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Abstract: This article reviews the range of delivery platforms that have been developed 

for the PySAL open source Python library for spatial analysis. This includes traditional 

desktop software (with a graphical user interface, command line or embedded in a 

computational notebook), open spatial analytics middleware, and web, cloud and distributed 

open geospatial analytics for decision support. A common thread throughout the discussion 

is the emphasis on openness, interoperability, and provenance management in a scientific 

workflow. The code base of the PySAL library provides the common computing 

framework underlying all delivery mechanisms.  

Keywords: spatial analysis; spatial econometrics; spatial decision support systems; 

cyberGIS; open source software; high performance computing 

 

1. Introduction 

Recent advances in geospatial technologies have generated an avalanche of new sources and 

quantities of georeferenced data [1,2]. These represent both enormous potential for science and 
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society, as well as fundamental challenges. From a societal perspective, live data streams and 

dashboard systems to visualize patterns of these streams are not only characterizing new technological 

infrastructures in smart cities, but are becoming more common in many urban areas [3]. In this 

context, an opportunity exists to supplement client-side closed-box desktop solutions for spatial data 

analysis with more modular and extendable spatial analytic software libraries. These can be flexibly 

integrated with live data streams, visualization libraries and decision support tools to be part of end-to-

end solutions from data to analysis and visualization to generate evidence-based insights in near real-

time. Further, as more open government data are released regularly in machine-readable formats there 

is a need for open analytics, including spatial analytics, to make sense of patterns in these increasingly 

larger datasets. The lack of license fees enables analysts in public, non-profit and educational 

institutions that are already utilizing open data to employ more powerful analytics. Finally, by making 

the implementation of spatial methods transparent, open spatial tools are part of the larger movement 

toward open science [4]. 

From a scientific perspective, these new big data sources represent tantalizing possibilities for 

studying new types of socioeconomic phenomena, and in new ways, which has stimulated the 

emergence of a computational social science [5–8]. A number of recent, high profile applications such 

as the White House’s Precision Medicine Initiative [9], or Smart Cities systems [10,11] are suggestive 

of the potential that is latent within big data. Very often, however, these implementations are produced 

as proof of concept or prototypes, and some of the methodological complexities are not fully taken into 

account (e.g., the discussion in [12]). Similarly, there have been innumerable “mash-ups” employing 

big geospatial data that demonstrate the potential of web based analytical systems, as in the case of 

crime mapping, flu mapping and neighborhood boundaries (e.g., [13,14]; but see also [15], for a 

critical assessment).  

While all of these applications are inspiring and innovative, they also have uncovered fundamental 

challenges that geospatial analysis faces before it can fully engage with the big data era. These 

primarily concern the ability of the software to scale beyond the case study of the prototype as well as 

to support interoperability with other spatial analytical services and software, and scientific replication 

and reproducibility. The scalability challenge arises because most of the spatial statistical and 

econometric software that is leveraged in these prototype systems was not originally designed for the 

big data era or to exploit new types of high performance computing environments [16]. Moreover, 

while calls for replication and reproducibility have recently moved to the forefront of the open science 

agenda, these concepts were not on the white boards of the designers of our previous generation spatial 

analytical software. 

In this paper we report on our collective research efforts that have focused on addressing these 

challenges. We present recent examples of open spatial analytics that leverage the free and open source 

Python-based Spatial Analysis Library (PySAL) developed at the GeoDa Center for Geospatial 

Analysis and Computation. Several examples of flexible delivery formats of PySAL are discussed that 

include desktop programs (stand-alone and plug-in), web-based applications (web services, web-based 

spatial data management), and a decision support system (the Complex Systems Framework CSF). 

These provide specific examples of a larger flexible methodological framework to explore and explain 

spatial area data patterns through new techniques for space-time and spatial econometric analysis. 

Flexible geospatial analytics refer to: (1) a toolbox of methodological frameworks ranging from 
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geospatial visual analytics to spatial econometric modelling; (2) a software implementation that is 

modular, open source, and cross-platform; and (3) the delivery of functionality through multiple user 

interfaces. This toolbox is delivered through traditional free standing desktop software, toolbox 

extensions to commercial Geographic Information Systems, and integration into web-based 

applications such as web services and a dashboard system for decision support.  

The rest of the paper is organized as follows. In Section 2 we provide an overview of the PySAL 

library, discussing the motivation for and history of its development. We then present a series of 

desktop based geospatial analysis tools that have been built using PySAL in Section 3. These include 

CAST, a stand-alone tool for exploratory space-time data analysis and GeoDaSpace, which focuses on 

modern spatial econometrics. Also discussed are the use of PySAL with computational notebooks and 

shells, such as IPython [17], and the inclusion of PySAL with distributions for scientific computing in 

Python. In Section 4 we consider some of the challenges faced when moving PySAL from the desktop 

arena into the high performance computing and distributed context. We discuss work on developing 

architectures for tracking the provenance of spatial analytical work flows, and the design of a REST 

API intended to support interoperability between PySAL and other software packages. In Section 5 we 

then present examples of PySAL on grid, cloud and distributed decision support systems. The paper 

closes with a discussion of future directions for this work. 

2. PySAL 

2.1. Motivation for PySAL 

PySAL is an open source cross-platform library of spatial analysis functions written in Python [18]. 

It was born from discussions between the eventual project leaders that took place in the early 2000’s. 

At the time Python was just beginning to make inroads into scientific computing, yet geospatial 

analysis was largely absent from the Python scientific software stack. We saw a need to bring spatial 

analysis, spatial statistics and spatial econometrics into this community. Concurrently we also had 

existing software projects that were using Python, STARS (Rey) and PySpace (Anselin) that we felt 

could benefit from sharing of common algorithms and data structures so as to reduce duplication and 

allow for pooled resources in optimizing the new and improved code base. 

From conception, PySAL has been viewed as library driven by our goals to leverage code 

modularization and support flexible reuse and combinations of the components in the library. As we 

discuss more fully in the following sections, this design has allowed PySAL to be delivered in a wide 

variety of platforms and for a range of different use cases. Thus we have invested significant effort in 

designing the library and related infrastructure to support widespread adoption for the development of 

high-level applications for spatial analysis. From our perspective we see PySAL serving the role as 

both a target of our own research on advancing geospatial analytics as well as a powerful 

dissemination mechanism to enable scientific discovery across the social, life and physical sciences. 

Our own research agendas are tightly coupled with PySAL’s development. Members of the core team 

are very active in the development of new geospatial and space-time analytics that have been widely 

adopted throughout the scientific community. As we continue with this line of research, new advances 
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are continually added to the library. We are also typical of many other social scientists in that we find 

PySAL very useful for our own empirical research on different types of substantive problems. 

Initially released in July 2010 under the Berkeley Software Distribution License, PySAL has 

continually been updated on a 6-month release cycle, and at the time of writing the stable version is 

1.91. Since its initial release PySAL has been downloaded over 60,000 times. That popularity has also 

been reflected in PySAL being included as a featured package in the leading software distributions for 

scientific computing in Python, Enthought and Anaconda. 

2.2. PySAL Components 

PySAL is designed as an integrated collection of modules with a particular focus on vector based 

geospatial data. The weights module provides for the construction, manipulation and conversion of 

spatial weights that are central to many types of spatial analysis. Generally speaking the spatial 

weights formalize the neighbor relations between pairs of spatial observations. As many different 

criteria can be used to define the neighbor relations, the weights module supports three broad classes 

of weights: (1) contiguity based; (2) distance based; and (3) hybrid. The classes implementing the 

weights are highly optimized for their memory footprint and speed of computation. The weights 

module also supports the reading and writing of some 13 different external formats for spatial weights 

to facilitate interoperability with other spatial analytical packages. 

Global and local measures of spatial autocorrelation comprise key aspects of the exploratory spatial 

data analysis module: esda. Both global and local indicators for spatial association [19] are 

implemented for Moran’s I, Geary’s c, and the class of Getis-Ord statistics. Additionally, join count 

statistics for binary attributes are also provided and for all measures both analytical and permutation 

based approaches to inference are available. The esda module also contains a wide array of 

classification schemes for choropleth maps. 

The inequality module implements a variety of statistics to analyze inequality in spatial 

distributions. Global measures of inequality such as Theil’s information based statistic and the Gini 

index are included. Spatial versions of these inequality measures consist of the spatial decomposition 

of the Theil statistic [20] and the spatial Gini decomposition [21]. The latter statistics report on the 

degree to which overall levels inequality may mask differences in inequality between neighboring and 

non-neighboring pairs of observations. 

Methods to form regions of spatially connected observations are provided by the regionalization 

module. These include the max-p algorithm [22], a heuristic that generates a partition of the maximum 

number of regions of spatially connected areas with each region specifying some threshold constraint 

(i.e., population). Also contained in regionalization are methods to generate random regions for 

simulation purposes and methods for inference on regionalization solutions. 

The spatial dynamics module consists of a series of methods that extend classic ESDA methods to 

incorporate a temporal dimension including the space-time LISA and related visualizations [23]. 

Similarly, research that has extended methods from the distributional dynamics literature, such as 

Markov chains, has resulted in new spatially explicit versions of these approaches, or so called 

methods of spatial distribution dynamics [24] which form the other main component of the spatial 
dynamics module. 
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Modern methods of spatial econometrics are provided via the spreg module. Included are 

techniques to test for and estimate spatial effects in linear regression models. Spatial dependence is 

handled through spatial autoregressive models while spatial heterogeneity is treated with spatial 

regime models. Methods of estimation include classical maximum likelihood estimation and more 

recently developed techniques based on the principle of generalized method of moments (GMM). [25] 

provides a comprehensive guide to the spreg module. 

The most recently added core analytical module is network. This implements methods for the 

spatial analysis of phenomena that are constrained to network space [26]. network includes methods 

for global and local spatial association on networks, as well as point pattern based methods including 

G, F, and K functions. Utility methods for snapping point data to network edges as well as network 

segmentation are also included in the module. 

In addition to these core modules there are contrib modules in PySAL where third party modules 

can be developed that require dependencies beyond the PySAL dependencies of NumPy and SciPy. 

These include support for interfacing with shapely, clusterpy, and a viz module that provides 

interfaces to visualization to frameworks such as folium and d3. 

3. Open Geospatial Analytics on the Desktop  

Since the majority of end users for PySAL typically work in desktop environments we have 

developed three main approaches to providing access to PySAL functionality on this platform. The 

first consist of completely new applications that have been developed from the ground up in which 

PySAL components play the role of computational engine. The second approach has been to integrate 

PySAL into an existing desktop application via the application’s plugin architecture. A final approach 

to PySAL on the desktop has been to rely on the new paradigm of computational notebooks. 

3.1. Desktop Applications Built with PySAL 

CAST, which stands for Crime Analytics in Space-Time [27] is a stand-alone desktop program to 

detect spatial patterns and trends in point data (such as crimes or diseases). Users can represent 

different attributes and spatial contexts of events in views such as maps, graphs, and calendars that can 

be animated over time (Figure 1). All of these views are linked to allow analysts to identify how 

selected subsets of the data are characterized across these dimensions. Statistical significance tests are 

applied to identify spatial clusters of events and temporal concentrations of crimes.  

CAST emphasizes the analytics in the spatial dynamics and the esda modules in PySAL. Its 

interface is inspired from previous work on GeoDa and STARS [28] to implement full brushing and 

linking, but extends the interface functionality in important ways. CAST allows for the display of 

multiple shape file layers, and this can be accomplished within a single view or with each view as a 

separate window. Spatial, temporal and space-time queries are also supported. The program runs on 

the three main operating systems: Windows, MacOSX and Linux.  



ISPRS Int. J. Geo-Inf. 2015, 4 820 
 

 

 

Figure 1. PySAL delivered as a stand-alone desktop application (CAST). 

GeoDaSpace [25] is a second example of a desktop application that wraps a subset of PySAL 

functionality to provide a friendly graphical interface to advanced spatial analytics. In this case the 

focus is on a subset of the models and methods in the spreg component of the library. Figure 2 

provides an example of using GeoDaSpace which illustrates a particular GUI dialogue for specifying a 

model together with the results of model estimation and diagnostic tests in the window to its right.  

At first glance the idea of writing a completely new desktop application for geospatial analysis 

would appear to be a daunting task and perhaps wasteful of developer resources. However, there are 

two reasons this turns out not to be the case. First, a funding agency may have particular requirements 

for a specialized application and, indeed, this was the case for CAST. Secondly, because PySAL 

provided the analytical engine for the applications above, the development effort focuses only on the 

interface (interactive graphics for CAST, and menu driven interface for GeoDaSpace).  
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Figure 2. Cont. 
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Figure 2. GeoDaSpace for spatial econometrics functionality from PySAL. 

3.2. PySAL Toolkits for Desktop GIS 

The second strategy for PySAL on the desktop is to leverage the Application Programming 

Interface (API) or plug-in architecture of an existing desktop application. One example of this is our 

development of a PySAL tookit for ESRI’s ArcGIS program. Subsets of the functionality available in 

GeoDaSpace are incorporated as part of a PySAL ArcGIS Tool (Figure 3). A selection of the 

estimators from the spreg module together with methods for the construction of contiguity, distance or 

kernel spatial weights is exposed via the ArcGIS menu dialogue. The user is also prompted to select 

the dependent and independent variables to specify the model to be estimated. By integrating PySAL 

with ArcGIS, the spatial methods focus of the library is combined with the GIS infrastructure of 

ArcGIS. For instance, model results from the PySAL Toolbox, such as predicted values or residuals, 

can subsequently be mapped in ArcGIS. 

In addition to the spatial econometrics focused toolkit for ArcGIS we have been collaborating with 

core members of the QGIS development team to prototype a PySAL plugin for the Processing 

Toolbox. Figure 4 demonstrates the application of the LISA class in the esda module of PySAL and its 

visualization via the QGIS interface. Other modules of PySAL are also shown in the toolbox, while 

plans are underway to convert the PySAL plugin to a core module within the Processing framework 

and release it as a component of QGIS.  



ISPRS Int. J. Geo-Inf. 2015, 4 823 
 

 

 

Figure 3. PySAL delivered as an ArcGIS Toolbox. 

 

Figure 4. PySAL in the Processing Toolbox of QGIS. 

This second strategy of using the plug-in architecture of a desktop GIS application has a number of 

advantages. First, geoprocessing, map projections, and support for a wide array of spatial data types 

can be provided by the GIS application, while the particular PySAL functionality is integrated as a 

plug-in. This largely removes a major development cost for the PySAL team, which, previously, had to 

develop similar functionality to bootstrap our analytical work. Now, freed from having to spend 

developer time on these concerns, our team can instead focus on new geospatial analytics in the library. 



ISPRS Int. J. Geo-Inf. 2015, 4 824 
 

 

3.3. Interactive Computing on the Desktop 

The final approach to PySAL on the desktop is inspired by the use case of a single researcher 

working on data analysis from an exploratory perspective. In this mode the sophisticated researcher 

would like to have access to all the functionality in the library and clearly a GUI-based interface that 

exposes only a subset of PySAL would constrain this functionality. PySAL can be employed in several 

ways for this type of analysis. First, since it is a Python module, importing the PySAL library into a 

running Python interpreter at the command line offers a very flexible user interface for interactive 

computation. Secondly, PySAL could also be imported into scripts for use in batch processing and 

simulation work. Often these first two modes are used together in carrying out exploratory work, as the 

researcher will start at the interactive prompt to explore certain methods and try different sequences of 

operations. Once satisfied with the workflow, the sequence of commands can be combined in a script 

for later use or for replication purposes. 

A third approach to using PySAL for exploratory scientific computing on the desktop is the IPython 

notebook [17]. The notebook is a browser based interactive computing environment where the 

researcher can combine exploratory scripting with textual comments in LaTeX or Markdown format 

together with embedded scientific visualizations and other rich media. This offers a revolutionary 

framework for carrying out scientific computing on the desktop. Figure 5 illustrates the use of PySAL 

and folium within a notebook session. The notebook consists of cells that can group together code 

blocks, as in cells “In [29]:” and “In [30]:” in the figure, as well as the output or visualization resulting 

from the execution of a block, as in the map in “Out [30]:”. 

 

Figure 5. PySAL in the IPython notebook. 
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4. Open Spatial Analytics Middleware 

Desktop applications are typically used by a single researcher on a single machine. Moving into a 

distributed and high performance computing context requires architectures that can support 

interoperability between components and services, as well as exploit the new capabilities of the 

available hardware. This is not a simple matter of installing the desktop version of the PySAL library 

on new hardware, but rather a number of fundamental challenges arise that must be addressed if the 

potential of high performance computing (HPC) for spatial analysis are to be realized. Key among 

these are the issues of provenance and meta-data for spatial analytical workflows, which become 

particularly critical when considering distributed computing and interoperability between different 

services [16]. While there has been much work on provenance and meta-data for spatial data and 

geoprocessing, similar frameworks for chaining together spatial analytical methods are in their 

infancy. Without these frameworks, the replication and reproducibility of geospatial analysis on HPC 

and distributed platforms will remain out of reach. 

A second set of challenges pertains to the demands of interoperability. To ensure that different spatial 

analytical packages and services can be chained together for problem solving it is essential that each 

module in the chain offers a discoverable interface so that its functionality can be understood and exploited. 

Automation of this discovery process remains a holy grail of distributed services and computing.  

We are addressing the challenges of provenance and analytical discoverability through middleware 

that enables us to move PySAL into HPC and distributed domains. We discuss these efforts below. 

4.1. Provenance and Meta-Data for Scientific Workflow Support 

The PySAL provenance architecture [31] is designed based on the following principles: (1) it 

should be light-weighted; (2) it should support easy integration with spatial analytical and visualization 

modules within and outside of the realm of PySAL; (3) it should facilitate automated invocation of PySAL 

functions and chaining of spatial analytical workflows; (4) it should provide a machine-understandable and 

human-readable data structure; and (5) it should enable the replication of analytical results.  

A major obstacle that keeps existing provenance schemes, such as the XML-based (Extensible 

Markup Language) W3C PROV from receiving widespread adoption in operational software systems 

is the complex encoding of provenance information. This complexity creates an additional 

computational burden. Consequently, we have opted to base the construction of the PySAL 

provenance module on JSON (JavaScript Object Notation) instead of XML. Figure 6a demonstrates an 

example of the provenance structure for spatial weights, a fundamental operation in spatial statistics 

necessary to quantify the spatial dependence among observations. In general, besides the input file 

format and operation, additional parameters, such as whether the values in a spatial weights matrix 

need to be standardized or not are also encoded, by the key “transform”. Adopting JSON as the 

encoding scheme for provenance makes the structure easy to read, by both machine and researchers. In 

addition, the integration with Python is facilitated since the JSON file follows the same key-value pair 

definition as Python’s build-in dictionary data structure. Therefore, a seamless integration of PySAL 

and the provenance module can be realized. Also, because the JSON structure removes redundant open 
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and close tags required in XML, as well as other scheme related information, human readability is 

greatly improved.  

 

 

Figure 6. Provenance meta-data for spatial analytical workflows in JavaScript Object 

Notation (JSON) format. 

The provenance framework is designed to be extensible and enables automatic data reproduction 

and validation as part of an analytical workflow. Figure 6b demonstrates the contents of a provenance 

file to invoke the Local Moran’s I functionality from the PySAL spatial autocorrelation module. 

Rather than defining the actual input data as such, a recursive approach is taken by providing a link to 

another provenance file that details the creation of the spatial weights (as in Figure 6a). This embedded 

design thus provides the ability for recursive provenance traversing and validation of intermediate data. 

Through this provenance module and the associated provenance engine, all atomic steps in a spatial 

analysis workflow can be automatically recorded in both a machine- and human-readable format and 

(a) Provenance for spatial weights generation 
{ 

"input1": { 

"data1":{ 

"type": "shp", 

"uri": "http://toae.org/pub/columbus.shp"} 

}, 

"weight_type": "rook", 

"transform": "O" 

} 

 

(b) Provenance structure for generating local Moran’s I 
{ 

"input1": { 

"weights":{ 

"type": "prov", 

"uri": "http://toae.org/pub/wrook1.wmd"}, 

"attributes":{ 

"type": "text", 

"type": "CRIME", 

"uri": "http://toae.org/pub/columbus.dbf"}, 

}, 

"analysis_type": "Moran_local", 

"transform": "O" 

"output": { 

 “p_norm”: “float” 

}
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thus facilitate the cross-validation of scientific findings. It can also be delivered through a web service 

interface, such as OGC WPS, or REST API to further enhance the interoperability of spatial analytical 

modules across different software packages.  

4.2. PySAL REST API for Discoverability and Interoperability 

PySAL-REST is a server side API generated by introspecting the PySAL code base, wrapping the 

PySAL library, and exposing spatial analytical functionality via a RESTful interface. REpresentational 

State Transfer [32] is a set of implementation constraints designed to support interoperability between 

distributed software components. These requirements include: (1) a clear separation of concerns as 

embodied by a layered client-server architecture; (2) stateless communication where each message 

must contain all information required to perform some task, e.g., initiate a spatial processing task; and 

finally (3) standardization of communication protocols, essential to allow the independent modification 

of the client or server. PySAL-REST is designed to comply with these requirements and to provide a 

backend spatial analysis platform accessible via standard HTTP verbs (GET, POST, PUT, DELETE) 

in a highly distributed environment. 

PySAL-REST utilizes JSON as the standard communication protocol. JSON is a standard, plain text 

format to support communication between computing components [33] that finds wide usage as an 

efficient communication format across the web [30,34]. Figure 7, below, illustrates a sequence of 

analytical steps required to: (1) GET request information about an available dataset; (2) GET request for 

the arguments required to run a given analytical method; (3) POST request to perform an atomic 

analytical task; and (4) GET request to access a component of the analytical result. 

 

Figure 7. PySAL REST-API. 

Within the context of PySAL-REST, automated code introspection and reflection provide key 

benefits over the development of independent interface layers. First, as new functionality is realized 

within the PySAL library, it is immediately available via PySAL-REST without additional 

development efforts. Second, meta-data describing each atomic spatial analysis operation is extracted 

directly from the PySAL source code, providing a self-documenting API that updates information 

essential to analysis chaining without intervention. Finally, code reflection allows analytical results to 
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be bootstrapped with Analytical Metadata, providing essential provenance information. When 

combined, these three items offer a backend solution ideally suited to provide interoperable, self-describing 

and documenting methods to support Web-based applications and services. 

5. Web, Cloud and Distributed Open Geospatial Analytics 

The middleware discussed above supports the movement of PySAL into Web, Cloud, Grid and 

distributed compute environments. Here we outline a selection of these implementations that cover a 

range of use cases for HPC spatial analysis.  

5.1. Scientific Gateways  

The CyberGIS Gateway [35] is an online CyberGIS software environment that supports 

cyberinfrastructure-enabled geospatial analysis and problem solving. The Gateway implements a 

number of high-performance and collaborative geospatial packages and applications on the NSF 

XSEEDE and Open Science Grid infrastructures, providing access to powerful computer resources via 

browser based user interfaces. Figure 8 illustrates the CG-PySAL component of the Gateway which 

exposes components of the spreg module of PySAL in support of spatial econometric analysis. 

In addition to supporting the CyberGIS Gateway, a CyberGIS Toolkit brings together a suite of 

loosely coupled open-source geospatial software modules with an emphasis on scalability. It provides 

a platform for researching the scalability of spatial analysis algorithms and their coupling with other 

packages to support flexible workflows. Figure 9 reports the integration of one research effort focusing 

on the parallelization of one component of the PySAL library, namely scalable implementations of 

optimal choropleth map classifications for massive data sets [29,36]. 

 

Figure 8. Cont. 
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Figure 8. PySAL in the CyberGIS Gateway. 

5.2. PySAL-Cloud 

The functionality of PySAL can also be wrapped in a cloud-computing platform to provide  

cloud-based spatial analysis services. These services allow users to apply spatial analysis on data 

residing on their desktop or stored anywhere in the cloud using the powerful computing capabilities 

provided by the cloud. Since all the computational work is running on the cloud, users can access these 

cloud-based services worldwide from any device. Figure 10 illustrates PySAL-cloud, a prototype of a 

cloud-based spatial analysis service. It allows users to access their data locally, in a private cloud (e.g., 

via Dropbox or CartoDB; see Figure 10a), or to retrieve data from a public cloud (e.g., automatically 

crawling data from Google Maps or searching data from Socrata; see Figure 10b). The PySAL-Cloud 

service also engages the latest HTML5 techniques to visualize maps, tables and plots in a configurable 

dashboard style and implements brushing and linking capability (see Figure 10c). Through a graphical 

user interface, the functionality from PySAL can be invoked to explore spatial data and run spatial 

regressions (see Figure 10d). For third-part developers, all of PySAL’s functionality can be wrapped as 

cloud APIs, which can be used to integrate with other cloud-based services to compose various 

applications. The PySAL cloud service is implemented on a high performance computing 

infrastructure. This allows for the optimization of the code for handling large spatial data by utilizing 

specialized parallel and distributed computing capability that takes advantage of the HPC 

infrastructure. This customization and optimization go beyond what can be implemented in the 

standard stable and cross platform release of the library. For example, in [37] an experimental 

approach is outlined that uses Hadoop to create spatial weights from very large spatial datasets.  
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Figure 9. Parallel PySAL in the CyberGIS Toolkit. 
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Figure 10. PySAL-Cloud: A prototype of a cloud-based spatial analysis platform. 

5.3. Complex Systems Framework and Decision Support 

The Complex Systems Framework (CSF) is an open-source example of a flexible decision-support 

system that integrates a range of computational modules such as PySAL within a common  

cyber-framework specifically designed for use in a decision-making context [38]. It provides a  

high-level environment that can link together different sophisticated computational models so that the 

output of one sub- model or process can provide input to another one. CSF applications run on a 

compute cluster consisting of 1200 processing cores and a combined 2400 GB of RAM to be able to 

generate results in decision time (Figure 11).  

Figure 12 illustrates an example to detect patterns of crimes at different levels of spatial aggregation 

and for different time periods. The results are displayed on multiple dashboards that can be viewed on 

screens of different sizes, ranging from decision environments like Decision Theaters, to large-screen 

TVs in data fusion centers, desktop monitors, and mobile devices such as phones and touchpads. Since 

the displays are browser-based, they are platform independent (e.g., they run on iPad, Android, 

Windows, Mac or Linux). The data input for the analysis can be static (previously collected data) or 

near-real time, in which case the displays are automatically updated as soon as the database updates. 

The system is designed to be flexible and customizable: For instance, different content can be 

displayed on screens accessible to different groups of analysts and practitioners. 
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Figure 11. Complex systems framework components. 

 

Figure 12. PySAL delivered in the Complex Systems Framework web-based decision 

support system.  

While the gateway, toolkit, cloud and CSF represent specific operational examples of moving 

PySAL into the HPC and distributed context, we have discovered many new challenges and 

opportunities in these efforts. Moving forward, we envision a broader integration framework informed 

by these efforts that is portrayed in Figure 13. This platform follows a loose-coupling and modular 

design principle to facilitate easy extension in its architecture and functions, as well as to enhance 

reusability of the existing software components. From bottom to up, this framework is composed of 

five layers: the computing layer, software layer, web application layer, decision support layer and 

application layer. As our goal is to offer a powerful online spatial analysis and decision-making tool, 

the computing resources, or the hardware that hosts the software components becomes an important 

consideration in the software design. Scalability is achieved by running the software module on a HPC 

facility, such as ASU Advanced Computing Center (A2C2)’s super computers, GeoDa’s high 

performance cluster, or other existing HPC resources. A scheduler and load balancer is deployed on 

the distributed computing nodes to redirect a user’s computing request to a less-occupied node to 

realize a high throughout and a responsive online analysis system.  
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Figure 13. Open geospatial analytics integration framework 

The actual spatial analysis is conducted by the open source GeoDa [39] and the PySAL library. To 

openly share these routines in a distributed environment, a set of RESTful APIs was developed to wrap 

atomic functions in both packages. These APIs help to hide the complexity of software installation and 

hardware configuration from tool consumers. On top of the software layer, there lies the web 

application layer, which provides the web-version of GeoDa and PySAL for online analysis. These two 

modules directly interact with the REST-API to access remotely the spatial analysis functions. They 

also provide online interfaces to allow an end user to perform the analysis easily as long as an Internet 

connection is available to him/her. To ensure the replicability of the analysis result, a provenance 

model is developed to allow the on-the-fly generation of the metadata that tracks the footprint of 

(intermediate and final) data products in a spatial analytical workflow. Meanwhile, a provenance 

engine is integrated into PySAL-Web to allow the interpretation of provenance metadata to reproduce 

and validate the results automatically. Going one layer up, we further deployed the complex system 

framework to enable the combination of analysis and workflows from GeoDa-Web and PySAL-Web 

to foster effective decision-making. This decision making tool can be used to support a variety of 

social-economic and geoscience applications.  

6. Conclusion 

The flexible delivery of open geospatial visual analytics in different desktop and web-based 

applications leverages the initial investment in developing the PySAL library for multiple purposes 
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and audiences. Especially the web-based applications contribute to a technological infrastructure that 

promises to improve the continuous monitoring of desired outcomes through the near real-time 

analysis of different data sources (including open, administrative and crowd sourced data). As such 

these applications help disseminate the methods and tools developed within the university for use by 

analysts addressing policy-relevant challenges in other domains. 

Building on our experiences in developing geospatial visual analytics we see several directions for 

future research. In order to scale existing spatial analytical methods to take advantage of HPC 

platforms it is necessary that current implementations be refactored to the particular characteristics of 

computer hardware at hand. Given the heterogeneity of such hardware, a one-size-fits-all solution is 

not possible. We are exploring highly optimized implementations on our research clusters and the 

provision of access to those methods via web based interfaces. 

A second, and related, challenge is to avoid the trap of one-off implementations that are essentially 

proof-of-concepts. There is an inherent tension between research code that is used to develop a novel 

solution to a computational problem, and the general lack of production quality code that is intended for 

use by the wider research community. This hampers the advancement of science, as the prototypes are 

often not easily extended nor able to support interoperability with other tools. Through our work on 

PySAL we have demonstrated that, by building on a core library, it is possible to not only explore new 

approaches and prototypes, but also then integrate the advances and lessons learned from the prototype 

back into the library. This iterative process requires that we consider mechanisms to increase the 

modularity and interoperability of PySAL. Moving forward, we see the focus on provenance frameworks, 

meta-data and replication support as becoming increasingly important to open geospatial analytics. 

Acknowledgments 

Funding from the National Science Foundation (NSF SI2-SSI: CyberGIS Software Integration for 

Sustained Geospatial Innovation; NSF SES-1421935: New Approaches for Spatial Distribution 

Dynamics), the National Institutes of Health (2-R01CA126858: Geospatial Factors and Impacts II), the 

National Institute of Justice, Office of Justice Programs, U.S. Department of Justice (2009-SQ-B9-K101) 

and the Environmental Systems Research Institute (ESRI) is gratefully acknowledged. 

Author Contributions 

L.A. directed spreg module development and designed the architecture of the geovisual analytics 

framework; J.K. wrote an extended abstract that the present paper is based on; J.L. designed the 

PySAL REST API; W.L. developed the provenance model for scientific workflow; X.L. developed the 

PySAL based desktop application CAST, the ArcGIS Toolbox of PySAL, and the prototype of 

PySAL-Cloud; R.P. designed the architecture of the Complex Systems Framework; S.R. wrote the 

paper and directed the PySAL project. 

Conflicts of Interest 

The authors declare no conflict of interest.  
  



ISPRS Int. J. Geo-Inf. 2015, 4 835 
 

 

References  

1. Miller, H.J. The data avalanche is here. Shouldn’t we be digging? J. Reg. Sci. 2010, 50, 181–201. 

2. Arribas-Bel, D. Accidential, open and everywhere: Emerging data sources for the understanding 

of cities. Appl. Geogr. 2014, 49, 45–53. 

3. Batty, M.; Axhausen, K.W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; 

Ouzounis, G.; Portugali, Y. Smart cities of the future. Eur. Phys. J.-Spec. Top. 2012, 214, 481,  

doi:10.1140/epjst/e2012-01703-3. 

4. Rey, S.J. Open regional science. Ann. Reg. Sci. 2014, 52, 825–837. 

5. Lazer, D.; Pentland, A.; Adamic, L.; Aral, S.; Barabasi, A.-L.; Brewer, D.; Christakis, N.; 

Contractor, N.; Fowler, J.; Gutmann, M.; et al. Computational social science. Science 2009, 323, 

721–723. 

6. King, G. Ensuring the data-rich future of the social sciences. Science 2011, 331, 719–721. 

7. Edelman, B. Using Internet data for economic research. J. Econ. Perspect. 2012, 26, 189–206. 

8. Golder, S.A.; Macy, M.W. Digital footprints: Opportunities and challenges for online social 

research. Annu. Rev. Sociol. 2014, 40, 129–152. 

9. The White House. Fact Sheet: President Obama’s Precision Medicine Initiative; Office of the 

Press Secretary: Washington, DC, USA, 2015. 

10. Batty, M. The New Science of Cities; MIT Press: Cambridge, UK, 2013. 

11. Townsend, A. Smart Cities: Big Data, Civic Hackers and the Quest for a New Utopia; W.W. 

Norton & Co.: New York, NY, USA, 2014. 

12. Goodchild, M.F. The quality of big (geo) data. Dialogues Hum. Geogr. 2013, 3, 280–284. 

13. Crenshaw, J.; Schwartz, R.; Hong, J.; Sadeh, N. The livehoods project: Utilizing social media to 

understand the dynamics of a city. In Proceedings of the 6th International AAAI Conference on 

Weblogs and Social Media (ICWSM), Trinity College, Dublin, Ireland, 4–8 June 2012. 

14. Kumar, S.; Morstatter, F.; Liu, H. Twitter Data Analytics; Springer-Verlag: Berlin, Germany, 2013. 

15. Ruths, D.; Pfeffer, J. Social medial for large studies of behavior. Science 2014, 346, 1063–1064. 

16. Anselin, L.; Rey, S.J. Spatial econometrics in an age of CyberGIScience. Int. J. Geogr. Inf. Sci. 

2012, 26, 2211–2226. 

17. Pérez, F.; Granger, B. IPython: A system for interactive scientific computing. Comput. Sci. Eng. 

2007, 9, 21–29. 

18. Rey, S.J.; Anselin, L. PySAL: A Python library of spatial analytical methods. In Handbook of 

Applied Spatial Analysis; Fisher, M.M., Getis, A., Eds.; Springer: Berlin, Germany, 2010;  

pp. 175–193. 

19. Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. 

20. Rey, S.J. Spatial analysis of regional income inequality. In Spatially Integrated Social Science: 

Examples in Best Practice; Goodchild, M.F., Janelle, D., Eds.; Oxford University Press: Oxford, 

UK, 2004; pp. 280–299. 

21. Rey, S.J.; Smith, R.J. A spatial decomposition of the Gini coefficient. Lett. Spat. Resour. Sci. 

2013, 6, 55–70. 

22. Duque, J.; Anselin, L.; Rey, S. The max-p regions problem. J. Reg. Sci. 2012, 53, 397–419. 



ISPRS Int. J. Geo-Inf. 2015, 4 836 
 

 

23. Rey, S.J.; Murray, A.T.; Anselin, L. Visualizing regional income distribution dynamics. Lett. 

Spat. Resour. Sci. 2011, 4, 81–90. 

24. Rey, S.J. Spatial dynamics and space-time data analysis. In Handbook of Regional Science; 

Fischer, M.M., Nijkamp, P., Eds.; Springer: Berlin, 2014; pp. 1365–1383. 

25. Anselin, L.; Rey, S.J. Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace 

and PySAL; GeoDa Press: Chicago, IL, USA, 2014. 

26. Okabe, A.; Sugihara, K. Spatial Analysis along Networks: Statistical and Computational 

Methods; Wiley: New York, NY, USA, 2012. 

27. Rey, S.J.; Anselin, L.; Li, X.; Koschinsky, J. Guide to Using the Crime Analytics for Space-Time 

(CAST) Desktop Software Program; Technical Report; GeoDa Center for Geospatial Analysis and 

Computation, Arizona State University: Tempe, AZ, USA, 2013. 

28. Rey, S.J.; Janikas, M.V. STARS: Space-time analysis of regional systems. Geogr. Anal. 2006, 38, 

67–86. 

29. Laura, J.; Rey, S.J. Improved parallel optimal choropleth map classification. In Modern Accelerator 

Technologies for Geographic Information Science; Shi, X., Kindratenko, X., Yang, C., Eds.; 

Springer: Berlin, Germany, 2013; pp. 197–212. 

30. Lawrence, R. The space efficiency of XML. Inf. Softw. Tech. 2004, 46, 753–759. 

31. Anselin, L.; Rey, S.J.; Li, W. Metadata and provenance for spatial analysis: The case of spatial 

weights. Int. J. Geogr. Inf. Sci. 2014, 28, 2261–2280. 

32. Fielding, R.T. Architectural styles and the design of network-based software architectures. 

Ph.D. Thesis, University of California, Irvine, CA, USA, 2000.  

33. ECAM. The JSON Data Interchange Format; ECAM-404 2013; ECAM International: Geneva, 

Switzerland, 2014. 

34. Severance, C. Discovering JavaScript object notation. Computer 2012, 45, 6–8. 

35. Wang, S.; Anselin, L.; Bhaduri, B.; Crosby, C.; Goodchild, M.; Liu, Y.; Nyerges, T. CyberGIS 

software: A synthetic review and integration roadmap. Int. J. Geogr. Inf. Sci. 2013, 27, 2122–2145. 

36. Rey, S.J.; Anselin, L.; Pahle, R.; Kang, X.; Stephens, P. Parallel optimal choropleth map 

classification in PySAL. Int. J. Geogr. Inf. Sci. 2013, 27, 1023–1039. 

37. Li, X.; Li, W.; Anselin, L.; Rey, S.J.; Koschinsky, J. A map-reduce algorithm to create contiguity 

weights for spatial analysis of big data. In Proceedings of the 3rd ACM SIGSpatial International 

Workshop on Analytics for Big Geospatial Data, 4 November 2014, Dallas, TX, USA; pp. 50–53. 

38. Pahle, R. Complex Systems Framework—Integrating Analytics, Visualization and Collaboration. 

GeoDa Center for Geospatial Analysis and Computation Working Paper. Unpublished work, 

2014.  

39. Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. Geogr. Anal. 

2006, 38, 5–22. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


