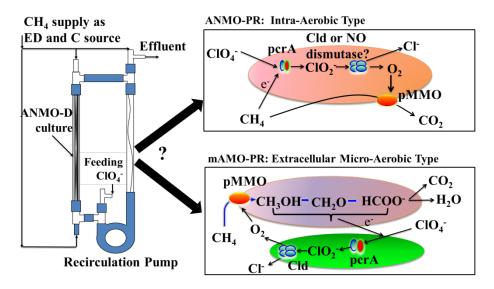
# **1** Complete perchlorate reduction using methane as the sole

# 2 electron donor and carbon source

- 3 Yi-Hao Luo<sup>1, †</sup>, Ran Chen<sup>1, †</sup>, Li-Lian Wen<sup>1</sup>, Fan Meng<sup>1</sup>, Yin Zhang<sup>1</sup>, Chun-Yu Lai<sup>1</sup>,
- 4 Bruce E. Rittmann<sup>2</sup>, He-Ping Zhao<sup>1, \*</sup>, Ping Zheng<sup>1</sup>
- 5
- 6 1. MOE Key Lab of Environmental Remediation and Ecosystem Health, College of
- 7 Environmental and Resource Science, Zhejiang University, Hangzhou, China.
- 8 2. Swette Center for Environmental Biotechnology, Biodesign Institute at Arizona
- 9 State University, P.O. Box 875701, Tempe, Arizona 85287-5701, U.S.A.
- 10

<sup>11</sup> \* Correspondence to Dr. He-Ping Zhao. Tel: 0086-571-88982739, Fax: 0086-571-88982739,


12 E-mail: zhaohp@zju.edu.cn

13 <sup>†</sup> Contribute equally.

### 14 Abstract

| 15 | Using a CH <sub>4</sub> -based membrane biofilm reactor (MBfR), we studied perchlorate (ClO <sub>4</sub> <sup>-</sup> )       |
|----|-------------------------------------------------------------------------------------------------------------------------------|
| 16 | reduction by a biofilm performing anaerobic methane oxidation coupled to                                                      |
| 17 | denitrification (ANMO-D). We focused on the effects of nitrate $(NO_3^-)$ and nitrite                                         |
| 18 | $(NO_2^-)$ surface loadings on $ClO_4^-$ reduction and on the biofilm community's                                             |
| 19 | mechanism for $ClO_4^-$ reduction. The ANMO-D biofilm reduced up to 5 mg/L of                                                 |
| 20 | $ClO_4^-$ to a non-detectable level using $CH_4$ as the only electron donor and carbon                                        |
| 21 | source when $CH_4$ delivery was not limiting; $NO_3^-$ was completely reduced as well                                         |
| 22 | when its surface loading was $\leq 0.32$ g N/m <sup>2</sup> -d. When CH <sub>4</sub> delivery was limiting,                   |
| 23 | $NO_3^-$ inhibited $ClO_4^-$ reduction by competing for the scarce electron donor. $NO_2^-$                                   |
| 24 | inhibited ClO <sub>4</sub> <sup>-</sup> reduction when its surface loading was $\ge 0.10$ g N/m <sup>2</sup> -d, probably due |
| 25 | to cellular toxicity. Although Archaea were present through all stages, Bacteria                                              |
| 26 | dominated the ClO <sub>4</sub> -reducing ANMO-D biofilm, and gene copies of the particulate                                   |
| 27 | methane mono-oxygenase ( $pMMO$ ) correlated to the increase of respiratory gene                                              |
| 28 | copies. These pieces of evidence support that $ClO_4^-$ reduction by the MBfR biofilm                                         |
| 29 | involved chlorite ( $ClO_2^{-}$ ) dismutation to generate the $O_2$ needed as a co-substrate for                              |
| 30 | the mono-oxygenation of CH <sub>4</sub> .                                                                                     |
| 31 | Key Words: methane, perchlorate, oxidation, reduction, membrane-biofilm reactor                                               |





ANMO-D: Anaerobic methane oxidation coupled to nitrate reduction ANMO-PR: Anaerobic methane oxidation coupled to perchlorate reduction mAMO-PR: micro-Aerobic methane oxidation coupled to perchlorate reduction

35

#### 36 Introduction

Perchlorate (ClO<sub>4</sub>) is a strong oxidizing agent that has been widely used in rocket fuel, 37 munitions, and explosives (EPA, 2005).<sup>1</sup> It causes serious health problems by 38 interfering with the production of thyroid hormones needed for growth and 39 development (Coates & Achenbach, 2004).<sup>2</sup> The typical perchlorate concentration 40 in groundwater is lower than 100 µg/L, but in some cases it can reach concentrations 41 of 20 mg/L or more.<sup>3,4</sup> Although a nationwide maximum contaminant level (MCL) 42 for  $ClO_4^-$  has not yet established by the US EPA, some states have established cleanup 43 levels ranging from 2 to  $18 \,\mu \text{g/L}$  for ClO<sub>4</sub><sup>-</sup> in drinking water (Gu & Coates, 2006).<sup>5</sup> 44 Nitrate  $(NO_3^{-})$  is an oxyanion commonly co-occurring with  $ClO_4^{-}$  in groundwater, for 45 example, at military bases that house rockets (USEPA, 2001).<sup>6</sup> Because  $NO_3^-$  causes 46 methemoglobinemia in infants, the MCL for  $NO_3^-$  in drinking water is regulated at 10 47 mg N/L (USEPA, 2009).<sup>7</sup> NO<sub>3</sub><sup>-</sup> inhibits  $ClO_4^-$  reduction due to competition for the 48 common electron donor when the electron donor is insufficient.<sup>8,9</sup> 49 Different electron donors have been applied to achieve complete ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> 50 removal by microbiological reduction.<sup>10-12</sup> An interesting example is nitrogen 51 reduction using methane as the sole electron donor and carbon source,<sup>13, 14</sup> since 52 methane is inexpensive and widely available.<sup>15-17</sup> 53

| 54 | Methane oxidation coupled to denitrification (MO-D) has been extensively studied                  |
|----|---------------------------------------------------------------------------------------------------|
| 55 | during the past decade. <sup>14, 15, 18-21</sup> Two microbial processes are capable of carrying  |
| 56 | out MO-D. One is aerobic methane oxidation coupled to denitrification (AMO-D), <sup>22,</sup>     |
| 57 | <sup>23</sup> which is performed by the combined actions of two distinct bacterial groups:        |
| 58 | methane oxidizers (methanotrophs) and denitrifiers. <sup>22, 24, 25</sup> The second is anaerobic |

|    | 21.26                                                                    |        |
|----|--------------------------------------------------------------------------|--------|
| 59 | methane oxidation coupled to denitrification (ANMO-D). <sup>21, 26</sup> | ANMO-D |

microorganisms include a bacterial group affiliated with the candidate division NC10
and an archaeal group distantly related to anaerobic methanotrophic archaea.<sup>19, 27-29</sup>

AMO-D occurs in the presence of  $O_2$ , because methanotrophs require  $O_2$  for the initial mono-oxygenation step. The methanotrophs can release organic intermediates from their catabolism and anabolism, for example, methanol, acetate, and citrate, and the intermediates can be further utilized by denitrifiers as electron donors.<sup>15, 22, 30</sup> These steps are illustrated schematically in panel A of Figure S1 in Supplemental Information. Although a high concentration of  $O_2$  inhibits denitrification, a certain amount of  $O_2$  is necessary to promote AMO-D.<sup>30, 31</sup>

69 ANMO-D can follow two pathways, illustrated schematically in panels B and C of Figure S1. Raghoebarsing et al. hypothesized the "Reverse Methanogesis" pathway, 70 which involves the combined action of Archaea and denitrifying bacteria.<sup>19</sup> The 71 72 Archaea carry out reverse methanogenesis to generate  $H_2$  that is shuttled to the denitrifying bacteria that respire  $NO_2^-$  to  $N_2$ . Haroon et al. reported that Archaea 73 74 population ANME-2d (Methanoperedens nitroreducens) catalyzed CH<sub>4</sub> oxidation by methylcoenzyme M reductase (mcrABCDG) through a reverse-methanogenesis 75 pathway using  $NO_3^-$  as their terminal electron acceptor and generating  $NO_2^-$ ; the 76 NC10 bacteria then reduced NO<sub>2</sub><sup>-</sup> to  $N_2$ .<sup>14</sup> 77

The second ANMO-D pathway is called the "Intra-Aerobic" pathway,<sup>21, 32</sup> and only
one denitrifying microorganism (*Candidatus Methylomirabilis oxyfera*) was involved.

Denitrification was carried out by stepwise reduction of NO<sub>2</sub><sup>-</sup> to NO using nitrate reductase (*narGHJI*) and nitrite reductase (*nirSJFD/GH/L*); then, NO was disproportionated to produce O<sub>2</sub> intracellularly and N<sub>2</sub> using an unknown dismutase enzyme. The O<sub>2</sub> was then used by the same microorganism as a co-substrate for methane mono-oxygenation by a membrane-bound particulate methane mono-oxygenase (*pMMO*).

While the true mechanism of ANMO-D is unresolved, it is thermodynamically feasible, as shown by redox equations 1 and 2 for  $NO_3^-$  or  $NO_2^-$  as the terminal electron acceptor:<sup>19</sup>

89 
$$5CH_4 + 8NO_3^- + 8H^+ = 5CO_2 + 4N_2 + 14H_2O$$
  $\triangle G^{0'} = -765 \text{ KJmol}^{-1}CH_4$  (1)

90 
$$3CH_4 + 8NO_2^- + 8H_7 = 3CO_2 + 4N_2 + 10H_2O$$
  $\triangle G^{0'} = -928 \text{ KJmol}^{-1}CH_4$  (2)

91 When perchlorate  $(ClO_4)$  is the electron acceptor, a similar reaction between  $ClO_4$ 

92 and 
$$CH_4$$
 also is thermodynamically feasible: <sup>33</sup>

93 
$$CH_4 + ClO_4^- = HCO_3^- + Cl^- + H_2O$$
  $\triangle G^{0'} = -792 \text{ KJmol}^{-1}CH_4$  (3)

The pathway for dissimilatory perchlorate reduction begins with reduction of ClO<sub>4</sub><sup>-</sup> to 94 chlorite (ClO<sub>2</sub>, catalyzed by perchlorate reductase, *pcrA*) and ends with dismutation 95 of  $ClO_2^-$  to yield chloride (Cl<sup>-</sup>, catalyzed by chlorite dismutase, *cld*) and molecular 96 oxygen  $(O_2)$ , which is essential for the methane oxidation.<sup>2</sup> Miller et al. confirmed 97 complete CH<sub>4</sub> removal coupled with ClO<sub>2</sub><sup>-</sup> dismutation by a mixture of methanotrophs 98 and the perchlorate-reducing bacterium *Dechloromonas agitate* CKB.<sup>34</sup> The 99 methanotrophs used extracellular  $O_2$  derived from disproportion of  $ClO_2^-$  by D. 100 agitate CKB to oxidize CH<sub>4</sub> aerobically; thus, it was an extracellular-aerobic pathway 101

| 102 | that required that the substrate for dismutation, $ClO_2^-$ , be supplied. The mixed                                           |
|-----|--------------------------------------------------------------------------------------------------------------------------------|
| 103 | culture did not oxidize $CH_4$ when supplied with $ClO_4^-$ or $ClO_3^-$ ; thus, they concluded                                |
| 104 | that $O_2$ produced via $ClO_4^-$ reduction was unavailable for the aerobic methanotrophs.                                     |
|     |                                                                                                                                |
| 105 | So far, no study has successfully reduced $ClO_4^-$ using $CH_4$ as the sole electron donor                                    |
| 106 | and carbon source. However, thermodynamics and the reality that most denitrifiers                                              |
| 107 | are able to reduce $ClO_4^-$ (using either nitrate or perchlorate reductase) means that a                                      |
| 108 | ANMO-D or AMO-D culture has the possibility to reduce $ClO_4^-$ using $CH_4$ as electron                                       |
| 109 | donor and carbon source.                                                                                                       |
|     |                                                                                                                                |
| 110 | The H <sub>2</sub> -based membrane biofilm reactor (MBfR) has been applied successfully for                                    |
| 111 | microbial removal of oxidized contaminants, including $NO_3^-$ and $ClO_4^{11, 35-37}$ The                                     |
| 112 | non-porous walls of hollow-fiber membranes transfer $H_2$ directly to a biofilm of                                             |
| 113 | $H_2$ -oxidizing bacteria that reduce one or more electron acceptors. <sup>35</sup> The use of                                 |
| 114 | "bubbleless" membranes and the rapid oxidation of $H_2$ in the biofilm allow nearly 100%                                       |
| 115 | utilization of $H_2$ , preventing $H_2$ losses to the atmosphere or effluent liquid. <sup>36, 38</sup>                         |
|     |                                                                                                                                |
| 116 | The MBfR also could provide a means for the safe and efficient supply of CH <sub>4</sub> to                                    |
| 117 | drive ANMO-D, AMO-D, and $ClO_4^-$ reduction. Supporting the concept, Sun et al                                                |
| 118 | reported that an aerobic methane-based MBfR removed up to 97% of NO <sub>3</sub> <sup>-</sup> applied at                       |
| 119 | a concentration of 30 mg N/L, $^{39}$ and Shi et al achieved 86 mg N/m <sup>2</sup> -d NO <sub>3</sub> <sup>-</sup> removal in |
| 120 | an anaerobic MBfR provided with $CH_4$ as carbon source and electron donor. <sup>40</sup>                                      |
| 10. |                                                                                                                                |
| 121 | The objective of this study was to evaluate $ClO_4^-$ reduction in a CH <sub>4</sub> -based MBfR.                              |

| 122 | Specifically, we studied the reduction patterns of $NO_2^-$ , $NO_3^-$ , and $ClO_4^-$ when we |
|-----|------------------------------------------------------------------------------------------------|
| 123 | exposed the biofilm to different relative loadings. We quantified the                          |
| 124 | CH <sub>4</sub> -permeation coefficient through the membrane wall to determine if the delivery |
| 125 | rate of $CH_4$ was limiting, and we used quantitative real-time PCR (qPCR) to monitor          |
| 126 | how the abundances of functional genes key to respiration reactions were affected by           |
| 127 | the acceptor loadings. Based on several types of evidence, we are able to provide              |
| 128 | mechanistic interpretation about what controls $ClO_4^-$ reduction by the biofilm and the      |
| 129 | likely pathways by which $NO_3^-$ and $ClO_4^-$ reductions occur when $CH_4$ is the sole       |
| 130 | electron donor.                                                                                |

### 131 Materials and Methods

### 132 *CH*<sub>4</sub> permeation

| 133 | Steady-state CH <sub>4</sub> -permeation experiments were carried out in the same system (shown                                              |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| 134 | schematically in Supporting Information (SI) Figure S2) Tang et al. used for                                                                 |
| 135 | quantifying $H_2$ permeation. <sup>41</sup> Deionized water was pumped through the serum bottle                                              |
| 136 | (total volume of $1.6 \times 10^{-4}$ m <sup>3</sup> , liquid volume of $0.6 \times 10^{-4}$ m <sup>3</sup> ) at a flow rate of $7.2 \times$ |
| 137 | $10^{-4}$ m <sup>3</sup> /d. The hollow fibers in the serum bottle were pressurized with CH <sub>4</sub> (99.99%)                            |
| 138 | purity, Shanghai Gas Company, China) at a pressure of 1.0 bar (14.5 psi). $CH_4$                                                             |
| 139 | diffused through the hollow-fiber wall, dissolved in the water, and partitioned into the                                                     |
| 140 | headspace. A magnetic stirring bar ensured complete mixing of the liquid and that                                                            |
| 141 | $CH_4$ was rapidly partitioned to the gas phase. We took the headspace gas samples to                                                        |
| 142 | measure its $CH_4$ partial pressure. Steady state was achieved when the $CH_4$ partial                                                       |
| 143 | pressure was stable for at least 40 hydraulic retention times (HRTs). <sup>41</sup> We then                                                  |
| 144 | calculated the CH <sub>4</sub> permeability of the membrane fiber based on the method in Tang                                                |
| 145 | et al. <sup>41</sup> The equations and experimental parameters for the CH <sub>4</sub> -permeation test are                                  |
| 146 | summarized in the Supplementary Information (Table S1 & S2).                                                                                 |

147 MBfR Setup

We used a two-column MBfR system similar to Zhao et al.<sup>8</sup> The MBfR had
composite hollow fibers (hydrophobic microporous polyethylene fiber, 280-µm o.d.,
and a 180-µm i.d., pore size 0.1-0.15 µm) manufactured by Mitsubishi Rayon (Model

| 151 | MHF-200TL, Mitsubishi, Ltd., Japan). The fibers were glued into a CH <sub>4</sub> -supply   |
|-----|---------------------------------------------------------------------------------------------|
| 152 | manifold at the bottom of the MBfR column, and the top of each fiber was sealed.            |
| 153 | The total volume of the MBfR was 65 mL, and the total membrane surface area was             |
| 154 | $7.0 \text{ cm}^2$ . The MBfR was completely mixed by recirculation with a peristaltic pump |
| 155 | (Longer Pump, model 1515X, Longer Precision Pump Co, Ltd, China) at 100                     |
| 156 | mL/min.                                                                                     |

157 Start up and continuous operation of the MBfR

158 We inoculated the MBfR with 10 mL of ANMO-D culture (original maintained

anaerobic) donated by Dr. Wei Xiang Wu at Zhejiang University (China) and enriched

160 the community by recirculating a mineral salt medium (described below) containing 2

161 mg N/L NO<sub>2</sub><sup>-</sup> for 2 days. To accumulate enough biomass, we fed the MBfR with 2

 $162 \text{ mg N/L of NO}_2^-$  continuously for 40 days, when complete NO $_2^-$  reduction was

163 achieved. To investigate  $ClO_4^-$  reduction in the presence of  $NO_2^-$ , we fed the MBfR

164 with  $ClO_4^-$  and  $NO_2^-$  at influent concentrations of 1 mg/L and 2 mg N/L, respectively,

165 in Stage 1. Since NO<sub>3</sub><sup>-</sup> may inhibit  $ClO_4^-$  reduction at high surface loadings (> 0.6 g

166 N/m<sup>2</sup>-d) or improve ClO<sub>4</sub><sup>-</sup> removal at medium (0.1-0.6 g N/m<sup>2</sup>-d) or small (<0.1 g

167  $N/m^2$ -d) loadings in a H<sub>2</sub>-based MBfR,<sup>9</sup> we then systematically changed the influent

168 concentrations of  $NO_3^-$  and  $ClO_4^-$  in Stages 2 through 6. We allowed each stage to

reach steady state, which was defined as effluent concentrations stable (<10%

170 variation) for a minimum of three HRTs. The influent concentrations were: Stage

171 2: 1 mg/L ClO<sub>4</sub><sup>-</sup>; Stage 3: 1 mg/L ClO<sub>4</sub><sup>-</sup> and 1.1 mg N/L of NO<sub>3</sub><sup>-</sup>; Stage 4: 1

| <ul> <li>NO<sub>3</sub><sup>-</sup>; and Stage 6: 5 mg/L ClO<sub>4</sub><sup>-</sup>. To investigate ClO<sub>4</sub><sup>-</sup> reduction in the presence of</li> <li>NO<sub>2</sub><sup>-</sup> after high ClO<sub>4</sub><sup>-</sup>-removal efficiency had been achieved, we fed the MBfR 5</li> <li>mg/L of ClO<sub>4</sub><sup>-</sup> and 5 mg N/L of NO<sub>2</sub><sup>-</sup> in Stage 7. Actual influent concentrations</li> <li>varied slightly from the targets and are presented in Table S3 and Figure 1.</li> <li>The influent feeding rate was 0.5 mL/min (HRT of 130 min), the CH<sub>4</sub> pressure was 10</li> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MOO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul> | 172 | mg/L ClO <sub>4</sub> <sup>-</sup> and 11.3 mg N/L of NO <sub>3</sub> <sup>-</sup> ; Stage 5: $1 \text{ mg/L ClO}_4^-$ and 4.5 mg N/L of                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>mg/L of ClO<sub>4</sub> and 5 mg N/L of NO<sub>2</sub> in Stage 7. Actual influent concentrations</li> <li>varied slightly from the targets and are presented in Table S3 and Figure 1.</li> <li>The influent feeding rate was 0.5 mL/min (HRT of 130 min), the CH<sub>4</sub> pressure was 10</li> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MOO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                          | 173 | NO <sub>3</sub> ; and Stage 6: $5 \text{ mg/L ClO}_4$ . To investigate ClO <sub>4</sub> <sup>-</sup> reduction in the presence of                                       |
| <ul> <li>varied slightly from the targets and are presented in Table S3 and Figure 1.</li> <li>The influent feeding rate was 0.5 mL/min (HRT of 130 min), the CH<sub>4</sub> pressure was 10</li> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     | 174 | $NO_2^-$ after high $ClO_4^-$ -removal efficiency had been achieved, we fed the MBfR 5                                                                                  |
| <ul> <li>The influent feeding rate was 0.5 mL/min (HRT of 130 min), the CH<sub>4</sub> pressure was 10</li> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 175 | mg/L of $ClO_4^-$ and 5 mg N/L of $NO_2^-$ in Stage 7. Actual influent concentrations                                                                                   |
| <ul> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 176 | varied slightly from the targets and are presented in Table S3 and Figure 1.                                                                                            |
| <ul> <li>psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the</li> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                                                                                                                                         |
| <ul> <li>temperature was 29±1°C for all experiments. The medium pH was adjusted to</li> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 177 | The influent feeding rate was 0.5 mL/min (HRT of 130 min), the $CH_4$ pressure was 10                                                                                   |
| <ul> <li>7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical</li> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178 | psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the                                                                                       |
| <ul> <li>grade or purer) per L of demineralized water: CaCl<sub>2</sub> 1 mg, NaHCO<sub>3</sub> 0.3 g,</li> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 179 | temperature was $29\pm1^{\circ}$ C for all experiments. The medium pH was adjusted to                                                                                   |
| <ul> <li>MgSO<sub>4</sub>•7H<sub>2</sub>O 5 mg, KaH<sub>2</sub>PO<sub>4</sub> 0.2 g, Na<sub>2</sub>HPO<sub>4</sub>•12H<sub>2</sub>O 0.4 g, 1 mL acid trace element</li> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 180 | $7.0\pm0.2$ with hydrochloric acid and contained the following mineral salts (analytical                                                                                |
| <ul> <li>solution (HCl 100 mM, 2.085 g of FeSO<sub>4</sub>•7H<sub>2</sub>O, 68 mg of ZnSO<sub>4</sub>•7H<sub>2</sub>O, 14 mg of</li> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181 | grade or purer) per L of demineralized water: CaCl <sub>2</sub> 1 mg, NaHCO <sub>3</sub> 0.3 g,                                                                         |
| <ul> <li>H<sub>3</sub>BO<sub>3</sub>, 120 mg of CoCl<sub>2</sub>•6H<sub>2</sub>O, 500 mg of MnCl<sub>2</sub>•4H<sub>2</sub>O, 320 mg of CuSO<sub>4</sub>, 95 mg of</li> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182 | MgSO <sub>4</sub> •7H <sub>2</sub> O 5 mg, KaH <sub>2</sub> PO <sub>4</sub> 0.2 g, Na <sub>2</sub> HPO <sub>4</sub> •12H <sub>2</sub> O 0.4 g, 1 mL acid trace element  |
| <ul> <li>NiCl<sub>2</sub>•6H<sub>2</sub>O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67</li> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 183 | solution (HCl 100 mM, 2.085 g of FeSO <sub>4</sub> •7H <sub>2</sub> O, 68 mg of ZnSO <sub>4</sub> •7H <sub>2</sub> O, 14 mg of                                          |
| <ul> <li>mg of SeO<sub>2</sub>, 50 mg of Na<sub>2</sub>WO<sub>4</sub>•2H<sub>2</sub>O, 242 mg of Na<sub>2</sub>MoO<sub>4</sub>•2H<sub>2</sub>O per liter). The</li> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 184 | H <sub>3</sub> BO <sub>3</sub> , 120 mg of CoCl <sub>2</sub> •6H <sub>2</sub> O, 500 mg of MnCl <sub>2</sub> •4H <sub>2</sub> O, 320 mg of CuSO <sub>4</sub> , 95 mg of |
| <ul> <li>medium was de-gassed with N<sub>2</sub> to maintain an anaerobic condition.</li> <li>During Stage 4, the CH<sub>4</sub> supply was accidently lost for 48 hours, and we immediately</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 185 | NiCl <sub>2</sub> •6H <sub>2</sub> O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67                                                               |
| 188 During Stage 4, the CH <sub>4</sub> supply was accidently lost for 48 hours, and we immediately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 186 | mg of SeO <sub>2</sub> , 50 mg of Na <sub>2</sub> WO <sub>4</sub> •2H <sub>2</sub> O, 242 mg of Na <sub>2</sub> MoO <sub>4</sub> •2H <sub>2</sub> O per liter). The     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 187 | medium was de-gassed with $N_2$ to maintain an anaerobic condition.                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                                                                                                                                                                         |
| substituted $N_2$ gas to keep the fibers pressurized. To re-evaluate the response found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188 | During Stage 4, the $CH_4$ supply was accidently lost for 48 hours, and we immediately                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 189 | substituted $N_2$ gas to keep the fibers pressurized. To re-evaluate the response found                                                                                 |

- in Stage 4, we intentionally stopped the  $CH_4$  supply for 30 hours in Stage 5. The
- $CH_4$  supply was reinstated when the removal percentages were zero for NO<sub>3</sub><sup>-</sup> and
- $ClO_4^-$ .

| 194 | We measured the $CH_4$ partial pressure ( $P_{CH4}$ ) of gas samples using a gas                                                          |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| 195 | chromatograph (Agilent Technologies GC system, model 7890A, Agilent                                                                       |
| 196 | Technologies Inc., U.S.A) equipped with a flame ionization detector and a packed                                                          |
| 197 | column (30 m long, 0.32 mm i.d., 0.5 $\mu$ m thickness, cross-linked polydimethysiloxane                                                  |
| 198 | film, J&W scientific, U.S.A.). $N_2$ was the carrier gas fed at a constant pressure of                                                    |
| 199 | 0.96 bar and a constant flow rate of 0.065 $\text{m}^3/\text{d}$ , and the temperature conditions for                                     |
| 200 | injection and detector were 200 and 260°C, respectively. Analytical grade $CH_4$ was                                                      |
| 201 | used for standard calibration curves and for the experiments.                                                                             |
|     |                                                                                                                                           |
| 202 | We took liquid samples from the MBfR with 5-mL syringes and filtered them                                                                 |
| 203 | immediately through a 0.2- $\mu$ m membrane filter (LC+PVDF membrane, Shanghai                                                            |
| 204 | Xinya, China). We assayed for $NO_3^-$ and $NO_2^-$ using ion chromatography (Metrohm                                                     |
| 205 | 833 Basic IC plus, Switzerland) with an A-Supp-5 column, an eluent containing 3.2                                                         |
| 206 | mM NaHCO <sub>3</sub> , 1.0 mM Na <sub>2</sub> CO <sub>3</sub> , and 5% Acetone in a flow rate of 1 mL/min. ClO <sub>4</sub> <sup>-</sup> |
| 207 | was measured using ion chromatography (Metrohm 833 Basic IC plus, Switzerland)                                                            |
| 208 | with an AS 16 column and AG 16 pre-column, eluent concentration of 35 mM KOH,                                                             |
| 209 | and a 1.5 mL/min flow rate. Dissolved $O_2$ was measured with a dissolved oxygen                                                          |
| 210 | probe (Starter, model 300D, Ohaus Instruments Company, Germany), and the                                                                  |
| 211 | concentrations for ~0.2 mg/L for the influent and $\leq 0.1$ mg/L for the effluent. The pH                                                |
| 212 | values of the influent and effluent were measured by a pH meter (Seven Easy, Mettler                                                      |
| 213 | Toledo, Switzerland) and were between 7.4 and 7.7 for all stages.                                                                         |

215 We calculated the NO<sub>3</sub><sup>-</sup> and ClO<sub>4</sub><sup>-</sup> removal fluxes ( $g/m^2$ -d) according to:

216 
$$J = (S^{o}-S)Q/A$$
 (4)

- 217 in which S° and S are the influent and effluent  $NO_3^-$  or  $ClO_4^-$  concentration (g/L), Q is
- the influent flow rate to the MBfR system (L/d), and A is the membrane surface area
- 219  $(m^2)$ . The CH<sub>4</sub> flux was calculated from the removal fluxes and reaction
- stoichiometries shown in equations 5 through 7.42

$$NO_{2}^{-} + 0.828CH_{4} + H^{+} = 0.04CO_{2} + 0.42N_{2} + 0.158C_{5}H_{7}O_{2}N + 1.6H_{2}O$$
(5)

$$NO_{3}^{-} + 1.2CH_{4} + H^{+} = 0.2CO_{2} + 0.4N_{2} + 0.2C_{5}H_{7}O_{2}N + 2.2H_{2}O$$
(6)

$$ClO_{4}^{-} + 1.613CH_{4} + 0.175NO_{3}^{-} + 0.175H^{+} = Cl^{-} + 0.737CO_{2} + 2.7H_{2}O + 0.175C_{5}H_{7}O_{2}N$$
(7)

- 221 We compared the actual CH<sub>4</sub> flux to the maximum CH<sub>4</sub> flux that can be delivered
- through the composite hollow fiber at the applied CH<sub>4</sub> pressure to indicate if CH<sub>4</sub>
- delivery was limiting.<sup>41</sup>

### 224 Biofilm Sampling and DNA extraction

225 We collected biofilm samples when the reactor reached a steady state for all stages

- except Stage 2. Sparging with  $N_2$  gas at the sampling point to preclude  $O_2$  exposure,
- we cut off one ~10-cm-long section from the coupon fiber and then sealed the
- remaining by tying the end into a knot. We then extracted DNA using the DNeasy
- Blood & Tissue Kit (Qiagen, USA) as previously described by Zhao et al (2011).<sup>38</sup>

We used plasmids containing target fragments as positive controls and to produce 232 calibration curves.<sup>8</sup> The primers and qPCR conditions were the same as previously 233 described for pcrA – reductase for  $ClO_4^{-43}$  narG – reductase for  $NO_3^{-44}$  nirS – 234 reductase for  $NO_2^{-45}$ , mcrA – formation of methane from most of methanogens, <sup>46</sup> 235  $pMMO - CH_4$  mono-oxygenase,<sup>47</sup> the *16S rRNA* gene for bacteria,<sup>48</sup> and the *16S rRNA* 236 for archaea.<sup>49</sup> We used the SYBR Premix Ex Taq Kit (Takara Bio Inc, Japan) and 237 performed qPCR as previously described by Zhao et al. (2011).<sup>8</sup> The copy numbers 238 of each gene were calculated by comparison to standard curves. Negative controls 239 included water instead of template DNA in the PCR reaction mix. We performed 240 triplicate PCR reactions for all samples and negative controls. The slopes of the 241 plasmid standard curves and efficiency values for quantification by qPCR are shown 242 in Table S4. 243

### **Results and Discussion**

# *Methane permeability*

| 247 | Figure 1 shows the headspace pressures during the CH <sub>4</sub> -permeation experiment.                             |
|-----|-----------------------------------------------------------------------------------------------------------------------|
| 248 | Steady state was achieved at ~15 hours for the composite fiber. The $CH_4$                                            |
| 249 | permeability for the composite fiber was $1.03 \times 10^{-7}$ m <sup>3</sup> CH <sub>4</sub> at standard temperature |
| 250 | and pressure - m membrane thickness/ $m^2$ hollow fiber surface area - d - bar. This                                  |
| 251 | permeability is about 10-fold smaller than the $H_2$ permeability for the same composite                              |
| 252 | fiber and temperature. <sup>41</sup> Although the Henry's law constant of $CH_4$ is only slightly                     |
| 253 | smaller than for $H_2$ , its mass-to-mole ratio (16 g/mol) is about 8 times greater than for                          |
| 254 | $H_2$ (2 g/mol), making the $CH_4$ molecule bulkier and more slowly diffusing through the                             |
| 255 | membrane wall.                                                                                                        |

# 256 Perchlorate reduction in the presence of nitrate and nitrite

| 257 | Figure 2-A shows the influent and effluent concentrations of $NO_2^-$ , $NO_3^-$ , and $ClO_4^-$ |
|-----|--------------------------------------------------------------------------------------------------|
| 258 | for the entire set of experiments, and Figure 2-B shows the corresponding removal                |
| 259 | percentages. $ClO_4^-$ reduction could be achieved when $CH_4$ was the sole electron             |
| 260 | donor and carbon source. 100% reductions occurred in Stages 2, 3, 5, and 6, and                  |
| 261 | major partial reduction was achieved in Stages 1 and 7. Though Miller et al                      |
| 262 | established a link between $ClO_2^-$ and $CH_4$ consumption in soils and mixed cultures by       |
| 263 | D. agitate CKB and methanotrophs (Methylococcus capsulatus Bath or                               |
| 264 | Methylomicrobium album BG8) using acetate as the electron donor and carbon source,               |

they did not find any upstream connection between  $ClO_4^-$  or  $ClO_3^-$  reduction and 265 methane oxidation.<sup>34</sup> They concluded that oxygen generation during perchlorate 266 267 reduction was negligible or unavailable for aerobic methanotrophs. In contrast, our results clearly show that the MBfR biofilm was able to reduce ClO<sub>4</sub><sup>-</sup> using CH<sub>4</sub> as the 268 sole electron donor. This success of coupling perchlorate reduction with anaerobic 269 methane oxidation suggests that reduction of other anions might also be coupled to 270 anaerobic methane oxidation. Hence, it would be interesting to explore whether 271 bromate, selenate, chromate and other anion contaminants could be reduced in similar 272 273 CH<sub>4</sub>-based systems.

274 Comparison among Stages 1, 2, 6, and 7 shows that  $NO_2^-$  inhibited  $CIO_4^-$  reduction:

275 ClO<sub>4</sub><sup>-</sup> reduction was complete when NO<sub>2</sub><sup>-</sup> was absent in the influent in Stages 2 and 6,

but it decreased to < 50% when NO<sub>2</sub><sup>-</sup> was present in the influent at a surface loadings

277 of 0.1-0.4 g N/m<sup>2</sup>-d (1.69 $\pm$ 0.006 mg N/L for Stages 1, 5.22 $\pm$ 0.13 mg N/L for Stage 7

in the influent, respectively).

279 Comparison among Stages 2, 3, 4, 5, and 6 shows that  $NO_3^-$  also inhibited  $CIO_4^-$ 

reduction, but only at high  $NO_3^-$  surface loadings. When the  $NO_3^-$  surface loadings

were  $<0.32\pm0.003$  g N/m<sup>2</sup>-d (Stages 2, 3, 5, and 6), ClO<sub>4</sub><sup>-</sup> and NO<sub>3</sub><sup>-</sup> reductions were

282 complete. However, when the  $NO_3^-$  surface loading increased to  $0.78\pm0.09$  g N/m<sup>2</sup>-d

- in Stage 4, ClO<sub>4</sub><sup>-</sup> reduction dropped to  $\leq$ 5%, with NO<sub>3</sub><sup>-</sup> reduction declining to  $\leq$ 85%.
- 284 This trend is consistent with Tang et al,<sup>9</sup> who used biofilm modeling to quantify the

impact of  $NO_3^-$  loading on perchlorate reduction when  $H_2$  was the electron donor.

High  $NO_3^-$  loading slowed  $ClO_4^-$  reduction by competing for the common donor (H<sub>2</sub> for Tang et al.<sup>9</sup> and CH<sub>4</sub> here).

| 288                                                                                      | The MBfR accidently lost its CH <sub>4</sub> supply for 48 hours (days 75-77), and we provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 289                                                                                      | $N_2$ gas to keep the fibers pressurized (Figure S3-A). $NO_3^-$ removal dropped sharply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 290                                                                                      | to 2% before the $CH_4$ supply was recovered, but it returned to 70% within 12 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 291                                                                                      | However, $ClO_4^-$ removal remained low (2%) after recovery of the $CH_4$ supply,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 292                                                                                      | although it recovered to 100% in Stage 5, when the nitrate loading was smaller. To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 293                                                                                      | reinforce that methane was the electron donor responsible for perchlorate and nitrate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 294                                                                                      | reduction, we repeated the $CH_4$ -loss experience during Stage 5 by intentionally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 295                                                                                      | replacing the $CH_4$ supply with $N_2$ gas for 30 hours beginning on day 94 (Figure S3-B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 296                                                                                      | $NO_3^-$ and $ClO_4^-$ removals dropped to 0 within 12 hours for $ClO_4^-$ and 24 hours for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 297                                                                                      | $NO_3$ , but both returned to 100% after the $CH_4$ supply was recovered.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 298                                                                                      | We calculated the consumption fluxes of $NO_2^-$ , $NO_3^-$ , and $ClO_4^-$ , along with the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 298<br>299                                                                               | We calculated the consumption fluxes of NO <sub>2</sub> <sup>-</sup> , NO <sub>3</sub> <sup>-</sup> , and ClO <sub>4</sub> <sup>-</sup> , along with the stoichiometric fluxes of CH <sub>4</sub> (from equations 5 – 7). The fluxes are summarized in                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 299                                                                                      | stoichiometric fluxes of $CH_4$ (from equations 5 – 7). The fluxes are summarized in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 299<br>300                                                                               | stoichiometric fluxes of $CH_4$ (from equations 5 – 7). The fluxes are summarized in Table 1 for each steady state. One important comparison is between the actual $CH_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 299<br>300<br>301                                                                        | stoichiometric fluxes of $CH_4$ (from equations 5 – 7). The fluxes are summarized in<br>Table 1 for each steady state. One important comparison is between the actual $CH_4$<br>consumption and the maximum possible $CH_4$ flux. The maximum fluxes were 57.9                                                                                                                                                                                                                                                                                                                                                                              |
| 299<br>300<br>301<br>302                                                                 | stoichiometric fluxes of $CH_4$ (from equations 5 – 7). The fluxes are summarized in<br>Table 1 for each steady state. One important comparison is between the actual $CH_4$<br>consumption and the maximum possible $CH_4$ flux. The maximum fluxes were 57.9<br>mmol $CH_4/m^2$ -d for Stages 1 – 4 and 86.8 mmol $CH_4/m^2$ -d for Stages 5-7, both                                                                                                                                                                                                                                                                                      |
| <ul> <li>299</li> <li>300</li> <li>301</li> <li>302</li> <li>303</li> </ul>              | stoichiometric fluxes of CH <sub>4</sub> (from equations 5 – 7). The fluxes are summarized in<br>Table 1 for each steady state. One important comparison is between the actual CH <sub>4</sub><br>consumption and the maximum possible CH <sub>4</sub> flux. The maximum fluxes were 57.9<br>mmol CH <sub>4</sub> /m <sup>2</sup> -d for Stages 1 – 4 and 86.8 mmol CH <sub>4</sub> /m <sup>2</sup> -d for Stages 5-7, both<br>calculated from the K <sub>m</sub> of CH <sub>4</sub> of the composite fiber for the experimental conditions.                                                                                                |
| <ul> <li>299</li> <li>300</li> <li>301</li> <li>302</li> <li>303</li> <li>304</li> </ul> | stoichiometric fluxes of CH <sub>4</sub> (from equations 5 – 7). The fluxes are summarized in<br>Table 1 for each steady state. One important comparison is between the actual CH <sub>4</sub><br>consumption and the maximum possible CH <sub>4</sub> flux. The maximum fluxes were 57.9<br>mmol CH <sub>4</sub> /m <sup>2</sup> -d for Stages 1 – 4 and 86.8 mmol CH <sub>4</sub> /m <sup>2</sup> -d for Stages 5-7, both<br>calculated from the K <sub>m</sub> of CH <sub>4</sub> of the composite fiber for the experimental conditions.<br>The maximum CH <sub>4</sub> delivery flux for Stages 1, 2, 3, 5, 6, and 7 was substantially |

| 307 | $(47.5\pm7.20 \text{ mmol/m}^2\text{-d})$ was close to the maximum CH <sub>4</sub> flux (57.9 mmol CH <sub>4</sub> /m <sup>2</sup> -d). |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 308 | In Stage 4, the effluent concentration of nitrate was stable at $1.39\pm0.21$ mg N/L for 2                                              |
| 309 | days before the methane supply was lost (Figure S3). Based on stoichiometry, the                                                        |
| 310 | maximum methane-delivery rate could remove $NO_3^-$ at a maximum flux of 0.67 g                                                         |
| 311 | $N/m^2$ -d, which corresponds to 100% removal of an influent concentration at 10.2 mg                                                   |
| 312 | N/L. The actual influent concentration was $11.3\pm0.40$ mg N/L in Stage 4, which                                                       |
| 313 | explains the partial $NO_3^-$ removal and that competition of $CH_4$ is why $ClO_4^-$ reduction                                         |
| 314 | remained very low throughout Stage 4.                                                                                                   |

Because donor limitation was not an issue for Stages 1 and 7, the negative impact of NO<sub>2</sub><sup>-</sup> on ClO<sub>4</sub><sup>-</sup> reduction probably was due to toxicity of NO<sub>2</sub><sup>-</sup>, not to competition for CH<sub>4</sub>. Kluber & Conrad reported that methanogenesis activity could be significantly inhibited by adding NO<sub>2</sub><sup>-.50</sup> King & Schnell reported that NO<sub>2</sub><sup>-</sup> could inhibit the methane oxidation by methanotrophs, and the inhibition was inversely proportional to headspace methane concentrations.<sup>51</sup>

### 321 Functional Community Structure through Functional Gene Analysis

Figure 3 shows the 16S rRNA gene copies for Bacteria and Archaea, functional-gene copy numbers, and fluxes of the tested electron acceptors through all stages. The copy number of the *pcrA* gene gradually increased from Stage 1 to Stage 5, and this was parallel to overall increasing flux of  $ClO_4^- + NO_3^-$  and accumulation of more bacteria, illustrated by the increasing gene copies for the 16S rRNA gene. The copy number of the *pcrA* gene decreased when the flux of all electron acceptors significantly decreased in Stage 6 (due to the absence of NO<sub>3</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup>), but increased again when NO<sub>2</sub><sup>-</sup> was re-introduced at a flux of  $0.39\pm0.01$  g N/m<sup>2</sup>-d in Stage 7. Since most denitrifying bacteria (DB) are able to reduce ClO<sub>4</sub><sup>-</sup> and may harbor the *pcrA* gene,<sup>52, 53</sup> it is not surprising that the abundance of the *pcrA* gene was significantly related with the NO<sub>3</sub><sup>-</sup> flux in our study (Table S5), as well as in previous MBfR studies with H<sub>2</sub>.<sup>8, 54, 55</sup>

334 Similar to the *pcrA* gene, *nirS* and *narG* genes gradually increased from Stage 1 to Stage 5, though the fluxes of  $NO_3^++NO_2^-$  decreased from Stage 4 to 5; again, the 335 increases likely were due to accumulating bacteria overall. When  $NO_3^-$  and  $NO_2^-$ 336 337 were absent in Stage 6, the *nirS* and *narG* abundances dropped by 0.5 to 1 order of magnitude. Also similar with the *pcrA* trend, the *nirS* and *narG* genes increased in 338 Stage 7 when  $NO_2^{-1}$  was re-introduced into the MBfR system. However, the *narG* 339 340 abundance was similar to *nirS* in Stage 1, when NO<sub>2</sub><sup>-</sup> was fed at a low loading, and became much lower than nirS in Stage 7 when  $NO_2^-$  was fed at a higher loading. 341 Because the *NarG* gene is not selective for all DB,<sup>56</sup> *nirS* is mostly used to quantify 342 the DB.<sup>57</sup> 343

Overall, Bacteria (16S rRNA gene) were ~2 orders of magnitudes higher than Archaea
(Archaeal 16S rRNA gene) through all stages, suggesting that Bacteria dominated
Archaea. While the abundances of *mcrA* and *pMMO* genes were about the same in
Stages 1 and 3, the *pMMO* gene increased much more by Stage 5 and in parallel to the
large increase in the flux of CH<sub>4</sub>. The *mcrA* and *pMMO* genes decreased in Stage 6,

| 349 | when $NO_3^-$ and $NO_2^-$ were absent in the system, resulting in a much lower $CH_4$ flux.          |
|-----|-------------------------------------------------------------------------------------------------------|
| 350 | The <i>pMMO</i> gene abundance returned to its Stage 5 level with the increase of $CH_4$ flux         |
| 351 | Stage 7, but the <i>mcrA</i> gene remained low in Stage 7.                                            |
| 352 | Archaea are necessary for the "Reverse Methanogesis" ANMO-D pathway, as they                          |
| 353 | produce electrons for denitrification. The low abundance of Archaea (Fig. 3)                          |
| 354 | supports the "Reverse Methanogenesis" was not important in the ClO <sub>4</sub> -reducing,            |
| 355 | CH <sub>4</sub> -oxidizing biofilm. Further support is given in Figure 4, which shows that the        |
| 356 | gene copies of mcrA and respiration genes had no correlation.                                         |
| 357 | Intracellularly generated O <sub>2</sub> is essential for the "Intra-Aerobic Type" ANMO-D             |
| 358 | pathway, in which Candidatus M. oxyfera (or a similar methanotroph) oxidizes CH <sub>4</sub>          |
| 359 | via an initial mono-oxygenation reaction. Figure 4 shows that the gene copies of                      |
| 360 | <i>pMMO</i> correlated to the gene copies for $narG+nirS+pcrA$ , which supports an essential          |
| 361 | role of $O_2$ generation associated with $ClO_4^-$ reduction. This association is logical if          |
| 362 | the key bacteria reducing $ClO_4^-$ used a chlorite dismutase in a manner similar to NO               |
| 363 | disproportionation in denitrification. <sup>21</sup> If O <sub>2</sub> were produced and consumed     |
| 364 | intracellularly, ClO <sub>4</sub> <sup>-</sup> reduction occurred via an "Intra-Aerobic Type" ANMO-PR |
| 365 | pathway, which is illustrated in Figure 5-A.                                                          |
| 366 | Rikken et al found that $O_2$ was released extracellularly during complete $ClO_4^-$                  |
| 367 | reduction. <sup>58</sup> Thus, another possibility is that $CH_4$ oxidation was coupled to $ClO_4^-$  |
| 368 | reduction by a mixture of methanotrophs and perchlorate-reducing bacteria using                       |
| 369 | <i>pMMO</i> and <i>pcrA</i> separately. Miller et al. reported that a variety of                      |

| 370               | methane-oxidizing bacteria, e.g., M. capsulatus Bath, M. album BG8, and M.                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 371               | <i>trichlsporium</i> OB3b, were able to utilize $O_2$ released from the disproportion of $ClO_2^-$                                                                                                                                                                                                                       |
| 372               | by dissmilatory perchlorate-reducing bacteria. <sup>34</sup> Sun et al. reported that, <sup>39</sup> in an                                                                                                                                                                                                               |
| 373               | AMO-D process, co-existing methanotrophs consumed O <sub>2</sub> preferentially, creating a                                                                                                                                                                                                                              |
| 374               | micro-aerobic environment conducive for denitrification. In addition, the                                                                                                                                                                                                                                                |
| 375               | methanotrophs released organic intermediates that served as electron donors for                                                                                                                                                                                                                                          |
| 376               | denitrification. <sup>15, 22, 30</sup> We name this potential mechanism "micro-Aerobic Methane                                                                                                                                                                                                                           |
| 377               | Oxidation coupled to Perchlorate Reduction," or "mAMO-PR". It is illustrated in                                                                                                                                                                                                                                          |
| 378               | Figure 5-B.                                                                                                                                                                                                                                                                                                              |
|                   |                                                                                                                                                                                                                                                                                                                          |
| 379               |                                                                                                                                                                                                                                                                                                                          |
| 517               | In summary, we found that the biofilm in an MBfR was able to reduce up to 5 mg/L of                                                                                                                                                                                                                                      |
| 380               | In summary, we found that the biofilm in an MBfR was able to reduce up to 5 mg/L of $ClO_4^-$ to non-detectable levels using $CH_4$ as the only electron donor and carbon source                                                                                                                                         |
|                   |                                                                                                                                                                                                                                                                                                                          |
| 380               | $ClO_4^-$ to non-detectable levels using $CH_4$ as the only electron donor and carbon source                                                                                                                                                                                                                             |
| 380<br>381        | $ClO_4^-$ to non-detectable levels using $CH_4$ as the only electron donor and carbon source<br>in the presence of $NO_3^-$ at a surface loading of $\leq 0.32$ g N/m <sup>2</sup> -d. While $NO_3^-$ at high                                                                                                            |
| 380<br>381<br>382 | $ClO_4^-$ to non-detectable levels using $CH_4$ as the only electron donor and carbon source<br>in the presence of $NO_3^-$ at a surface loading of $\leq 0.32$ g N/m <sup>2</sup> -d. While $NO_3^-$ at high<br>surface loadings (e.g., 0.78 g N/m <sup>2</sup> -d) inhibited $ClO_4^-$ reduction due to electron-donor |

to the increase of respiratory gene copies, while *mcrA* did not; thus, the CH<sub>4</sub>-oxidizing

387 biofilm likely respired  $ClO_4^-$  by a pathway that involved generating  $O_2$  using  $ClO_2^-$ 

dismutation, with the O<sub>2</sub> utilized as a co-substrate for the mono-oxygenation of CH<sub>4</sub>.

389 Two options are possible: (1) ANMO-PR via a single strain producing and utilizing

390 intracellular O<sub>2</sub>, and (2) mAMO-PR, in which ClO<sub>4</sub><sup>-</sup>-reducing bacteria produce

391 extracellular  $O_2$  by  $ClO_2^-$  dismutation, while methanotrophs uses  $O_2$  as a co-substrate

| 392 | to initiate oxidation of $CH_4$ . This study shows that it is feasible to use methane as an |
|-----|---------------------------------------------------------------------------------------------|
| 393 | electron donor to biologically remove perchlorate, which is a new option for                |
| 394 | perchlorate reduction and a new application for the MBfR. Should further study              |
| 395 | demonstrate that methane is a versatile electron donor, like hydrogen, for reducing         |
| 396 | oxidized contaminants in water and wastewater treatment, then methane could be used         |
| 397 | as an inexpensive electron donor.                                                           |

#### 398 Acknowledgments

- 399 Authors greatly thank "The National Key Technology R&D Program
- 400 (2014ZX07101-012)", "National Natural Science Foundation of China (Grant No.
- 401 21107091, Grant No. 21377109)", and "National High Technology Research and
- 402 Development Program of China (2013AA06A205)" for their financial support.

# 403 Supporting Information Available

- 404 Table S1-5 and Figure S1-3. This material is available free of charge via the Internet
- 405 at http://pubs.asc.org.

### 407 **References**

- 408 (1) USEPA IRIS, 2005. Perchlorate and Perchlorate Salts. Available from:
   409 http://www.epa.gov/iris/subst/1007.htm
- (2) Coates, J. D.; & Achenbach, L. A. Microbial perchlorate reduction: rocket-fuelled
  metabolism. *Nat. Rev.* 2004, *2*, 569–580.
- 412 (3) Logan, B. L.; Lapoint, D. Treatment of perchlorate- and nitrate-contaminated
  413 groundwater in an autotrophic, gas phase, packed-bed bioreactor. *Water. Res.*414 2002, *36*, 3647-3653
- 415 (4) United States Environmental Protection Agency, Perchlorate in the Pacific West.
  416 2005. http://www.epa.gov/region9/toxic/perchlorate/index.html.
- 417 (5) Gu, B.; Coates, J. D. Perchlorate Environmental Occurrence: Interactions and
  418 Treatment; Springer: Boston, Maryland, U.S.A., 2006.
- (6) United States Environmental Protection Agency, 2001. Record of Decision of the
  Western Groundwater Operable Unit OU-3. U.S. EPA Region 9, San Francisco,
  CA. <u>http://www.epa.gov/</u> superfund/sites/rods/fulltext/r0901535.pdf.
- 422 (7) US Environmental Protection Agency, 2009. National Primary Drinking Water
   423 Regulations. <u>http://water.epa.gov/drink/</u> contaminants/upload/mcl-2.pdf.
- (8) Zhao, H. P.; Van Ginkel S.; Tang, Y.; Kang D-W.; Rittmann, B.E.;
  Krajmalnik-Brown, R. Interactions between perchlorate and nitrate reductions in
  the biofilm of a hydrogen-based membrane biofilm reactor. *Environ. Sci. Technol.*2011, 45, 10155–10162.
- (9) Tang, Y.; Zhao, H. P.; Marcus, A.; Krajmalnik-Brown, R.; Rittmann, B. E. A
  steady-state-biofilm model for simultaneous reduction of nitrate and perchlorate –
  Part 2: Parameter optimization and results and discussion. *Environ. Sci. Technol.*2012, 46, 1608-1615
- (10) Shrout, J. D. & Parkin, G. F. Influence of electron donor, oxygen, and redox
  potential on bacterial perchlorate degradation. *Water. Res.* 2006, *40*, 1191-1199.
- 434 (11)Nerenberg, R.; Kawagoshi, Y.; Rittmann, B. E. Microbial ecology of a
  435 perchlorate-reducing, hydrogen-based membrane biofilm reactor. *Water. Res.* 2008,
  436 42, 1151-1159.
- 437 (12)Gomez, M. A.; Gonzalez-Lopez, J.; Hontoria-Garcia, E. Influence of carbon
  438 source on nitrate removal of contaminated groundwater in a denitrifying
  439 submerged filter. *J. Hazard. Mater.* 2000, *80*, 69-80.
- (13) Eisentraeger, A.; Klag, P.; Vansbotter, B.; Heymann, E.; Dott, W. Denitrification
  of groundwater with methane as sole hydrogen donor. *Water. Res.* 2001, *35*,
  2261-2267.

| 443<br>444<br>445                      | <ul><li>(14) Haroon, M. F.; Hu, S. H.; Shi, Y.; Imelfort, M.; Keller, J.; Hugenholtz, P.; Yuan, Z. G. Anaerobic oxidation of methane coupled to nitrate reduction in anovel archaeal lineage. <i>Nature</i>. 2013, <i>500</i>, 567-570.</li></ul>                                                                                                                                                                                                                                                                       |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 446<br>447                             | (15)Modin, O.; Fukushi, K.; Yamamoto, K. Denitrification with methane as external carbon source. <i>Water. Res.</i> <b>2007</b> , <i>41</i> , 2726-2738.                                                                                                                                                                                                                                                                                                                                                                |
| 448<br>449<br>450                      | <ul> <li>(16)Lin, H. T.; Cowen, J. P.; Olson, E. J.; Lilley, M. D.; Jungbluth, S. P.; Wilson, S. T.;<br/>Rappe, M. S. Dissolved hydrogen and methane in the oceanic basaltic biosphere.<br/><i>Earth. Planet. Sc. Lett.</i> 2014, 405, 62-73.</li> </ul>                                                                                                                                                                                                                                                                |
| 451<br>452<br>453<br>454<br>455        | (17)Hu, B. L.; Shen, L. D.; Lian, X.; Zhu, Q.; Liu, S.; Huang, Q.; He, Z. F.; Geng, S.;<br>Cheng, D. Q.; Lou, L. P.; Xu, X. Y.; Zheng, P.; He, Y. F. Evidence for<br>nitrite-dependent anaerobic methane oxidation as a previously overlooked<br>microbial methane sink in wetland. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 2014, <i>111</i> ,<br>4495-4500.                                                                                                                                                               |
| 456<br>457                             | (18) Islas-Lima, S.; Thalasso, F.; Gomez-Hernandez, J. Evidence of anoxic methane oxidation coupled to denitrification. <i>Water. Res.</i> <b>2004</b> , <i>38</i> , 13-16.                                                                                                                                                                                                                                                                                                                                             |
| 458<br>459<br>460<br>461               | (19)Raghoebarsing, A. A.; Pol, A.; van de Pas-Schoonen, K. T.; Smolders, A. J. P.;<br>Ettwig, K. F.; Rijpstra, W. I. C.; Schouten, S.; Sinninghe Damste, J. S.; Op den<br>Camp, H. J. M.; Jetten, M. S. M.; Strous, M. A microbial consortium couples<br>anaerobic methane oxidation to denitrification. <i>Nature</i> . <b>2006</b> , <i>440</i> , 918-921.                                                                                                                                                            |
| 462<br>463<br>464                      | <ul> <li>(20) Modin, O.; Fukushi, K.; Nakajima, F.; Yamamoto, K. Performance of a membrane biofilm reactor for denitrification with methane. <i>Bioresour. Technol.</i> 2008, 99, 8054–8060.</li> </ul>                                                                                                                                                                                                                                                                                                                 |
| 465<br>466<br>467<br>468<br>469<br>470 | <ul> <li>(21)Ettwig, K. F.; Butler, M. K.; Le Paslier, D.; Pelletier, E.; Mangenot, S.; Kuypers, M. M. M.; Schreiber, F.; Dutilh, B. E.; Zedelius, J.; de Beer, D.; Gloerich, J.; Wessels, H. J. C. T.; van Alen, T.; Luesken, F.; Wu, M. L.; van de Pas-Schoonen, K. T.; Op den Camp, H. J. M.; Janssen-Megens, E. M.; Francoijs, K. J.; Stunnenberg, H.; Weissenbach, J.; Jetten, M. S. M.; Strous, M. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. <i>Nature</i>. 2010, 464, 544-548.</li> </ul> |
| 471<br>472<br>473                      | (22)Eisentraeger, A.; Klag, P.; Vansbotter, B.; Heymann, E.; Dott, W. Denitrification of groundwater with methane as sole hydrogen donor. <i>Water. Res.</i> <b>2001</b> , <i>35</i> , 2261-2267.                                                                                                                                                                                                                                                                                                                       |
| 474<br>475<br>476                      | (23)Modin, O.; Fukushi, K.; Nakajima, F.; Yamamoto, K. Aerobic methane oxidation<br>coupled to denitrification: kinetics and effect of oxygen supply. <i>J. Environ.</i><br><i>Engineer.</i> 2010, 136, 211-219.                                                                                                                                                                                                                                                                                                        |
| 477<br>478                             | (24) Knowles, R. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle. <i>Ecol. Eng.</i> <b>2005</b> , <i>24</i> , 441-446.                                                                                                                                                                                                                                                                                                                                                      |
| 479<br>480                             | (25) Yao, S.; Ni, J.; Zhao, S.; Qiang, C.; Zhang, H.; Wang, S. COD and nitrogen removal in facilitated transfer membrane-aerated biofilm reactor (FT-MABR). J.                                                                                                                                                                                                                                                                                                                                                          |

- 481 *Membr. Sci.* **2013**, *389*, 257-264.
- 482 (26) Knittel, K. & Boetius, A. Anaerobic oxidation of methane: progress with an
  483 unknown process. *Annu. Rev. Microbiol.* 2009, *63*, 311-334.
- (27) Hu, S.; Zeng, R. J.; Burow, L. C.; Lant, P.; Keller, J.; Yuan, Z. G. Enrichment of
  denitrifying anaerobic methane oxidizing microorganisms. *Environ. Microbiol. Rep.* 2009, *1*, 845-854.
- (28) Ettwig, K. F.; Shima, S.; van de Pas-Schoonen, K. T.; Kahnt, J (Kahnt, Joerg)[2];
  Medema, M. H.; op den Camp, H. J. M.; Jetten, M. S. M.; Strous, M. Denitrifying
  bacteria anaerobically oxidize methane in the absence of *Archaea. Envrion. Microbiol.* 2008, *10*, 3164-3173.
- (29) Ettwig, K. F.; van Alen, T.; van de Pas-Schoonen, K. T.; Jetten, M. S. M. Strous,
  M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of
  the NC10 phylum. *Appl. Environ. Microbiol.* 2009, 75, 3656-3662.
- (30) Costa, C.; Stams, A. J. M.; Dijkema, C.; Friedrich, M.; Garcia-Encina, P.;
  Fernandez-Polanco, F. Denitrification with methane as electron donor in
  oxygen-limited bioreactors. *Appl. Microbiol. Biotechnol.* 2000, *53*, 754-762.
- (31)Liu, J. J.; Sun, F. Q.; Wang, L.; Ju, X.; Wu, W. X.; Chen, Y. X. Molecular
  characterization of a microbial consortium involved in methane oxidation coupled
  to denitrification under micro-aerobic conditions. *Microb. Biotechnol.* 2014, 7,
  64-76.
- (32) Wu, M. L.; Ettwig, K. F.; Jetten, M. S. M.; Strous, M.; Keltjens, J. T.; van Niftrik,
  L. A new intra-aerobic metabolism in the nitrite-dependent anaerobic
  methane-oxidizing bacterium *Candidatus Methylomirabilis oxyfera*. *Biochem. Soc.*
- 504 *Trans.* **2011**, *39*, 243-248.
- 505 (33)Coates, J. D. The possibility of methane oxidation coupled to microbial
  506 perchlorate metabolism. 2009. Available at:
  507 http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=46120
- (34) Miller, L. G.; Baesman, S. M.; Carlsroem, C. I.; Coates, J. D.; Oremland, R. S.
  Methane oxidation linked to chlorite dismutation. *Front. Microbiol.* 2014, *5*, 1-8.
- (35)Rittmann, B. E. The membrane biofilm reactor is a versatile platform for water
  and wastewater treatment. *Environ. Engr. Res.*2007, *12*,157-175.
- (36)Ziv-El, M. C.; Rittmann, B. E. Systematic evaluation of nitrate and perchlorate
  bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm
  reactor. *Water. Res.* 2009, *43*, 173-181.
- (37) Martin, K. J. & Nerenberg, R. The membrane biofilm reactor (MBfR) for water
  and waster treatment: Principles, applications and recent developments. *Bioresour*. *Technol.* 2012. 122, 83-94.

| 518<br>519<br>520<br>521        | (38)Nerenberg, R., Rittmann, B. E., Gillogly, T. E., Lehman, G. E., Adham, S. S.<br>Perchlorate reduction using the hollow-fiber membrane-biofilm reactor: bench<br>and pilot-scale studies. Proc. Battelle Symposium on In Situ and On Site<br>Bioremediation, Orlando, FL, June 2003. Paper C-08 on CD-ROM.                                                                                                         |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 522<br>523<br>524<br>525        | (39)Sun, F. Y.; Dong, W. Y.; Shao, M. F.; Lv, X. M.; Li, J.; Peng, L. Y.; Wang, H. J. Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. <i>Bioresource Technol.</i> <b>2013</b> , <i>146</i> , 2-9.                                                                                                                     |
| 526<br>527<br>528               | (40) Shi, Y.; Hu, S. H.; Lou, J. Q.; Lu, P. L.; Keller, J.; Yuan, Z.G. Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. <i>Environ. Sci. &amp; Technol.</i> <b>2013</b> , <i>47</i> , 11577-11583.                                                                                                                                           |
| 529<br>530<br>531               | (41) Tang, Y. N.; Zhou, C.; Van Ginkel, S.; Ontiveros-Valencia, A.; Shin, J. H.;<br>Rittmann, B. E. Hydrogen-Permeation coefficients of the fibers used in H <sub>2</sub> -based<br>membrane biofilm reactors. <i>J. Membr. Sci.</i> <b>2012</b> . <i>407</i> , 176-183.                                                                                                                                              |
| 532<br>533                      | (42)Rittmann, B.E. & McCarty, P.L. Environmental Biotechnology: Principles and Applications. McGraw-Hill Book Co: New York. 2001.                                                                                                                                                                                                                                                                                     |
| 534<br>535<br>536<br>537        | <ul> <li>(43)Nozawa-Inoue, M.; Jien, M.; Hamilton, N. S.; Stewart, V.; Scow, K. M.; Hristova, K. R. Quantitative detection of perchlorate-reducing bacteria by real-time PCR targeting the perchlorate reductase gene. <i>Appl. Environ. Microbiol.</i> 2008, <i>74</i>, 1941-1944.</li> </ul>                                                                                                                        |
| 538<br>539<br>540               | (44)Lopez-Gutierrez, J. C.; Henry, S.; Hallet, S.; Martin-Laurent, F.; Catroux, G.;<br>Philippot, L. Quantification of a novel group of nitrate-reducing bacteria in the<br>environment by real-time PCR. <i>J. Microbiol. Meth.</i> <b>2004</b> , <i>57</i> , 399-407.                                                                                                                                               |
| 541<br>542<br>543               | (45) Throbaeck, I. N.; Enwall, K.; Jarvis, A.; Hallin, S. Reassessing PCR primers targeting <i>nirS</i> , <i>nirK</i> and <i>nosZ</i> genes for community surveys of denitrifying bacteria with DGGE. <i>FEMS Microbiol. Eco.</i> <b>2004</b> , <i>49</i> , 401-417.                                                                                                                                                  |
| 544<br>545<br>546               | (46) Steinberg, L. M.; Regan, J. M. Phylogenetic comparison of the methanogenic<br>communities from an acidic, oligotrophic fen and an anaerobic digester treating<br>municipal wastewater sludge. <i>Appl. Environ. Microbiol.</i> <b>2008</b> , <i>74</i> , 6663-6671.                                                                                                                                              |
| 547<br>548<br>549<br>550        | <ul> <li>(47) Paszczynski, A. J.; Paidisetti, R.; Johnson, A. K.; Crawford, R. L.; Colwell, F. S.; Green, T.; Delwiche, M.; Lee, H.; Newby, D.; Brodie, E. L.; Conrad, M. Proteomic and targeted qPCR analyses of subsurface microbial communities for presence of methane monooxygenase. <i>Biodegradation</i>. 2011, <i>22</i>, 1045-1059.</li> </ul>                                                               |
| 551<br>552<br>553<br>554<br>555 | (48) Maeda, H.; Fujimoto, C.; Haruki, Y.; Maeda, T.; Kokeguchi, S.; Petelin, M.; Arai, H.; Tanimoto, I.; Nishimura, F.; Takashiba, S. Quantitative real-time PCR using TaqMan and SYBR Green for <i>Actinobacillus actinomycetemcomitans</i> , <i>Porphyromonas gingivalis</i> , <i>Prevotella intermedia</i> , <i>tetQ</i> gene and total bacteria. <i>FEMS Immunol. Med. Mic</i> , <b>2003</b> , <i>39</i> , 81-86. |

556 (49) Yu, Y.; Lee, C.; Kim, J.; Hwang, S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. 557 Biotechnol. Bioeng. 2005, 89, 670-679. 558 (50) Kluber, H. D.; & Conrad, R. Inhibitory effects of nitrate, nitrite, NO, and N<sub>2</sub>O on 559 560 methanogenesis by Methnoscarcina barkeri and Methanobacterium bryantii. FEMS. Microbiol. Ecol. 1998, 25, 331-339. 561 562 (51) King, G. M.; & Schnell, S. Ammonium and nitrite inhibition of methane oxidation by Methylobacter albus BG8 and Methylosinus trichosporium OB3B at 563 low methane concentrations. Appl. Environ. Microbiol. 1994. 60, 3508-3513. 564 (52) Giblin, T.; Frankenberger, W. T. Perchlorate and nitrate reductase activity in the 565 perchlorate-respiring bacterium perclace, Microbiol. Res. 2001, 156, 311-315... 566 (53) Xu, J.; Trimble, J. J.; Steinber, L.; Logan, B. E. Chlorate and nitrate reduction 567 568 pathways are separately induced in the perchlorate-respiring bacterium Dechlorosoma sp. KJ and the chlorate-respiring bacterium Pseudomonas sp. PDA. 569 570 Water. Res. 2004, 38, 673-680. 571 (54) Zhao, H. P.; Ontiveros-Valencia, A.; Tang, Y.; Kim, B. O.; Ilhan, Z. E.; Krajmalnik-Brown, R.; Rittmann, B. E. Using a two-stage hydrogen-based 572 membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in 573 the presence of nitrate and sulfate. Environ. Sci. Technol. 2013a, 47, 1565-1572. 574 575 (55) Zhao, H. P.; Ilhan, Z. E.; Ontiveros-Valencia, A.; Tang, Y.; Rittmann, B. E.; Krajmalnik-Brown, R. Effects of multiple electron acceptors on microbial 576 interactions in a hydrogen-based biofilm. Environ. Sci. Technol. 2013b, 47, 577 578 7396-7403. (56) Philippot, L.; & Hallin, S. Molecular analyses of soil denitrifying bacteria, p 579 146-165. In cooper, J. E.; and Rao, J. R. (ed.), Molecular approaches to soil, 580 rhizosphere and plant microorganism analysis. CAB International. London, UK. 581 2006. 582 583 (57) Coyne, M.; Arunakumari, A.; Averill, B.; Tiedje, J. Immunological identification and distribution of dissimilatory heme cd1 and non-heme copper nitrite reductases 584 in denitrifying bacteria. Appl. Environ. Microbiol. 1989, 55, 2924-2931. 585 (58) Rikken, G. B.; Kroon, A. G. M.; van Ginkel, C. G. Transformation of perchlorate 586 587 into chloride by a newly isolated bacterium: reduction an dismutation. Appl. Microbiol. Biotechnol. 1996, 45, 420-426. 588