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Abstract 14 

Using a CH4-based membrane biofilm reactor (MBfR), we studied perchlorate (ClO4
-) 15 

reduction by a biofilm performing anaerobic methane oxidation coupled to 16 

denitrification (ANMO-D).  We focused on the effects of nitrate (NO3
-) and nitrite 17 

(NO2
-) surface loadings on ClO4

- reduction and on the biofilm community’s 18 

mechanism for ClO4
- reduction.  The ANMO-D biofilm reduced up to 5 mg/L of 19 

ClO4
- to a non-detectable level using CH4 as the only electron donor and carbon 20 

source when CH4 delivery was not limiting; NO3
- was completely reduced as well 21 

when its surface loading was ≤ 0.32 g N/m2-d.  When CH4 delivery was limiting, 22 

NO3
- inhibited ClO4

- reduction by competing for the scarce electron donor.  NO2
- 23 

inhibited ClO4
- reduction when its surface loading was ≥ 0.10 g N/m2-d, probably due 24 

to cellular toxicity.  Although Archaea were present through all stages, Bacteria 25 

dominated the ClO4
--reducing ANMO-D biofilm, and gene copies of the particulate 26 

methane mono-oxygenase (pMMO) correlated to the increase of respiratory gene 27 

copies.  These pieces of evidence support that ClO4
- reduction by the MBfR biofilm 28 

involved chlorite (ClO2
-) dismutation to generate the O2 needed as a co-substrate for 29 

the mono-oxygenation of CH4.    30 

Key Words:  methane, perchlorate, oxidation, reduction, membrane-biofilm reactor 31 
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Introduction 36 

Perchlorate (ClO4
-) is a strong oxidizing agent that has been widely used in rocket fuel, 37 

munitions, and explosives (EPA, 2005).1  It causes serious health problems by 38 

interfering with the production of thyroid hormones needed for growth and 39 

development (Coates & Achenbach, 2004).2  The typical perchlorate concentration 40 

in groundwater is lower than 100 µg/L, but in some cases it can reach concentrations 41 

of 20 mg/L or more. 3, 4  Although a nationwide maximum contaminant level (MCL) 42 

for ClO4
- has not yet established by the US EPA, some states have established cleanup 43 

levels ranging from 2 to 18 µg/L for ClO4
- in drinking water (Gu & Coates, 2006).5  44 

Nitrate (NO3
-) is an oxyanion commonly co-occurring with ClO4

- in groundwater, for 45 

example, at military bases that house rockets (USEPA, 2001).6  Because NO3
- causes 46 

methemoglobinemia in infants, the MCL for NO3
- in drinking water is regulated at 10 47 

mg N/L (USEPA, 2009).7  NO3
- inhibits ClO4

- reduction due to competition for the 48 

common electron donor when the electron donor is insufficient. 8, 9  49 

Different electron donors have been applied to achieve complete ClO4
- and NO3

- 50 

removal by microbiological reduction.10-12  An interesting example is nitrogen 51 

reduction using methane as the sole electron donor and carbon source,13, 14 since 52 

methane is inexpensive and widely available.15-17  53 

Methane oxidation coupled to denitrification (MO-D) has been extensively studied 54 

during the past decade.14, 15, 18-21  Two microbial processes are capable of carrying 55 

out MO-D.  One is aerobic methane oxidation coupled to denitrification (AMO-D),22, 56 

23 which is performed by the combined actions of two distinct bacterial groups:  57 

methane oxidizers (methanotrophs) and denitrifiers.22, 24, 25  The second is anaerobic 58 
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methane oxidation coupled to denitrification (ANMO-D).21, 26  ANMO-D 59 

microorganisms include a bacterial group affiliated with the candidate division NC10 60 

and an archaeal group distantly related to anaerobic methanotrophic archaea.19, 27-29   61 

AMO-D occurs in the presence of O2, because methanotrophs require O2 for the initial 62 

mono-oxygenation step.  The methanotrophs can release organic intermediates from 63 

their catabolism and anabolism, for example, methanol, acetate, and citrate, and the 64 

intermediates can be further utilized by denitrifiers as electron donors.15, 22, 30  These 65 

steps are illustrated schematically in panel A of Figure S1 in Supplemental 66 

Information.  Although a high concentration of O2 inhibits denitrification, a certain 67 

amount of O2 is necessary to promote AMO-D.30, 31 68 

ANMO-D can follow two pathways, illustrated schematically in panels B and C of 69 

Figure S1.  Raghoebarsing et al. hypothesized the “Reverse Methanogesis” pathway, 70 

which involves the combined action of Archaea and denitrifying bacteria.19  The 71 

Archaea carry out reverse methanogenesis to generate H2 that is shuttled to the 72 

denitrifying bacteria that respire NO2
- to N2.  Haroon et al. reported that Archaea 73 

population ANME-2d (Methanoperedens nitroreducens) catalyzed CH4 oxidation by 74 

methylcoenzyme M reductase (mcrABCDG) through a reverse-methanogenesis 75 

pathway using NO3
- as their terminal electron acceptor and generating NO2

-; the 76 

NC10 bacteria then reduced NO2
- to N2.14  77 

The second ANMO-D pathway is called the “Intra-Aerobic” pathway,21, 32 and only 78 

one denitrifying microorganism (Candidatus Methylomirabilis oxyfera) was involved.  79 
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Denitrification was carried out by stepwise reduction of NO2
- to NO using nitrate 80 

reductase (narGHJI) and nitrite reductase (nirSJFD/GH/L); then, NO was 81 

disproportionated to produce O2 intracellularly and N2 using an unknown dismutase 82 

enzyme.  The O2 was then used by the same microorganism as a co-substrate for 83 

methane mono-oxygenation by a membrane-bound particulate methane 84 

mono-oxygenase (pMMO).   85 

While the true mechanism of ANMO-D is unresolved, it is thermodynamically 86 

feasible, as shown by redox equations 1 and 2 for NO3
- or NO2

- as the terminal 87 

electron acceptor:19 88 

5CH4 + 8NO3
- + 8H+ = 5CO2 + 4N2 + 14H2O    ΔG0’= -765 KJmol-1CH4     (1) 89 

3CH4 + 8NO2
- + 8H+ = 3CO2 + 4N2 + 10H2O    ΔG0’= -928 KJmol-1CH4     (2) 90 

When perchlorate (ClO4
-) is the electron acceptor, a similar reaction between ClO4

- 91 

and CH4 also is thermodynamically feasible: 33  92 

CH4 + ClO4
- = HCO3

- + Cl- + H2O             ΔG0’= -792 KJmol-1CH4     (3) 93 

The pathway for dissimilatory perchlorate reduction begins with reduction of ClO4
- to 94 

chlorite (ClO2
-, catalyzed by perchlorate reductase, pcrA) and ends with dismutation 95 

of ClO2
- to yield chloride (Cl-, catalyzed by chlorite dismutase, cld) and molecular 96 

oxygen (O2), which is essential for the methane oxidation.2  Miller et al. confirmed 97 

complete CH4 removal coupled with ClO2
- dismutation by a mixture of methanotrophs 98 

and the perchlorate-reducing bacterium Dechloromonas agitate CKB.34  The 99 

methanotrophs used extracellular O2 derived from disproportion of ClO2
- by D. 100 

agitate CKB to oxidize CH4 aerobically; thus, it was an extracellular-aerobic pathway 101 
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that required that the substrate for dismutation, ClO2
-, be supplied.  The mixed 102 

culture did not oxidize CH4 when supplied with ClO4
- or ClO3

-; thus, they concluded 103 

that O2 produced via ClO4
- reduction was unavailable for the aerobic methanotrophs.   104 

So far, no study has successfully reduced ClO4
- using CH4 as the sole electron donor 105 

and carbon source.  However, thermodynamics and the reality that most denitrifiers 106 

are able to reduce ClO4
- (using either nitrate or perchlorate reductase) means that a 107 

ANMO-D or AMO-D culture has the possibility to reduce ClO4
- using CH4 as electron 108 

donor and carbon source.   109 

The H2-based membrane biofilm reactor (MBfR) has been applied successfully for 110 

microbial removal of oxidized contaminants, including NO3
- and ClO4

-.11, 35-37  The 111 

non-porous walls of hollow-fiber membranes transfer H2 directly to a biofilm of 112 

H2-oxidizing bacteria that reduce one or more electron acceptors.35  The use of 113 

“bubbleless” membranes and the rapid oxidation of H2 in the biofilm allow nearly 100% 114 

utilization of H2, preventing H2 losses to the atmosphere or effluent liquid.36, 38  115 

The MBfR also could provide a means for the safe and efficient supply of CH4 to 116 

drive ANMO-D, AMO-D, and ClO4
- reduction.  Supporting the concept, Sun et al 117 

reported that an aerobic methane-based MBfR removed up to 97% of NO3
- applied at 118 

a concentration of 30 mg N/L,39 and Shi et al achieved 86 mg N/m2-d NO3
- removal in 119 

an anaerobic MBfR provided with CH4 as carbon source and electron donor.40  120 

The objective of this study was to evaluate ClO4
- reduction in a CH4-based MBfR.  121 
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Specifically, we studied the reduction patterns of NO2
-, NO3

-, and ClO4
- when we 122 

exposed the biofilm to different relative loadings.  We quantified the 123 

CH4-permeation coefficient through the membrane wall to determine if the delivery 124 

rate of CH4 was limiting, and we used quantitative real-time PCR (qPCR) to monitor 125 

how the abundances of functional genes key to respiration reactions were affected by 126 

the acceptor loadings.  Based on several types of evidence, we are able to provide 127 

mechanistic interpretation about what controls ClO4
- reduction by the biofilm and the 128 

likely pathways by which NO3
- and ClO4

- reductions occur when CH4 is the sole 129 

electron donor.  130 
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Materials and Methods 131 

CH4 permeation 132 

Steady-state CH4-permeation experiments were carried out in the same system (shown 133 

schematically in Supporting Information (SI) Figure S2) Tang et al. used for 134 

quantifying H2 permeation.41  Deionized water was pumped through the serum bottle 135 

(total volume of 1.6 × 10-4 m3, liquid volume of 0.6 × 10-4 m3) at a flow rate of 7.2 × 136 

10-4 m3/d.  The hollow fibers in the serum bottle were pressurized with CH4 (99.99% 137 

purity, Shanghai Gas Company, China) at a pressure of 1.0 bar (14.5 psi).  CH4 138 

diffused through the hollow-fiber wall, dissolved in the water, and partitioned into the 139 

headspace.  A magnetic stirring bar ensured complete mixing of the liquid and that 140 

CH4 was rapidly partitioned to the gas phase.  We took the headspace gas samples to 141 

measure its CH4 partial pressure.  Steady state was achieved when the CH4 partial 142 

pressure was stable for at least 40 hydraulic retention times (HRTs).41  We then 143 

calculated the CH4 permeability of the membrane fiber based on the method in Tang 144 

et al.41  The equations and experimental parameters for the CH4-permeation test are 145 

summarized in the Supplementary Information (Table S1 & S2).  146 

MBfR Setup 147 

We used a two-column MBfR system similar to Zhao et al.8  The MBfR had 148 

composite hollow fibers (hydrophobic microporous polyethylene fiber, 280-µm o.d., 149 

and a 180-µm i.d., pore size 0.1-0.15 µm) manufactured by Mitsubishi Rayon (Model 150 
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MHF-200TL, Mitsubishi, Ltd., Japan).  The fibers were glued into a CH4-supply 151 

manifold at the bottom of the MBfR column, and the top of each fiber was sealed.  152 

The total volume of the MBfR was 65 mL, and the total membrane surface area was 153 

7.0 cm2.  The MBfR was completely mixed by recirculation with a peristaltic pump 154 

(Longer Pump, model 1515X, Longer Precision Pump Co, Ltd, China) at 100 155 

mL/min.   156 

Start up and continuous operation of the MBfR 157 

We inoculated the MBfR with 10 mL of ANMO-D culture (original maintained 158 

anaerobic) donated by Dr. Wei Xiang Wu at Zhejiang University (China) and enriched 159 

the community by recirculating a mineral salt medium (described below) containing 2 160 

mg N/L NO2
- for 2 days.  To accumulate enough biomass, we fed the MBfR with 2 161 

mg N/L of NO2
- continuously for 40 days, when complete NO2

- reduction was 162 

achieved.  To investigate ClO4
- reduction in the presence of NO2

-, we fed the MBfR 163 

with ClO4
- and NO2

- at influent concentrations of 1 mg/L and 2 mg N/L, respectively, 164 

in Stage 1.  Since NO3
- may inhibit ClO4

- reduction at high surface loadings (> 0.6 g 165 

N/m2-d) or improve ClO4
- removal at medium (0.1-0.6 g N/m2-d) or small (<0.1g 166 

N/m2-d) loadings in a H2-based MBfR,9 we then systematically changed the influent 167 

concentrations of NO3
- and ClO4

- in Stages 2 through 6.  We allowed each stage to 168 

reach steady state, which was defined as effluent concentrations stable (<10% 169 

variation) for a minimum of three HRTs.  The influent concentrations were:  Stage 170 

2:  1 mg/L ClO4
-; Stage 3:  1 mg/L ClO4

- and 1.1 mg N/L of NO3
-; Stage 4:  1 171 
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mg/L ClO4
- and 11.3 mg N/L of NO3

-; Stage 5:  1 mg/L ClO4
- and 4.5 mg N/L of 172 

NO3
-; and Stage 6:  5 mg/L ClO4

-.  To investigate ClO4
- reduction in the presence of 173 

NO2
- after high ClO4

--removal efficiency had been achieved, we fed the MBfR 5 174 

mg/L of ClO4
- and 5 mg N/L of NO2

- in Stage 7.  Actual influent concentrations 175 

varied slightly from the targets and are presented in Table S3 and Figure 1. 176 

The influent feeding rate was 0.5 mL/min (HRT of 130 min), the CH4 pressure was 10 177 

psi (0.69 bar) for Stage 1-3 and 15 psi (1.03 bar) for the latter stages, and the 178 

temperature was 29±1oC for all experiments.  The medium pH was adjusted to 179 

7.0±0.2 with hydrochloric acid and contained the following mineral salts (analytical 180 

grade or purer) per L of demineralized water:  CaCl2 1 mg, NaHCO3 0.3 g, 181 

MgSO4•7H2O 5 mg, KaH2PO4 0.2 g, Na2HPO4•12H2O 0.4 g, 1 mL acid trace element 182 

solution (HCl 100 mM, 2.085 g of FeSO4•7H2O, 68 mg of ZnSO4•7H2O, 14 mg of 183 

H3BO3, 120 mg of CoCl2•6H2O, 500 mg of MnCl2•4H2O, 320 mg of CuSO4, 95 mg of 184 

NiCl2•6H2O per liter), and 1 mL alkaline trace element solution (NaOH 10 mM, 67 185 

mg of SeO2, 50 mg of Na2WO4•2H2O, 242 mg of Na2MoO4•2H2O per liter).  The 186 

medium was de-gassed with N2 to maintain an anaerobic condition. 187 

During Stage 4, the CH4 supply was accidently lost for 48 hours, and we immediately 188 

substituted N2 gas to keep the fibers pressurized.  To re-evaluate the response found 189 

in Stage 4, we intentionally stopped the CH4 supply for 30 hours in Stage 5.  The 190 

CH4 supply was reinstated when the removal percentages were zero for NO3
- and 191 

ClO4
-.   192 
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Analyses 193 

We measured the CH4 partial pressure (PCH4) of gas samples using a gas 194 

chromatograph (Agilent Technologies GC system, model 7890A, Agilent 195 

Technologies Inc., U.S.A) equipped with a flame ionization detector and a packed 196 

column (30 m long, 0.32 mm i.d., 0.5 µm thickness, cross-linked polydimethysiloxane 197 

film, J&W scientific, U.S.A.).  N2 was the carrier gas fed at a constant pressure of 198 

0.96 bar and a constant flow rate of 0.065 m3/d, and the temperature conditions for 199 

injection and detector were 200 and 260oC, respectively.  Analytical grade CH4 was 200 

used for standard calibration curves and for the experiments.  201 

We took liquid samples from the MBfR with 5-mL syringes and filtered them 202 

immediately through a 0.2-µm membrane filter (LC+PVDF membrane, Shanghai 203 

Xinya, China).  We assayed for NO3
- and NO2

-
 using ion chromatography (Metrohm 204 

833 Basic IC plus, Switzerland) with an A-Supp-5 column, an eluent containing 3.2 205 

mM NaHCO3, 1.0 mM Na2CO3, and 5% Acetone in a flow rate of 1 mL/min.  ClO4
- 206 

was measured using ion chromatography (Metrohm 833 Basic IC plus, Switzerland) 207 

with an AS 16 column and AG 16 pre-column, eluent concentration of 35 mM KOH, 208 

and a 1.5 mL/min flow rate.  Dissolved O2 was measured with a dissolved oxygen 209 

probe (Starter, model 300D, Ohaus Instruments Company, Germany), and the 210 

concentrations for ~0.2 mg/L for the influent and ≤0.1 mg/L for the effluent.  The pH 211 

values of the influent and effluent were measured by a pH meter (Seven Easy, Mettler 212 

Toledo, Switzerland) and were between 7.4 and 7.7 for all stages.  213 
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Flux Calculations 214 

We calculated the NO3
- and ClO4

- removal fluxes (g/m2-d) according to:   215 

J = (So-S)Q/A                                                  (4) 216 

in which S° and S are the influent and effluent NO3
- or ClO4

- concentration (g/L), Q is 217 

the influent flow rate to the MBfR system (L/d), and A is the membrane surface area 218 

(m2).  The CH4 flux was calculated from the removal fluxes and reaction 219 

stoichiometries shown in equations 5 through 7.42   220 

NO2
- + 0.828CH4 + H+ = 0.04CO2 + 0.42N2 + 0.158C5H7O2N + 1.6H2O              (5) 

NO3
- + 1.2CH4 + H+ = 0.2CO2 + 0.4N2 + 0.2C5H7O2N + 2.2H2O                    (6) 

ClO4
- + 1.613CH4 + 0.175NO3

- +0.175H+ = Cl- + 0.737CO2+ 2.7H2O + 0.175C5H7O2N  (7) 

We compared the actual CH4 flux to the maximum CH4 flux that can be delivered 221 

through the composite hollow fiber at the applied CH4 pressure to indicate if CH4 222 

delivery was limiting.41  223 

Biofilm Sampling and DNA extraction 224 

We collected biofilm samples when the reactor reached a steady state for all stages 225 

except Stage 2.  Sparging with N2 gas at the sampling point to preclude O2 exposure, 226 

we cut off one ~10-cm-long section from the coupon fiber and then sealed the 227 

remaining by tying the end into a knot.  We then extracted DNA using the DNeasy 228 

Blood & Tissue Kit (Qiagen, USA) as previously described by Zhao et al (2011).38  229 

  230 
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Quantification of 16S rRNA genes for Bacterial, Archaea and other functional genes  231 

We used plasmids containing target fragments as positive controls and to produce 232 

calibration curves.8  The primers and qPCR conditions were the same as previously 233 

described for pcrA – reductase for ClO4
-,43 narG – reductase for NO3

-,44 nirS – 234 

reductase for NO2
-,45 mcrA – formation of methane from most of methanogens,46 235 

pMMO – CH4 mono-oxygenase,47 the16S rRNA gene for bacteria,48 and the 16S rRNA 236 

for archaea.49  We used the SYBR Premix Ex Taq Kit (Takara Bio Inc, Japan) and 237 

performed qPCR as previously described by Zhao et al. (2011).8  The copy numbers 238 

of each gene were calculated by comparison to standard curves.  Negative controls 239 

included water instead of template DNA in the PCR reaction mix.  We performed 240 

triplicate PCR reactions for all samples and negative controls.  The slopes of the 241 

plasmid standard curves and efficiency values for quantification by qPCR are shown 242 

in Table S4.   243 

244 
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Results and Discussion 245 

Methane permeability  246 

Figure 1 shows the headspace pressures during the CH4-permeation experiment.  247 

Steady state was achieved at ~15 hours for the composite fiber.  The CH4 248 

permeability for the composite fiber was 1.03×10−7 m3 CH4 at standard temperature 249 

and pressure - m membrane thickness/m2 hollow fiber surface area - d - bar.  This 250 

permeability is about 10-fold smaller than the H2 permeability for the same composite 251 

fiber and temperature.41  Although the Henry’s law constant of CH4 is only slightly 252 

smaller than for H2, its mass-to-mole ratio (16 g/mol) is about 8 times greater than for 253 

H2 (2 g/mol), making the CH4 molecule bulkier and more slowly diffusing through the 254 

membrane wall.  255 

Perchlorate reduction in the presence of nitrate and nitrite  256 

Figure 2-A shows the influent and effluent concentrations of NO2
-, NO3

-, and ClO4
- 257 

for the entire set of experiments, and Figure 2-B shows the corresponding removal 258 

percentages.  ClO4
- reduction could be achieved when CH4 was the sole electron 259 

donor and carbon source.  100% reductions occurred in Stages 2, 3, 5, and 6, and 260 

major partial reduction was achieved in Stages 1 and 7.  Though Miller et al 261 

established a link between ClO2
- and CH4 consumption in soils and mixed cultures by 262 

D. agitate CKB and methanotrophs (Methylococcus capsulatus Bath or 263 

Methylomicrobium album BG8) using acetate as the electron donor and carbon source, 264 
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they did not find any upstream connection between ClO4
- or ClO3

- reduction and 265 

methane oxidation.34  They concluded that oxygen generation during perchlorate 266 

reduction was negligible or unavailable for aerobic methanotrophs.  In contrast, our 267 

results clearly show that the MBfR biofilm was able to reduce ClO4
- using CH4 as the 268 

sole electron donor.  This success of coupling perchlorate reduction with anaerobic 269 

methane oxidation suggests that reduction of other anions might also be coupled to 270 

anaerobic methane oxidation.  Hence, it would be interesting to explore whether 271 

bromate, selenate, chromate and other anion contaminants could be reduced in similar 272 

CH4-based systems. 273 

Comparison among Stages 1, 2, 6, and 7 shows that NO2
- inhibited ClO4

- reduction:  274 

ClO4
- reduction was complete when NO2

- was absent in the influent in Stages 2 and 6, 275 

but it decreased to < 50% when NO2
- was present in the influent at a surface loadings 276 

of 0.1-0.4 g N/m2-d (1.69±0.006 mg N/L for Stages 1, 5.22±0.13 mg N/L for Stage 7 277 

in the influent, respectively).   278 

Comparison among Stages 2, 3, 4, 5, and 6 shows that NO3
- also inhibited ClO4

- 279 

reduction, but only at high NO3
- surface loadings.  When the NO3

- surface loadings 280 

were <0.32±0.003 g N/m2-d (Stages 2, 3, 5, and 6), ClO4
- and NO3

- reductions were 281 

complete.  However, when the NO3
- surface loading increased to 0.78±0.09 g N/m2-d 282 

in Stage 4, ClO4
- reduction dropped to ≤5%, with NO3

- reduction declining to ≤85%.  283 

This trend is consistent with Tang et al,9 who used biofilm modeling to quantify the 284 

impact of NO3
- loading on perchlorate reduction when H2 was the electron donor.  285 
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High NO3
- loading slowed ClO4

- reduction by competing for the common donor (H2 286 

for Tang et al.9 and CH4 here). 287 

The MBfR accidently lost its CH4 supply for 48 hours (days 75-77), and we provided 288 

N2 gas to keep the fibers pressurized (Figure S3-A).  NO3
- removal dropped sharply 289 

to 2% before the CH4 supply was recovered, but it returned to 70% within 12 hours.  290 

However, ClO4
- removal remained low (2%) after recovery of the CH4 supply, 291 

although it recovered to 100% in Stage 5, when the nitrate loading was smaller.  To 292 

reinforce that methane was the electron donor responsible for perchlorate and nitrate 293 

reduction, we repeated the CH4-loss experience during Stage 5 by intentionally 294 

replacing the CH4 supply with N2 gas for 30 hours beginning on day 94 (Figure S3-B).  295 

NO3
- and ClO4

- removals dropped to 0 within 12 hours for ClO4
- and 24 hours for 296 

NO3
-, but both returned to 100% after the CH4 supply was recovered.   297 

We calculated the consumption fluxes of NO2
-, NO3

-, and ClO4
-, along with the 298 

stoichiometric fluxes of CH4 (from equations 5 – 7).  The fluxes are summarized in 299 

Table 1 for each steady state.  One important comparison is between the actual CH4 300 

consumption and the maximum possible CH4 flux.  The maximum fluxes were 57.9 301 

mmol CH4/m2-d for Stages 1 – 4 and 86.8 mmol CH4/m2-d for Stages 5-7, both 302 

calculated from the Km of CH4 of the composite fiber for the experimental conditions.  303 

The maximum CH4 delivery flux for Stages 1, 2, 3, 5, 6, and 7 was substantially 304 

greater than the observed CH4 fluxes, and CH4 delivery should not have been limiting.   305 

Stage 4 may have been limited by CH4 delivery, because the actual CH4 flux 306 
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(47.5±7.20 mmol/m2-d) was close to the maximum CH4 flux (57.9 mmol CH4/m2-d).  307 

In Stage 4, the effluent concentration of nitrate was stable at 1.39±0.21 mg N/L for 2 308 

days before the methane supply was lost (Figure S3).  Based on stoichiometry, the 309 

maximum methane-delivery rate could remove NO3
- at a maximum flux of 0.67 g 310 

N/m2-d, which corresponds to 100% removal of an influent concentration at 10.2 mg 311 

N/L.  The actual influent concentration was 11.3±0.40 mg N/L in Stage 4, which 312 

explains the partial NO3
- removal and that competition of CH4 is why ClO4

- reduction 313 

remained very low throughout Stage 4.  314 

Because donor limitation was not an issue for Stages 1 and 7, the negative impact of 315 

NO2
- on ClO4

- reduction probably was due to toxicity of NO2
-, not to competition for 316 

CH4.  Kluber & Conrad reported that methanogenesis activity could be significantly 317 

inhibited by adding NO2
-.50  King & Schnell reported that NO2

- could inhibit the 318 

methane oxidation by methanotrophs, and the inhibition was inversely proportional to 319 

headspace methane concentrations.51 320 

Functional Community Structure through Functional Gene Analysis 321 

Figure 3 shows the 16S rRNA gene copies for Bacteria and Archaea, functional-gene 322 

copy numbers, and fluxes of the tested electron acceptors through all stages.  The 323 

copy number of the pcrA gene gradually increased from Stage 1 to Stage 5, and this 324 

was parallel to overall increasing flux of ClO4
- + NO3

- and accumulation of more 325 

bacteria, illustrated by the increasing gene copies for the 16S rRNA gene.  The copy 326 

number of the pcrA gene decreased when the flux of all electron acceptors 327 
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significantly decreased in Stage 6 (due to the absence of NO3
- and NO2

-), but 328 

increased again when NO2
- was re-introduced at a flux of 0.39±0.01 g N/m2-d in 329 

Stage 7.  Since most denitrifying bacteria (DB) are able to reduce ClO4
- and may 330 

harbor the pcrA gene,52, 53 it is not surprising that the abundance of the pcrA gene was 331 

significantly related with the NO3
- flux in our study (Table S5), as well as in previous 332 

MBfR studies with H2.8, 54, 55 333 

Similar to the pcrA gene, nirS and narG genes gradually increased from Stage 1 to 334 

Stage 5, though the fluxes of NO3
-+NO2

- decreased from Stage 4 to 5; again, the 335 

increases likely were due to accumulating bacteria overall.  When NO3
- and NO2

- 336 

were absent in Stage 6, the nirS and narG abundances dropped by 0.5 to 1 order of 337 

magnitude.  Also similar with the pcrA trend, the nirS and narG genes increased in 338 

Stage 7 when NO2
- was re-introduced into the MBfR system.  However, the narG 339 

abundance was similar to nirS in Stage 1, when NO2
- was fed at a low loading, and 340 

became much lower than nirS in Stage 7 when NO2
- was fed at a higher loading.  341 

Because the NarG gene is not selective for all DB,56 nirS is mostly used to quantify 342 

the DB.57     343 

Overall, Bacteria (16S rRNA gene) were ~2 orders of magnitudes higher than Archaea 344 

(Archaeal 16S rRNA gene) through all stages, suggesting that Bacteria dominated 345 

Archaea.  While the abundances of mcrA and pMMO genes were about the same in 346 

Stages 1 and 3, the pMMO gene increased much more by Stage 5 and in parallel to the 347 

large increase in the flux of CH4.  The mcrA and pMMO genes decreased in Stage 6, 348 
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when NO3
- and NO2

- were absent in the system, resulting in a much lower CH4 flux.  349 

The pMMO gene abundance returned to its Stage 5 level with the increase of CH4 flux 350 

Stage 7, but the mcrA gene remained low in Stage 7.   351 

Archaea are necessary for the “Reverse Methanogesis” ANMO-D pathway, as they 352 

produce electrons for denitrification.  The low abundance of Archaea (Fig. 3) 353 

supports the “Reverse Methanogenesis” was not important in the ClO4
--reducing, 354 

CH4-oxidizing biofilm.  Further support is given in Figure 4, which shows that the 355 

gene copies of mcrA and respiration genes had no correlation.   356 

Intracellularly generated O2 is essential for the “Intra-Aerobic Type” ANMO-D 357 

pathway, in which Candidatus M. oxyfera (or a similar methanotroph) oxidizes CH4 358 

via an initial mono-oxygenation reaction.  Figure 4 shows that the gene copies of 359 

pMMO correlated to the gene copies for narG+nirS+pcrA, which supports an essential 360 

role of O2 generation associated with ClO4
- reduction.  This association is logical if 361 

the key bacteria reducing ClO4
- used a chlorite dismutase in a manner similar to NO 362 

disproportionation in denitrification.21  If O2 were produced and consumed 363 

intracellularly, ClO4
- reduction occurred via an “Intra-Aerobic Type” ANMO-PR 364 

pathway, which is illustrated in Figure 5-A.   365 

Rikken et al found that O2 was released extracellularly during complete ClO4
- 366 

reduction.58  Thus, another possibility is that CH4 oxidation was coupled to ClO4
- 367 

reduction by a mixture of methanotrophs and perchlorate-reducing bacteria using 368 

pMMO and pcrA separately.  Miller et al. reported that a variety of 369 
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methane-oxidizing bacteria, e.g., M. capsulatus Bath, M. album BG8, and M. 370 

trichlsporium OB3b, were able to utilize O2 released from the disproportion of ClO2
- 371 

by dissmilatory perchlorate-reducing bacteria.34  Sun et al. reported that,39 in an 372 

AMO-D process, co-existing methanotrophs consumed O2 preferentially, creating a 373 

micro-aerobic environment conducive for denitrification.  In addition, the 374 

methanotrophs released organic intermediates that served as electron donors for 375 

denitrification.15, 22, 30  We name this potential mechanism “micro-Aerobic Methane 376 

Oxidation coupled to Perchlorate Reduction,” or “mAMO-PR”.  It is illustrated in 377 

Figure 5-B. 378 

In summary, we found that the biofilm in an MBfR was able to reduce up to 5 mg/L of 379 

ClO4
- to non-detectable levels using CH4 as the only electron donor and carbon source 380 

in the presence of NO3
- at a surface loading of ≤ 0.32 g N/m2-d.  While NO3

- at high 381 

surface loadings (e.g., 0.78 g N/m2-d) inhibited ClO4
- reduction due to electron-donor 382 

competition, NO2
-
 inhibited ClO4

- reduction at low surface loadings (e.g., 0.1 g 383 

N/m2-d), probably due to toxicity of NO2
- to the ClO4

--reducing cells.  Bacteria were 384 

much more abundant than Archaea in the biofilm, and pMMO gene copies correlated 385 

to the increase of respiratory gene copies, while mcrA did not; thus, the CH4-oxidizing 386 

biofilm likely respired ClO4
- by a pathway that involved generating O2 using ClO2

- 387 

dismutation, with the O2 utilized as a co-substrate for the mono-oxygenation of CH4.  388 

Two options are possible:  (1) ANMO-PR via a single strain producing and utilizing 389 

intracellular O2, and (2) mAMO-PR, in which ClO4
--reducing bacteria produce 390 

extracellular O2 by ClO2
- dismutation, while methanotrophs uses O2 as a co-substrate 391 
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to initiate oxidation of CH4.  This study shows that it is feasible to use methane as an 392 

electron donor to biologically remove perchlorate, which is a new option for 393 

perchlorate reduction and a new application for the MBfR.  Should further study 394 

demonstrate that methane is a versatile electron donor, like hydrogen, for reducing 395 

oxidized contaminants in water and wastewater treatment, then methane could be used 396 

as an inexpensive electron donor.397 
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