI or bWH. Among men, within-group vari-
ance in bBMI actually slightly increased (p = 0.05) with increasing distance from Central Af-
rica. These findings do not support the argument that variation in basal body mass is due to a
serial founder effect arising from migration out of Africa.

Discussion
Consistent with the ecogeographic predictions relating climate and body form, basal body
build is associated with local climatic variables in both children and adults in these tropic and
subtropic samples at magnitudes comparable with studies conducted with more latitudinally
diverse populations (21–22% of variation in basal BMI and 25–28% in basal WH). However,
nearly all of this heat-related variation in bBMI and bWH is accounted for by genetic affinity,
and basal body build predicted by genetic affinity also explains far more additional variation
beyond local temperature—60 to 74% of total adult variation and 50 to 58% of total child varia-
tion in basal body form. Finally, adding temperature to the genetic affinity model does not im-
prove model fit. These results suggest that a large part of the ecogeographic associations in this
sample can be attributed to genetic population structure, perhaps reflecting longer-term genet-
ic adaptations to climatic stressors or gene flow and genetic drift that are correlated with geog-
raphy and climate. Plastic responses to climatic stressors or current climate-related food
availability may still account for some of the conformity of human populations to ecogeo-
graphic predictions by both shifting population means and constraining variation. However,
the current findings place some limits on the degree to which plastic responses alone are re-
sponsible for this variation.

Our analyses confirm striking variation in body build across contemporary human popula-
tions in Africa, Asia, and the Americas. Within sub-Saharan Africa alone, there was a 5.2 kg/m2

difference between the adult populations with the thinnest (i.e., Nuer of Ethiopia) and stockiest
(i.e., Bamoun andWimbum of Cameroon) body forms. This variation is consistent across sexes,
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and given the moderate to strong correlations between body build of young children and adults,
much of this variation likely arises very early in development [10, 41]. The wide range of varia-
tion in contemporary body form is also consistent with the variation in body form observed
among geographically dispersedHomo sapiens remains dated from the last 100K years [42].

In models predicting body form from genetic affinity, adult populations of predominantly
Fulani, Nilo-Saharan, Chadic, and South Asian ancestry are expected to have the least compact
body types, and populations with Native American and European ancestry are expected to
have relatively compact body types. Relatively recent population migrations also illustrate how
population movements can lead to substantial divergences between climate and body form in
short time periods, a controversial issue in the anthropological literature on human variation
[43]. For example, ethnolinguistic groups that have high affinity with Native American (Co-
lombian and Guatemalan) and European components (Brahui, Mozabite, Pathan) have much
higher female bBMI than expected (+2.2 to 3.4 kg/m2). This is consistent with findings from
other investigators that Native American body forms, even those from tropical areas, appear to
be derived from much colder ancestral Siberian environments [44] [6, 7, 45]. Conversely, Nilo-
Saharan-descended Maasai living in Tanzania and Kenya have far less compact body builds
than expected given the relatively cooler climate in these regions than ancestral Nilo-Saharan
regions (1.6 kg/m2 lower BMI than expected, Fig. 1a). These examples suggest that divergences
from ecogeographical expectations may not require arguments about the adaptive fit with the
current environment, as has been proposed for stockier body forms among Polynesians [5].
Rather, such divergences may simply reflect selection for compactness in the deep past coupled
with migrations into different climates or random processes of drift and gene flow. It is also
possible that cultural tools that have permitted humans to regulate their temperature (e.g. con-
structed shelter, clothing) have attenuated the former processes of selection and permitted a
greater impact of random genetic processes on body form.

The clear trend towards lower bBMI or bWH among those living in areas with the highest
maximum and mean temperatures is consistent with the idea that selection over the long term
leads to body shapes that maximizes surface area relative to body mass to facilitate heat loss.
Here, we observe no association between bBMI or bWH and climate during the coldest
months. This is consistent with a stronger effect of maximum (rather than minimum) tempera-
ture in human post-cranial remains over longer time scales [46]. This may also be an artifact of
our sample not including many populations living in cold areas. In line with most current re-
search, we have focused on fit of body form with one specific environmental variable—local
temperature. However, there are other environmental variables that may also influence body
form. In environments of greater pathogen stress, bodies may shunt resources away from mus-
cle mass to improve immune function [47]. Some evidence also suggests that shorter limb
length may confer advantages in more rugged terrains—the so-called mobility hypothesis for
limb length—influencing overall body build [48].

A number of limitations should be noted when interpreting and generalizing these findings.
First, we restricted our sample to very poor populations for which Demographic and Health
Surveys have collected anthropometric and wealth data. This restricted our sample to popula-
tions living in tropical and subtropical regions, and potentially attenuated the effect of contem-
porary climate relative to genetic population structure [49]. However, the raw association of
temperature observed in our sample had a magnitude comparable to associations observed in
studies including a wider range of latitudes [1, 2]. This suggests that the sample restriction did
not attenuate the effect of contemporary climate. Moreover, despite this restriction we still ob-
served substantial variation in basal BMI—from approximately 17 to 23—which is comparable
in magnitude to that observed in prior studies [1, 2]. This indicates that the restriction to a
tropical and subtropical sample did not place an artificial ceiling on body mass indices. That
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said, the current findings only apply to those populations residing in tropical and subtropical
regions. Another concern raised by the sample is the restriction to poor populations to estimate
body form prior to the nutrition transition. It is well known that poverty-induced malnutrition
is associated with stunting [50]. Thus, the basal BMI and weight-for-height is estimated on
populations that have likely experienced less stature growth than well-nourished populations.
This could lead to an overall upward bias in BMI and weight-for-height compared to well-
nourished populations. However, given that the major outcome measures—bBMI and basal
weight-for-height—are not strongly associated with wealth, it is unlikely that this upward bias
could account for the current results. The Demographic and Health Surveys also have substan-
tially more data from a wider range of countries for women than for men. Although, there is
no clear explanation for this, we suspect that it is related to the heavy emphasis on maternal
and child health in the surveys. Although this limits our ability to examine worldwide variation
in men, there were sufficient surveys with male samples to validate the adult results across gen-
ders. Finally, it is possible that other unmeasured environmental variables that are arbitrarily
correlated with genetic population structure can account for the observed relationship between
genetic population structure and body form. In our analyses, we have attempted to rule out sev-
eral such factors, including economic resources, urban residence, and mode of subsistence, and
future work will hopefully examine other possible environmental confounders.

We show here that genetic population structure strongly predicts basal body form among
both children and adults, which is consistent with past findings that a large portion of these
population differences must arise early in development [10]. We also show that this is not asso-
ciated with major subsistence type or current economic resources. It is possible that this popu-
lation variation is due to other unmeasured ecological factors. However, these findings put
strong constraints on what other potential environmental factors could be. Specifically, they
would need both to covary strongly with genetic population structure and also to have an effect
very early in development. In the absence of empirical evidence for alternative ecological expla-
nations, the most parsimonious account for these population differences is likely genetic varia-
tion across populations which may have arisen as a result of selection in ancestral
environments or from gene flow or random genetic drift.
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