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Kalman filter data assimilation: Targeting observations and parameter
estimation
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This paper studies the effect of targeted observations on state and parameter estimates determined

with Kalman filter data assimilation (DA) techniques. We first provide an analytical result

demonstrating that targeting observations within the Kalman filter for a linear model can

significantly reduce state estimation error as opposed to fixed or randomly located observations.

We next conduct observing system simulation experiments for a chaotic model of meteorological

interest, where we demonstrate that the local ensemble transform Kalman filter (LETKF) with

targeted observations based on largest ensemble variance is skillful in providing more accurate

state estimates than the LETKF with randomly located observations. Additionally, we find that a hybrid

ensemble Kalman filter parameter estimation method accurately updates model parameters within the

targeted observation context to further improve state estimation. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4871916]

For chaotic systems like the weather, an accurate forecast

requires an accurate representation of the current state.

Data assimilation (DA) is a methodology that re-

initializes the current state of a system by combining

observational data along with an estimated state deter-

mined by a forecast model. Within data assimilation

schemes, the spatial locations of the observational data

can have a significant effect on the accuracy of the analy-

sis (re-initialized) state. In this work, we use a particular

strategy for locating observations and show that this tar-

geting strategy is successful in reducing state estimation

error for a conceptual chaotic model, as compared to

fixed or randomly located observations. An additional

facet of weather modeling that we investigate is the esti-

mation of model parameters. Parameter estimation is a

technique used within modeling that often seeks to fit pa-

rameters with historical data or to characterize subgrid-

scale effects. We show that our utilized observation tar-

geting strategy within a particular parameter estimation

scheme is successful in accurately estimating a model

parameter for this chaotic model. To motivate our study

of this chaotic model, we first establish a theorem which

is used to justify the use of targeted observations for a

linear data assimilation scheme.

I. INTRODUCTION

The weather is chaotic1,2 where small errors in initial

conditions can quickly result in forecasts diverging from the

true state. In order to prevent forecast divergence, opera-

tional numerical weather prediction relies on the periodic

use of atmospheric observations to update initial conditions.

A common method for re-initializing initial conditions is the

use of DA, which balances the uncertainty in a model fore-

cast with the uncertainty in observable data to minimize an

objective function. This minimizer is subsequently the initial

condition for the next forecast.

This paper examines two DA topics of current interest:

1. strategically targeting observations to reduce state estima-

tion and forecast error;3–16

2. estimating model parameters17–22 within the targeting ob-

servation context to further reduce estimation error.

Targeted observations,3,4 also known as adaptive obser-

vations, result from using some strategy to locate observa-

tions in order to improve state estimation and forecast

accuracy within a DA scheme. In modern day weather fore-

casting, the locations of many observations are predeter-

mined, such as fixed observing stations or fixed satellite

orbits. Supplementing these fixed observations with addi-

tional strategically located observations can be very benefi-

cial to improving weather forecasting, especially in data

sparse regions or extreme weather situations.5 Operational

opportunities to spatially target observations include weather

balloons and aircraft, which are used to forecast hurricanes.6

There are many existing methods for targeting observa-

tions, which often aim to locate observations where solutions

of a dynamical system exhibit instability. Singular value

based methods4,7 spatially locate additional observations

where singular vectors are largest corresponding to locations

of highest instability.

Lorenz and Emanuel8 used the Lorenz-96 model23 to

compare a variety of targeting strategies, including fixed

locations, random locations, singular vectors, and breeding

techniques. They found that ensemble strategies targeting

areas of maximal background error performed optimally.

Trevisan and Uboldi5 further studied the Lorenz-96 model,

where they targeted observations using ensemble breeding

techniques. Breeding techniques24 are often used to deter-

mine the shape and growth of instabilities of a system. A key

step in the analysis of Trevisan and Uboldi is the use of

breeding techniques to characterize the instabilities of thea)Electronic mail: bellskyt@asu.edu

1054-1500/2014/24(2)/024406/12/$30.00 VC 2014 AIP Publishing LLC24, 024406-1
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data assimilation observing cycle, where they then confine

their correction of the system state to this unstable subspace.

This methodology can be sufficient in satisfying the linear

observability condition, often stabilizing an otherwise unsta-

ble system state. These techniques have been carried out on

a more realistic quasi-geostrophic model with similar suc-

cess in stabilizing analysis system states.9 Further research

has determined a rigorous condition for when the assimila-

tion of an observation will stabilize a system state,10 where a

mathematical description is provided showing how large an

analysis correction must be in order to counteract any unsta-

ble growth.

Ensemble transform techniques11 are used to determine

where to target a real world additional observation by brute

force modeling. In the case of choosing only one of many

possible observational locations, these methods independ-

ently simulate an observation at each available observation

location and perform a DA analysis for each observation.

This results in a number of independent analysis state cova-

riances, where the particular observation resulting in the

smallest analysis state covariance is the location chosen.

These methods are used in real world applications, for exam-

ple with aircraft dropsondes, to determine the optimal spatial

location for an additional observation.

Of note, many of the previously mentioned techniques

have been used operationally or have been investigated in

field campaigns resulting in varying degrees of success.12–16

In these field campaigns, methods often resulted in improved

forecasts, but it was also found that occasionally targeted

observations led to deteriorated forecasts.12,13

The numerical targeting technique used in this manu-

script is in a sense a simplification of ensemble transform

methods, where the goal is to reduce subsequent analysis

error covariances. We instead aim to reduce the DA analysis

error by targeting locations where the current forecast en-

semble variance is largest. Often large errors in state fore-

casts correspond to locations where the model background

ensemble variance is largest; thus, locating observations

where this background ensemble variance is largest can be

useful in reducing state estimation error.

Testing this method on the chaotic Lorenz-96 model, we

find this targeting method to be affective in reducing analysis

error as compared to randomly located observations. We

point out that locating observations where the forecast en-

semble variance is largest may not always be successful,

since for Ensemble Kalman filter (EnKF) methods the en-

semble covariance is often an underestimate of the true state

covariance.25 Additionally, ensemble methods can introduce

spurious long-distance correlations, which can further

increase analysis error.

The main part of our numerical results investigates esti-

mating parameters for the chaotic Lorenz-96 model, where

we expand on previous literature by applying recently devel-

oped parameter estimation techniques18–20 within the novel

context of targeted observations. Model parameters are typi-

cally fixed quantities that encode physical information about

a dynamical system which are often estimated within large

weather and climate models. When accurately estimated,

these parameters can provide an adequate description of

subgrid-scale physics.26 We show that using targeted obser-

vations for estimating parameters has notable success in

improving the accuracy of parameter estimates and state

estimates.

We additionally investigate the effect of the level of

chaoticity within the model with regards to certain data

assimilation protocols (number of observations, ensemble

size, and localization radius size). We form conclusions on

how these protocols affect state estimation and forecast error

with respect to the model’s chaoticity.

To motivate our numerical investigations for using tar-

geted observations within a DA scheme, we first provide an

analytical justification, culminating in Theorem 1. This theo-

rem shows under certain assumptions that targeting observa-

tions within the Kalman filter for a linear system can

significantly reduce estimation error. This result demon-

strates, especially for non-stable systems, that the use of tar-

geted observations can offer a more accurate state estimate

as opposed to randomly located or fixed observations. This

theorem also provides a justification that targeting observa-

tions at locations where the forecast covariance is largest can

lead to the best reduction in analysis error, offering support

for our numerical targeting strategy.

Section II describes the linear Kalman filter and Sec. III

presents our analytical results on how targeting observations

can reduce state estimation error for a linear system. Section

IV discusses ensemble Kalman filter techniques and Section

V details the Lorenz-96 model. Section VI characterizes our

numerical methods, Sec. VII presents our numerical results,

and we finish with a conclusion section. The Appendix

details the analysis covariance used within our analytical

results in Sec. III.

II. LINEAR KALMAN FILTER DATA ASSIMILATION

In this section, we describe the Kalman filter algo-

rithm.27 The Kalman filter is a recursive algorithm that

updates an analysis state from a weighted average of a model

prediction and observations of the true state. A successful

Kalman filter update will result in the analysis state being a

more accurate estimate of the true state than either the model

prediction or the observations alone.

Let zðtÞ 2 RN be the true state of some dynamic phe-

nomena and A 2 RN�N be a discrete map that determines the

state vector

zj ¼ Azj�1 þ gj: (1)

Above, gj is model process noise, which is assumed to be a

Gaussian random variable, gj�N(0, Qj), where Qj is the co-

variance matrix for gj. The Kalman filter algorithm assumes

the true dynamics described in Eq. (1) is unknown. Instead,

only the map A is known, where at time tj the map A fore-

casts the background state estimate as

zb
j ¼ Aza

j�1; (2)

where za
j�1 is the analysis state at the previous time step.

Furthermore, the Kalman filter algorithm assumes that

there exists a linear observation operator Hj : RN ! Rm

024406-2 Bellsky, Kostelich, and Mahalov Chaos 24, 024406 (2014)
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from the state space to the observation space where m�N.

At time tj, the vector yj consists of m observations of the true

state zj, where

yj ¼ Hj zjð Þ þ �j 2 Rm: (3)

Above, �j is observational noise, which is assumed to be a

Gaussian random variable, �j�N(0, Rj), where Rj is the co-

variance matrix for �j. The Kalman filter formulates the

background error covariance matrix Pb
j for the background

state zb
j as

Pb
j ¼ APa

j�1AT þ Qj; (4)

where Pa
j�1 is the analysis covariance matrix from the previ-

ous Kalman filter update step. These covariance matrices

Pa
j�1 and Pb

j , respectively, describe the uncertainty in the esti-

mated analysis state and the estimated background state.

The Kalman filter update step is a weighted average

between the model estimate background state zb
j and the

observations yj which produces an analysis state za
j and its

associated covariance matrix Pa
j . The most common formu-

lation of the Kalman filter update step is

za
j|{z}

analysis

¼ zb
j|{z}

background

þ Kj|{z}
Kalman gain

yj � Hjz
b
j

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

innovation

; (5)

Pa
j ¼ I � KjHjð ÞPb

j ; (6)

where the Kalman gain matrix Kj in Eq. (6) is defined as

Kj ¼ Pb
j HT

j ðHjP
b
j HT

j þ RjÞ�1: (7)

From Eq. (5), we see how the Kalman update step acts as a

weighted average between the model estimate background

state zb and the observations y, based on uncertainties in

both. We also see in Eq. (6) how the KjHj term acts as a rank

m correction from the background covariance to the analysis

covariance, which can then result in a reduction in the error

of subsequent state analyses.

By definition, a covariance matrix is positive semi-

definite, so it might not be invertible. In order to ensure that

the Kalman gain matrix Kj in Eq. (7) is well-defined, the lin-

ear Kalman filter formulation typically assumes observations

are independent of each other, which implies that the covari-

ance matrix Rj is positive definite and of full rank m. This

assumption is often satisfied in real-world applications; for

example, weather observations are typically independent of

each other. Alternatively, the forecast covariance matrix Pb
j

is often rank deficient in real-world applications; in fact, our

numerical techniques produce low-rank approximations of

the true forecast covariance using ensemble methods, further

discussed in Sec. IV. But, even if Pb
j is rank deficient, the

sum HjP
b
j HT

j þ Rj will be of full rank m when Rj is of full

rank m, ensuring Kj is well-defined.

An equivalent formulation28 of the analysis covariance

in Eq. (6) is given by

Pa
j ¼ ðI þ Pb

j HT
j R�1

j HjÞ�1Pb
j ; (8)

for the Kalman gain matrix Kj given by

Kj ¼ Pa
j HT

j R�1
j : (9)

In this paper, we use Eqs. (8) and (9) for the analysis covari-

ance and the Kalman gain matrix, respectively.

The analysis state za
j from these two Kalman filter for-

mulations is a unique, unbiased, minimum variance estimate

of the true state zj when the model and the observation opera-

tor are linear.29 Unfortunately, such a unique, unbiased, min-

imum variance estimate does not necessarily exist for

nonlinear models; thus, the linear Kalman filter is extended

in some manner for nonlinear models. In Sec. IV, we

describe one particular extension of the linear Kalman filter,

the ensemble Kalman filter.

III. ANALYSIS: REDUCED ESTIMATION ERROR
WITH TARGETED OBSERVATIONS

In this section, we provide an analytical result, summar-

ized in Theorem 1, that shows targeted observations are use-

ful in reducing errors in state estimation. In the following

analysis, we assume a true dynamic state z is evolving

according to Eq. (1). Initially, we assume the true state z is

being approximated by ẑ without any observations, where

we define each forecast step in terms of the previous forecast

step

ẑj ¼ Aẑj�1:

We also define the error in the initial forecast state as

d0 ¼ ẑ0 � z0: (10)

Over j time steps, if A is known and is used to forecast

the estimated state ẑ, then the estimated state will have the

following error:

ẑj � zj ¼ A ẑj�1 � zj�1ð Þ � gj;

¼ Aj ẑ0 � z0ð Þ �
Xj

k¼1

Aj�kgk;

¼ Ajd0 �
Xj

k¼1

Aj�kgk: (11)

Without model process noise, Eq. (11) reduces to

ẑj � zj ¼ Ajd0: (12)

Thus, if A is stable, where the modulus of every eigenvalue

is less than 1, we see from Eq. (11) that the estimated state

will eventually converge to the true state, up to model noise.

Otherwise, for A unstable, the estimated state diverges from

the true state.

Next, we examine the error in the analysis estimate from

the linear Kalman filter. We assume the observational noise

�j is an independent and identically distributed random vari-

able (i.i.d.). This assumption implies the covariance matrix

Rj for the observational noise �j is only non-zero on the diag-

onal, where
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diag Rjð Þ ¼ qj 2 RN : (13)

We further assume at each analysis step there is a single ob-

servation. Thus, the observation operator Hj 2 R1�N is of

the form in Eq. (3).

We first examine the initial forecast step, where

zb
1 ¼ Aẑ0;

Pb
1 ¼ AP0AT þ Q1:

(14)

Above, P0 is the covariance matrix for the initial error

described in Eq. (10). The following equation determines the

initial background state:

zb
1 ¼ Aẑ0 ¼ Az0 þ A ẑ0 � z0ð Þ ¼ z1 þ Ad0 � g1; (15)

where Eqs. (1) and (10) are applied. Inserting Eq. (9) into the

analysis step from Eq. (5), the initial Kalman filter update

step is formulated as

za
1 ¼ zb

1 þ Pa
1HT

1 R�1
1 y1 � H1zb

1

� �
: (16)

A key step to this analysis is to characterize the analysis

covariance as the background covariance plus a rank one

correction. Detailed in the Appendix, this allows us to

express a general analysis covariance matrix Pa with one

observations as

Pa ¼ ððPbÞ�1 þ IsÞ�1 ¼ Pb � 1

qs þ trðIsPbÞP
bIsP

b:

As described in the Appendix, the matrix Is 2 RN�N is zero

everywhere except for a single 1 on the diagonal at the (s, s)

location corresponding to the one observed location. Also, qs

is the sth component of q at t¼ 1 as defined in (13) and tr(�)
is the usual trace operator, summing the diagonal of matrix.

Applying the above result to Eq. (16), we have

za
1 ¼ Pb

1 �
Pb

1IsP
b
1

qs þ tr IsP
b
1

� � !
HT

1 R�1
1 H1 z1 � zb

1

� �
þ H1HT

1 �1

� �
þ z1 þ Ad0 � g1;

¼ Pb
1 �

Pb
1IsP

b
1

qs þ tr IsPb
1

� � !
q�1

s Is g1 � Ad0 þ HT
1 �1

� �
þ z1 þ Ad0 � g1; (17)

where we also applied Eqs. (3) and (15). If we rearrange

terms from Eq. (17) above, we have the difference between

the first analysis estimate and the true state

za
1 � z1 ¼ I � q�1

s Pb
1Is þ

q�1
s Pb

1IsP
b
1Is

qs þ tr IsP
b
1

� � !
Ad0 � g1ð Þ

þ q�1
s Pb

1Is �
q�1

s Pb
1IsP

b
1Is

qs þ tr IsP
b
1

� � !
HT

1 �1: (18)

A remaining task is to make sense of the sum of matri-

ces in parentheses above, where

Pb
1Is ¼ 0 � � � 0 Pb

s 0 � � � 0
� �

� Pbs; (19)

for Pb
s 2 RN�1 and 0 2 RN�1. It follows that

q�1
s Pb

1Is �
q�1

s Pb
1IsP

b
1Is

qs þ tr IsPb
1

� � ¼ q�1
s Pbs � q�1

s Pb
ss

qs þ Pb
ss

Pbs;

¼ 1

qs þ Pb
ss

Pbs; (20)

where Pb
ss is the (s, s) component of Pb

1.

Now, we make a further assumption, where we assume

that Pb
1 is diagonal. In order to satisfy this assumption, we

need that A, Pa
0, and Q1 are all diagonal to satisfy Eq. (4).

Typically, in the algorithmic setting, these assumptions are

not realistic; linear models are rarely diagonal, and typically

there are non-zero covariances between model states and

also model process noise. Additionally, this assumption

would often hinder the ability of the filter, since the filter

would only have the ability to update a state location with

just observational information at that same location. Thus,

this analytical result lies within the unique situation when

this assumption holds.

With the above assumption, we plug Eq. (20) into Eq.

(18) and have that the error in the analysis state is

za
1 � z1 ¼ I � Pb

ss

qs þ Pb
ss

Is

 !
Ad0 � g1ð Þ

þ Pb
ss

qs þ Pb
ss

IsH
T
1 �1: (21)

Additionally, using the definitions of the estimated state co-

variance from Eq. (4) and the analysis from the Appendix,

we have that the analysis covariance is updated as

Pa
1 ¼ Pb

1 �
ðPb

ssÞ
2

qs þ Pb
ss

Is: (22)

Applying an induction argument, we advance the equa-

tions for the state error (21) and for the analysis covariance

matrix error (22) to any time step tn as described in the fol-

lowing theorem.

Theorem 1. Given the initial guess ẑðt0Þ ¼ ẑ0 for a
dynamic state zðt0Þ ¼ z0 2 RN, define the initial error as

ẑ0 � z0 ¼ d0;

where the covariance matrix P0 for the error d0 is diagonal.
Additionally, suppose the diagonal matrix A 2 RN�N maps
the true state subject to

zj ¼ Azj�1 þ gj;

where the covariance matrix Qj for the model process noise
gj is diagonal, and A forecasts the estimated state as

zb
j ¼ Aza

j�1: (23)

Then applying the linear Kalman filter algorithm as
described above, the following equations describe the error
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in the predicted analysis state and the predicted analysis co-
variance matrix at time t¼ tn:

za
n � zn ¼

Yn

j¼1

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !
And0

�
Xn

j¼1

Yn

k¼j

I �
Pb

sksk

qsk
þ Pb

sksk

Isk

 !0
@

1
A An�jgj

� �
�n

þ
Xn�1

j¼1

Yn

k¼jþ1

I �
Pb

sksk

qsk
þ Pb

sksk

Isk

 !0
@

1
A

� An�j
Pb

sjsj

qsj
þ Pb

sjsj

Isj
HT

j �j

 !
(24)

and

Pa
n ¼

Yn

j¼1

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !
AnP0 ATð Þn

þ
Xn

k¼1

Yn

j¼k

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !0
@

1
AAn�kQk ATð Þn�k

: (25)

Remark 1. In the case of no model process noise nor
observation noise, Eqs. (24) and (25) simplify to

za
n � zn ¼

Yn

j¼1

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !
And0 (26)

and

Pa
n ¼

Yn

j¼1

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !
AnP0 ATð Þn: (27)

In the case of no observational noise, the error in the

analysis estimates from the linear Kalman filter will decrease

for A stable. We can see this effect from the above state-

ments, where the coefficient for Isj (and Isk) in Eqs. (24) and

(26) will always be one when there is not any observational

noise. So the difference of the identity matrix and the Isj ma-

trix will partially zero out An, thereby reducing analysis

error. We also see that the update step will reduce a diagonal

entry of Pa
n to zero in (27) when a previously unobserved

location is observed.

When the observational noise and model process noise

are reasonably small, the estimate from the Kalman filter

algorithm will be more accurate than the estimate without

observations from Eq. (11). Equations (24) and (26) again

offer a mathematical description of this, where the coeffi-

cient for Isj (and Isk) in Eqs. (24) and (26) will be close to

one; thus, the difference of the identity matrix and the Isj ma-

trix will be small, thereby significantly reducing analysis

error.

This theorem especially describes how targeting the

location where the forecast covariance is largest can be bene-

ficial in reducing state error. If all observational locations

exhibit equivalent error, then the location of largest forecast

uncertainty corresponds to the largest value of Pb
sjsj

in Eqs.

(24) and (26). Thus, targeting the location of largest forecast

uncertainty will result in the smallest value of

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj
;

leading to the greatest reduction in analysis error.

The state estimate from the Kalman filter will accurately

estimate the true solution even for A unstable when the linear

observability condition is satisfied.30 This condition is satis-

fied when the inherent instability of the system is nullified by

enough appropriately located and accurate observations.

Equation (24) allows us a mathematical description of how

the state estimate can accurately estimate the true solution

for A unstable, where the product,

Yn

j¼1

I �
Pb

sjsj

qsj
þ Pb

sjsj

Isj

 !
;

will be small for reasonable forecast uncertainty and small

observational noise when different locations are observed

over different analysis steps.

We use this theorem to describe how targeted observa-

tions can significantly reduce error in state estimation, as

compared to other methods of locating observations. To sim-

plify the following argument, we assume the observational

noise and model process noise are zero. First, assume a sin-

gle observation is always at the same location at each time

step. Then the difference term in parenthesis in Eq. (26) will

be the identity except for one zero on the diagonal. Thus, the

state estimate from the Kalman filter with one observation

detailed in Eq. (26) will do better than the case of no obser-

vations described in Eq. (12), but only by reducing An by one

dimension. Now, if at each time step, the filter observes a

location that has not been previously observed, then we see

from Eq. (26) that the estimated solution will decay to the

true solution in only N time steps. Alternatively, if the obser-

vation is chosen at a random location at each time step, then

after N time steps, there is N�1ð Þ!
NN (which rapidly asymptotes

to zero for increasing N) probability that Eq. (26) has

decayed to zero. Thus, for this simplified linear example, a

random strategy leads to more accurate state estimates than a

fixed location strategy, but a particular targeting strategy

produces the most accurate state estimates.

Figure 1 numerically demonstrates the above argument

from this theorem for small observational noise (normally

distributed with mean zero and standard deviation 0.01) and

small model process noise (normally distributed with mean

zero and standard deviation 0.01). For this experiment, the

matrix A 2 R50�50 is unstable, with all eigenvalues equal to

1.001. The horizontal axis is the Kalman filter DA analysis

time step and the vertical axis is the root mean square error

(RMS error), an error quantity that we define in Eq. (31).

This figure plots four different observational schemes: a

scheme without any observations, a scheme with the same

fixed observation at each time step, a scheme with an
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observation located randomly in space at each time step,

and finally a targeting scheme. Here, at the jth analysis

step, the targeting scheme locates the observation at the

component satisfying max1�i�50 Pb
j ði; iÞ, which corresponds

to the location where the forecast uncertainty is the highest.

Since A is unstable, the error grows in time for the case of

no observations. We find that a fixed observation scheme

only does slightly better than no observations, with the error

still increasing in time. The targeting scheme and the ran-

dom scheme do well in reducing error where both result in

a stable error bound, with the targeting scheme performing

the best.

In the following numerical analysis, we examine a cha-

otic model where we instead apply ensemble Kalman filter-

ing techniques. Still the above motivation is maintained:

locating observations randomly often outperforms fixed

observations in reducing state estimation error, and a target-

ing strategy is the most successful at reducing state estima-

tion error. As can be extrapolated from Eq. (24), especially

for a highly unstable or chaotic model, a good targeting strat-

egy can be the difference between accurate state estimates

and awful state estimates.

IV. ENSEMBLE KALMAN FILTER

Complex geophysical models are typically nonlinear,

so various extensions of the linear Kalman have been devel-

oped.31 Some techniques linearize a nonlinear model, which

can be computationally expensive. Another difficulty of

using Kalman filter techniques for large models is estimat-

ing a large background covariance matrix Pb, which can

also be computationally expensive. To reduce this expense,

3D-Var and 4D-Var schemes replace Pb by a constant or

slowly time-varying matrix representing typical forecast

uncertainties.32,33

EnKF methods are useful, particularly when applied to

meteorological systems,34–36 in providing low-rank approxi-

mations of Pb 2 RN�N from an ensemble of k forecasts

where k � N. Traditional EnKF methods use the ensemble

to update covariances at each step

Pb
en ¼

1

k � 1
ZbZbT ; (28)

where Zb 2 RN�k consists of k column vectors

Zb
i ¼ zb

i � �zb: (29)

Above, zb
i is one of k ensemble members, each a realization

of the background state. Additionally, �zb is the mean of the

background states.

Unfortunately, computational expense quickly increases

for large ensembles, and a reasonably computable ensemble

size k within an EnKF method may not be sufficiently large

to provide an accurate approximation of the true background

covariance over the entire spatial domain. One method to

combat this drawback is spatial localization, which is used

within the local ensemble transform Kalman filter (LETKF).

Within the LETKF, the local analysis determines different

linear combinations of ensemble members, so the combined

global analysis explores a much larger dimensional space

than the k ensembles alone.29

Spatial localization is a process that determines the anal-

ysis state independently at each model grid point using only

observations within a prescribed distance of that model grid

point. The prescribed distance, or radius, is indicated in this

work as the localization radius l. Thus, for a localization ra-

dius of l¼ 5, only observations within 5 spatial units are

used to update a grid point at each analysis update.

The LETKF scheme allows for a multiplicative ensem-

ble covariance inflation factor l. Covariance inflation is an

ad hoc procedure to avoid underestimating uncertainties,37 a

particular issue within ensemble Kalman filtering. For any

constant l, all entries in the background covariance matrix

are inflated equally at each DA step to Pb ! lPb, which will

inflate uncertainties in the background covariance matrix.29

This procedure is done to prevent Pb from collapsing to an

overconfident, but incorrect state; something referred to as

ensemble collapse. We take l to be l¼ 1.2.

V. MODEL PROBLEM

The Lorenz-96 model is a system of ODEs that governs

the time evolution of N periodic points

dXi

dt
¼ Xiþ1 � Xi�2ð ÞXi�1 � Xi þ F;

Xi6N ¼ Xi;
(30)

where we fix N¼ 40. Although the Lorenz-96 model is not a

truncated version of any physical system, it is useful in simu-

lating observed atmospheric characteristics on a latitude

circle to examine questions of predictability in weather fore-

casting.23 The nonlinear terms mimic advection and con-

serve total energy. The linear term dissipates the total energy

and F is external forcing. For Eq. (30), we fix the forcing as

a constant, so F is a global parameter. For N¼ 40, where

F< 0.895, solutions decay to the steady state solution

X1¼ � � � ¼XN¼F; when 0.895<F< 4, solutions are peri-

odic; and when F> 4, solutions are chaotic.8 We typically

take F¼ 8 in order to induce chaos. Also by varying F, we

FIG. 1. The RMS error of four different observation schemes for A unstable:

a fixed observation (dashed, red), no observation (solid, black), a randomly

located observation (dashed dotted, blue), and a targeted observation (dotted,

green). The horizontal axis is the analysis time step and the vertical axis is

the RMS error. Observational noise and model process noise are both nor-

mally distributed with mean zero and standard deviation of 0.01.
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examine both a chaotic and a non-chaotic Lorenz-96 in order

to determine the effects of chaoticity with regards to differ-

ent aspects of the LETKF.

We use the 4th order Runge-Kutta method to forecast

solutions of Lorenz-96 with a fixed time step of Dt¼ 0.05,

which corresponds to 6 atmospheric hours.23 A DA analysis

occurs every time step after a spin-up period, and each fore-

cast step is simply one iteration of the Runge-Kutta scheme.

Since there is not a closed form solution to this model, we

instead define a reference solution that is integrated from a

fixed initial condition. We perturb the reference solution to

form ensembles, which are all spin-up for 360 time steps.

VI. METHODOLOGY

The spatial location of observations can affect forecast

accuracy; thus, targeting the location of observations is one

method to improve a meteorological forecast. As described

in the introduction, Lorenz and Emanuel first used the

Lorenz-96 model to study a selection of targeting strategies.8

We offer a distinct targeting strategy applied to the Lorenz-

96 model, where we target observations at the locations

where the ensemble of model forecasted (background) solu-

tions has the largest ensemble variance. By ensemble var-

iance, we simply mean the pointwise variance computed

over all ensemble members. Thus, we target observations at

the locations where the ensemble of forecasted solutions has

the largest ensemble variance, and we then use the ensemble

of forecasted solutions and these targeted observations

within the LETKF scheme to form an updated analysis solu-

tion for the Lorenz-96 model.

A main component of this paper is estimating model pa-

rameters using EnKF techniques. We use state augmentation

methods,18–20 where these methods augment an ensemble of

background state vectors zb
i : i ¼ 1; 2;…; k

� �
, with an en-

semble of background parameters pb
i : i ¼ 1; 2;…; k

� �
,

where the augmented ensemble of background states

zb
i ; p

b
i

� �
: i ¼ 1; 2;…; k

� �
is updated with some DA tech-

nique resulting in an ensemble of augmented analysis states

ðza
i ; p

a
i Þ : i ¼ 1; 2;…; k

� �
. These methods are classified into

two types, one deemed simultaneous21 and the other

separate.18–20,22 Simultaneous parameter estimation techni-

ques form an update of both the state and the parameter from

the ensemble of augmented analysis states ðza
i ; p

a
i Þ :

�
i ¼ 1; 2;…; kg, which is updated by some DA method from

the ensemble of augmented background states zb
i ; p

b
i

� �
:

�
i ¼ 1; 2;…; kg. Separate parameter estimation techniques

first use some DA method to update the ensemble of analysis

states za
i : i ¼ 1; 2;…; kf g from the ensemble of background

states zb
i : i ¼ 1; 2;…; k

� �
. They separately update the en-

semble of analysis parameters pa
i : i ¼ 1; 2;…; kf g using

some DA method on the ensemble of augmented background

states zb
i ; p

b
i

� �
: i ¼ 1; 2;…; k

� �
(where any update of the

analysis state from the augmented analysis state is dis-

carded). We utilize separate parameter estimation techni-

ques, since they are more successful in reducing error.20

In Ref. 19, the same non-localized EnKF is used in both

the update of the state and the update of the parameter. As in

Ref. 20, we modify the separate technique of Koyama,19

where we implement the LETKF to update the ensemble of

analysis states za
i : i ¼ 1; 2;…; kf g from the ensemble of

background states zb
i : i ¼ 1; 2;…; k

� �
. We subsequently use

an EnKF without any localization to obtain the ensemble of

analysis parameters pa
i : i ¼ 1; 2;…; kf g from the ensemble

of augmented background states zb
i ; p

b
i

� �
: i ¼ 1; 2;…; k

� �
: In

particular, a non-localized EnKF is used in the parameter esti-

mation, since localization is not useful for estimating a global

parameter;19,20 we also provide evidence to support this state-

ment with numerical results described in Figure 6. With this

EnKF separate parameter estimation method, we update an en-

semble of forcing parameters Fi : i ¼ 1; 2;…; kf g for the

Lorenz-96 model.

We vary the chaoticity of the Lorenz-96 model and the

number of observations, the ensemble size, and the localiza-

tion radius to determine the effect that the chaoticity and

these protocols have on DA analysis error. We fix the local-

ization radius l anywhere from 1 to 20. The number of obser-

vations assimilated in the whole domain varies in separate

experiments for the Lorenz-96 model at fixed values from 1

to 10. Additionally, we fix the number of ensembles within

the EnKF analysis in separate experiments anywhere from 2

to 40. Of note, each set of experiments is always the mean of

50 model realizations.

We form synthetic observations from the corresponding

reference solution by adding the product of Gaussian noise

and a fixed standard deviation parameter. In the experiments

described below, the standard deviation parameter is set so

observations approximate the reference solution to an accu-

racy of four bits.

In these experiments, the DA schemes have no knowl-

edge of the reference solution. To evaluate the performance

of various LETKF schemes, we compare the DA analysis to

the reference solution by examining the RMS error. For any

DA scheme A, we define the corresponding RMS error for

any time t as

RMSEAðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

zðxi; tÞ � �zðxi; tÞð Þ2

N

vuuuut
; (31)

where z is the reference solution, �z is the mean of the analy-

sis ensemble, and N is the number of grid points. In each

experiment, we will specify whether t is a DA analysis time

(indicated by ta) or a forecast time (indicated by tf). We use

the subscript T to denote the DA method using targeted

observations, R for the DA method using randomly located

observations, Tp for the DA method using targeted observa-

tions with parameter estimation, and Rp for the DA method

using randomly located observations with parameter estima-

tion; the subscript 0 indicates an analysis with no data

assimilation.

We define the skill of any DA strategy A in terms of the

relative decrease in the RMS error at some fixed time t as

cAðtÞ �
RMSE0ðtÞ � RMSEAðtÞ

RMSE0ðtÞ
: (32)
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Notice c¼ 1 for a DA scheme that perfectly models the ref-

erence solution, and c¼ 0 if the DA scheme provides no

improvement over an analysis without any data assimilation.

We say scheme A is more skillful than scheme B for fixed

times if

cAðtÞ > cBðtÞ: (33)

In particular, we say a DA scheme with targeted observations

is more skillful than one with random observations if

cT(t)> cR(t).
Our standard of a successful parameter estimation

scheme using targeted observations is twofold: first, it must

be more skillful than the parameter estimation scheme using

random observations, cTp(t)> cRp(t); second, it must outper-

form the targeting strategy without parameter estimation,

cTp(t)> cT(t).

VII. RESULTS

A. Results: Skill of targeted DA schemes

We examine the targeting method for the chaotic

Lorenz-96 system, (30). In Figure 2, we plot the RMS fore-

cast errors for the targeting scheme, RMSET(t), and for the

random scheme, RMSER(t). The forecasts are begun at the

DA analysis time ta¼ 100, where we consider forecasts of

length tf¼ 28 (corresponding to 7 days). We take F¼ 8 in

Eq. (30) with 4 observations, 20 ensembles, and l¼ 2. Over

time, the chaotic nature of Lorenz-96 results in the forecast

diverging. We see that the targeting scheme results in a

lower state estimation error than the random scheme at every

forecast step, where the targeting scheme offers substantial

improvement for longer forecast intervals. One explanation

why the targeting scheme leads to a more accurate forecast

over longer forecast times as opposed to the random observa-

tion scheme is that the targeting scheme is effectively elimi-

nating most unstable modes,9 resulting in a significant

reduction in the growth rate of the forecast error.

Table I shows the skill of the targeting method, cT, and

the skill of the random method, cR, for various protocols

with F¼ 8. The left half of the table shows the accuracy at

DA analysis times ta¼ 25, 50, and 100. The right half shows

the forecast accuracy begun at the DA analysis time ta¼ 100

over forecasts of lengths tf¼ 8, 12, and 28 (corresponding to

2, 3, and 7 days forecasts). For each of the columns under-

neath the number of observations in this table, the left value

is the skill, Eq. (32), of the targeting scheme and the right

value is the skill, Eq. (32), of the random scheme. Table I

shows the targeting scheme offers a vast improvement over

the random scheme where Eq. (33) is satisfied, particularly

for limited observations. Although not contained in Table I,

we find that similar results hold for many additional analysis

and forecast times for a variety of forcings ranging from

F¼ 0.75 to F¼ 10.

Figure 3(a) shows the skill of the targeting method, cT,

and of the random method, cR, up to analysis time ta¼ 100.

Figure 3(b) shows the skill of the targeting method, cT, and

of the random method, cR, over a tf¼ 28 forecast begun after

ta¼ 100 analysis steps. This figure corresponds to Table I for

the cases when there are 4 observations, 20 ensembles, and a

localization radius of l¼ 2.

Figure 4 illustrates how the DA analysis is updating the

Lorenz-96 mean analysis state from the mean background

state at the ta¼ 25 analysis time step for the targeting obser-

vation methodology with 4 observations, 20 ensembles, and

a localization radius of l¼ 2, corresponding to a case in

Table I. Figure 4(a) plots the true Lorenz-96 state (solid,

black), the mean model background state (dashed, green),

the updated mean state (dashed-dotted, magenta), and obser-

vations (circles). This figure demonstrates how the DA anal-

ysis can improve the mean analysis state from the mean

FIG. 2. The RMS error of the targeting scheme, RMSET(t) (solid, green) and

the RMS error of the random scheme, RMSER(t) (dotted, blue). This is a

tf¼ 28 forecast after 100 DA analysis steps with 4 observations, 20 ensem-

bles, and l¼ 2.

TABLE I. Skill: Eq. (32), 20 ensembles, F¼ 8.

cT(ta) cR(ta) cT(tf) cR(tf)

l ta 2 obs. 4 obs. 8 obs. tf 2 obs. 4 obs. 8 obs.

2 25 0.46 0.27 0.83 0.63 0.94 0.91 8 0.50 0.24 0.74 0.63 0.75 0.72

2 50 0.65 0.36 0.90 0.76 0.94 0.92 12 0.42 0.15 0.72 0.51 0.74 0.67

2 100 0.75 0.47 0.93 0.87 0.95 0.93 28 0.23 0.08 0.46 0.29 0.49 0.41

4 25 0.40 0.24 0.86 0.61 0.94 0.87 8 0.59 0.18 0.74 0.68 0.75 0.64

4 50 0.64 0.26 0.91 0.80 0.95 0.92 12 0.51 0.09 0.70 0.58 0.73 0.52

4 100 0.72 0.37 0.93 0.88 0.96 0.94 28 0.30 0.06 0.43 0.33 0.45 0.32

FIG. 3. The skill for the targeted observation scheme (solid, green) and the

random observation scheme (dashed, blue) both for analysis time (a) and a

subsequent forecast (b) for 4 observations, 20 ensembles, and a localization

radius of l¼ 2.

024406-8 Bellsky, Kostelich, and Mahalov Chaos 24, 024406 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

149.169.159.109 On: Thu, 28 Aug 2014 18:47:25



background state, especially in the case of the observation

located at 20.

Figure 4(b) plots the model background ensemble var-

iance (solid, black), the updated analysis ensemble variance

(dashed, green), and indicates the locations of the four tar-

geted observations (triangles). This figure illustrates that the

utilized targeting strategy locates observations at the loca-

tions where the background ensemble variance is largest.

Figure 4(b) shows that the analysis ensemble variance is sig-

nificantly reduced with respect to the background ensemble

variance by the DA scheme at observed locations. The analy-

sis ensemble variance is unchanged from the background en-

semble variance far enough away from observations, since

the LETKF DA scheme is localizing state updates only near

observations.

B. Results: Parameter estimation

Next, we employ our parameter estimation methods and

examine the skill of each scheme for a chaotic Lorenz-96. In

the following results, we take the true forcing as F¼ 8, and

we form an ensemble of perturbed forcings normally distrib-

uted about F̂ ¼ 6, where the ensemble of perturbed forcings

has a variance of 0.25. In Figure 5, we estimate the forcing

with both the random observation scheme and the targeted

observation scheme as a function of DA analysis step ta. For

this figure, there are 8 observations, a localization radius of

l¼ 4, and 20 ensembles. We see from Figure 5 that the true

forcing is more accurately estimated by the targeting obser-

vation scheme than by the random observation scheme.

Table II lists the skills cTp(t), cRp(t), and cT(t) at DA anal-

ysis times ta¼ 25, 50, 100 for various protocols. For each of

the columns underneath the number of observations in this ta-

ble, the left value is the skill, Eq. (32), of the parameter esti-

mation scheme with targeted observations, the middle value

is the skill, Eq. (32), of the parameter estimation scheme with

random observations, and the right value is skill, Eq. (32), of

the targeted scheme with no parameter estimation. Table II

shows the parameter estimation scheme with targeted obser-

vations is skillful in significantly satisfying both cTp> cRp and

cTp> cT. Results analogous to this are obtained for every pro-

tocol and every DA analysis time up to ta¼ 100.

We also perform a number of similar experiments on

Lorenz-96 with small values for both the true and perturbed

forcings, so the system will have little to no chaoticity. In ev-

ery case, the state is resolved exceptionally well where the

targeting scheme substantially satisfies both cTp> cRp and

cTp> cT.

Next, we investigate the effect of localization within the

parameter estimation scheme. Figure 6(a) shows the RMS
error of the estimated state and Figure 6(b) shows the RMS
error of the estimated forcing parameter F for the Lorenz-96

model. In both figures, the horizontal axis varies the localiza-

tion radius for the DA update step of the parameter, the verti-

cal axis varies the localization radius for the DA update step

of the state, and the RMS error is plotted after 25 analysis

steps where there are 4 observations and 10 ensembles. In

Figure 6(a), a smaller localization radius in the state update

step can lead to a significantly smaller error in the state

FIG. 4. Figure 4(a) plots the true Lorenz-96 state (solid, black), the mean

background state (dashed, green), the mean analysis state (dashed-dotted,

magenta), and four targeted observations (open circles, blue) at the 25th

analysis step. Figure 4(b) plots the background ensemble variance (solid,

black), the updated analysis ensemble variance (dashed, green), and indi-

cates the four observational locations (triangles). This is for the targeted ob-

servation scheme with 4 observations, 20 ensembles, and a localization

radius of l¼ 2.

FIG. 5. The estimated forcing from the targeted observation scheme (solid,

green), the estimated forcing from the random observation scheme (dashed,

blue), and the true forcing (dashed dot, black) as a function of data assimila-

tion analysis step. Here, there are 8 observations, a localization radius of

l¼ 4, and 20 ensembles.

TABLE II. Skill (32): Parameter estimation, 20 ensembles, F¼ 8, F̂ ¼ 6.

cTp(ta) cRp(ta) cT(ta)

l ta 2 obs. 4 obs. 8 obs.

2 25 0.365 0.237 0.340 0.834 0.585 0.790 0.906 0.835 0.876

2 50 0.492 0.297 0.362 0.908 0.682 0.792 0.942 0.917 0.883

2 100 0.528 0.375 0.287 0.930 0.850 0.771 0.949 0.924 0.876

4 25 0.380 0.139 0.374 0.790 0.502 0.763 0.902 0.848 0.885

4 50 0.441 0.235 0.409 0.908 0.673 0.804 0.946 0.917 0.899

4 100 0.486 0.301 0.352 0.920 0.829 0.826 0.954 0.931 0.896
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estimate; however, the localization radius for the parameter

update step contributes little to the error in the state estimate.

Figure 6(b) is similar to Figure 6(a), where a smaller local-

ization radius in the state update step can lead to a smaller

error in the forcing estimate, but the localization radius for

the parameter update step does not significantly affect the

error in the forcing estimate. Thus, for this particular global

forcing parameter, we find that localizing in the DA update

step of the parameter estimate offers little to no improvement

in the accuracy of the state nor the accuracy of the estimated

parameter. This supports previous findings that localization

in the parameter estimation scheme is not useful for estimat-

ing a global parameter.19,20

Of note in both contours in Figure 6, if the localization

radius in the state update is too large, the DA scheme loses

any benefit from localization. Thus, the filter resolves the

state and forcing poorly since there is not a sufficient number

of ensembles to combat the chaotic growth of the Lorenz-96

system. If 40 ensembles are utilized instead of the 10 ensem-

bles in Figures 6(a) and 6(b), there would be roughly the

same RMS error no matter the value of the localization ra-

dius in the state estimate.

C. Results: Effects of chaoticity on state error within
targeting scheme

Next, we contrast how well the targeting strategy esti-

mates the state for both a chaotic and non-chaotic Lorenz-96

when the number of total observations, the ensemble size,

and localization radius l are varied. In the following results,

we vary the forcing F from 1 to 8. Each of the contours in

Figure 7 plots the RMS error of the targeting scheme,

RMSET, after 25 analysis steps.

Figure 7(a) plots a contour of the RMSET as a function

of the number of observations, varied from 1 to 8, and the

forcing, where there are always 10 ensembles and a localiza-

tion radius l¼ 4. We find that increasing the number of

FIG. 6. Figure 6(a) plots the RMS error of the state estimate after 25 analysis

steps using parameter estimation on the forcing F. Figure 6(b) plots the RMS
error of the estimated forcing parameter F after 25 analysis steps using pa-

rameter estimation on this forcing. In each, the horizontal axis varies the

localization radius l from 1 to 20 for the DA update step of the parameter

and the vertical axis varies the localization radius l from 1 to 20 for the

update step of the state. Additionally, there are 10 ensembles and 4 observa-

tions at each update step.

FIG. 7. All three figures above plot contours of the RMS error of the target-

ing scheme, RMSET. For each figure, the horizontal axis varies the forcing F
from 1 to 8. In (a), there are 10 ensembles, a localization radius of l¼ 4, and

the vertical axis varies the number of observations from 1 to 8. In (b), there

are 4 observations, a localization radius of l¼ 4, and the vertical axis varies

the number of ensembles from 2 to 10. In (c), there are 4 observations, 10

ensembles, and the vertical axis varies the localization radius l from 1 to 8.
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observations will always substantially decrease RMSET,

whether Lorenz-96 is chaotic or not. Thus, extra observa-

tions will always substantially improve the state estimate.

Figure 7(b) contains a contour of the RMSET as a func-

tion of the number of ensembles, varied from 2 to 10, and

the forcing, where there are always 4 observations and a

localization radius l¼ 4. For the Lorenz-96 model with a

forcing inducing chaos, a larger ensemble size significantly

reduces the RMSET. This is expected, since for a more cha-

otic flow, more ensembles are needed to capture all dimen-

sions. Additionally, we find that increasing the number of

ensembles for smaller forcings not inducing chaos (F< 2)

has a lesser effect on the RMSET.

Finally, Figure 7(c) plots a contour of the RMSET as a

function of the localization radius l, varied from 1 to 8, and

the forcing, where there are always 4 observations and 10

ensembles. In this figure, we see that the localization radius

has a lesser effect on the RMSET for small forcings. For

larger forcings inducing chaos, too large of a localization ra-

dius results in a significant increase in error. There is in fact

a sweet spot for the localization radius, where for l¼ 2, the

RMSET is the least.

VIII. CONCLUSION

This paper has investigated how targeting observations

for both state estimation and parameter estimation can lead

to reductions in error. First, we have provided an analytical

argument investigating the effect of targeting observations

for the Kalman filter applied to a linear system. The result in

Theorem 1 demonstrates, especially for an unstable linear

system, that spatially locating observations can play a signifi-

cant role in improving state estimation accuracy.

Our numerical results indicate that using the LETKF

with observations targeted at the locations of greatest ensem-

ble variance is skillful at accurately estimating and forecast-

ing solutions to Lorenz-96, (30). Additionally, the EnKF

separate parameter estimation method is skillful at reducing

analysis error in the novel context of targeted observations

for the Lorenz-96 model. Finally, we have examined how

the chaoticity of the model and various LETKF filter proto-

cols affect state estimation. We have determined that an

increase in observations will significantly reduce state esti-

mation error for both a chaotic and non-chaotic Lorenz-96,

an increase in ensemble size significantly reduces state esti-

mation error for a chaotic Lorenz-96 but has a lesser effect

on a non-chaotic Lorenz-96, and that a smaller localization

radius leads to the smallest state estimation error with a

sweet spot at l¼ 2 for a chaotic Lorenz-96 model.
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APPENDIX: UPDATE OF ANALYSIS COVARIANCE

In the immediate analysis below, the Kalman filter algo-

rithm is always at the jth step; thus, we drop the subscript j.

We also assume there is only one observation. We manipu-

late the analysis covariance matrix in Eq. (8) as

Pa ¼ I þ PbHTR�1Hð Þ�1
Pb ¼ ððPbÞ�1 þ q�1

s IsÞ�1; (A1)

where

q�1
s Is ¼ HTR�1H; (A2)

and qs is the sth entry of the vector q as defined in Eq. (13).

The subscript s indicates there is one observation at the sth

position, where Is 2 RN�N is the zero matrix except for a 1

at the (s, s) location.

The following lemma of Miller38 gives a succinct for-

mula for the inversion of the sum of a matrix and a rank one

perturbation.

Lemma. If G and GþH are invertible and H is rank
one, then

Gþ Hð Þ�1 ¼ G�1 � 1

1þ tr HG�1ð ÞG
�1HG�1: (A3)

Above, tr(�) is the trace operator, which sums the diago-

nal elements of a matrix. This lemma can be applied to the

analysis covariance in Eq. (A1) above, where G¼ (Pb)�1

and H¼ Is, and it follows that

Pa ¼ Pbð Þ�1 þ Is

� ��1

¼ Pb � 1

qs þ tr IsPbð ÞP
bIsP

b: (A4)

Equation (A4) shows that one observation acts as a rank one

correction within the update from Pa to Pb for the linear

Kalman filter. Recall, we use this formula in Sec. III to ana-

lytically show that targeting observations for a linear Kalman

filter can significantly reduce state estimation error as com-

pared to using fixed or randomly located observations.
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