Supplemental Information for

A Combined Activated Sludge Anaerobic Digestion Model (CASADM) to Understand the Role of Anaerobic Sludge Recycling in Wastewater Treatment Plant Performance

Michelle N. Young, Andrew K. Marcus, and Bruce E. Rittmann

Appendix A.1: Modeling nomenclature

Variable	Description	Units
b	Decay rate	1/t
С	Concentration	M_s/L^3
f _d	Fraction of biodegradable biomass	-
k _{UAP or EPS}	Formation rate of UAP or EPS	-
k _i	Hydrolysis rate	1/t
K _{substrate}	Half-maximum rate concentration	M_s/L^3
Kinhibit	Inhibition factor	M_s/L^3
Q	Volumetric flow rate	L^{3}/t
ĝ	Maximum utilization rate of substrate	$M_{s}/(M_{x}-t)$
V	Volume	L ³
Х	Concentration of solids or biomass	M_x/L^3
Y	True yield	M _x /M _s
γ	Conversion factor	-
Subscripts		
a	Ammonium oxidizing bacteria	
Ac	Acetate	
AD	Anaerobic digester	
Amm	Ammonium (NH ₄ ⁺ -N)	
Ax	Anoxic tank	
BAP	Biomass associated products	
Cl	Clarifier	
Cl-Sl	Flow from clarifier to sludge thickener	
Cl-St	Flow from clarifier to stabilization tank	
COD	Chemical oxygen demand	
Ct	Contact tank	
DO	Dissolved oxygen	
EPS	Extracellular polymeric substances	
f	Fermenters	
h	Heterotrophs	
hyd	Hydrolysis	
in	Influent to the system	
m	Methanogens	
n	Nitrite oxidizing bacteria	

Subscripts	Description	Units
NaN	Nitrate (NO ₃ ⁻ -N)	
NiN	Nitrite (NO ₂ ⁻ -N)	
out	Effluent from the system (from the clarifier)	
Р	Single particles of PCOD	
Sl	Sludge thickener	
Sl-AD	Sludge from the sludge thickener	
S1-super	Supernatant from sludge thickener	
St	Stabilization tank	
UAP	Utilization associated products	
W	Wasting sludge from AD	

Appendix A.2: Modeling approach and mass balance equations

Here, we explain our basic approach to modeling a complex wastewater treatment plant.

All mathematical mass balance models are based on conservation of mass in a system:

Accumulation	Rate of	Rate of	Generation	Loss rate	
rate of mass	_ mass	mass	rate of	of mass in	
within a	entering	leaving	+ mass in the	the system	
system	the system	the system	system		
					(A.1)

A system that is at steady-state will have an accumulation rate term equal to zero. The first two terms on the RHS of the equation describe advective transfer of mass in and out of the system. The last two terms on the RHS describe the formation or utilization of mass via chemical or biological reactions.

We begin by first identifying the different systems for modeling, which are illustrated in Figure 1 of the main text. We then identify the physical, chemical, and biological mechanisms and solid and soluble components that occur in the system; these are summarized in Table A.1. While the most typical physical mechanism is advective mass transport from tank to tank, separation also occurs in the settlers between a supernatant phase and a sludge phase.

Solid Cor	mponents	Soluble/Gaseous Components					
		Substrate	Biomass associated				
			products (BAP)				
Heterotrophs	Methanogens	$\mathrm{NH_4}^+$	Utilization associated				
			products (UAP)				
AOB	PCOD	NO_2^-	Acetate				
NOB	Inert biomass	NO ₃ ⁻	N_2				
Fermenters	EPS	Dissolved oxygen (DO)	CH_4				

Table A.1. Solid and soluble components in the mathematical model

As stated in the main text, all biomass undergoes three common phenomena: substrate utilization for cell biomass synthesis, endogenous decay and respiration, and formation of SMP and EPS. However, environmental conditions in the activated sludge and anaerobic digestion processes will encourage a variety of other chemical/biological processes:

- Aerobic utilization of acetate and COD by heterotrophs
- Nitrification of NH₄⁺ and NO₂⁻ by AOB and NOB, respectively, under aerobic conditions
- Denitrification of NO₂⁻ and NO₃⁻ directly to N₂ by heterotrophs without formation of intermediates in anoxic conditions
- Fermentation of COD to acetate by fermenters in anaerobic conditions
- Production of methane via methanogenesis in anaerobic conditions
- Consumption of SMP and EPS by heterotrophs and fermenters
- Hydrolysis of PCOD and inactive biomass

A discussion of specific mechanisms is in the next section.

Table A.2 summarizes the generic mass balance equations (from Eqn. E.1) developed for each tank and the overall system for the hybrid and conventional processes. Note that the subscripts refer specifically to a tank, and C can refer to concentrations of soluble substrates or biomass.

Overal	l system	$V_{\text{system}} \frac{\text{dC}}{\text{dt}} = Q_{\text{in}}C_{\text{in}} - Q_{\text{out}}C_{\text{out}} - Q_{\text{w}}C_{\text{w}} + R_{\text{system}}$					
Anoxic	tank (Ax)	$V_{\text{system}} \frac{dC}{dt} = Q_{\text{in}}C_{\text{in}} - Q_{\text{out}}C_{\text{out}} - Q_{\text{w}}C_{\text{w}} + R_{\text{system}}$ $V_{\text{Ax}} \frac{dC_{\text{Ax}}}{dt} = Q_{\text{in}}C_{\text{in}} + Q_{\text{St}}C_{\text{St}} - Q_{\text{Ax}}C_{\text{Ax}} + R_{\text{Ax}}$					
Contact	tank (Ct)	$V_{Ct}\frac{dC_{Ct}}{dt} = Q_{Ax}C_{Ax} - Q_{Ct}C_{Ct} + R_{Ct}$					
Clarifier (Cl)		$V_{Ct} \frac{dC_{Ct}}{dt} = Q_{Ax}C_{Ax} - Q_{Ct}C_{Ct} + R_{Ct}$ $V_{Cl} \frac{d(C_{Cl} + C_{out})}{dt} = Q_{Ct}C_{Ct} - Q_{out}C_{out} - Q_{Cl}C_{Cl} + R_{Cl}$					
Sludge thi	ckener (Sl)	$V_{Sl} \frac{dC_{Sl}}{dt} = Q_{Cl-Sl}C_{Cl} - Q_{Sl-AD}C_{Sl-AD} - Q_{Sl-super}C_{Sl-super} + R_{Sl}$ where $C_{Sl} = \frac{C_{Sl-super}Q_{Sl-super} + C_{Sl-AD}Q_{Sl-AD}}{Q_{Sl-super} + Q_{Sl-AD}}$					
Stabilization	Hybrid	$V_{St} \frac{dC_{St}}{dt} = Q_{Cl-St}C_{Cl} + Q_{Sl-St}C_{Sl} + Q_{AD}C_W - Q_{St}C_{St} + R_{St}$					
tank (St)	Conventional	$V_{St}\frac{dC_{St}}{dt} = Q_{Cl-St}C_{Cl} + Q_{Sl-St}C_{Sl} - Q_{St}C_{St} + R_{St}$					
Anaerobic digester (AD)	Hybrid	$V_{AD}\frac{dC_{AD}}{dt} = Q_{SI-AD}C_{SI} - C_W(Q_W + Q_{AD}) + R_{AD}$					
	Conventional	$V_{AD} \frac{dC_{AD}}{dt} = Q_{SI-AD}C_{SI} - C_W Q_W + R_{AD}$					

Table A.2. Mass balance equations for SWT's hybrid and conventional processes, including

 equations for the overall system and each tank.

Appendix A.3: Model Features

A.3.1. Dual-limitation Monod kinetics

As established in Bae and Rittmann (1996), dual-limitation Monod kinetics are applied to describe situations in which the reaction rate is limited by the electron-donor concentration, electron-acceptor concentration, or both. For example, when COD is aerobically oxidized by heterotrophs, the reaction rate, r, is described as

$$r = \hat{q} \left(\frac{\hat{q}_{s}S}{K_{s} + S} \right) \left(\frac{DO}{K_{DO} + DO} \right) X_{h}$$
(A.2)

where \hat{q} is the maximum utilization rate of substrate (M_s/M_x-t), S and DO are COD substrate and dissolved oxygen (DO) concentrations (M_s/L³), respectively, K_s and K_{DO} are the substrate and DO half-maximum-rate concentrations (M_s/L³), respectively, and X_h is the concentration of heterotrophs (M_x/L³). Thus, if the electron donor or substrate concentrations are below saturation, the Monod term decreases and, under extreme limitation, becomes very small.

A.3.2. Inhibition (or switch) factors

To simplify the model implementation, we assumed that any mechanism could occur in any tank. Based on de Silva and Rittmann (2000), the level of activity of any mechanism is controlled through the application of an inhibition or switch factor. Different mechanisms described in this model can undergo inhibition if DO, nitrate (NO_3^-), and/or nitrite (NO_2^-) are present. The inhibition factor for DO is

$$DO_{switch} = \frac{K_{s,DO}}{K_{s,DO} + DO}$$
(A.3)

where $K_{s,DO}$ is the inhibition factor for DO (M/L³). When the DO concentration is low, DO^{switch} is ~1, turning the switch on to describe processes under low DO concentrations. When the DO

concentration is low, DO^{switch} is ~0, turning the switch off to inhibit processes under aerobic conditions. Similarly, the switch factors for NO₂⁻, NO_{2,switch}, and NO₃⁻, NO_{3,switch}, are:

$$NO_{2,switch} = \frac{K_{s,NO_2}}{K_{s,NO_2} + NO_2}$$
(A.4)

$$NO_{3,switch} = \frac{K_{s,NO_3}}{K_{s,NO_3} + NO_3}$$
(A.5)

where K_{s,NO_2} and K_{s,NO_3} are the inhibition factors of NO₂⁻ and NO₃⁻ (M/L³), respectively, and NO₂ and NO₃ are the concentrations of NO₂⁻ and NO₃⁻ in the tank (M/L³), respectively. NO₂⁻ and NO₃⁻ switches are ~1, the switches are turned on.

These switches can be applied multiplicatively to describe several situations at once. For example, anaerobic conditions can be activated when the following switch expression is multiplied to an anaerobic rate equation:

$$DO_{switch} (NO_{2,switch} + NO_{3,switch})$$
(A. 6)

The NO_x switches are added together as denitrification is dependent upon the total amount of NO_2^- and NO_3^- in the system.

A.3.4. Application of the Unified Theory of EPS and SMP

Laspidou and Rittmann (2002a, 2002b) outline the unified theory of EPS and SMP in their fundamental work. We modified their theory to expand its application to the variety of mechanisms presented in this paper. Consistent with Laspidou and Rittmann (2002a), all microorganisms produce EPS and UAP. Biomass yield is reduced as electrons are diverted to EPS and UAP formation by a factor of $1-k_{UAP}-k_{EPS}$, where k_{UAP} represents the fraction of electrons going to UAP formation (M_s/M_s) and k_{EPS} represents the fraction of electrons going to EPS formation (M_s/M_s). The factor $1-k_{UAP}-k_{EPS}$ is represented as "c" in Table A.3. EPS is hydrolyzed to BAP using first-order kinetics. BAP can then be consumed by microorganisms for growth.

Only heterotrophs and fermenters utilize UAP and BAP, as they are heterotrophic, CODconsuming microorganisms. UAP and BAP consumption follows Monod-based substrate utilization kinetics. When UAP and BAP are utilized, microorganisms convert the energy to biomass based on a yield, Y_p (M_x/M_s), which is assumed to be different than the direct utilization of other substrates. The microorganisms can produce additional EPS and SMP from utilization of UAP and BAP.

A.3.4. Stoichiometric coefficients

The half reaction for cell synthesis is (Rittmann & McCarty, 2001):

$$\frac{1}{2}CO_2 + \frac{1}{20}NH_4^+ + \frac{1}{20}HCO_3^- + H^+ + e^- = \frac{1}{20}C_5H_7O_2N + \frac{9}{20}H_2O$$
(A.7)

where the biomass molecular formula is $C_5H_7O_2N$ (Rittmann and McCarty, 2001; Metcalf & Eddy, Inc., 2003). Thus, the conversion of cell biomass to COD, γ_0 , can be determined by equating the substrates to their electron equivalents:

$$\gamma_{\rm O} = \frac{1 \text{ mol cells}}{113 \text{ g cells}} * \frac{20 \text{ e}^{-} \text{ eq}}{1 \text{ mol cells}} * \frac{8 \text{g COD}}{1 \text{e}^{-} \text{eq}} = \frac{160 \text{ g COD}}{113 \text{ g cells}}$$
(A.8)

Similarly, the amount of nitrogen in cells is

$$\gamma_{\rm N} = \frac{1 \text{ mol cells}}{113 \text{ g cells}} * \frac{1 \text{ mol N}}{1 \text{ mol cells}} * \frac{14 \text{ g N}}{1 \text{ mol N}} = \frac{14 \text{ g N}}{113 \text{ g cells}}$$
(A.9)

Similar conversions can be performed for other substrates based on electron equivalents.

For denitrification of NO₃⁻ and NO₂⁻ to N₂ gas, the half reactions are

$$\frac{1}{5}NO_3^- + \frac{6}{5}H^+ + e^- = \frac{1}{10}N_2 + \frac{3}{5}H_2O$$
 (A.10)

$$\frac{1}{3}NO_2^- + \frac{4}{3}H^+ + e^- = \frac{1}{6}N_2 + \frac{2}{3}H_2O$$
 (A.11)

To convert NO₃⁻ (γ_{NaN}) and NO₂⁻ (γ_{NiN}) to mgN/mgCOD,

$$\gamma_{\text{NaN}} = \frac{14 \text{ gN}}{1 \text{ mol } \text{NO}_3^-} * \frac{1 \text{ mol } \text{NO}_3^-}{5 \text{e}^- \text{eq}} * \frac{1 \text{e}^- \text{eq}}{8 \text{g COD}} = \frac{14 \text{ g N}}{40 \text{ g COD}}$$
(A. 12)

$$\gamma_{\rm NiN} = \frac{14 \text{ gN}}{1 \text{ mol } \text{NO}_2^-} * \frac{1 \text{ mol } \text{NO}_2^-}{3e^- \text{eq}} * \frac{1e^- \text{ eq}}{8g \text{ COD}} = \frac{14 \text{ g N}}{24 \text{ g COD}}$$
(A.13)

For acetate, the half reaction is

$$\frac{1}{8}CO_2 + \frac{1}{8}HCO_3^- + H^+ + e^- = \frac{1}{8}CH_3COO^- + \frac{3}{8}H_2O$$
(A.14)

To convert acetate to COD, γ_A ,

$$\gamma_{A} = \frac{1 \text{ mol acetate}}{60 \text{ g acetate}} * \frac{8e^{-} \text{ eq}}{1 \text{ mol acetate}} * \frac{8g \text{ COD}}{1e^{-} \text{ eq}} = \frac{64 \text{ g COD}}{60 \text{ g acetate}}$$
(A. 15)

A critical part of the DO calculations is equating the DO utilized by AOB and NOB to the appropriate number of electron equivalents utilized. During nitrification, AOB convert NH_4^+ to NO_2^- via the half reaction

$$\frac{1}{6}NO_2^- + \frac{4}{3}H^+ + e^- = \frac{1}{6}NH_4^+ + \frac{1}{3}H_2O$$
 (A.16)

To convert NH_4^+ to NO_2^- and express it as COD,

$$\gamma_1 = \frac{\text{mol NH}_4}{14 \text{ g N}} * \frac{6 \text{ e}^- \text{ eq}}{1 \text{ mol NH}_4} * \frac{8 \text{ g COD}}{\text{e}^- \text{ eq}} \frac{48 \text{ g COD}}{14 \text{ g N}} = 3.43 \frac{\text{g COD}}{\text{g N}}$$
(A. 17)

NOB convert NO_2^- to NO_3^- , the half reaction is

$$\frac{1}{2}NO_3^- + H^+ + e^- = \frac{1}{2}NO_2^- + \frac{1}{2}H_2O$$
 (A.18)

To convert NO_2^- to NO_3^- and express it as COD,

$$\gamma_1 = \frac{\text{mol NH}_4}{14 \text{ g N}} * \frac{2 \text{ e}^- \text{ eq}}{1 \text{ mol NH}_4} * \frac{8 \text{ g COD}}{\text{e}^- \text{ eq}} = \frac{16 \text{ g COD}}{14 \text{ g N}} = 1.14 \frac{\text{g COD}}{\text{g N}}$$
(A.19)

		(
	Process	Substrate S	PCOD	Acetate	UAP	BAP	Kinetic expression
1	Aerobic metabolism of substrate by X _h	-1			k _{UAP}		$\left(\frac{\hat{q}_{S}S}{K_{S,h}+S}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
2	Anoxic metabolism of substrate by X_h with NO ₃ -N	-1			k _{UAP}		$a_3 \left(\frac{\hat{q}_{Nan}S}{K_{S,h}+S}\right) \left(\frac{NaN}{K_{NaN,h}+NaN}\right) X_h$
3	Anoxic metabolism of substrate by X_h with NO ₂ -N	-1			k _{uap}		$a_3 \left(\frac{\hat{q}_{Nin}S}{K_{S,h}+S}\right) \left(\frac{NiN}{K_{NiN,h}+NiN}\right) X_h$
4	Hydrolysis of inactive biomass	$\gamma_0(X_h + X_a + X_n)$					$a_3(a_1 + a_2)k_{hyd}$
5	Anaerobic utilization of substrate by $X_{\rm f}$	-1		$c(1-\gamma_0 Y_f)$	k _{UAP}		$a_3(a_1 + a_2) \left(\frac{\hat{q}_S S}{K_{S,f} + S}\right) X_f$
6	Aerobic metabolism of NO ₂ ⁻ -N by X _n				<u>Υo</u> k _{uap} γn		$\left(\frac{\hat{q}_{n}NiN}{K_{NiN,n} + NiN}\right)\left(\frac{DO}{K_{DO,n} + DO}\right)X_{n}$
7	Aerobic metabolism of NH ₄ ⁺ -N by X _a				<u>Υo</u> k _{uap} γn		$\left(\frac{\hat{q}_{a}Amm}{K_{Amm} + Amm}\right)\left(\frac{DO}{K_{DO,a} + DO}\right)X_{a}$
8	Aerobic metabolism of acetate by X _h			-1	k _{UAP}		$\left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h}+Ac}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
9	Anoxic metabolism of acetate by X _h with NO ₃ ¬N			-1	k _{UAP}		$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$

		Chemical components					
	Process	Substrate S	PCOD	Acetate	UAP	BAP	Kinetic expression
10	Anoxic metabolism of acetate by X_h with NO ₂ -N			-1	k _{UAP}		$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
11	Acetate utilization by X _m			-1	k _{UAP}		$a_3(a_1 + a_2) \left(\frac{\hat{q}_{Ac,m}Ac}{K_{Ac,m} + Ac} \right) X_m$
12	Aerobic metabolism of UAP by X_h				-(1- k _{UAP)}		$\left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}}\right) \left(\frac{DO}{K_{DO,h} + DO}\right) X_{h}$
13	Anoxic metabolism of UAP and NO_3^- -N by X_h				-(1- k _{UAP)}		$a_3 \left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}}\right) \left(\frac{NaN}{K_{NaN,h} + NaN}\right) X_h$
14	Anoxic metabolism of UAP and NO_2^- -N by X_h				-(1- k _{UAP)}		$a_3 \left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}}\right) \left(\frac{NiN}{K_{NiN,h} + NiN}\right) X_h$
15	Metabolism of UAP by $X_{\rm f}$			$c(1-\gamma_0 Y_f)$	-(1- k _{UAP)}		$a_3(a_1 + a_2) \left(\frac{\hat{q}_{UAP,f}UAP}{UAP + K_{UAP,f}} \right) X_f$
16	Aerobic metabolism of BAP by X_h				k _{UAP}	-1	$\left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
17	Anoxic metabolism of BAP and NO_3^- -N by X_h				k _{UAP}	-1	$a_3 \left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
18	Anoxic metabolism of BAP and NO ₂ ⁻ -N by X _h				k _{UAP}	-1	$a_3 \left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right) \left(\frac{NiN}{K_{NiN,h} + NiN}\right) X_h$
19	Metabolism of BAP by X_f			$c(1-\gamma_0 Y_f)$	k _{UAP}	-1	$a_3(a_1 + a_2) \left(\frac{\hat{q}_{BAP,f}BAP}{BAP + K_{BAP,f}} \right) X_f$
20	Hydrolysis of PCOD	1	-1				k _P P

			Chemical	componer			
	Process	Substrate S	PCOD	Acetate	UAP	BAP	Kinetic expression
21	Aerobic respiration by X _h						$f_d b_h \left(\frac{DO}{K_{DO,h} + DO} \right) X_h$
22	Anoxic respiration by X _h during NO ₃ ⁻ -N utilization						$f_d b_h a_3 \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
23	Anoxic respiration by X _h during NO ₂ -N utilization						$f_d b_h a_3 \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
24	Aerobic respiration by X _a						$f_{d}b_{a}\left(\frac{DO}{K_{DO,a}+DO}\right)X_{a}$
25	Aerobic respiration by X _n						$f_d b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
26	Anaerobic respiration of X _f			1			$f_d b_f X_f a_3(a_1 + a_2)$
27	Anaerobic respiration of X _m						$f_d b_m X_m a_3(a_1 + a_2)$
28	Formation of BAP					1	k _{hyd} EPS
29	Decay of X _h						$b_{h}X_{h}\left[\frac{DO}{K_{DO,h} + DO} + \frac{NaN}{K_{NaN,h} + NaN} + \frac{NiN}{K_{NiN,h} + NiN}\right]$
30	Decay of X _a						$b_a \left(\frac{DO}{K_{DO,a} + DO} \right) X_a$
31	Decay of X _n						$b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
32	Decay of X _f						$\gamma_0 b_f X_f a_3(a_1 + a_2)$

			Chemical	componei			
	Process	Substrate S	PCOD	Acetate	UAP	BAP	Kinetic expression
33	Decay of X _m						$\gamma_0 b_m X_m a_3(a_1 + a_2)$
34	UNITS	mgCOD	mgCOD	mgCOD	mgCOD	mgCOD	
51	UTITS	L d	L d	L d	L d	L d	

				Chemical con	nponents		
	Process	EPS	DO	NH4 ⁺ -N	NO ₃ -N	NO ₂ ⁻ -N	Kinetic expression
1	Aerobic metabolism of substrate by X _h	$rac{k_{EPS}}{\gamma_0}$	-α _h	$-\left(\gamma_{N}cY_{h}\right.\\\left.+\frac{k_{EPS}\gamma_{N}}{\gamma_{O}}\right)$			$\left(\frac{\hat{q}_{S}S}{K_{S,h}+S}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
2	Anoxic metabolism of substrate by X_h with NO_3^N	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm h}\right.\\\left.+\frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$	-γ _{NaN}		$a_3 \left(\frac{\hat{q}_{Nan}S}{K_{S,h}+S}\right) \left(\frac{NaN}{K_{NaN,h}+NaN}\right) X_h$
3	Anoxic metabolism of substrate by X_h with NO_2^N	$\frac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N}cY_{\rm h}\right) + \frac{k_{\rm EPS}\gamma_{\rm N}}{\gamma_{\rm O}}$		-ynin	$a_3 \left(\frac{\hat{q}_{Nin}S}{K_{S,h} + S} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
4	Hydrolysis of inactive biomass			γn			$a_3(a_1 + a_2)k_{hyd}$
5	Anaerobic utilization of substrate by $X_{\rm f}$	$\frac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm f} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$a_3(a_1 + a_2) \left(\frac{\hat{q}_S S}{K_{S,f} + S}\right) X_f$
6	Aerobic metabolism of NO_2^- -N by X_n	$\frac{k_{EPS}}{\gamma_N}$	-α _n	k _{UAP}	$c(1-Y_n\gamma_N)$	-1	$\left(\frac{\hat{q}_{n}NiN}{K_{NiN,n} + NiN}\right) \left(\frac{DO}{K_{DO,n} + DO}\right) X_{n}$
7	Aerobic metabolism of NH_4^+ -N by X_a	$\frac{k_{EPS}}{\gamma_N}$	-α _a	-(1- k _{UAP})		$c(1-Y_a\gamma_N)$	$\left(\frac{\hat{q}_{a}Amm}{K_{Amm} + Amm}\right)\left(\frac{DO}{K_{DO,a} + DO}\right)X_{a}$
8	Aerobic metabolism of acetate by X _h	$\frac{k_{EPS}}{\gamma_0}$	-α _h	$-\left(\gamma_{\rm N}cY_{\rm h}\right.\\\left.+\frac{k_{\rm EPS}\gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$\left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h}+Ac}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$

				Chemical con	ponents		
	Process	EPS	DO	NH4 ⁺ -N	NO ₃ ⁻ N	NO ₂ ⁻ -N	Kinetic expression
9	Anoxic metabolism of acetate by X_h with NO_3 -N	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N}cY_{\rm h}\right.\\\left.+\frac{k_{\rm EPS}\gamma_{\rm N}}{\gamma_{\rm O}}\right)$	-γ _{NaN}		$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
10	Anoxic metabolism of acetate by X_h with NO_2^N	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N}cY_{\rm h}\right.\\\left.+\frac{k_{\rm EPS}\gamma_{\rm N}}{\gamma_{\rm O}}\right)$		-y _{nin}	$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
11	Acetate utilization by X_m	$\frac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N}cY_{\rm m}\right) + \frac{k_{\rm EPS}\gamma_{\rm N}}{\gamma_{\rm O}}$			$a_3(a_1 + a_2) \left(\frac{\hat{q}_{Ac,m}Ac}{K_{Ac,m} + Ac} \right) X_m$
12	Aerobic metabolism of UAP by X_h	$\frac{k_{EPS}}{\gamma_0}$	-a _{hp}	$-\left(\gamma_{\rm N} c Y_{\rm p} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$\left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
13	Anoxic metabolism of UAP and $NO_3^{-}N$ by X_h	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{N}cY_{p}\right) + \frac{k_{EPS}\gamma_{N}}{\gamma_{O}}$	-γ _{NaN}		$a_{3}\left(\frac{\hat{q}_{UAP,h}UAP}{UAP+K_{UAP,h}}\right)\left(\frac{NaN}{K_{NaN,h}+NaN}\right)X_{h}$
14	Anoxic metabolism of UAP and $NO_2^{-}N$ by X_h	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{N}cY_{p}\right) + \frac{k_{EPS}\gamma_{N}}{\gamma_{O}}$		-y _{NiN}	$a_{3}\left(\frac{\hat{q}_{UAP,h}UAP}{UAP+K_{UAP,h}}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_{h}$
15	Metabolism of UAP by X_f	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm p} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$a_3(a_1 + a_2) \left(\frac{\hat{q}_{UAP,f}UAP}{UAP + K_{UAP,f}} \right) X_f$

				Chemical con	ponents		
	Process	EPS	DO	NH4 ⁺ -N	NO ₃ ⁻ N	NO ₂ ⁻ -N	Kinetic expression
16	Aerobic metabolism of BAP by X _h	$rac{k_{EPS}}{\gamma_0}$	-a _{hp}	$-\left(\gamma_{\rm N} c Y_{\rm p} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$\left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
17	Anoxic metabolism of BAP and $NO_3^{-}N$ by X_h	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm p} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$	-γ _{NaN}		$a_{3}\left(\frac{\hat{q}_{BAP,h}BAP}{BAP+K_{BAP,h}}\right)\left(\frac{NaN}{K_{NaN,h}+NaN}\right)X_{h}$
18	Anoxic metabolism of BAP and $NO_2^{-}N$ by X_h	$rac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm p} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$		-γνιν	$a_{3}\left(\frac{\hat{q}_{BAP,h}BAP}{BAP+K_{BAP,h}}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_{h}$
19	Metabolism of BAP by X_f	$\frac{k_{EPS}}{\gamma_0}$		$-\left(\gamma_{\rm N} c Y_{\rm f} + \frac{k_{\rm EPS} \gamma_{\rm N}}{\gamma_{\rm O}}\right)$			$a_3(a_1 + a_2) \left(\frac{\hat{q}_{BAP,f}BAP}{BAP + K_{BAP,f}} \right) X_f$
20	Hydrolysis of PCOD						k _P P
21	Aerobic respiration by X _h		-γ ₀	γ _N			$f_d b_h \left(\frac{DO}{K_{DO,h} + DO} \right) X_h$
22	Anoxic respiration by X _h during NO ₃ ⁻ -N utilization			γΝ	-γ _{NaN} γO		$f_d b_h a_3 \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
23	Anoxic respiration by X_h during NO_2^- -N utilization			γn		-γνινγο	$f_d b_h a_3 \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
24	Aerobic respiration by X _a		-γο	γ _N			$f_d b_a \left(\frac{DO}{K_{DO,a} + DO} \right) X_a$
25	Aerobic respiration by X _n		-γο	γn			$f_{d}b_{n}\left(\frac{DO}{K_{DO,n}+DO}\right)X_{n}$

				Chemical cor	nponents		
	Process	EPS	DO	NH4 ⁺ -N	NO ₃ ⁻ N	NO ₂ -N	Kinetic expression
26	Anaerobic respiration of X_f			γΝ			$\gamma_0 f_d b_f X_f a_3 (a_1 + a_2)$
27	Anaerobic respiration of X_m			γΝ			$\gamma_0 f_d b_m X_m a_3 (a_1 + a_2)$
28	Formation of BAP	-1		γΝ			k _{hyd} EPS
29	Decay of X _h						$b_{h}X_{h}\left[\frac{DO}{K_{DO,h} + DO} + \frac{NaN}{K_{NaN,h} + NaN} + \frac{NiN}{K_{NiN,h} + NiN}\right]$
30	Decay of X _a						$b_a \left(\frac{DO}{K_{DO,a} + DO}\right) X_a$
31	Decay of X _n						$b_n \left(\frac{DO}{K_{DO,n} + DO}\right) X_n$
32	Decay of X _f						$b_f X_f a_3 (a_1 + a_2)$
33	Decay of X _m						$b_m X_m a_3(a_1 + a_2)$
34	UNITS	mgVSS L d	mgCOD L d	mgNH ₄ ⁺ — N L d	mgNO ₃ – N L d	$\frac{\text{mgNO}_2^ \text{N}}{\text{L d}}$	

		Chemical components Biomass compor				onents	
	Process	N ₂	CH ₄	X _h	Xa	X _n	Kinetic expression
1	Aerobic metabolism of substrate by X _h			cY_h			$\left(\frac{\hat{q}_{S}S}{K_{S,h}+S}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
2	Anoxic metabolism of substrate by X _h with NO ₃ ⁻ -N	γnan		cY_h			$a_3 \left(\frac{\hat{q}_{Nan}S}{K_{S,h}+S}\right) \left(\frac{NaN}{K_{NaN,h}+NaN}\right) X_h$
3	Anoxic metabolism of substrate by X_h with NO ₂ ⁻ -N	γnin		cY_h			$a_3\left(\frac{\hat{q}_{Nin}S}{K_{S,h}+S}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_h$
4	Hydrolysis of inactive biomass			-1	-1	-1	$a_3(a_1 + a_2)k_{hyd}$
5	Anaerobic utilization of substrate by X _f						$a_3(a_1 + a_2) \left(\frac{\hat{q}_S S}{K_{S,f} + S}\right) X_f$
6	Aerobic metabolism of NO ₂ ⁻ -N by X _n					cYn	$\left(\frac{\hat{q}_{n}NiN}{K_{NiN,n} + NiN}\right)\left(\frac{DO}{K_{DO,n} + DO}\right)X_{n}$
7	Aerobic metabolism of NH_4^+ -N by X_a				cYa		$\left(\frac{\hat{q}_{a}Amm}{K_{Amm} + Amm}\right)\left(\frac{DO}{K_{DO,a} + DO}\right)X_{a}$
8	Aerobic metabolism of acetate by X _h			cY _h			$\left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h}+Ac}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
9	Anoxic metabolism of acetate by X _h with NO ₃ ⁻ -N	γnan		cY_h			$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$

		Chem		Biom	ass compo	onents	
	Process	N_2	CH ₄	X_h	Xa	X _n	Kinetic expression
10	Anoxic metabolism of acetate by X_h with NO_2^N	γnin		cY_h			$a_{3}\left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h}+Ac}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_{h}$
11	Acetate utilization by X _m		$c(1-Y_m\gamma_O)$				$a_3(a_1 + a_2) \left(\frac{\hat{q}_{Ac,m}Ac}{K_{Ac,m} + Ac}\right) X_m$
12	Aerobic metabolism of UAP by X_h			cY_p			$\left(\frac{\hat{q}_{UAP,h}UAP}{UAP+K_{UAP,h}}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
13	Anoxic metabolism of UAP and NO_3 -N by X_h	γNaN		cY_p			$a_{3}\left(\frac{\hat{q}_{UAP,h}UAP}{UAP+K_{UAP,h}}\right)\left(\frac{NaN}{K_{NaN,h}+NaN}\right)X_{h}$
14	Anoxic metabolism of UAP and NO ₂ ⁻ -N by X _h	γnin		cY_p			$a_{3}\left(\frac{\hat{q}_{UAP,h}UAP}{UAP+K_{UAP,h}}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_{h}$
15	Metabolism of UAP by $X_{\rm f}$						$a_3(a_1 + a_2) \left(\frac{\hat{q}_{UAP,f}UAP}{UAP + K_{UAP,f}} \right) X_f$
16	Aerobic metabolism of BAP by X_h			cY_p			$\left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
17	Anoxic metabolism of BAP and NO_3 -N by X_h	γNaN		cY_p			$a_{3}\left(\frac{\hat{q}_{BAP,h}BAP}{BAP+K_{BAP,h}}\right)\left(\frac{NaN}{K_{NaN,h}+NaN}\right)X_{h}$
18	Anoxic metabolism of BAP and NO ₂ ⁻ -N by X _h	γnin		cYp			$a_{3}\left(\frac{\hat{q}_{BAP,h}BAP}{BAP+K_{BAP,h}}\right)\left(\frac{NiN}{K_{NiN,h}+NiN}\right)X_{h}$
19	Metabolism of BAP by X_f						$a_3(a_1 + a_2) \left(\frac{\hat{q}_{BAP,f}BAP}{BAP + K_{BAP,f}} \right) X_f$
20	Hydrolysis of PCOD						k _P P

		Chemical components Biomass co		ass compo	onents		
	Process	N_2	CH ₄	X _h	Xa	X _n	Kinetic expression
21	Aerobic respiration by X_h						$f_d b_h \left(\frac{DO}{K_{DO,h} + DO} \right) X_h$
22	Anoxic respiration by X_h during NO_3^- -N utilization	γnan γo					$f_d b_h a_3 \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
23	Anoxic respiration by X_h during NO_2^- -N utilization	γνιν γο					$f_d b_h a_3 \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
24	Aerobic respiration by X _a						$f_{d}b_{a}\left(\frac{DO}{K_{DO,a} + DO}\right)X_{a}$ $f_{d}b_{n}\left(\frac{DO}{K_{DO,n} + DO}\right)X_{n}$
25	Aerobic respiration by X _n						$f_d b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
26	Anaerobic respiration of $X_{\rm f}$						$\gamma_0 f_d b_f X_f a_3 (a_1 + a_2)$
27	Anaerobic respiration of X _m		1				$\gamma_0 f_d b_m X_m a_3 (a_1 + a_2)$
28	Formation of BAP						k _{hyd} EPS
29	Decay of X _h			-1			$b_{h}X_{h}\left[\frac{DO}{K_{DO,h} + DO} + \frac{NaN}{K_{NaN,h} + NaN} + \frac{NiN}{K_{NiN,h} + NiN}\right]$
30	Decay of X _a				-1		$b_a \left(\frac{DO}{K_{DO,a} + DO}\right) X_a$
31	Decay of X _n					-1	$b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
32	Decay of X _f						$b_f X_f a_3 (a_1 + a_2)$

		Chemical components		Biomass components			
	Process	N_2	CH ₄	X _h	Xa	X _n	Kinetic expression
33	Decay of X _m		$f_d\gamma_O$				$b_m X_m a_3(a_1 + a_2)$
34	UNITS	mgN L d	mgCOD L d	mgVSS L d	mgVSS L d	mgVSS L d	

		Bioma	ss componei	nts	
	Process	X_{f}	X _m	Xi	Kinetic expression
1	Aerobic metabolism of substrate by X _h				$\left(\frac{\hat{q}_{S}S}{K_{S,h}+S}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
2	Anoxic metabolism of substrate by X _h with NO ₃ ⁻ -N				$a_3 \left(\frac{\hat{q}_{Nan}S}{K_{S,h}+S}\right) \left(\frac{NaN}{K_{NaN,h}+NaN}\right) X_h$
3	Anoxic metabolism of substrate by X _h with NO ₂ ⁻ -N				$a_3 \left(\frac{\hat{q}_{Nin}S}{K_{S,h}+S}\right) \left(\frac{NiN}{K_{NiN,h}+NiN}\right) X_h$
4	Hydrolysis of inactive biomass				$a_3(a_1 + a_2)k_{hyd}$
5	Anaerobic utilization of substrate by $X_{\rm f}$	cY_{f}			$a_3(a_1 + a_2) \left(\frac{\hat{q}_S S}{K_{S,f} + S}\right) X_f$
6	Aerobic metabolism of NO_2^-N by X_n				$\left(\frac{\hat{q}_{n}NiN}{K_{NiN,n} + NiN}\right)\left(\frac{DO}{K_{DO,n} + DO}\right)X_{n}$
7	Aerobic metabolism of NH_4^+ -N by X_a				$\left(\frac{\hat{q}_{a}Amm}{K_{Amm} + Amm}\right)\left(\frac{DO}{K_{DO,a} + DO}\right)X_{a}$
8	Aerobic metabolism of acetate by X_h				$\left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h}+Ac}\right)\left(\frac{DO}{K_{DO,h}+DO}\right)X_{h}$
9	Anoxic metabolism of acetate by X_h with NO_3 -N				$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
10	Anoxic metabolism of acetate by X _h with NO ₂ ⁻ -N				$a_3 \left(\frac{\hat{q}_{Ac}Ac}{K_{Ac,h} + Ac} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
11	Acetate utilization by X _m		cYm		$a_3(a_1 + a_2) \left(\frac{\hat{q}_{Ac,m}Ac}{K_{Ac,m} + Ac} \right) X_m$

		Biomas	s componer	nts	
	Process	X_{f}	X _m	Xi	Kinetic expression
12	Aerobic metabolism of UAP by X_h				$\left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
13	Anoxic metabolism of UAP and NO ₃ ⁻ -N by X _h				$a_3 \left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}} \right) \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
14	Anoxic metabolism of UAP and NO ₂ ⁻ -N by X _h				$a_3 \left(\frac{\hat{q}_{UAP,h}UAP}{UAP + K_{UAP,h}} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
15	Metabolism of UAP by $X_{\rm f}$	cY_p			$a_3(a_1 + a_2) \left(\frac{\hat{q}_{UAP,f}UAP}{UAP + K_{UAP,f}} \right) X_f$
16	Aerobic metabolism of BAP by X_h				$\left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right)\left(\frac{DO}{K_{DO,h} + DO}\right)X_{h}$
17	Anoxic metabolism of BAP and NO ₃ ⁻ N by X _h				$a_3 \left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}}\right) \left(\frac{NaN}{K_{NaN,h} + NaN}\right) X_h$
18	Anoxic metabolism of BAP and NO ₂ ⁻ N by X _h				$a_3 \left(\frac{\hat{q}_{BAP,h}BAP}{BAP + K_{BAP,h}} \right) \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$
19	Metabolism of BAP by X_f	cYp			$a_3(a_1 + a_2) \left(\frac{\hat{q}_{BAP,f}BAP}{BAP + K_{BAP,f}} \right) X_f$
20	Hydrolysis of PCOD				k _P P
21	Aerobic respiration by X _h				$f_d b_h \left(\frac{DO}{K_{DO,h} + DO} \right) X_h$
22	Anoxic respiration by X _h during NO ₃ ⁻ -N utilization				$f_d b_h a_3 \left(\frac{NiN}{K_{NiN,h} + NiN} \right) X_h$

		Bioma	ss compone	nts	
	Process	X_{f}	X _m	Xi	Kinetic expression
23	Anoxic respiration by X _h during NO ₂ ⁻ -N utilization				$f_d b_h a_3 \left(\frac{NaN}{K_{NaN,h} + NaN} \right) X_h$
24	Aerobic respiration by X _a				$f_{d}b_{a}\left(\frac{DO}{K_{DO,a}+DO}\right)X_{a}$
25	Aerobic respiration by X _n				$f_d b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
26	Anaerobic respiration of $X_{\rm f}$				$\gamma_0 f_d b_f X_f a_3(a_1 + a_2)$
27	Anaerobic respiration of X _m				$\gamma_0 f_d b_m X_m a_3(a_1 + a_2)$
28	Formation of BAP				k _{hyd} EPS
29	Decay of X _h			1-f _d	$b_{h}X_{h}\left[\frac{DO}{K_{DO,h} + DO} + \frac{NaN}{K_{NaN,h} + NaN} + \frac{NiN}{K_{NiN,h} + NiN}\right]$
30	Decay of X _a			1-f _d	$b_a \left(\frac{DO}{K_{DO,a} + DO} \right) X_a$
31	Decay of X _n			1-f _d	$b_n \left(\frac{DO}{K_{DO,n} + DO} \right) X_n$
32	Decay of X _f	-1		1-f _d	$b_f X_f a_3(a_1 + a_2)$
33	Decay of X _m		-1	1-f _d	$b_m X_m a_3(a_1 + a_2)$
34	UNITS	mgVSS L d	mgVSS L d	mgVSS L d	

Inhibition terms for processes limited by nitrate, nitrite, and dissolved oxygen concentrations are defined as:

Nitrite:	$a_1 = \frac{K_{s,NO_2}}{K_{s,NO_2} + NO_2}$
Nitrate:	$a_2 = \frac{K_{s,NO_3}}{K_{s,NO_3} + NO_3}$
Dissolved oxygen:	$a_3 = \frac{K_{s,DO}}{K_{s,DO} + DO}$

Coefficients:

 $\begin{array}{l} c = 1 - k_{UAP} - k_{EPS} \\ \gamma_{O} = 160/113 \ mgCOD/mgVSS \\ \gamma_{N} = 14/113 \ mgN/mgVSS \\ \gamma_{A} = 64/60 \ mgCOD/mgAcetate \\ \gamma_{NiN} = 14/24 \ mgNO_{2} - N/mgCOD \\ \gamma_{NaN} = 14/40 \ mgNO_{3} - N/mgCOD \\ \alpha_{a} = 3.43 - (3.43Y_{a}\gamma_{O} + 1) \left[1 - k_{UAP} - k_{EPS} \left(1 + 3.43 \frac{\gamma_{N}}{\gamma_{O}} \right) \right] - 3.43k_{UAP} \\ \alpha_{n} = 1.14(1 - Y_{a}\gamma_{O})c \\ \alpha_{h} = (1 - k_{UAP} - k_{EPS})(1 - Y_{h}\gamma_{O}) \\ \alpha_{hp} = (1 - k_{UAP} - k_{EPS})(1 - Y_{p}\gamma_{O}) \end{array}$

				Heterotrophs	AOB	NOB	Fermenters	Methanogens		
			Subscript	h	a	n	f	m		
Kinetic Paramete	ers	Symbol	Units							
True yield Substrate Y _i		mgVSS/mgCOD	0.45	0.33	0.083	0.2	0.077			
coefficient	SMP	Yp	mgVSS/mgCOD		0.5					
Maximum	Substrate	<u> </u>	mgCOD/mgVSS-d	10	3.1	13	10			
utilization rate	UAP	Ŷ _{UAP,j}	mgCOD/mgVSS-d	1.8			1.8			
	BAP	q̂ _{вар,j}	mgCOD/mgVSS-d	0.5			0.5			
	Acetate	$\widehat{q}_{Ac,j}$	mgAc/mgVSS-d	8.1				7		
Half-maximum	Substrate	K _{S,j}	mgCOD/L	10	1.5	2.7	10			
rate	Acetate	K _{Ac,j}	mgAc/L	10				30		
concentration	DO	K _{DO,j}	mgDO/L	0.2	0.5	0.68				
	UAP	K _{UAP,j}	mgCOD/L	100			100			
	BAP	K _{BAP,j}	mgCOD/L	85			85			
	NO_2^- or NO_3^-	K _{N.j}	mgN/L	0.2	1.5	2.7				
UAP formation	rate	k _{UAP}	mgCOD/mgCOD		L	0.05		•		
EPS formation ra	ate	k _{EPS}	mgCOD/mgCOD	0.18						
Hydrolysis rate	EPS	k _{hyd}	1/d			0.17				
	PCOD	k _p	1/d			0.22				
Decay rate		b _{,j}	1/d	0.3	0.15	0.15	0.04	0.03		
Fraction of biodegradable biomass		\mathbf{f}_{d}	-			0.8				
			1	DO		NO ₂		NO ₃ ⁻		
Inhibition factor		K _{s,1}	mgDO/L	0.2						
		*	mgN/L		0.2			0.2		

 Table A.4.
 Microorganisms' kinetic and stoichiometric parameters

j denotes the biomass subscript, l denotes the chemical species subscript.

Appendix A.4: References

- Bae, W., & Rittmann, B. E. (1996). A Structured Model of Dual-Limitation Kinetics. *Biotechnology and Bioengineering*, 49(6), 683-689.
- de Silva, D., & Rittmann, B. E. (2000). Nonsteady-State Modeling of Multispecies Activated Sludge Processes. *Water Environment Research*, 72(5), 554-565.
- Laspidou, C. S., & Rittmann, B. E. (2002a). A Unified Theory for Extracellular Polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. *Water Research*, 2711-2720.
- Laspidou, C. S., & Rittmann, B. E. (2002b). Non-steady State Modeling of Extracellular Polymeric Substances, Soluble Microbial Products, and Active and Inert Biomass. *Water Research*, 1983-1992.
- Metcalf & Eddy, Inc. (2003). *Wastewater Engineering: Treatment and Reuse* (4th ed.). (I. Metcalf & Eddy, Ed.) New York: McGraw-Hill.
- Rittmann, B. E., & McCarty, P. L. (2001). *Environmental Biotechnology: Principles and Applications* (1st ed.). New York: McGraw-Hill.