Cover sheet for SI

Authors:

Yi-Hao Luo, Ran Chen, Li-Lian Wen, Fan Meng, Yin Zhang, Chun-Yu Lai, Bruce E.

Rittmann, He-Ping Zhao*, Ping Zheng

Manuscript title: Complete perchlorate reduction using methane as the sole electron donor

and carbon source

Number of pages: 10

Number of table: 5

Number of figures: 3

Supplementary information (SI) for manuscript

Complete perchlorate reduction using methane as the sole electron donor and carbon source

Yi-Hao Luo^{1, †}, Ran Chen^{1, †}, Li-Lian Wen¹, Fan Meng¹, Yin Zhang¹, Chun-Yu Lai¹, Bruce E. Rittmann², He-Ping Zhao^{1, *}, Ping Zheng¹

 MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China.
 Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona State

University, P.O. Box 875701, Tempe, Arizona 85287-5701

* Correspondence to Dr. He-Ping Zhao. Tel: 0086-571-88982739, Fax: 0086-571-88982739, E-mail: zhaohp@zju.edu.cn

† Contribute equally.

Table S1. Equations applied for the CH_4 -permeation calculations:

$$P_{m-lf} = \frac{\alpha P_0 + \beta P_{hs}}{\alpha + \beta}$$
$$Q \frac{P_{hs}}{H} k_2 = \left(P_0 - \left(\frac{\alpha P_0 + \beta P_{hs}}{\alpha + \beta}\right) \right) \pi (d_m - Z_m) L_m n_m k_1$$

in which $\alpha = k_1 K_m Z_{lf} H(d_m - Z_m)$, $\beta = k_2 D_{lf} Z_m(d_m + Z_{lf})$

P _{m-lf}	Methane pressure at the interface of
	membrane and liquid film (bar)
р	Methane pressure in the hollow-fiber lumen
\mathbf{P}_0	(bar)
P _{hs}	Methane pressure in the headspace (bar)
0	Water flow rate in the serum bottle (7.2×10^{-4})
Q	m ³ /d)
TT	Henry's law constant of CH_4 (0.7512 m ³
п	bar/mol)
D	CH ₄ -diffusion coefficient in water (1.9×10^{-4})
$D_{\rm lf}$	$(m^2/d)^1$
	Coefficient that converts CH ₄ from volume to
\mathbf{k}_1	mass $(1g/0.00154 \text{ m}^3 \text{ @ standard temperature})$
	and pressure)
1_	Coefficient that converts CH ₄ from moles to
К ₂	mass (16g/mol)
d _m	Hollow-fiber out diameter $(2.8 \times 10^{-4} \text{ m})$
Zm	Membrane thickness $(5.0 \times 10^{-5} \text{ m})$
L _m	Hollow-fiber length (m)
n _m	Number of hollow fibers (32)

Parameter	Temperature (K)	Pressure (bar)	Flow rate (m ³ /d)	Fiber Length (m)	Fiber Numbers	Fiber O.D. (µm)	Fiber thickness (µm)	Km ^a
Composite fiber	298	1.00	7.2×10^{-4}	0.05	32	2.8×10 ⁻⁴	0.5×10 ⁻⁴	1.03×10^{-7}

 Table S2.
 Experimental parameters for the CH₄-permeation test

a: units are $m^3 CH_4$ @ standard temperature and pressure - m membrane thickness/m² hollow fiber surface area - d – bar.

	NO	3 ⁻ -N	NO	2 ⁻ -N	ClO ₄		
stages	Influent	Effluent	Influent	Effluent	Influent	Effluent	
	(mg N/L)	(mg N/L)	(mg N/L)	(mg N/L)	(mg/L)	(mg/L)	
1	NA	0	1.69±0.006	0.027 ± 0.021	1.32±0.09	1.01±0.14	
2	NA	0	NA	0	1.01 ± 0.008	0.17±0.11	
3	1.21±0.09	0.000 ± 0.000	NA	0	1.02±0.017	0.011±0.006	
4	11.3±0.40	3.51±1.25	NA	0	1.04 ± 0.052	1.02±0.069	
5	4.49 ± 0.04	0.023±0.029	NA	0	1.0±0.003	0.006 ± 0.007	
6	NA	0	NA	0	5.43±0.017	0.057 ± 0.097	
7	NA	0	5.22±0.13	0.000 ± 0.000	5.07±0.096	2.54±0.40	

 Table S3.
 The influent and effluent concentrations of electron acceptors for each stage

PCR Program	Primers	Sequence	Target Gene	Ref	Slope	Efficiency
95°C 1 min (95°C 5 sec 60°C 31 sec 72°C 20 sec)×40 72°C 1 min	320F 598R	5'-GCGCCCACCACTACATGTAYGGNCC-3' 5'-GGTGGTCGCCGTACCARTCRAA-3'	pcrA	2	3.106	1.10
94°C 2 min (94°C 30 sec 58°C 20 sec 72°C 60 sec)×40 72°C 10 min	M2f M2r	5'-TAYGTSGGGCAGGARAAACTG-3' 5'-CGTAGA AGA AGCTGGTGCTGTT-3'	narG	3	-3.144	1.08
95°C 2 min (94°C 30 sec 60°C 60 sec 72°C 60 sec)×40 72°C 5 min	cd3af R3cd	5'-GTSAACGTSAAGGARACSGG-3' 5'-GASTTCGGRTGSGTCTTGA-3'	nirS	4	3.419	0.995
94°C 10 min (94°C 30 sec 58°C 300 sec 72°C 60 sec)×40 72°C 1 min	Mlas rev	5'-GGTGGTGTMGGDTTCACMCARTA-3' 5'-CGTTCATBGCGTAGTTVGGRTAGT-3'	mcrA	5	-3.221	1.04
95°C 10 min (95°C 60 sec 60°C 60 sec 72°C 60 sec)×40 72°C 5 min	A189F MB661R	5'-GGNGACTGGGACTTCTGG-3' 5'-CCGGMGCAACGTCYTTACC-3'	рММО	6	-3.383	0.98
95°C 2 min (95°C 10 sec 56°C 20 sec 68°C 20 sec)×40 72°C 1 min	16SF 16SR	5'-GTGSTGCAYGGYTGTCGTCA-3' 5'-ACGTCRTCCMCACCTTCCTC-3'	<i>16S</i> <i>rDNA</i> for bacteria	7	-3.215	1.05
94°C 10 min (94°C 30 sec 58°C 20 sec 72°C 60 sec)×40 72°C 1 min	ARC787F ARC1059R	5'-ATTAGATACCCSBGTAGTCC-3' 5'-GCCATGCACC WCCTCT-3'	<i>16S</i> <i>rDNA</i> for archaea	8	-3.630	0.89

 Table S4.
 Primers and PCR conditions for tested genes

		A16S	B16S	mcrA	MMO	pcrA	narG	nirS	CH_4	NO_3^-	NO_2^-	ClO_4^-
									flux	flux	flux	flux
A16S	Pearson	1.000	0.135	-0.323	0.579	0.983**	0.210	0.919**	0.304	-0.169	0.797	0.439
	Correlation											
	Sig. 2-tailed		0.799	0.532	0.229	0.000	0.689	0.010	0.558	0.748	0.058	0.384
B16S	Pearson	0.135	1.000	0.835*	0.861*	0.137	0.903*	0.484	0.277	0.326	-0.145	-0.173
	Correlation											
	Sig. 2-tailed	0.799		0.039	0.028	0.796	0.014	0.331	0.595	0.529	0.784	0.743
mcrA	Pearson	-0.323	0.835*	1.000	0.549	-0.325	0.834*	0.020	0.282	0.554	-0.542	-0.487
	Correlation											
	Sig. 2-tailed	0.532	0.039		0.259	0.530	0.039	0.970	0.588	0.254	0.267	0.327
pMM	Pearson	0.579	0.861*	0.549	1.000	0.599	0.863*	0.843*	0.416	0.209	0.329	-0.090
0	Correlation											
	Sig. 2-tailed	0.229	0.028	0.259		0.209	0.027	0.035	0.411	0.691	0.524	0.865
pcrA	Pearson	0.983**	0.137	-0.325	0.599	1.000	0.195	0.933**	0.251	-0.243	0.880^{*}	0.339
	Correlation											
	Sig. 2-tailed	0.000	0.796	0.530	0.209		0.711	0.007	0.632	0.642	0.021	0.511
narG	Pearson	0.210	0.903^{*}	0.834^{*}	0.863^{*}	0.195	1.000	0.508	0.624	0.625	-0.109	-0.360
	Correlation											
	Sig. 2-tailed	0.689	0.014	0.039	0.027	0.711		0.303	0.186	0.185	0.837	0.483
nirS	Pearson	0.919**	0.484	0.020	0.843^{*}	0.933**	0.508	1.000	0.341	-0.078	0.721	0.230
	Correlation											
	Sig. 2-tailed	0.010	0.331	0.970	0.035	0.007	0.303		0.508	0.883	0.106	0.661
CH_4	Pearson	0.304	0.277	0.282	0.416	0.251	0.624	0.341	1.000	0.864^{*}	0.075	-0.401
flux	Correlation											
	Sig. 2-tailed	0.558	0.595	0.588	0.411	0.632	0.186	0.508		0.027	0.888	0.431
NO ₃ ⁻	Pearson	-0.169	0.326	0.554	0.209	-0.243	0.625	-0.078	0.864^{*}	1.000	-0.428	-0.522
flux	Correlation											
	Sig. 2-tailed	0.748	0.529	0.254	0.691	0.642	0.185	0.883	0.027			
NO_2^-	Pearson	0.797	-0.145	-0.542	0.329	0.880^{*}	-0.109	0.721	0.075	-0.428	1.000	0.139
flux	Correlation											
	Sig. 2-tailed	0.058	0.784	0.267	0.524	0.021	0.837	0.106	0.888	0.397		
ClO ₄	Pearson	0.439	-0.173	-0.487	-0.090	0.339	-0.360	0.230	-0.401	-0.522	0.139	1.000
flux	Correlation											
	Sig. 2-tailed	0.384	0.743	0.327	0.865	0.511	0.483	0.661	0.431	0.288	0.793	

Table S5.Pearson Correlation Matrix

*. Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level

(2-tailed).

A: Aerobic Type AMO-D

B: Reverse Methanogenesis Type ANMO-D

C: Intra-Aerobic Type ANMO-D NO₂-nis NO O_2 NO_2 O_2 N_2 O_2 O_2

Figure S1. The proposed AMO-D and ANMO-D pathways for CH_4 oxidation coupled to NO_3^-/NO_2^- reduction. A: AMO-D requires two microorganisms: aerobic methanotrophs oxidize methane and produce organic compounds, which are further used by denitrifiers to reduce NO_3^- to N_2 . B: Reverse-methanogenesis-type ANMO-D requires two microorganisms: Archaea reduce NO_3^- to NO_2^- and produces H_2 via reverse methanogenesis, and a denitrifier that oxidizes the H_2 to drive NO_2^- respiration to N_2 . C: Intra-aerobic-type ANMO-D is carried out by one bacterium, which dismutates NO to form N_2 and O_2 , with the O_2 used as a co-substrate for methane mono-oxygenation by the same bacterium.

Figure S2. Schematic of the set up for the CH_4 -permeation experiment (This figure is our own work and is substantially modified from the original figure in Tang et al. (2012)).⁹

Figure S3. The NO₃⁻ and ClO₄⁻ concentrations in the MBfR influent and effluent in Stage 4 (A) and Stage 5 (B), when CH₄ supply was stopped and recovered.

References:

- (1) Winn, E. B. The temperature dependence of the self-diffusion coefficients of argon, neon, nitrogen, oxygen, carbon dioxide, and methane. *Phys. Rev.* **1950**, 80, 1024-1027.
- (2) Nozawa-Inoue, M.; Jien, M.; Hamilton, N. S.; Stewart, V.; Scow, K. M.; Hristova, K. R. Quantitative detection of perchlorate-reducing bacteria by real-time PCR targeting the perchlorate reductase gene. *Appl. Environ. Microbiol.* **2008**, *74*, 1941-1944.
- (3) Lopez-Gutierrez, J. C.; Henry, S.; Hallet, S.; Martin-Laurent, F.; Catroux, G.; Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. *J. Microbiol. Meth.* **2004**, *57*, 399-407.
- (4) Throbaeck, I. N.; Enwall, K.; Jarvis, A.; Hallin, S. Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol. Eco. 2004, 49, 401-417.
- (5) Steinberg, L. M.; Regan, J. M. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. *Appl. Environ. Microbiol.* **2008**, *74*, 6663-6671.
- (6) Paszczynski, A. J.; Paidisetti, R.; Johnson, A. K.; Crawford, R. L.; Colwell, F. S.; Green, T.; Delwiche, M.; Lee, H.; Newby, D.; Brodie, E. L.; Conrad, M. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. *Biodegradation*. 2011, 22, 1045-1059.
- (7) Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba, S. Quantitative real-time PCR using TaqMan and SYBR Green for *Actinobacillus actinomycetemcomitans*, *Porphyromonas gingivalis*, *Prevotella intermedia*, *tetQ* gene and total bacteria. *FEMS Immunol. Med. Mic*, **2003**, *39*, 81-86.
- (8) Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. *Biotechnol. Bioeng.* 2005, 89, 670-679.
- (9) Tang, Y. N.; Zhou, C.; Van Ginkel, S.; Ontiveros-Valencia, A.; Shin, J. H.; Rittmann, B. E. Hydrogen-Permeation coefficients of the fibers used in H₂-based membrane biofilm reactors. *J. Membr. Sci.* **2012**. 407, 176-183.