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ABSTRACT 

To achieve nitrite accumulation for shortcut biological nitrogen removal (SBNR) in a 

biofilm process, we explored the simultaneous effects of oxygen limitation and free 

ammonia (FA) and free nitrous acid (FNA) inhibition in the nitrifying biofilm.  We used 

the multi-species nitrifying biofilm model (MSNBM) to identify conditions that should or 5 

should not lead to nitrite accumulation, and evaluated the effectiveness of those conditions 

with experiments in continuous flow biofilm reactors (CFBRs).  CFBR experiments were 

organized into four sets with these expected outcomes based on the MSNBM: 1. Control, 

giving full nitrification; 2. oxygen limitation, giving modest long-term nitrite build up; 3. 

FA inhibition, giving no long-term nitrite accumulation; and 4. FA inhibition plus oxygen 10 

limitation, giving major long-term nitrite accumulation.  Consistent with MSNBM 

predictions, the experimental results showed that nitrite accumulated in sets 2 – 4 in the 

short term, but long-term nitrite accumulation was maintained only in sets 2 and 4, which 

involved oxygen limitation.  Furthermore, nitrite accumulation was substantially greater in 

set 4, which also included FA inhibition.  However, FA inhibition (and accompanying 15 

FNA inhibition) alone in set 3 did not maintained long-term nitrite accumulation.  NOB-

activity batch tests confirmed that little NOB or only a small fraction of NOB were present 

in the biofilms for sets 4 and 2, respectively. The experimental data supported the previous 

modeling results that nitrite accumulation could be achieved with a lower ammonium 

concentration than had been required for a suspended-growth process. Additional findings 20 

were that the biofilm exposed to DO limitation and FA inhibition was substantially denser 

and probably had a lower detachment rate.  

 

 

Keywords: ammonium oxidation, biofilm, free ammonia inhibition, oxygen limitation, 25 

nitrite accumulation 
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1.  Introduction 

 

In recent years, nitrite accumulation has been spotlighted for its role in shortcut 

biological nitrogen removal (SBNR) and anaerobic ammonium oxidation (Anammox) 

(Chung et al. 2007; Strous et al. 1997).  By using nitrite as a primary electron accepter, the 5 

SBNR process uses 40% less organic electron donor.  The Anammox process uses nitrite 

as an electron acceptor and ammonium as an electron donor to bring about total-N removal 

without any organic donor.  To ensure the practicality of both processes, the key is stable 

nitrite accumulation in nitrification, which is achieved by securing ammonium-oxidizing 

bacteria (AOB), but suppressing nitrite-oxidizing bacteria (NOB).   10 

Nitrite accumulation has been associated with inhibition from high or low pH, free 

ammonia (FA), free nitrous acid (FNA), low dissolved oxygen (DO), and combinations 

(Jiang et al. 2011, Park et al. 2007; Park and Bae 2009; Park et al. 2010a, b; Hanaki et al. 

1990; Bernet et al. 2001).  The pH can affect nitrification in two ways:  1) directly by 

changing the enzyme’s reaction mechanism (Van Hulle et al. 2007; Park et al. 2007; Boon 15 

and Laudelout 1962; Quinlan 1984), and 2) indirectly by changing the speciation of total 

ammonium and total nitrite to the inhibitor forms, FA and FNA (Anthonisen e al. 1976; 

Hellinga et al. 1999; Van Hulle et al. 2007; Carrera et al. 2004; Lee et al. 2004; Park et al. 

2010c; Jiang et al. 2011).  The FA concentration increases in a basic condition, but the 

FNA concentration increases in an acidic condition.  20 

Because a biofilm process can be advantageous to secure the accumulation of slow-

growing bacteria, such as nitrifiers (Bishop and Zhang 1995; Okabe et al. 1999; Rittmann 

and Manem 1992), it can provide an advantage or a disadvantage when nitrite accumulation 

is the goal.  The superior retention of slow-growing biomass in a biofilm is good for AOB, 

but works in the wrong direction for NOB.  In addition, a decreased pH through the 25 

biofilm caused by acid generation by AOB could help NOB survive by decreasing the FA 

concentration, which is disadvantageous for nitrite accumulation.  On the other hand, 

depletion of DO inside of the biofilm may limit the activity of NOB, since the NOB are 

more sensitive to low DO than are the AOB, which is advantageous for nitrite accumulation 
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(Bernet et al. 2001; Park et al. 2010c). Perez et al. (2009) and Bartrolí et al. (2010) 

concluded that an oxygen affinity for AOB was the key parameter and stable complete 

nitrite accumulation was maintained by a constant ratio of DO/TAN in the bulk liquid of 

the biofilm reactor, respectively.  Recently, Park et al. (2010c) suggested that FNA 

inhibition to accentuate nitrite accumulation can be increased by allowing the pH to 5 

decrease in the biofilm.  

Despite some ambiguity of what mechanisms are at work, researchers have reported 

evidence that biofilm processes can accomplish nitrite accumulation (Fux et al. 2004; 

Chung et al. 2007; Yamato et al. 2008; Perez et al. 2009; Park et al., 2010c; Brockmann and 

Morgenroth, 2010).  In particular, Park et al. (2010c) developed the multi-species 10 

nitrifying biofilm model (MSNBM), which has three biomass types -- AOB, NOB, and 

inert biomass -- and can track the effects of DO, FA, and FNA inhibition on the growth of 

the two groups of nitrifiers in the biofilm.  MSNBM simulation results explain that a 

biofilm can be advantageous for accumulating nitrite while simultaneously maintaining a 

low ammonium concentration, because FA inhibition can occur at the surface of the biofilm, 15 

while FNA inhibition and oxygen limitation occur inside the biofilm.  These factors can 

be simultaneously regulated by aeration intensity, influent ammonium concentration, and 

buffer concentration (Flora et al. 1999; Perez et al. 2009; Park et al. 2010c). 

We explore the simultaneous effects of oxygen limitation and FA and FNA inhibition 

in a nitrifying biofilm by operating a continuous-flow biofilm reactor (CFBR) with 20 

different oxygen and influent ammonium concentrations.  The experimental results are 

compared with the simulated results of the MSNBM to ascertain whether the proposed 

benefits of carrying out SBNR can be achieved in practice or not. 

 

25 
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2.  Material and Methods 

 

2.1. Seeding microorganisms and mineral medium 

The biomass used in all CFBRs originated from a 50-L sequencing batch reactor (SBR) 

operated as a typical nitrification process:  2 cycles per day, with aeration time = 10 hr and 5 

decant and filling times = 1 hr during one cycle.  In the 50-L reactor, the DO was 

maintained over 4 mg/L, the temperature was 27 C C2 , and the pH was held near 8 

( 2.0 ) by injecting sodium bicarbonate to balance the alkalinity consumed by ammonium 

oxidation.   

After the mixture of seeding sludge and feeding solution was introduced into a CFBR, 10 

it was recirculated for 5 days to allow the microorganism to attach onto the biofilm surface 

of the reactor.  After 5 days, CFBR operation began, and the original suspended sludge 

from the SBR gradually washed out.  The feed solution to the SBR and CFBR contained 

100 mgN/L of (NH4)2SO4 in a mineral medium that contained (in mg/L): K2HPO4 390, 

MgSO4•7H2O 100, FeSO4•7H2O 4, CaCl2 8, MnSO4•H2O 10, NaHCO3 1020, and KCl 14.  15 

This medium composition also was used for the activity batch tests of NOB.  

 

2.2 Reactor configuration and operation 

Each 1-L (working volume, 10cm×10cm×10cm) CFBR was made of polyacrylic 

plastic (Fig. 1) and contained an air diffuser, a mixing paddle, and a detachable substratum 20 

divided into four sections (each 5cm×5cm×1.5cm deep).  The detachable substrata were 

used to obtain a biofilm sample easily.  The total biofilm surface area of the reactor, 

including all geometric structures onto which the biofilm could accumulate, was 750 cm
2
.  

The CFBR was submerged in a water bath for temperature control.  The reactor’s liquid 

contents were completely mixed, and Fig. S1 in the Supporting Information (SI) shows 25 

results of tracer tests that demonstrate complete mixing. 
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During a 60-day initiation period, four CFBRs were operated with identical conditions 

that minimized inhibition.  After each CFBR was seeded with a one-liter mixture of 

sludge from the SBR and feed medium containing 60 mgN/L of total ammonium nitrogen 

(TAN), the CFBR was operated at a flow rate of 2 L/day and hydraulic retention time (HRT) 

of 12hr with 6.5 mgDO/L, 30°C, and pH 7±0.5 in the bulk liquid.  The initial biomass 5 

concentration was approximately 4,000 mgVSS/L. 

Table 1 lists the operating conditions for each reactor.  Reactor 1 was maintained with 

the same operating condition throughout the full 200-day experimental period, and it served 

as a control with minimal inhibition.  Reactor 2 was operated with a condition of potential 

DO limitation: The DO concentration was reduced to 3.8 mg/L at day 61 and then further 10 

reduced to 2.5 mg/L at day 161.  In Reactor 3, the influent TAN concentration was 

increased from 50 mg/L to 150 mg/L to cause potential FA inhibition at a sufficient DO 

concentration of 7.6 mg/L.  Reactor 4 combined the conditions of reactors 2 and 3 to 

impose both types of limitation/inhibition together.  Table S1 of SI explains why these 

conditions could have achieved the desired types of inhibition.   15 

 

2.3 Analytical measurements  

For all liquid samples, the concentrations of TAN, TNiN, and total nitrate nitrogen 

(TNaN) were measured according to Standard Methods (APHA, AWWA, WEF, 1998).  

Temperature, pH (Orion, 720A), and DO (Orion, 850) were detected using selective 20 

electrodes.  In case of mixed liquor volatile suspended solid (MLVSS) leaving the CFBR 

in the early phase of seeding, it also was analyzed by the volatile suspended solid (VSS) 

method in Standard Methods (APHA, AWWA, WEF, 1998). 

 

2.4 Thickness of the biofilm  25 

The thickness of the biofilm was measured by using a stereomicroscope linked to a 

closed-circuit television (CCTV) (Olympus, SZ-CTV).  Near the end of the experiments 

(~ day 200), a detachable substratum from the bottom of each CFBR was carefully moved 



 7 

to the microscopic stage to capture images perpendicular to the top of the detachable 

substratum, as depicted in Fig. 1.  The images of the biofilm captured by CCTV were 

transferred to OriginPro 7.5 (OriginLab), which has a digital ruler.  The average thickness 

of the biofilm was taken from 100 points having an arithmetic interval located along the 

edge of substratum.  As soon as an image was taken, the substratum piece was replaced 5 

into the CFBR for further experiments.  

 

2.5 NOB activity in the biofilm  

NOB-activity assays were executed through batch tests for the specific nitrite-

utilization rate.  When all CFBR operations were finished, day 200, the biofilm was 10 

removed by a soft brush and suspended by using a stirrer.  A 15-mL volume of the 

suspended-biofilm sample was taken for MLVSS measurement, and the rest of biomass 

was used for the batch test.  For the batch test to obtain the specific nitrite utilization rate, 

NaNO2 was introduced to give a 30-mgTNiN/L initial concentration in a 1-L volumetric 

flask that contained mineral medium, with pH 7 and temperature of 30°C.  The decline of 15 

the nitrite concentration over time gave the specific nitrite-utilization rate.    

 

2.6 Simulations with MSNBM 

We used the MSNBM by Park et al. (2010c) to simulate the conditions of the 

experiments. The MSNBM model is developed to simulate a shortcut nitrogen removal 20 

(SBNR) in biofilm with different operational parameters: buffer, pH, loading, DO, etc.  

The feature of model is including the pH model. One modification was that we included 

suspended reactions by the seeding bacteria between days 0 and 5.  Table 2 shows the 

kinetic parameter values used.  The maximum substrate utilization rate ( q̂ ) and the half-

maximum-rate concentration (KS) were adjusted for temperature, as needed, by using 25°C 25 

kinetic values from Rittmann and McCarty (2001) and temperature correction according to 

Novak (1974).  Most kinetic parameters for AOB and NOB are from Rittmann and 

McCarty (2001).  Diffusion coefficients for nitrogen species and oxygen were taken from 
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Picioreanu et al. (1997).  The values related to direct pH, FA, and FNA inhibitions were 

from Park et al. (2007) and Park and Bae (2009).  Operating parameters, i.e., flow rate 

(Q), volume of reactor (V), and biofilm surface area (A), are from the experiment of this 

study.  The biofilm density was an estimated value that is presented in Results and 

Discussion. 5 

 The simulation conditions to evaluate the experiments followed the same conditions in 

Table 1.  In the case of Reactor 1, the influent TAN concentration, DO, and pH were 

maintained with 60 mg/L, 8 mg/L and 7, respectively.  When the operational parameters 

were changed to those of Reactors 2 and 4 at day 61, the input values to begin the 

simulation were the simulated results at day 61, i.e. biomass distribution and biofilm depth.  10 

However, simulation results for Reactor 3 after day 61 used the original initial values, since 

severe biofilm sloughing occurred and required a new seeding. 
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3. Results and discussion 

 

3.1. Biofilm-development period of all reactors: days 0 to 60 

Fig. 2 presents the experimental and simulated results from all reactors during the 

biofilm-development period, days 0 to 60.  The four CFBRs gave similar trends of 5 

nitrogen concentrations.  Nitrification due only to the suspended seed occurred during the 

initial 5 days, after which the biofilm started to take over nitrification as the VSS washed 

out to below 10 mg/L.  Experimental results between days 10 and 20 fluctuated because of 

intermittent plugging of the feeding tube in this period, but the reactors were stable after 

day 20, when nitrification to NO3
-
 was fully stabilized.   10 

The lines in Fig. 2 show the results of simulation by the MSNBM.  Because the 

tubing problem was not simulated, the results have the poor correlation between days 10 

and 20, but match well with the experimental results thereafter.  The biofilm thickness 

(not shown in the figure) predicted by the MSNBM at day 5 was 17 μm, and it increased to 

54 μm at day 10.  The predicted FA inhibition value can be calculated with the form 15 

1/(1+FA/KFA,AOB or NOB).  Rapid biofilm growth was possible, because FA inhibition in the 

reactor (calculated by 1/(1+FA/KFA)) was less than 20% of the maximum potential given in  

Table S1 of supported information, which was insignificant for preventing biofilm growth.  

As TAN decreased out to 10 days, FA inhibition upon of NOB further weakened, and full 

nitrification was achieved. 20 

 

3.2 Minimal limitation and inhibition in Reactor 1 

The results for Reactor 1 after day 60 are shown in Fig. 3a.  An unexpected problem 

of DO control caused nitrite accumulation during days 60 to 100.  However, reactor 1 

returned to stable full nitrification after day 100, and the model simulations are nearly 25 

identical with the experimental results.  We operated the system with a high surface 

loading (1.6 kgN/1000 m
2
-d at 60 mgN/L), compared to a standard trickling filter (0.5-0.8 

kgN/1000 m
2
-d), rotating biological contactor (0.2-0.6 kgN/1000 m

2
-d), and circulating bed 
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biofilm reactor (< 1 kgN/1000 m
2
-d) (Rittmann and McCarty 2001).  Despite the high 

loading, the system was able to maintain full nitrification; one reason was that it did not 

have any organic donor in the influent, which kept it relatively free from DO and space 

competition with heterotrophs.   

 5 

3.3 DO limitation in Reactor 2 

 Fig. 3b shows the experimental results of Reactor 2, which had DO limitation.  As 

the DO concentration was decreased (from 3.8 mg/L from day 61 and then to 2.5 mg/L 

from day 161), the effluent concentrations of ammonium and nitrite increased, while nitrate 

decreased.  The simulated results showed that DO limitation should have caused prompt 10 

decreases of TNaN and increases of TNiN and TAN, but the experimental results 

responded more slowly and with considerable fluctuations.  Under more severe DO 

limitation (2.5 mg/L), the full nitrification efficiency fell significantly to ~60%, since both 

TAN and TNiN increased to approximately 10 mgN/L.  

 15 

3.4. FA inhibition in Reactor 3 

Reactor 3 was reseeded at day 61, since severe biofilm sloughing occurred at that time.  

It was restarted with an influent TAN concentration of 150 mgN/L.  Shown in Fig. 4a, the 

experimental results in Reactor 3 demonstrate nitrite accumulation for only about 20 days.  

Eventually, full nitrification set in and was stable.  The early responses in TAN and TNiN 20 

concentrations resemble those in Fig. 2, but the peaks were higher due to increased TAN 

loading. 

The simulated curves in Fig. 4a capture the trend of experimental data well, although 

ammonium and nitrate sometimes fluctuated in the experiments.  The higher TAN 

concentration (150 mgN/L) and pH (= 8) in the influent might have caused temporary NOB 25 

suppression at first.  In this case, the maximum potential inhibition values (that is, 

1/(1+FA/KFA,AOB or NOB)) are 1/(1+15/10) = 0.4 for AOB and 1/(1+15/0.75) = 0.05 for NOB.  

(See Table S1 in SI for details.)  Thus, NOB were more severely inhibited at the early 
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phase of elevated TAN concentration in the reactor (as high as ~80mg/L), and this was 

responsible for nitrite accumulation at first.  However, inhibition of NOB was insufficient 

after day 20, because the TAN concentration was decreased by AOB, which caused a 

decrease of FA inhibition at the surface of the biofilm; furthermore, a pH decline inside the 

biofilm minimized the impact of FA inhibition, while FNA inhibition always was 5 

insufficient to prohibit NOB growth.  The maximum FNA inhibition value to NOB that 

was shown around day 70 was calculated as 0.92 (that is, 92% of the non-inhibitory 

reaction was secured), which was insufficient to prohibit net NOB growth.  These factors 

eventually led to full nitrification in the experiments and the model output.  Bartrolí et al. 

(2010) demonstrated the feasibility of maintaining stable complete nitrite accumulation by 10 

maintaining the DO/TAN ratio in the bulk liquid of the biofilm reactor below 0.25. The 

complete nitrification in the reactor 3 indirectly supported their suggestion as the DO/TAN 

ratio in the bulk liquid was over 10.  

 

3.5 FA inhibition and DO limitation in Reactor 4 15 

Reactor 4 was operated under DO limitation and potential FA inhibition after day 60.  

Fig. 4b shows that the TAN concentration in the reactor rapidly increased after elevation of 

the influent concentration (from 60 to 150 mg/L), pH (from 7 to 8), and DO limitation 

(from 6.5 to 3.8 mg/L). Though it slowly decreased with time, full nitrification did not 

recover throughout the period of 3.8 mgDO/L, where the DO/TAN ratio was below 0.2 in 20 

most cases. When the DO concentration was decreased further to 2.5 mg/L (day 160), the 

TAN concentration further increased accordingly, resulting in almost complete suppression 

of NOB activity. The AOB activity was also affected as shown with the decreased TNiN 

accumulation in Fig. 4b. Comparing to the results in Fig. 4a (in which the reaction 

conditions were identical except for the DO concentration that was two times higher), it 25 

was clear that the DO concentration was one of the critical parameters to control nitritation 

as indicated in the literature (Perez et al. 2009; Bartrolí et al., 2010).  Important to note 

was that FA inhibition had been another critical parameter for nitritation in Fig.4b since Fig. 
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3b did not accumulate nitrite much in which the DO concentrations were identical but the 

average FA concentration in the reactor was much lower. 

The model curves are similar to the trends in the experimental data when DO was 3.8 

mg/L (Fig. 4b).  However, the profile of the TNaN was not an exact match, because the 

DO concentration was not well controlled, having a standard deviation of ±1.2 mg/L.  5 

Similarly, Park et al. (2010b) showed unstable TNiN accumulation when the actual DO 

concentration was close to a minimum oxygen concentration (Park et al., 2010a) for AOB 

survival or over a minimum oxygen concentration for NOB survival. When the DO 

concentration was 2.5 mg/L (day 161-200), again the model simulation correctly captured 

the overall trends in TAN and TNiN concentrations, although the data and model gave a 10 

significant discrepancy.  One possibility for the discrepancy might be the complexity 

delivered by the growth of heterotrophic bacteria on the soluble microbial products (SMP) 

produced by the nitrifiers (Furumai and Rittmann, 1992; de Silva et al., 2000a,b; Merkey et 

al. 2009).  Another possibility is an increase in the biofilm density and thickness that 

results in diffusion resistance of TAN into biofilm; we discuss biofilm density and 15 

thickness in next section. 

Park et al. (2010c) reported that a biofilm system might be able to maintain a stable 

nitrification at a lower TAN concentration than a suspended system, since FNA inhibition 

and DO limitation can deepen NOB suppression inside the biofilm.  A suspended system 

needed approximately 80 mgTAN/L to suppress nitrite oxidation (Park et al., 2010b). while 20 

we observed nitrite accumulation at 50±30 mgTAN/L from day 61 to day 160 under similar 

DO and pH.  
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3.6. Measurement of biofilm depth and estimation of biofilm density 

Fig. 5 shows MSNBM-simulated profiles of biofilm composition, as well as the 

measured and simulated biofilm depths at the end of operation of each reactor.  The 

predicted results show that higher DO and substrate concentrations led to thicker biofilms, 

and the simulated and experimental values for Reactors 1, 2, and 3 are very close to each 5 

other.  However, the experimental value is much larger for Reactor 4.  The experimental 

result for Reactor 4 appears to be inconsistent with the experimental result for the other 

reactors.  For example, the biomass accumulation for Reactor 4 ought to be considerably 

less than for Reactor 3, since Reactor 3 had a substantially higher rate of nitrification.  The 

apparent inconsistency can be explained if the biofilm detachment rate for Reactor 4 were 10 

considerably smaller than for the other reactors, which we discuss below. 

The table that is part of Fig. 5 provides the amounts of each type of biomass computed 

from the simulated results of day 200.  One key finding is that the mass of AOB and NOB 

in Reactor 1 and 3 are almost the same.  This shows that active biomass in the biofilm is 

similar when the degree of nitrification is the same:  full nitrification for both reactors.  15 

In the model, we assume that the daily detached biofilm length is 6% of total biofilm length 

(i.e., 0.06/day specific detachment rate) and the detachment phenomenon occurs at the 

surface of biofilm.  Since 6% of biofilm length in Reactor 3 is 31.1 μm and that in Reactor 

1 is 14.4 μm, the biomass detached from Reactor 3 is more active.  Since Reactors 1 and 3 

have active-biomass fractions of 0.72 and 0.83, respectively, at the surface of the biofilm, 20 

the ratio of active biomass detached from the surface is 1 : 2.5 (i.e., 0.72*14.4 μm : 

0.83*31.1 μm).  This ratio is the same as the influent-loading ratio (1.6 kg/1000 m
2
-d : 4 

kg/1000 m
2
-d = 1 : 2.5).  The correspondence of ratios indicates that the higher biomass 

synthesis with higher loading was balanced by higher detachment of active biomass, even 

though the total active biomass was similar in the two reactors.  However, the higher 25 

loading gave a substantially larger accumulation of inert biomass, which was located away 

from the outer surface and comparatively free from detachment loss.   

The AOB mass with oxygen limitation was similar in Reactor 2 and 4, but the NOB 

mass was different.  Similar to the comparison of Reactors 1 and 3, loss from the surface 
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of the biofilm was the reason why the AOB mass was similar in Reactor 2 and 4.  

However, Reactor 4 had complete suppression of NOB, while Reactor 2 had only partial 

suppression of NOB; thus, Reactor 4 had no NOB. 

The biofilm density was calculated by dividing the total biomass in the whole reactor 

with the biofilm volume (volume = average depth × total surface area).  Table 3 shows 5 

that the measured biofilm densities of Reactor 1, 2, and 3 were similar, giving an average 

value of 20±2.5 mg/cm
3
, which is close to the value used in the simulations (18 mg/cm

3
, 

Table 1).  However, the density of Reactor 4 was much higher (38 mg/cm
3
).  While these 

variations are in the range of biofilm density reported in the literature (e.g., Rittmann and 

McCarty, 2001), the high density for Reactor 4 strongly affects the biofilm thickness.  10 

Biofilm density can be affected by microbial species and physical forces (e.g., Christensen 

and Characklis, 1990; Vieira et al. 1993; Trinet et al., 2001; Sharma et al., 2005; Garny et 

al. 2008), and Laspidou and Rittmann (2004) presented a consolidation model to describe 

the increase of density over time.  The results in Table 3 suggest that low DO 

concentration and high TAN made the biofilm denser in Reactor 4, although the cause-and-15 

effect relationship cannot be determined from these results alone.  Additional simulations 

with the higher density (38 mg/cm
3
) produced a similar biofilm thickness (587 µm), but the 

detachment rate had to be much smaller, 0.015/day.  

 

3.7. Biofilm activity of each reactor 20 

NOB activity in the biofilm was observed through batch tests, as shown in Fig. 6.  

Since the slope of each line represents the specific nitrite utilization rate (q), the slope 

should be smaller as the NOB of the biomass decreased.  The slopes from the batch tests 

(inset in Fig. 6) match well with the simulated results in Fig. 5 (the ratio of NOB/total 

biomass).  The concentration of NOB in the biofilm increased at higher DO concentration, 25 

thus, giving a steeper slope.  With DO limitation (Reactor 2 and 4), Reactor 4 had a nearly 

zero slope, which indicated that Reactor 4 had little NOB due to DO limitation and FA 

inhibition.   
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4.  Conclusions  

We explored the simultaneous effects of oxygen limitation and FA and FNA inhibition 

in the nitrifying biofilm, giving special focus to testing the conditions that the MSNBM 

identifies for nitrite accumulation in biofilms.  CFBR experiments were organized into 

four sets with these expected outcomes based on the MSNBM: 1. Control, giving full 5 

nitrification; 2. oxygen limitation, giving modest long-term nitrite build up; 3. FA inhibition, 

giving no long-term nitrite accumulation; and 4. FA inhibition plus oxygen limitation, 

giving major long-term nitrite accumulation.  Consistent with MSNBM predictions, the 

experimental results showed that nitrite accumulated in sets 2 – 4 in the short term, but 

long-term nitrite accumulation was maintained only in sets 2 and 4, which involved oxygen 10 

limitation.  Furthermore, nitrite accumulation was substantially greater in set 4, which also 

included FA inhibition.  However, FA inhibition (and accompanying FNA inhibition) 

alone in set 3 did not maintained long-term nitrite accumulation.  NOB-activity batch tests 

confirmed that little NOB or only a small fraction of NOB were present in the biofilms for 

sets 4 and 2, respectively. The experimental data supported the previous modeling results 15 

that nitrite accumulation could be achieved with a lower ammonium concentration than had 

been required for a suspended-growth process.  Additional findings were that the biofilm 

exposed to DO limitation and FA inhibition was substantially denser and probably had a 

lower detachment rate.  

 20 
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