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We compare three schemes for time-resolved X-ray diffraction from protein

nanocrystals using an X-ray free-electron laser. We find expressions for the errors

in structure factor measurement using the Monte Carlo pump-probe method of data

analysis with a liquid jet, the fixed sample pump-probe (goniometer) method (both

diffract-and-destroy, and below the safe damage dose), and a proposed two-color

method. Here, an optical pump pulse arrives between X-ray pulses of slightly

different energies which hit the same nanocrystal, using a weak first X-ray pulse

which does not damage the sample. (Radiation damage is outrun in the other cases.)

This two-color method, in which separated Bragg spots are impressed on the same

detector readout, eliminates stochastic fluctuations in crystal size, shape, and

orientation and is found to require two orders of magnitude fewer diffraction

patterns than the currently used Monte Carlo liquid jet method, for 1% accuracy.

Expressions are given for errors in structure factor measurement for the four

approaches, and detailed simulations provided for cathepsin B and IC3 crystals.

While the error is independent of the number of shots for the dose-limited goniom-

eter method, it falls off inversely as the square root of the number of shots for

the two-color and Monte Carlo methods, with a much smaller pre-factor for the

two-color mode, when the first shot is below the damage threshold. VC 2015
Author(s). All article content, except where otherwise noted, is licensed under a
Creative Commons Attribution 3.0 Unported License.

[http://dx.doi.org/10.1063/1.4922433]

I. INTRODUCTION

In recent experiments aimed at the measurement of structure-factors using a free-electron

laser (XFEL),1 protein nanocrystals are sprayed in single-file across a pulsed hard-X-ray beam,

using a technique known as serial femtosecond X-ray crystallography (SFX). The crystals, often

of submicron dimensions, vary in size, are randomly oriented, and are destroyed by the beam

after providing a high-resolution diffraction pattern. In addition, the intensity of the X-ray beam

may vary from shot to shot by up to 15%, and the time-structure of the femtosecond pulses

used also varies from shot to shot. Diffraction patterns are read out at perhaps 120 Hz, so that

large amounts of data are collected. Nevertheless, using improved data analysis methods, the

number of diffraction patterns needed to determine a structure at better than 0.2 nm resolution

has recently been reduced to less than 6000.24 The extraction of structure factors then requires

an integration across the angular width of the Bragg reflections from these many “stills,” snap-

shots, or partial reflections, in each of which the Ewald sphere cuts through a small slice of the

intensity distribution around each Bragg condition. For the smallest nanocrystals, containing

perhaps just a few dozen unit cells, since the XFEL is spatially coherent, and assuming that the

beam is wider than the crystal, the Bragg spots are broadened by “shape transform” func-

tions;1,11 for larger crystals, mosaicity may be present.2 The case of a coherent beam smaller

than the crystal (or smaller than one mosaic block, or unit cell) is discussed elsewhere.18
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Where a wide beam illuminates a mosaic crystal, slightly tilted blocks of crystal monochromate

different component wavelengths of the beam, scattering them into slightly different directions

around the Bragg spots, across which an integration is required. The divergence of the incident

beam and the energy-spread in the beam must also be considered, since these contribute to

the "thickness" of the Ewald sphere. These considerations lead to the well-established multiple-

scattering theory of primary and secondary extinction in mosaic crystals,19 which assumes inco-

herent multiple scattering between blocks but coherent multiple scattering within each block.

We do not consider that here, since a modern XFEL coherent beam diameter of 200 nm is com-

parable with a typical mosaic block size, and the mosaic block model may not apply to the

layer structures such a membrane proteins.22 In all cases, the precise deviation of the diffraction

conditions from the ideal Bragg condition is needed for each spot in every shot in order to esti-

mate the degree of partiality for each reflection. So far, it has not been possible to measure this

quantity directly; however, several groups have recently used optimization methods to estimate

partiality.2,15,16,24

Building on earlier synchrotron work,21 pump-probe SFX experiments3,4,20 have also been

undertaken, aimed at imaging time-resolved changes (TR-SFX) in three-dimensional protein

charge-density maps due to optical illumination, such as that which occurs in photosynthesis. In

a typical experiment, alternate nanocrystals in a liquid jet stream might be illuminated optically

(causing a change in structure factors) and the difference in the measured intensities between

illuminated (bright) and un-illuminated (dark) angle-integrated Bragg reflections is used, after

phasing, to provide a real-space density map showing the change in molecular structure due

to illumination. The differences are taken between a very large number of bright and dark nano-

crystals of different sizes (leading to large scale-factor differences covering orders of magni-

tude). In this paper, we obtain expressions for the number of patterns needed to reduce the

errors in structure factor measurement to below that needed to observe optical pumping effects,

using three different methods, which we compare.

In order to merge data (by adding together Bragg partial reflections with the same Miller

indices from nanocrystals of different sizes), subject to these many sources of stochastic varia-

tion, it was suggested that the only reasonable method is a Monte Carlo (MC) type of angular

integration across the Bragg reflections, in which the angular coordinate then consists of a ran-

dom sample of abscissa (crystal orientation) values. This integration will then average over all

stochastic fluctuations, such as shot-to-shot beam intensity variation and differences in crystal

size. The contributions of these fluctuations to the final structure factor measurement might

then be expected to add in quadrature, giving a signal-to-noise ratio (SNR) which improves as

the square root of the number of diffraction patterns, and this behavior has been confirmed

experimentally.5 Thus, a hundred times more data are needed to add one significant figure to

the results. Improvements on this behavior require experimental characterization of the sources

of error and their distributions and more accurate specification of experimental parameters, such

as the assignment of a scattering vector to each pixel on the area detector and deviation from

the exact Bragg condition. Model-based data analysis methods using the EMC (Expectation

maximization and compression) algorithm also show great promise for the smallest crystals.6

More recently, we have been involved with experiments in which data are collected from

larger crystals in a fixed orientation mounted on a goniometer, with provision to scan the sam-

ple to a new position laterally. For pump-probe experiments, the incident X-ray intensity can

be adjusted for either destructive readout (in which case, the sample must be translated after

each shot has drilled a hole in the sample) or defocussed to a level below the damage threshold,

giving a poorer statistics.7,8 In principle, this method allows measurements at equally spaced

increments across the rocking curve, with a known abscissa error; however, the total dose for

all exposures must fall below the Henderson safe dose.28

Finally, new modes of XFEL operation have been demonstrated, dubbed “split and delay,”

in which the coherent X-ray beam is split into two beams of slightly different wavelengths,

with the femtosecond pulse in one beam delayed relative to the other.9,10,25 Several methods

are possible including a “slotted foil,” the use of mirrors (for softer X-rays with high efficiency)

and Bragg crystal splitters (harder X-rays with lower efficiency). The two beams can be focused
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onto the same sample, arriving at slightly different times and beam energies, or from slightly

different directions at the same energy. Delays are currently in the range of 100 fs but could, in

principle, be extended to the range more useful for biology or organic chemistry (with very

long path lengths), in which case a pump laser could be inserted between the two pulses of a

pair, and both diffraction patterns then impressed on the same detector readout. For larger nano-

crystals, the sharp partial Bragg spots at the two slightly different beam energies will then be

displaced on the detector, and the intensity differences are merged to provide a difference den-

sity map after phasing. By obtaining pairs of diffraction patterns from the same nanocrystal

(before and after optical illumination), errors due to both size and orientation variation are elim-

inated; however, the first pulse must clearly not destroy the sample, resulting in poorer SNR

relative to the diffract-and-destroy mode. Among the methods developed at LCLS for split-and-

delay research, different limitations apply. Use of mirrors limits the X-ray energy to below

2 keV and a short time delay, thus cannot provide high-resolution reflections needed for biologi-

cal imaging. Bragg crystals used as beam splitters result in excessively collimated and mono-

chromatic pulses giving low efficiency in structure factor measurement. Similarly, a two-color

scheme based on use of two sets of undulators generates two X-ray pulses at slightly different

energies (2% difference) and separated in time with an adjustable delay up to 40 fs, potentially

extendable to up to 200 fs.9 This two-color approach, which is also applicable to hard-X-rays

with time delay from a few femtoseconds up to 200 fs, is most suitable for the study of the

earliest stages of conformational change and bond formation in biochemistry. We therefore

focus our analysis and discussion on these two-color approaches in Secs. II B and III B.

In this paper, we compare the accuracy of structure factor measurement for each of these

modes for pump-probe time-resolved diffraction experiments, in which the error should be less

than the changes in structure factor due to pump illumination. Since many poorly characterized

experimental factors influence such a complex comparison (such as crystal quality, jet hit rate,

sample concentration, and fixed-sample scan time), we make here a simplified comparison

which focuses on establishing signal-to-noise ratio as a function of number of shots for each

method, with other factors equal. Some of the many additional experimental considerations

might include the following. For irreversible processes, the pump laser must be directed to a

new area (or crystal) for each shot. Since Laue diffraction is not possible using an XFEL, many

shots (both bright and dark) are needed in the vicinity of every Bragg condition to perform the

required angular integration over these partial reflections. With many pixels within the angular

profile of the Bragg reflection, the intensity of these partial reflections is proportional to the

square of the number of electrons in the illuminated region of the sample, while the angle-

integrated intensity is proportional to the number of electrons or molecules. A doubling of

beam size on a large crystal by defocus (with constant number of photons per shot) leaves the

intensity of Bragg beams unchanged (in the absence of damage). The ideal maximum of

diffraction information is obtained with the largest possible ideally imperfect crystal fully illu-

minated at a level below the Henderson safe dose. (This maximizes the number of undamaged

molecules contributing to the diffraction pattern.) The use of diffract-and-destroy methods

allows a dose of up to 100 times this safe dose without damage, in principle, providing much

more intense high angle scattering and so better resolution, with data obtained from submicron

regions of crystals, in some cases thereby reducing the contribution from defects. The use of

femtosecond pulses allows us to outrun radiation damage effects at all beam intensity levels

(including low intensity), while subsequent vaporization of the crystal at high intensities

prevents the collection of pumped data from the same crystal. The theory of diffraction from

protein nanocrystals is given elsewhere;5 the theory of diffraction from larger mosaic crystals is

given in textbooks.19

II. XFEL-BASED APPROACHES FOR STRUCTURE FACTOR MEASUREMENT

A. Monte-Carlo approach

The MC approach5 merges all diffraction data from many crystal sizes and sample orienta-

tions and performs a simple average over microcrystal size, shot-to-shot beam intensity, and the
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partiality of the reflections. For different patterns, the Ewald sphere intersects the Bragg orders

in reciprocal space at different points on the intensity distribution. The intensity of the reflec-

tion is thus dependent on the crystal size and orientation, assuming a parallelepiped crystal as11

I ið Þ ¼ I ið Þ
0 jF Dkð Þj2r2

e P k0ð Þ
sin2 N ið Þ

1 W ið Þ
1

� �
sin2 W ið Þ

1
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2 W ið Þ

2

� �
sin2 W ið Þ

2

� � sin2 N ið Þ
3 W ið Þ

3

� �
sin2 W ið Þ

3

� � DX; (1)

where the sin2 terms are known as "shape transforms" and the N(i)’s represent the number of

unit cells in a given dimension (hence crystal size), and

WðiÞ1 ¼ pDk � aðiÞ ; WðiÞ2 ¼ pDk � bðiÞ; WðiÞ3 ¼ pDk � cðiÞ: (2)

The superscript index “(i)” indicates the “i”th shot event. a(i), b(i), and c(i) are the lattice vec-

tors of the nano-crystal in the frame fixed to the laboratory at the “i”th shot. The extracted struc-

ture factor is estimated from the average intensity of the Bragg beam over all shots with index(i)
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If we use C
ðiÞ
ðhklÞ to denote the combined effect of crystal size, orientation, and other con-

stants, then Eq. (3) can be written in the following form:

IðiÞ ¼ I
ðiÞ
0 jFðDkÞj2 � CðiÞðhklÞ; (4)

C ið Þ
hklð Þ ¼

sin2 N ið Þ
1 W ið Þ
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e P k0ð ÞDX; (5)

hIðiÞi ¼ hIðiÞ0 ijFðDkÞj2hCðiÞðhklÞi: (6)

The structure factors can then be estimated from the average Bragg beam intensity using

the following relation:

jFexp

hklð Þj
2 ¼ hI ið Þi
hI ið Þ

0 ihC
ið Þ
hklð Þi

; (7)

where hCðiÞðhklÞi includes the average shape transform, which can be modeled, based on experi-

mental parameters. As shown elsewhere,23 this average shape transform is a smooth curve,

rather than the sinc-function profile of a single cubic nano-crystal.

B. Two-color approach for pump-probe experiments

The two-color approach offers the possibility of eliminating the randomness of several sto-

chastic variables, as shown below. The first of a pair of pulses hits a nano-crystal and, after a
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set time delay, the second hits the same crystal in an identical orientation, since the rotational

diffusion time of micron-sized microcrystals in the buffer solution of a liquid jet is much larger

than the delay. Between these two pulses, the crystal may be pumped optically; however, the

first X-ray pulse must not cause damage, and if it excites the crystal, sufficient time must be

allowed for the excitation to decay before optical pumping. Both patterns are recorded by the

detector within the same read-out event. Since the two patterns are from two pulses with

slightly different wavelengths, they can be separated in data analysis, if the crystals are large

enough to minimize an overlap of the diffraction spots at the two wavelengths. This method is

not restricted to the use of a liquid or viscous jet, and our analysis can equally be applied to

microcrystals mounted on a scanned fixed-target arrangement. Since the two diffraction patterns

are from almost the same scattering geometry, the intensities may be expressed as

I
ðiÞ
1;ðhklÞ ¼ I

ðiÞ
01 � jF1;ðhklÞj2 � CðiÞ1;ðhklÞ; (8)

I
ðiÞ
2;ðhklÞ ¼ I

ðiÞ
02 � jF2;ðhklÞj2 � CðiÞ2;ðhklÞ; (9)

C
ðiÞ
1;ðhklÞ � C

ðiÞ
2;ðhklÞ; (10)

where the indices “1” and “2” indicate the first and the second of the paired pulses, or ground

state and excited state. As can be seen from Eqs. (8)–(10), the beauty of the two-color approach

is that we can now divide out the common orientation factor to obtain the change in structure

factor amplitude
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where k
ðiÞ
12 denotes the ratio of the first pulse intensity to the second for the (i)th shot. The ratio

of the change in Bragg beam intensity is independent of crystal size and orientation. It is equal

to the ratio of the change in the squared structure factor magnitudes. Experimentally, this means

that each frame from paired pulses which contains two slightly displaced diffraction patterns

gives exactly the same ratio of the change in the Bragg beam intensity. The randomness in

crystal size and orientation are therefore eliminated, suggesting that this two-color approach

might be superior to a Monte-Carlo approach in a liquid jet, where bright and dark differences

are taken from crystals of different sizes. However, the weak signal from the first pulse (needed

to avoid damaging the sample) degrades SNR.

C. Large crystal fixed on a goniometer

For fixed-sample experiments, the sample orientation can be controlled using a goniometer

to allow a slow scan across reflections from a large single crystal at controlled increments for

both bright and dark conditions. The total dose deposited in the sample must be lower the

Henderson safe dose to obtain damage-free data. If the diffract-and-destroy mode is used
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(drilling holes with the beam in a large crystal), the many orientations and bright and dark con-

ditions must all be obtained from different regions of the same crystal, separated by several

microns to allow for the range of damage and strain caused by hole-drilling. This approach has

the advantage of allowing a much higher dose13 (with resulting stronger high-angle scattering)

and the absence of radiation damage on the Bragg data. A third possibility uses microcrystals

trapped, perhaps by filtration, on the sites of a calibrated lattice in random orientations. Then,

under diffract-and-destroy conditions, bright and dark data are collected from different micro-

crystals, and the methodology is similar to the GDVN (Gas Dynamic Virtual Nozzle) liquid jet,

but with a hit rate approaching 100% and possibly slower readout, depending on scan speed. If

a goniometer and large crystal are used (either above or below the damage threshold), the

extracted structure factor from a series of exposures around Bragg conditions is

jFesj2 ¼
XNs

i¼1

Ii � DWð Þ;

¼ DW
XNs

i¼1

Ii;

¼ WT

XNs

i¼1

Ii

Ns
;

(13)

where WT is the effective angular width of the abscissa of Bragg reflection that is scanned

across and DW is the sampling increment of the scanning process. Ii is the measured intensity

of the ith sampled point and Ns is the number of sampling points across the reflection.

III. ERROR METRICS

In order to determine if the two-color (or split-and-delay) approach is more accurate than

the Monte- Carlo method, the errors in structure factor extraction are estimated below for both

approaches. In addition, we determine approximately the number of patterns needed to achieve

a given accuracy in structure factor, and whether it is feasible for both approaches, with a 15%

beam intensity fluctuation, to identify a 1% change in structure factors.

A. Monte-Carlo approach

The extracted structure factor converges to its true value by Monte-Carlo integration over

crystal size, orientation, and beam intensity fluctuation.5 This convergence has a diminishing

efficiency described by error reduction as 1=
ffiffiffiffi
N
p

, which makes Monte-Carlo approach wasteful

of protein sample and beam resources. For the study of radiation damage dynamics or sub-

pico-second time-resolved imaging, the change in structure factor is very small and likely to be

less than 10% at best, and 1% in some cases. To recognize this small change from random

errors, a huge number of patterns may be needed; nevertheless, near-atomic resolution “movies”

of the photo-detection cycle in photo-sensitive bacterial yellow protein have recently produced

by this approach.20 In the following, we estimate this number based on error analysis.

The error in structure factor from each shot can be derived from Eq. (7) based on error

propagation as11
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MC jFjð Þ
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1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r I ið Þð Þ
hI ið Þi

 !2

þ r C ið Þð Þ
hC ið Þi

 !2

þ
r I ið Þ

0

� �
hI ið Þ

0 i

0
@

1
A

2
vuuut ; (14)

where “r” denotes the error (or standard deviation) in each random variable and “hi” represents

the average value. After merging N patterns by Monte-Carlo integration over crystal size and

orientation, the error in the structure factor is reduced by a factor of 1=
ffiffiffiffi
N
p
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If we now neglect the error in intensity detection due to shot noise for a relatively

strong Bragg beam, then the first term in the parenthesis in Eq. (15) vanishes. Also, for the

purpose of approximation, a Monte-Carlo simulation has been conducted to obtain the ap-

proximate percentage error (ratio of standard deviation to mean) in the C(i) factor, which

represents the effect of crystal shape and orientation. For crystals of Trypanosoma brucei

cysteine protease cathepsin B (TbCatB) used recently,12 the value of the relative error in C(i)

was found to be 5.7 for microcrystals of 0.9� 0.9� 11 lm average size and 10% deviation,

with Gaussian distribution (see Appendix A). The shot-to-shot beam intensity fluctuation is

15%, so that the percentage error in a structure factor extracted using the Monte-Carlo

approach is

r Nð Þ
MC jFjð Þ
hjFji ¼

1

2
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:72 þ 15%2 þ 0%2

p
¼ 2:85ffiffiffiffi

N
p : (16)

Therefore, for a 1% error tolerance in structure factor magnitude jFj, up to 8.12� 104

patterns with the Bragg order (hkl) sampled are needed to achieve this accuracy.

From the above analysis, the dominant error contribution comes from the random variation

in crystal size, shape, and orientation represented by the first term under the root sign in Eq.

(16). The contribution from the shot-to-shot intensity fluctuation represented by the second term

could be reduced or even eliminated by measuring the intensity of the incident beam for each

shot; however, this required the assumption that the beam hits the center of the crystal, not the

side, and these "impact parameters" also affect scaling. Although this effect is relatively small

compared to the first term, it does make the Monte-Carlo integration converge faster, and the

extracted structure factors achieve a higher accuracy.

B. Two-color approaches for TR-SFX

The two-color approach determines changes in structure factors from two diffraction pat-

terns that are recorded by pulse pairs from the same crystal in the same orientation. Therefore,

for each shot (i), R
ðiÞ
ðhklÞ is independent of the crystal size, shape, and orientation

R ið Þ
hklð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI ið Þ

2; hklð Þij
intensity

hI ið Þ
1; hklð Þij

intensity
k ið Þ

12

vuuut � 1 ¼ R hklð Þ; (17)

where R(hkl) denotes the true value of the change in magnitude of the structure factor (hkl), and

k12 is given by Eq. (12).

We estimate R
ðiÞ
ðhklÞ with R

0ðiÞ
ðhklÞ by replacing k12 and the recorded intensities with their expec-

tation values, giving

R
0ðiÞ
ðhklÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I ið Þ
1; hklð Þ � hk

ið Þ
12i

I ið Þ
1; hklð Þ

vuuut � 1 ¼
ffiffiffiffiffiffiffiffiffiffi
A ið Þ

hklð Þ

q
� 1: (18)

Thus, for each shot (i), the error in the estimate of the change in magnitude of structure magni-

tude R
0ðiÞ
ðhklÞ is
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ðhklÞ

� �
¼
h
ffiffiffiffiffiffiffiffiffiffi
A hklð Þ

p
i

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

I ið Þ
1; hklð Þ

þ 1

I ið Þ
2; hklð Þ

þ a2

vuut ;

a � r k12ð Þ
hk12i

: (19)

The percent error in R
0ðiÞ
ðhklÞ for one shot is inversely related to the intensity of the Bragg

beam and directly related to the percentage error in k12, which is denoted by a. Thus, brighter

Bragg beams give smaller errors and weaker ones give larger errors. Even for a particular Bragg

order and constant incidence fluence, different shots correspond to different points on the rock-

ing curve and thus give different Bragg beam intensities. Therefore, to reduce the error in deter-

mination of the percent change in structure factor magnitude, we make use of data from all shots

by assigning a weighting function which weighs brighter reflections more than weaker ones

[Eq. (20)]. Alternatively, we may simply sum up the intensities from all shots for the same

Bragg reflection (hkl) and take the ratio of the sums [Eq. (21)]. This is actually a self-weighted

average with the weighting function being the intensity itself. These two methods can be shown

to be equivalent, with a proper choice of the weighting function W
ðiÞ
op as shown in Eq. (24)

1 : A
ðNÞ
ðhklÞ ¼

XN

i¼1

WðiÞA
ðiÞ
ðhklÞ; R

0ðNÞ
ðhklÞ ¼

ffiffiffiffiffiffiffiffiffiffi
A
ðNÞ
ðhklÞ

q
� 1; (20)

2 : A Nð Þ
hklð Þ ¼

XN

i¼1

I ið Þ
2; hklð Þ

XN

i¼1

I ið Þ
1; hklð Þ

� k12 � 1; R0 Nð Þ
hklð Þ ¼

ffiffiffiffiffiffiffiffiffiffi
A Nð Þ

hklð Þ

q
� 1; (21)

W ið Þ
op ¼

I ið Þ
1; hklð ÞPN

i¼1

I ið Þ
1; hklð Þ

: (22)

It is shown that R
0ðiÞ
ðhklÞ is indeed a valid estimate of RðhklÞ, the true value of relative change

in structure factor magnitude jFðhklÞj, and shows that the average value of R
0ðiÞ
ðhklÞ approaches the

true value RðhklÞ if the number of shots N is sufficiently large (Appendix B).

According to the theory of error analysis,11 the errors in measured variables propagate into

R0 according to

r R0ð Þ ¼ r
ffiffiffi
A
p� �

;

¼ 1

2

ffiffiffiffiffiffiffi
hAi

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1XN

i¼1

I ið Þ
2

þ 1XN

i¼1

I ið Þ
1

þ a2 �

XN

i¼1

I ið Þ
2

� �2

XN

i¼1

I ið Þ
2

 !2

vuuuuuuuut
;

¼ 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1þ T2þ T3
p

: (23)

We now discuss the error contributions from the terms T1, T2, and T3 above. In Eq. (23),

T1, T2, and T3 can be approximately evaluated directly from experimental data, for an given

value of the number of shots N. This requires simulations using a full data set of reflections I
ðiÞ
1

and I
ðiÞ
2 . For a small value of N, this is necessary and can be readily undertaken. However, in

case of a large value of N, it is impractical and unnecessary since the sampling can cover the
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whole intensity distribution of Bragg reflections ergodically, with much less fluctuation than for

small values of N. We therefore estimate the error in R0 using the expectation value of the

refection intensity I
ðiÞ
1 and I

ðiÞ
2 over the entire intensity distribution

r R0ð Þ ¼ 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1þ T2þ T3
p

; (24)

N !1 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

hI ið Þ
2 ij

intensity
shots

þ 1

hI ið Þ
1 ij

intensity
shots

þ 1þ b2
� �

a2

s
� 1ffiffiffiffi

N
p ; (25)

where hIðiÞ1 ij
intensity
shots and hIðiÞ2 ij

intensity
shots are the expectation values over the distribution of Bragg

reflection intensities from the first and second pulses, respectively. b is the relative standard

deviation in I
ðiÞ
2 over the rocking curve, and a denotes the relative error in k12. The ratio of the

intensities of the two pulses k12 varies from shot to shot, and this fluctuation is characterized by

a and determined by the stability of the emittance spoiler as well as the photon generating

process (SASE (self-amplified spontaneous emission) or self-seeded).9 Using the two-color

approach, this may depend on the stability of the seeding process.

As shown by Eq. (25), with a sufficiently large number of diffraction patterns, the error in

R0 depends on the Bragg beam intensity via T1 and T2, the accuracy of the incident flux ratio

a, and the statistics of nano-crystal size, shape, and orientation distribution b (which may be

evaluated by Monte-Carlo simulation) via T3. Among the three contributing terms, T1 and T2

are dependent on experimental conditions, such as the flux of the two pulses and their ratio,

while T3 is determined by the photon generation stability, and the nano-crystal samples.

Contributions from these terms are determined by the parameters of the sample and the

experimental settings, such as the statistics of nano-crystal size, shape, orientation, X-ray flux,

the relative intensity of the paired pulses, and the stability of the LCLS system. Without

involving specific instrumental specifications and parameters, we can discuss below two differ-

ent regimes of experiments: a relatively high flux of both of the paired pulses with unstable

beam intensity ratio (e.g., two-color) and low flux for the first pulse, with perfect beam intensity

control (as expected from a beam-splitting device).

In the case of high X-ray flux and unstable beam intensity, we expect small Poisson noise

due to counting at the detector, but a large error in control of the relative intensity of the two

pulses. Then, in Eq. (25), T3 would dominate over the negligible terms T1 and T2. Assuming

the same value of b¼ 5.7 as in the Monte-Carlo approach, the error in R0 is

r R0ð Þ � 2:89
ffiffiffiffiffiffiffi
hAi

p
� a � 1ffiffiffiffi

N
p ; (26)

which indicates that the error in the determination of the relative change of structure factor

magnitudes is proportional to the relative error in the intensity ratio of the two paired pulses

and hence depends on the stability of the emittance spoiler and the photon generation process.

This error decreases as the square root of the number of patterns recorded, which is similar to

the Monte-Carlo approach [Eq. (15)] but with a prefactor
ffiffiffiffiffiffiffi
hAi

p
� a. Comparing split-and-delay

and Monte-Carlo approaches, we can easily establish a criterion for superiority of the former

over the latter

a �
ffiffiffiffiffiffiffi
hAi

p
< 1: (27)

For 20% change in structure factor magnitude as an example, the critical value of a is

0.83. In other words, any two-color system with an error of less than 83% in intensity ratio

makes the two-color approach preferable.

In the case of a weak first pulse (which does not destroy the sample) but with perfect beam

intensity control, the Poisson noise T1 and T2 become the dominant error contribution rather

than the negligible relative intensity fluctuation T3. Then, the error in R0 is
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r R0ð Þ � 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1XN

i¼1

I ið Þ
2

þ 1XN

i¼1

I ið Þ
1

vuuuut ;

�
ffiffiffi
2
p

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffi
1

hIi

s0
@

1
A 1ffiffiffiffi

N
p : (28)

Thus, the error is now independent of the specific statistics of the nano-crystal samples and

is only determined by the summed reflection intensities from all patterns. Additionally, a

smaller error is expected for a brighter Bragg reflection than a weaker one. For TbCatB crystals

of 0.9� 0.9� 11 lm average size, assuming structure factors F� 104, an X-ray beam with pho-

ton energy of 9.4 keV, and beam diameter of 4 lm, at the Henderson "safe-dose" limit28 of 1

MGy at room temperature (allowing study of dynamics), the average number of photons of a

reflection in a pattern is estimated to be 77. Hence, the error in R0 is

r R0ð Þ � 0:087
1ffiffiffiffi
N
p : (29)

For two-color experiments, the intensity or energy of each pulse can be measured by using a in-

line spectrometer.26 In this case, the uncertainty in k12, denoted by a, becomes dependent on the accu-

racy of the intensity measurements. The error in R0 is then equal to that given by Eq. (28).

C. Fixed-sample experiments with goniometer

With sample fixed to a holder and a goniometer, the crystal orientation can be controlled

accurately to facilitate scans across the rocking curve. In contrast to the stills obtained from dif-

ferent crystals in random orientations, this scan process may generate a sampling over the angu-

lar profile of the Bragg reflections with equally spaced increments and the relative error due to

Poisson noise in intensity measurement is

rR jFesjð Þ
hjFesji

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r DWð Þ

WT

� 	2

1þ b2
� �

Ns þ
1

hIijshots
intensityNs

vuut ;

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þ E2
p

; (30)

where W is the angular variable, as the abscissa of the rocking curve. WT is the total angular

width of the rocking curve and DW is the sampling increment. Ns is the number of sampling

points and hIijshots
intensity denotes the mean intensity of each sample point averaged over both

Poisson noise and the entire rocking curve. b is the relative standard deviation in measured in-

tensity over the rocking curve, consistent with the previous discussion of the Monte-Carlo and

two-color approaches. Beside the error contributions from goniometer control and intensity

measurement, another contribution comes from the systematic error resulting from integration

by quadrature. For one-point quadrature, the error is proportional to square of the sampling in-

crement DW and the first derivative of the curve f 013

rS jFesj2
� �

¼ O f 0 � DW2
� �

/ 1

N2
s

: (31)

In the destructive-readout mode, where the X-ray beam must be translated to a fresh point

on the sample sufficiently far away from the hole drilled by the previous shot to avoid damage,

fixed-sample experiments sampling rocking curves with even increments and maximum beam

intensity would give a random error which goes as 1ffiffiffiffi
Ns

p as indicated by Eq. (30). (We assume

perfect goniometer control.) In this regard, fixed-sample experiments and M.C. experiments are
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essentially equivalent from the point of view of error reduction and data efficiency. However,

the prefactor in the M.C. approach is much larger than in the fixed-sample approach since the

former uses a random sampling, whereas crystal orientation and sampling are totally controlla-

ble using a goniometer. For CXI beam line at LCLS, with a typical pulse energy of 2 mJ, the

estimated average photon counts for the same condition are approximately 100 times than that

of the non-destructive mode resulting in the prefactor of 0.0057. We must also note that, how-

ever, the number of shots we can take on a single large crystal Ns is limited by the crystal size

as well as the safe distance between shots to avoid radiation damage caused by previous shots.

Therefore, an upper limit might exist for the accuracy in structure factor measurement using

this diffract-and-destroy mode in fixed sample experiments.

If the beam intensity is adjusted below the Henderson safe dose threshold so that the sam-

ple is not destroyed, the error from a fixed sample is then

rR;min jFesjð Þ
hjFesji

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þ E2
p

;

� 1

2

ffiffiffiffiffiffi
E2
p

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hIijshots
intensityNs

s
;

/ 1

2
jFj�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

DHqLA

s
;

(32)

where DH is the Henderson safe dose, q is the mass density, L is the attenuation length of the

sample, jFj is the magnitude of the structure factor, and A is the effective beam area. Equation

(32) indicates that the random Poisson error in detector counts is independent of the number of

sampling points on the rocking curve and is only dependent on the sample and X-ray beam

parameters. This is reasonable, since the total photon signal is limited by the Henderson safe

dose no matter how many sampling points are used in a scan. Therefore, combining systematic

and random errors for consideration, an optimal value of Ns exists for minimal error [Eqs. (31)

and (32)].

To determine the experimental design, detailed simulations need to be carried out to esti-

mate the errors in the different approaches for specific samples. For TbCatB crystals12 of

0.9� 0.9� 11 lm average size, assuming a structure factor F� 104, a photon energy of

9.4 keV, and a beam diameter of 4 lm, the Henderson dose limit of 1 MGy at room tempera-

ture, we show the number of patterns needed to achieve 1% accuracy in structure factor

measurement for Monte-Carlo, two-color, and goniometer-based XFEL experiments in Fig. 1.

The error follows the inverse square root rule (1=
ffiffiffiffiffi
Ns

p
) in the Monte-Carlo, two-color, or split-

and-delay approaches. However, the error falls more rapidly with number of diffraction patterns

for the two-color or split-and-delay method than for the Monte-Carlo approach. To identify a

1% change in a structure factor in pump-probe experiments, less than 100 pairs of patterns with

the corresponding Bragg order indexed are needed for the two-color or split-and-delay

approach, whereas 80 000 patterns are required in the conventional Monte-Carlo approach. This

improvement in error reduction and data efficiency is a direct result of the elimination of

the stochastic factors, such as random orientation and varying size and shape of the crystals.

Two-color or split-and-delay experiments have the advantage of sensitivity to change in struc-

ture factors over the other approaches, rather than any superior accuracy of direct structure-

factor measurement. At the safe dose which minimizes damage, fixed-sample experiments give

an error independent of sampling procedure, but limited by the X-ray dose the sample can toler-

ate. Complete data sets must be obtained to solve the time-resolved structure. The number of

patterns required for this purpose is definitely much more than the number of patterns needed

to achieve a certain accuracy in a single structure factor since we need sufficient patterns that

cover the whole reciprocal space to produce the electron density maps. We assume that the

number of patterns needed to form a complete data in two-color approach is about the same as

that needed in liquid jet sample delivery, based on the Monte-Carlo approach, since the
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statistics of the crystal orientation distribution is the same for both methods. Also, in case that

the crystal is much larger than the typical beam size of 4 lm, we can expand the beam to

match the size of the crystal by defocussing, to maximize the total signal hence to reduce the

error in structure factor measurement. An increase in the beam size by the factor of 25 (100

lm) reduces the error in fixed sample experiments to approximately 1%, which is comparable

to the other approaches. But certainly, larger crystals not only favor the fixed sample experi-

ments but are also preferred in all modes, since they yield stronger diffraction signals and so

higher resolution data unless this is limited by crystal quality.

IV. DISCUSSION AND CONCLUSION

The Monte-Carlo approach has been widely adopted for (SFX in recent years. Using tens

of thousands of patterns, merged partial intensities converge accurately to yield the structure

factors, allowing structures to be solved at better than 0.2 nm resolution which might not other-

wise have been solved due to small crystal size or radiation sensitivity.24 The low data effi-

ciency mainly results from uncontrollable stochastic variables contributing to the error in

structure factors. These contributions add in quadrature, and the large intensity variation of the

same Bragg reflection on different shots (covering several orders of magnitude) due to partiality

(i.e., different deviations from the exact Bragg condition) dominates the error in the Monte-

Carlo approach.

To improve on the traditional Monte-Carlo integration and merging procedure, new meth-

ods of treating the partial intensities, intensity integration, scaling, and post-refinement have

been proposed and studied. By modeling the angular profile of the Bragg spots from mosaic

crystals,2 an integration mask can be customized for each reflection. Using a geometrical model

for partiality, the diffraction conditions for each pattern can be refined to estimate the partiality,

so that full reflection intensities can be predicted, and this refinement procedure repeated

FIG. 1. Relative error in structure factor magnitude measured in Monte-Carlo (MC, middle curve), split-and-delay or two-

color (SD, 2C, lower curve), and non-destructive mode of goniometer-based fixed sample (FS, upper curve) approaches for

TR-SFX. To identify 1% change in structure factor in pump-probe experiments, less than 100 pairs of patterns are needed

in two-color or split-and-delay mode, compared to approximately 80 000 patterns required in the Monte-Carlo approach.

The non-destructive mode of goniometer-based fixed sample approach gives an error limited by the X-ray dose, but inde-

pendent of sampling. The diffract-and-destroy mode, using fixed samples, yields an error with a prefactor of 0.57%, but the

number of patterns collected from one single crystal is limited by the crystal size and the distance between consecutive

shots in order to avoid radiation damage. Diffraction from micro-crystals trapped on a calibrated lattice follows essentially

the same error reduction behavior as the Monte-Carlo approach using the liquid jet delivery system.
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iteratively to obtain the best estimate.14 Common reflections on different shots also assist scal-

ing, using post-refinement and the Ewald offset correction, which assumes a Gaussian rocking

curve for a sufficiently large crystal.15 Our two-color method complements these algorithmic

approaches for improved accuracy, going beyond the Monte-Carlo method, for time-resolved

diffraction.

The two-color approach eliminates variations in crystal size, shape, and orientation which

dominate the Monte-Carlo approach, by probing the same crystal twice in the same orientation

with two pulses of different energies, separated in time. The ratio of partial intensities of Bragg

spots with identical Miller indices from two pulses is recorded for each pattern and then

summed with a weighting to obtain the percentage change in structure factor. The accuracy in

structure factor change is determined by the total signal summed over all patterns. Therefore, in

spite of the low dose limit for the first pulse (which must not destroy the crystal), the accuracy

improves with the number of patterns collected. For the TbCatB crystals used recently,13 at the

Henderson safe dose limit of 1 MGy at room temperature, less than 100 patterns are needed to

achieve 1% accuracy, compared to 80 000 patterns for the Monte-Carlo approach (Fig. 1). From

the point of view of error reduction and data efficiency, the two-color approach appears to be a

better choice for pump-probe time-resolved experiments, provided that a sufficiently long delay

between X-ray pulses can be obtained for the process of interest.

A difference Fourier charge-density map is normally applied to study structural changes.

The difference map shows changes in the electron density much more sensitively than a normal

Fourier Map.27 With unknown phases, the peak height in a map is half that with phase informa-

tion17 if the conditions DjFj/jFj � 1 and r(DjFj)/DjFj � 1 are satisfied. For most pump-probe

experiments, these conditions are satisfied, making the difference Fourier map applicable to

two-color data.

However, our two-color approach and error analysis are based on several essential assump-

tions which must be considered here. First, the time interval between the two pulses must be

much shorter than the rotational diffusion time of the crystal in solution (typically milliseconds

for a 1–lm crystallite in buffer) so that it can be treated as stationary. Second, the difference in

wavelength between the two pulses must be sufficient to separate the two diffraction patterns in

the same readout, but not too large so that the corresponding Ewald spheres are far from each

other intersecting different Bragg reflections. Third, the crystal size must neither be too small

such that the broad shape transform will not allow us to separate the two patterns nor too big

to invalidate our shape transform analysis. (Our error analysis assumes that the two patterns are

taken from almost the same point on the rocking curve.) To investigate these assumptions for

future two-color experiments, diffraction patterns from I3C (“magic triangle”)26 micron-sized

inorganic crystals were simulated for X-ray pulses at energies of 6.6 keV and 6.685 keV, as

shown in Fig. 2. Using the CSPAD (Cornell-SLAC hybrid pixel array detector) detector at

LCLS with the minimum working distance of 5 mm, the 85 eV (1.3%) energy difference shifts

the Bragg spots by approximately 20 pixels at the 2 Å resolution ring, which corresponds to the

side edge of the detector. Since the relative displacement between the Bragg spots of the same

Miller index increases with resolution, the Bragg reflections at low resolution can be separated

by using a larger working distance or an additional back detector, illuminated by a central hole

in the front detector. Over the past year, there have been dramatic advances in the ability to

model partiality for SFX data from several groups, using iterative optimization algorithms and

a suitable model for mosaicity.2,15,16,24 If we use these methods to model the partiality for each

wavelength separately on the same detector readout, the resulting more realistic results will fall

somewhere between the Monte-Carlo error curve and two-color error curve (Figure 1), since

curve “2C” assumes no difference in partialities of the two wavelengths.

Goniometer-based fixed-sample experiments provide accurate control of the crystal orienta-

tion which our SFX experiments are not capable of. In destructive mode, each X-ray shot drills

a hole in the crystal, which must be translated to a fresh point for the next shot. Beam intensity

is maximized to obtain the highest SNR and the error decreases as the inverse square root of

the number of patterns, which is similar to the Monte-Carlo approach, except that the prefactor

is much smaller due to the accurate control of crystal orientation. With the beam attenuated or
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defocussed to a level below the damage threshold, goniometer-based experiments allow us to

probe the same region of a sample in different orientations from which local information on

structures or dynamics can be extracted. The low dose limit gives poorer statistics, and the error

in the measured structure factor is found to be independent of the number of sampling points

(or patterns from the same region) and is only determined by the total dose deposited into the

probed region of the crystal.
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APPENDIX A: STATISTICS OF TbCatB CRYSTAL SHAPE TRANSFORM CALCULATED BY

MONTE-CARLO SIMULATION

To characterize the source of errors in XFEL experiments, Monte-Carlo simulations were

conducted to estimate the dominant contribution from the large intensity fluctuation across the

shape transform based on its statistics. Shape transforms were modeled using Eq. (4) for TbCatB

crystals13 of 0.9� 0.9� 11 lm average size with 10% Gaussian-distributed deviation. Statistics of

intensity variation across the shape transform depends on the integration radius dt. Therefore,

mean value, standard deviation, and their ratio (relative deviation) were calculated as functions of

dt as a fraction of the scattering vector (Fig. 3). dt ranges from 0 to 0.1 with an increment of 0.01,

and for each value of dt, 106 sampling points on the shape transform were randomly generated for

a uniform distribution. At dt¼ 0.01, which matches the average size of the crystal, the mean value

and the relative deviation of the shape transform for TbcatB crystals were found to be 1.76� 1012

and 5.7, respectively.

FIG. 2. Simulated diffraction pattern ((100) plane) from I3C (“magic triangle”) crystals (orthorhombic. Pbca, a¼ 9.214 Å,

b¼ 15.735 Å, and c¼ 18.816 Å) using X-ray pulses at energies of 6.6 keV and 6.685 keV in two-color approach. Crystal

size is 0.005 lm� 1.3 lm� 1.5 lm and identical intensity for all Bragg reflections is assumed just to show the Bragg spot

positions. Red and blue colors indicate Bragg spots from 6.6 keV and 6.685 keV, respectively. Bragg spots of same index

from two colors are clearly separated by detectable displacements. The displacement is approximately 20 pixels at 2 Å reso-

lution ring on CSPAD detector at LCLS with the minimum working distance of 5 mm.
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APPENDIX B: ERROR ANALYSIS FOR TWO-COLOR APPROACH

According to error propagation theory,12 errors in different variables are related as follows:

rðR0ðiÞðhklÞÞ ¼ rð
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1

I ið Þ
1; hklð Þ

þ 1

I ið Þ
2; hklð Þ

þ a2

vuut : (B5)

In order to analyze the error in R0
ðNÞ
ðhklÞ, we express it explicitly in terms of the experimentally

measured parameters as below

R0
Nð Þ
hklð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

I ið Þ
2; hklð Þ � hk

ið Þ
12i

XN

i¼1

I ið Þ
1; hklð Þ

vuuuuuuut � 1: (B6)

FIG. 3. Statistics (mean, standard deviation, and relative deviation/ratio) of TbcatB crystal shape transform obtained from

Monte-Carlo simulation. 10% standard deviation in crystal size was assumed based on experimental data.12 The abscissa dt

is the integration radius around Bragg peaks; left vertical axis shows the mean and standard deviation values; right vertical

axis shows the relative deviation/ratio.
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To show that R0
ðNÞ
ðhklÞ is indeed a valid estimate of RðhklÞ which is the true value of the relative

change in structure factor magnitude jFðhklÞj, we show that the average value (expectation) of

R0
ðNÞ
ðhklÞ approaches the true value RðhklÞ when the number of shots N is sufficiently large. The aver-

age value of R0
ðNÞ
ðhklÞ is

hR0 Nð Þ
hklð Þij

intensity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

hI ið Þ
2; hklð Þij

intensity � hk ið Þ
12i

XN

i¼1

hI ið Þ
1; hklð Þij

intensity

vuuuuuuut � 1: (B7)

We define D(i) as the discrepancy between k
ðiÞ
12 and its expectation value hkðiÞ12i

DðiÞ � k
ðiÞ
12 � hk12i: (B8)

Then, Eq. (B7) can be rewritten as

hR0 Nð Þ
hklð Þij

intensity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

hI ið Þ
2; hklð Þij

intensity � k ið Þ
12

XN

i¼1

hI ið Þ
1; hklð Þij

intensity

�

XN

i¼1

hI ið Þ
2; hklð Þij

intensity � D ið Þ

XN

i¼1

hI ið Þ
1; hklð Þij

intensity

vuuuuuuut � 1: (B9)

If the number of shots N goes to infinity, or more practically, we have a sufficiently large number

of shots from which diffraction patterns are collected; the second term under the square root sign

approaches 0

lim
N!1

XN

i¼1

hI ið Þ
2; hklð Þij

intensity � D ið Þ

XN

i¼1

hI ið Þ
1; hklð Þij

intensity

0
BBBBB@

1
CCCCCA ¼ hD

ið Þi ¼ 0: (B10)

Hence, the average of R0
ðNÞ
ðhklÞ approaches the true value RðhklÞ

lim
N!1

R0
ðNÞ
ðhklÞ ¼ RðhklÞ: (B11)

Therefore, R0
ðNÞ
ðhklÞ is a good estimate of the relative change in structure factor magnitude.

We now omit the Bragg order index (hkl) from subscripts and (N) from superscripts.

Additionally, we define some auxiliary variables for notational convenience as follows:

R0 ¼
ffiffiffi
A
p
� 1; (B12)

A ¼

PN
i¼1

I ið Þ
2 hk12i

� �
PN
i¼1

I ið Þ
1

� B

D
; (B13)

B ¼
XN

i¼1

BðiÞ ; BðiÞ ¼ ðIðiÞ2 hk12iÞ ; D ¼
XN

i¼1

I
ðiÞ
1 : (B14)

According to the theory of errors, the errors in the different variables are related as follows:

rðR0Þ ¼ rð
ffiffiffi
A
p
Þ; (B15)
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r2 Að Þ
hAi2

¼ r2 Bð Þ
hBi2

þ r2 Dð Þ
hDi2

; (B16)

BðiÞ ¼ ðIðiÞ2 � hk12iÞ; (B17)

r2 B ið Þð Þ
hB ið Þi2

¼ 1

hI ið Þ
2 i
þ r k12ð Þ

hk12i

� 	2

¼ 1

hI ið Þ
2 i
þ a2; (B18)

r2 Bð Þ ¼
XN

i¼1

r2 B ið Þð Þ;

¼
XN

i¼1

hI ið Þ
2 i

2hk12i2
1

hI ið Þ
2 i
þ a2

 ! !
;

(B19)

r2ðDÞ ¼
XN

i¼1

r2ðIðiÞ1 Þ ¼
XN

i¼1

hIðiÞ1 i: (B20)

Combining Eqs. (B15)–(B20), we obtain the error in A, hence R0

r2 Að Þ
hAi2

¼

XN

i¼1

hI ið Þ
2 i

2hk12i2
1

hI ið Þ
2 i
þ a2

 ! !

XN

i¼1

I ið Þ
2

* +2
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XN

i¼1

hI ið Þ
1 i

XN

i¼1

I ið Þ
1

* +2
;

¼ 1XN
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2 i
þ 1XN
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hI ið Þ
1 i
þ a2 �

XN

i¼1

hI ið Þ
2 i

2

XN

i¼1

hI ið Þ
2 i

* +2
;

� 1XN

i¼1

I ið Þ
2

þ 1XN

i¼1

I ið Þ
1

þ a2 �

XN

i¼1

I ið Þ
2

� �2

XN

i¼1

I ið Þ
2

 !2
;

� T1þ T2þ T3; (B21)

r R0ð Þ ¼ r
ffiffiffi
A
p� �

¼ 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T1þ T2þ T3
p

: (B22)

In case of a large value of N, the sampling can cover the whole intensity distribution of Bragg

reflections ergodically with much less fluctuation than for small values of N. Instead of using Eq.

(B21), we estimate the error in R0 using the expectation value of the refection intensity I
ðiÞ
1 and I

ðiÞ
2

over the entire intensity distribution

lim
N!1

T1 ¼ 1

N

1

hI ið Þ
2 ij

intensity
shots

; (B23)

lim
N!1

T2 ¼ 1

N

1

hI ið Þ
1 ij

intensity
shots

; (B24)
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intensity
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lim
N!1

T3 ¼ 1

N
1þ b2
� �

a2: (B30)

Therefore, the error in R0 can be estimated as below

r R0ð Þ ¼ 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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; (B31)

N !1 1

2

ffiffiffiffiffiffiffi
hAi

p
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

hI ið Þ
2 ij

intensity
shots

þ 1

hI ið Þ
1 ij

intensity
shots

þ 1þ b2
� �

a2

s
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where hIðiÞ1 ij
intensity
shots and hIðiÞ2 ij

intensity
shots are the expectation values over the rocking curve of the reflec-

tion intensities from the first and second pulses, respectively. b is the relative standard deviation

in I
ðiÞ
2 over the rocking curve and a denotes the relative error in k12. The ratio of the intensities of

the two pulses k12 varies from shot to shot, and this amplitude of fluctuation is characterized by a
and determined by the stability of the emittance spoiler in the delay line.
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