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This paper presents a multiscale modeling approach to simulate the self-sensing 

behavior of a load sensitive smart polymer material. A statistical spring-bead based 

network model is developed to bridge the molecular dynamics simulations at the nanoscale 

and the finite element model at the macroscale. Parametric studies are conducted on the 

developed network model to investigate the effects of the thermoset crosslinking degree on 

mechanical response of the self-sensing material. The comparison between experimental 

and simulation results shows that the multiscale framework is able to capture the global 

mechanical response with adequate accuracy and the network model is also capable of 

simulating the self-sensing phenomenon of the smart polymer. Finally, the molecular 

dynamics simulation and network model based simulation are implemented to evaluate 

damage initiation in the self-sensing material under monotonic loading. 

Nomenclature 

I = fluorescence intensity density 

   = original length of the ith spring 

    = variation of the spring length  
N = number of springs in this subzone 

        = number of actual potential crosslinked covalent bonds 

       = number of all potential crosslinked covalent bonds 

  = loading strain 

   = equivalent strain in the ith spring 

 ̅ = average equivalent strain in the bead-centered subzone 

  = crosslinking degree  

 

Keywords: spring-bead model, network model, statistical distribution of crosslinking degree, self-sensing smart 

material 

I. Introduction 

oad sensitive materials that exhibit specific chemical reactions upon external loading (also known as 

mechanophores) have received considerable attention in recent years.
 [1-4]

 Mechanophores, which are covalently 

linked into polymers, is a result of the transmission of external forces at the macroscale to the debonding of covalent 

links at the molecular level.
 [4,5]

 Therefore, itprovides a novel means for designing smart materials with self-sensing 

capability. Cho et al.
 [6,7]

 have developed a cyclobutane-based mechanophore comprised of carbon-carbon covalent 

bonds that transform into cinnamate groups and emit visible fluorescence under external loading. Zou et al.
[8]

 have 

developed a novel self-sensing technique in which Tris-(Cinnamoyl oxymethyl)-Ethane (TCE) is embedded as the 

cyclobutane-based mechanophore material within a polymer matrix. In this study, cyclobutane-containing 

crosslinked polymers are incorporated into an epoxy matrix and the effect on their mechanical properties are 

examined, followed by a demonstration of early damage detection through mechanically induced fluorescence. This 

experimental research has shown significant promise in developing mechanophore embedded polymer materials that 
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can be used to detect damage initiation in polymeric composite materials.
[8]

 However, the discovery of new 

mechanophores (i.e., mechanochemically reactive units) is currently time-consuming, expensive, low-yielding, and a 

process that is not easily scaled to large quantities. High fidelity modeling techniques are necessary to understand 

the physics of mechanophores. A will developed modeling approach can simulate the multiscale response of these 

“smart” polymers, which will be useful to design new polymers with mechanophores as well as apply the available 

materials for large scale engineering applications.  

In epoxy based polymers, the crosslinked bond clusters between the resin and the hardener molecules generate a 

large-scale network structure. The heterogeneous crosslinked network at the microscale has significant impact on the 

local mechanical properties.
[9-11]

 In order to design and synthesize polymers with multifunctional capabilities, it is 

important to develop a fundamental understanding of the effects of microscale variability on material properties and 

response, such as the Young’s modulus, heterogeneous stress/strain distribution and damage initiation mechanisms. 

Currently, there are numerous approaches to the modeling of polymeric systems integrated with nanoparticles; they 

include homogenization techniques, the finite element (FE) method, molecular dynamics (MD) simulation, Monte 

Carlo (MC) simulation, and the Mori-Tanaka approach.
[12-14]

 MD simulations and FE analysis are two of the most 

widely used methods for understanding the material behavior of epoxy-based systems at the nano and microscales. 

MD simulation is capable of effectively capturing the heterogeneous material properties of a polymer that are 

influenced by its crosslinking degree.
[9-11]

 Similarly, Fan et al.
[11]

 performed MD simulations for characterizing 

material properties of a crosslinked epoxy resin compound. Using this model, they were able to capture linear 

thermal expansion coefficients and Young's modulus of the material. MD simulations have also been used to 

investigate the strength and molecular mechanisms of adhesion between an inorganic substrate and a cured epoxy 

resin.
[15]

 In this model, the crosslink density and corresponding material properties of the crosslinked system were 

accurately estimated. However, the high computational cost associated with large-scale MD simulations is a major 

restriction and often limits its application beyond the nanoscale.  

FE modeling has been a common method to model material performance, primarily because it is 

computationally efficient.
[16-18]

 Onck et al. developed a two-dimensional model to study the strain stiffening of 

crosslinked filamentous polymer.
[19]

 The FE method was used to discretize the filament with Euler-Bernoulli beam 

elements that accounted for stretching and bending. Jiang et al. performed a parametric study using FE analysis to 

compute the material properties and scratch behavior of a crosslinked polymer.
 [20]

 The simulation results in this 

work corresponded well with the mechanical properties obtained from the experiments. Chen and Lagoudas 

developed a constitutive theory for polymers in which the crosslinking density was considered as the major 

influence on the mechanical behavior.
 [21]

 This model has been implemented and extended by other researchers to 

study thermoelasticity, viscoelasticity, and nonequilibrium relaxation.
 [22-24]

 While the FE method provides 

advantages in high simulation efficiency to model polymers, it cannot be used to model heterogeneous 

microstructure because the definition of discontinuous material properties is often infeasible in FE approach. 

Therefore, new techniques with improved computational efficiency and high accuracy are desired for investigating 

the material behavior of polymers at the microscale.  

In addition to FE and MD models, another method commonly adopted is the discrete material techniques, such 

as the spring-bead model, have been developed to study polymer material.
 [25-27]

 Underhill and Doyle developed a 

new method for generating coarse-grained models of polymers.
 [28]

 To represent the larger scale material behavior of 

polymers, spring-bead chains have been further crosslinked to generate a network model.
 [29]

 A spring-bead based 

network model that bridges nanoscale information to higher length scales, has been developed to model the 

structural epoxy embedded with TCE monomer.
 [8,30]

 The material was partitioned into discrete mass beads, which 

were then linked using linear springs at the microscale. By integrating multiple spring-bead models, a network 

model was constructed to represent the material properties at the mesoscale. A series of MD simulations were 

performed initially to define the spring stiffness in the statistical network model using a well-known MD simulation 

tool called LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator), and a force field for general 

organic materials called MMFF (Merck molecular force field).
 [31,32]

 Compared with the MD model, only the 

equivalent mechanical responses that significantly influence the damage initiation was captured in the spring-bead 

based network model. Additional material properties, such as thermal and chemical properties, were omitted in order 

to improve simulation efficiency. The developed multiscale methodology was demonstrated as being 

computationally efficient and able to provide a possible means to bridge various length scales (from 10 nm in MD 

simulation to 10 mm in FE model) without significant loss of accuracy.  In this paper, the statistical network model 

is further investigated to understand the effects of the model parameters on material response and damage in the 

TCE embedded polymer. The model is also used to develop a relationship between mechanical strain and 

experimentally observed fluorescence, with damage growth in the smart polymer under multiaxial loading. 
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In a crosslinked network model, material performance is affected by parameters, such as crosslinking degree, 

chain flexibility and chain lengths.
 [33-35]

 Among all variabilities, crosslinking degree, which represents the degree of 

microscopic crosslinked covalent bonds, is considered as one of the major effects on the mechanical properties of 

polymers.
 [33, 36-38]

 Urbaczewski-Espuche et al. developed a crosslinked network model and studied the influence of 

the crosslinking degree on the mechanical properties of epoxy.
 [39]

 The results showed that the mechanical properties 

including Young’s modulus, ultrasonic modulus, thermomechanical relaxation, and plastic behaviors are all affected 

by crosslinking degree. Svaneborg et al. investigated the effect of microscopic disorder on the mechanical response 

of network models with the same crosslinking degree.
 [40]

 They concluded that the heterogeneities in the randomly 

generated crosslinked network models cause significant differences in the localization of monomers. An important 

objective of this work was to understand the microscopic performance of smart polymeric material through a 

parametric study of the network model. A series of simulations were performed to compare the effects of the 

crosslinking degree on the mechanical response, such as strain distribution. The knowledge obtained was important 

for enhancing material performance, and for methods required for controlling crosslinking degree during the 

manufacturing process. In addition, this study led to a preliminary investigation for evaluating damage accumulation 

and growth under monotonic loading. 

In this paper a multiscale modeling approach is developed to simulate the mechanophore reactions of an epoxy 

based smart polymer system bridging between the nanoscale and micro/macroscales. In Section II, the developed 

spring-bead network model is introduced in details. The parametric study of the spring-bead model is discussed in 

Section III. The multiscale network model is presented in Section IV. The comparison of the experimental validation 

of the simulated damage is shown in Section V.  

II. Development of spring-bead based network model  

Zhang and Chattopadhyay recently developed a novel multiscale model that can characterize the material 

behavior of the crosslinked polymer.
 [30]

 The schematic of the multiscale approach adopted in this work is shown in 

figure 1. A brief description of the model is presented here as a comprehensive overview. At the microscale, a 

spring-bead model was used to capture the mechanical response of a crosslinked cluster of polymer chains. MD 

simulations were performed to provide local material properties represented by springs. At the mesoscale, the 

network model consisting of a series of springs and beads was developed to represent larger scale crosslinked 

polymer chains and for capturing the mechanical responses. Mechanical equivalence optimization was then 

implemented to identify the relationship between the crosslinking degree and its corresponding representative spring 

stiffness in the network model. This network model was capable of bridging the high accuracy MD model at the 

microscale and the computationally efficient FE model at the macroscale, serving as a simplified mechanical 

equivalent of MD models with significant reduction in computational effort.  

 
Figure 1. Modeling of smart polymer materials at the microscale, mesoscale, and macroscale. 

 

The multiscale approach developed in this paper was as follows: First, the material behavior of the 

heterogeneous crosslinked microstructure was determined using MD simulation. Di-Glycidyl Ether of Bisphenol F 

(DGEBF) and Di-Ethylene Tri-Amine (DETA), respectively, were used for the molecular structures of the epoxy 

resin and the hardener that form the polymer. In order to capture the variability in the crosslinking degree and the 

mechanical properties of the polymer system, a statistical approach was used, whereby a representative volume 
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element (RVE) model was constructed with molecules of the resin, hardener, and smart material, which were 

randomly distributed in the initial configuration (see figure 2). The weight percentages of the components in this 

smart polymer were 70.9% for DEGBF, 19.1% for DETA, and 10.0% for TCE. In the crosslinked polymer material, 

the crosslinking degree, which is defined as the percentage of actual crosslinked covalent bonds over all potential 

crosslinked bonds, significantly influences the mechanical properties at the microscale. It is important to accurately 

capture the crosslinking degree using MD simulations. The crosslinking degree can be defined in Eq. (1): 

    
       
      

 (1) 

where   is the crosslinking degree and         and        are the number of the actual and all potential crosslinked 

covalent bonds in the same zone at the microscale, respectively. In this approach, a total of 500 MD simulations 

were performed to represent the crosslinking degree of the target system, each with the same molecules (42,350 

atoms in each RVE) but randomly generated initial configuration (different initial positions). The size of RVE 

models was 14nm × 14nm × 14nm. After performing energy minimization based on the conjugate gradient 

algorithm to avoid undesired repulsive forces between atoms, iso-baric/iso-thermal (NPT) ensemble simulations was 

conducted to equilibrate each RVE at standard room condition (300K and 1atm). Periodic boundary conditions 

(PBC) were applied to the boundaries of the RVE. The equilibrated RVE was cured using a bond formation 

command in LAMMPS with a cut-off radius of 4.0 Angstroms; this cut-off radius was selected because it is more 

than twice the length of a carbon-nitrogen covalent bond. Based on the simulation results there was a quasi-normal 

distribution for the crosslinking degrees, of which the range was between 40% and 65% and the average value was 

52.72% (see figure 3). MD simulations were further performed on the crosslinked polymeric systems to obtain the 

mechanical responses (tensile, compressive, and shear moduli) associated with variable crosslinking degrees. The 

moduli can be described as functions of the crosslinking degree. These results were used to construct the spring-

bead based network model.  

 

Figure 2. RVE model of smart polymer; comprises epoxy resin, hardener, and smart material (grey, cyan, blue, red 

sphere represent hydrogen, carbon, oxygen, and nitrogen atoms, respectively). 

The next step was to develop a spring-bead based network model to characterize the material behavior of a 

crosslinked cluster of polymer chains with inputs from MD simulations.  In the spring-bead model (see figure 1) 

each of the two beads served as half of the bond cluster mass; the linear spring was used to represent the elastic 

mechanical response (tensile and compressive) of the bond cluster. Variable spring stiffness (ratio of force to 

relative deformation) was used to represent bond clusters with different crosslinking degrees. To represent larger 

scale material behavior, a network model consisting of a series of spring-bead models was developed (see figure 1). 

A set of network models with different combination methods was generated. The “8 neighbor based” network model 

was then found to be optimal having structural stability, good representation of isotropic property, and high 

computational efficiency.
 [30]

 Therefore, in this paper, all parametric studies and analyses were performed using the 8 

neighbor based network model.  
Mechanical equivalence optimization was implemented to integrate the mechanical responses from the MD 

simulations and the network model. A multiobjective optimization technique was used to establish a relation 

between the local crosslinking degree and the associated representative spring stiffness in the network model. 
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Further details of the multiscale modeling approach of the smart polymer material can be found in the authors’ 

previous work.
 [30]

 

 
Figure 3. Statistical distribution of crossing-linking degrees based on MD simulation. 

 

Figure 4. Polynomial fitting curve of spring stiffness based on optimization results. 

III. Parametric study of spring-bead based network model 

A. Homogeneous and heterogeneous distribution of crosslinking degree 
In this section, a parametric study of the network model is conducted to understand the effect of the most 

critical microscopic variable, the crosslinking degree, which influences the distribution of stress, strain, strain 

energy, etc. The network model was constructed by discrete beads and crosslinked springs instead of continuous 

material. Therefore, the traditional strain concept was not applicable. A new definition of strain is required prior to 

the parametric study and analyses of the network model. In traditional continuous materials strain is defined as a 

geometrical measure of deformation representing the relative displacement between particles in a material body. In 

the spring-bead based network model the “equivalent strain” in one spring is defined as the deformation in terms of 

original and relative length of this spring, as shown in Eq. (2): 
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‖ 

(2) 

where    is the original length of the ith spring,     is the variation of the spring length, and    is the equivalent 

strain in the spring. In the 8 neighbor based network model, each bead is linked with eight neighbor beads by springs 

(see figure 1 and figure 5). The black solid lines and yellow circles in figure 5 represent the springs and beads, 

respectively. To evaluate material deformation in a zone, the average equivalent strain must be defined in terms of 

relative springs within the same zone. The average equivalent strain in the bead-centered area (the square zone with 

grey color in figure 5) is defined as the averaged value of all strain in the eight neighbor springs, which are then lin 

to the centered bead. For the 8 neighbor based network model, the average equivalent strain in the grey area is 

defined in Eq. (3): 

 

 ̅  
 

 
 ∑   

 

   

 

(3) 

where    is the equivalent strain in the ith spring,   ̅is the average equivalent strain in the bead-centered subzone, and 

N is the number of springs in this subzone. N = 8 for the 8 neighbor based network model. 

 

Figure 5. Beads and springs in the 8 neighbor based network model. 

The influence of heterogeneous distribution of the crosslinking degree on the mechanical response is studied. A 

set of four network models (size: 1mm × 1mm) were generated. There are 100 (10 × 10) subzones in each of the 

four network models. As shown in figure 6(a), the schematic network model consists of two subzones (A and B) 

representing two different crosslinking degrees. The degree of heterogeneity, which is defined as the difference in 

crosslinking degree between neighbor subzones, for all four network models is present in Table 1.  It can be seen 

that although the average crosslinking degree value remains the same value (53%), the degree of heterogeneity 

increases gradually from model 1 to model 4. Note that the crosslinking degree value is directly related to the 

material’s properties, which are represented by spring stiffness. The spring stiffness in subzones A and B, for all 

four models, is shown in figure 6(b). The increasing difference in spring stiffness between neighbor subzones also 

indicates that the material properties change from homogeneous to heterogeneous. 

Table 1. Crosslinking degree and degree of heterogeneity in the four network models 

 crosslinking degree in A crosslinking degree in B heterogeneous degree 

Model 1 53% 53% 0 

Model 2 56% 50% 6% 

Model 3 59% 47% 12% 

Model 4 62% 44% 18% 
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a) b)  

Figure 6. a) Specific network model to study effect of degree of heterogeneity and b) spring stiffness in subzone A 

and B of the network model 1, 2, 3 and 4. 

Simulations were conducted using uniaxial tensile load applied to all four network models. The loading is strain 

controlled and the maximum loading strain is 5%. The equivalent strain is used to evaluate the mechanical responses 

in the network models. The simulation results are shown in Table 2 and figure 7. In all four models, the average 

equivalent strain is nearly the same. It can be observed that the difference between the maximum and the minimum 

equivalent strain in the network models is also influenced by the degree of heterogeneity (see Table 2). The 

difference increases with degree of heterogeneity (see figure 7). 

 
Figure 7. The difference in neighbor crosslinking degree influences the difference between maximum and minimum 

equivalent strain in the network model. 

Thus, the parametric study involving heterogeneous crosslinking degree distribution revealed that a larger 

degree of heterogeneity leads to a higher difference of equivalent strain. It must be noted that in brittle materials, 

strain gradient plays an important role in singular or non-singular stress concentrations and local damage.
 [41]

 It has 

been found that a higher local strain gradient can accelerate damage initiation.
 [42,43]

 From the simulations and 

analyses of results, the increasing degree of heterogeneity can increase the strain gradient, which leads to a higher 

probability of damage evolution. These observations indicate that a reduction in the degree of heterogeneity can help 

to reduce the damage initiation.  
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Table 2. Equivalent strain in network models to study degree of heterogeneity effect 

 
Model 1 Model 2 Model 3 Model 4 

Average equivalent strain 0.0339 0.0339 0.0339 0.0338 

Maximum equivalent strain 0.0358 0.0357 0.0358 0.0361 

Minimum equivalent strain 0.0326 0.0320 0.0319 0.0319 

Difference between maximum and 

minimum equivalent strain 
8.93% 10.36% 10.89% 11.63% 

 

B. Homogeneous and statistical distribution of crosslinking degree 

At the microscale of the self-sensing smart polymer, the crosslinking degrees are statistically distributed. This is 

also the limitation of the traditional FE model, which is not capable of representing the crosslinked microstructure, 

thereby serving as motivation for the network model presented here. To represent the statistical distribution of 

crosslinking degrees at the microscale, a statistical network model is developed, as shown in figure 8(a). To validate 

the microstructural representation capability of the statistical network model, a homogeneous network model is 

constructed and compared with the statistical network model. All crosslinking degrees in the homogeneous network 

model are kept the same, as shown in figure 8(b). For both the statistical and the homogeneous network models, the 

same size and geometry as the model used in section III.A (10 × 10 subzones in 1mm × 1mm) is maintained. As 

shown in figure 8(a) and figure 8(b), the numbers in the variable subzones represent the corresponding local 

crosslinking degrees (unit: %). The weight percentage of the variable crosslinking degrees in the statistical network 

model is governed by the probability density function (PDF) obtained from the MD simulations (see figure 3). More 

details about the PDF of the crosslinking degrees can be found in the authors’ previous work.
 [30]

 For the 

homogeneous network model, uniform crosslinking degree, which is equal to the averaged value of all crosslinking 

degrees in the statistical network model, (52.72%) is used for all subzones. 

   
a) b) 

Figure 8. Crosslinking degree distribution in a) statistical network model and b) homogeneous network model 

(unit: %). 

Uniaxial tensile test is performed in both statistical and homogeneous network models. The loading is strain 

control and the maximum loading strain is 5%. The simulation results are shown in figure 9(a) and figure 9(b), 

which provide the equivalent strain distribution in the statistical and homogeneous network models, respectively. 

Results of the average, maximum and minimum equivalent strain in the statistical and homogeneous network 

models, are presented in Table 1. 

As shown in Table 3, the average values of equivalent strain in the statistical network model and the 

homogeneous network model are close. This implies that the overall mechanical response of the statistical network 

model corresponds well with the homogeneous model under monotonic loading. The difference between the 
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maximum and the minimum strain for statistical network model (10.36%) is greater than the corresponding value for 

homogeneous network model (8.40%). Based on the simulation results, a similar conclusion is obtained, as in 

section III.A. The statistical distribution of crosslinking degrees results in a larger distinguishable disorder in strain 

distribution indicating a high strain gradient. Consequently, compared with the homogeneous microstructure the 

statistical microstructure can lead to a higher damage initiation.  

  
a) b) 

Figure 9. Equivalent strain distribution in a) statistical network model and b) homogeneous network model. 

Table 3. Equivalent strain in statistical and homogeneous network models 

 Statistical Homogeneous 

Average equivalent strain 0.0338 0.0339 

Maximum equivalent strain 0.0357 0.0357 

Minimum equivalent strain 0.0320 0.0327 

Difference between maximum and 

minimum equivalent strain 
10.36% 8.40% 

C. Effect of spring length in network model 

As discussed earlier, the two steps in developing a network model are: i) designing the configuration variables 

including arrangement, spring size, and spring stiffness; ii) bridging MD simulation and network model using 

mechanical equivalence optimization. In the first step, the definition of spring stiffness is related to the spring length. 

In the second step, the mechanical equivalence provides the network model with the most proximate mechanical 

response of the MD simulation. Technically, the spring length has a negligible effect on the mechanical response of 

the network model due to the mechanical equivalence optimization conducted in the second step of the development 

of the network model. To understand the spring length effect on the material behavior representation, two network 

models with different spring lengths were generated. The sizes of the two network models were 8 μm × 8 μm and 1 

mm × 1 mm respectively, and the corresponding spring lengths in the two network models were 0.8 μm and 0.1 mm 

respectively. Based on the simulation results shown in Table 4, the material characteristics including tensile modulus, 

compressive modulus and shear modulus represented by the two network models are close (error is less than 1%), 

validating the hypothesis that there is negligible effect of spring length on the mechanical response of the network 

model. However, shorter spring lengths can capture mechanical responses at shorter length scales, and thereby 

enhance simulation accuracy. Additionally, corresponding computational efficiency is reduced because of the 

increased number of springs. Spring length, therefore, plays a similar role as that of mesh size in an FE model.   

 

Table 4. Mechanical properties in network models of different spring lengths. 

 Tensile Modulus Compressive Modulus Shear Modulus 

Network model of short 

springs (0.8 μm) 
1.778 GPa 1.752 GPa 0.502 GPa 

Network model of long 1.769 GPa 1.744 GPa 0.503 GPa 
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springs (0.1 mm) 

Error of mechanical 

properties 
0.51% 0.46% 0.20% 

IV. Multiscale integration based on a statistical network model 

A. Reliability of statistical network model 

A set of three meso statistical network models were constructed to validate the simulation accuracy (see figure 

10(b), figure 10(c) and figure 10(d)). For each the three network models, the same size and geometry as the model 

used in section III.A (10 × 10 subzones in 1mm × 1mm) is maintained. There are 121 beads, 220 short springs, and 

200 long springs in the 8 neighbors based network model. The lengths of the short and long springs in the network 

models are 0.1 mm and 0.1414 mm, respectively. The numbers shown in the square subzones in figure 10(b), figure 

10(c), and figure 10(d) represent the local crosslinking degrees. 

  

a) b) 

  

c) d) 

Figure 10. a) Probability distribution of crosslinking degree in the statistical network model, b) network model 1, 

c) network model 2, and d) network model 3. 

Simulations were conducted using uniaxial strain controlled tensile load; the maximum loading strain was 10%. 

The average equivalent strain in the three network models was calculated. It was observed that the average 

equivalent strain in the three statistical network models was very close and the error was less than 1% (see figure 

11). The results establish the validity and robustness of the representative models. It should be noted that the spring-
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bead based network model improves the computational efficiency significantly. For a similar uniaxial tensile loading 

simulation 20 hours of runtime is required using MD modeling whereas a network model completes the simulation 

in 4 minutes. The simulation efficiency is improved by 300 times using the network model.  

 

Figure 11. Average equivalent strain in three statistical network models vs. loading strain. 

B. Local strain and crosslinking degree in the network model  

Simulations were conducted with the statistical network model to study the relation between local strain and 

crosslinking degree using biaxial strain controlled tensile load; the maximum loading strain was 10% in both 

directions. Results are presented for the statistical model 1, shown in figure 12(a). The distribution of equivalent 

strain is shown in figure 12(b). There is an obvious relation between local strain and crosslinking degree: high strain 

concentration (the red band in figure 12(b)) occurs mostly where there is low crosslinking degree (the red square 

zone in figure 12(a)) especially where the crosslinking degree is below 52.72% (average crosslinking degree in the 

model). These results are physically meaningful; lower material stiffness leads to a higher strain under the same 

external loads. The locations with high strain concentration also correlate to potential local defects. The damage 

evaluation based on MD & network model simulations will be discussed in section V. 

 
 

a) b) 

Figure 12. Simulation of statistical network model under biaxial tensile load: a) crosslinking degree distribution in 

network model and b) distribution of equivalent strain in network model. 

C. Comparison between network model and FE model 

The spring-bead based network model was developed in order to represent the smart polymer at the mesoscale. 

To capture the material behavior from mesoscale to macroscale, a coupled network and an FE model are required. 

The meso network model is explicitly modeled and embedded at the hot spot within a FE mesh of the structure so 
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that different length scales can be bridged. A notched dog bone specimen was designed for simulation under 

uniaxial tensile loads. The dimensions of the notched dog bone specimen are shown in figure 13. The network 

model and FE model were used concurrently to represent the material properties at the notch tip and the remaining 

section, respectively (see figure 14(a)). An FE model without embedded springs and beads was developed (see 

figure 14(b)). To validate the network model based multiscale modeling approach two measures were considered: 

hot spot location and far field distributions. To ensure the network model is representative of the bulk material and 

mechanical responses both measures must remain consistent with or without a network model implemented in the 

FE model. 

 
Figure 13. Dimensional drawing of dog bone specimen for simulation. 

  
a) b) 

Figure 14. Strain distribution in the hot spot using a) network model and b) FE model. 

Comparison of the strain distributions obtained using the two models are shown in figure 14. In both, the 

network model (figure 14(a)) and FE model (figure 14(b)), the high strain concentrations are observed near the 

notch tip. However, the strain distribution in the network model shows larger variability due to the variability in the 

crosslinking degree. The local strain distribution obtained using the network model is expected to provide a more 

accurate estimate of the local defects at the microscale. figure 15 shows the comparison of strain distributions 

outside the hot spots in the simulations, with and without a network model. A good correlation can be observed 

between the network model and the FE model, validating the accuracy of the network model with the FE model 

outside of the hot spot (notch tip).  
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a) b) 

Figure 15. Strain distribution within notched specimen a) with network model and b) without network 

model. 

V. Damage estimation using statistical network model 

A. Evaluation of self-sensing intensity of a smart polymer 

In this research TCEs were used as the stress-sensing material to detect the defects in the smart polymer. The 

epoxy resin is brittle with a propensity to crack if exposed to sufficient deformation, leading to irreversible damage 

in the form of micro cracking. In the high strain concentration locations of the material the force can be transferred 

through the bulk material to individual polymer chains, and then to the cleavable bonds on the mechanophore units. 

The local deformation in these regions exceeds the critical limitation of the polymer chains and results in the 

permanent deformation under rupture of crosslinked bonds.
 [44]

 This early damage precursor can be detected through 

the employment of TCE-containing polymers. Note that the fluorescence response of the mechanophore results from 

the rupture of the covalent bonds in cyclobutane. It is also related to the onset of permanent strain (deformation) of 

the bonds at the microscale. The fluorescence intensity is also directly dependent on the density of the breaking 

bonds. The novel spring-bead based network model representing this TCE embedded polymer is also required to 

simulate this self-sensing feature.  Therefore, there is a correlation between the local strain and the color changing 

phenomena. This relation between fluorescence intensity in the experiments and the mechanical response in the 

simulation using the network model was studied. 

Uniaxial compressive tests were performed to obtain the fluorescence intensities of the smart material under 

different loads. A Test Resources Electromechanical System (with the maximum loading capability 4.4 kN) was 

used to conduct the compressive tests; stress-strain curves were also obtained. The tests were performed with 

displacement control in a longitudinal direction at a loading rate of 1 mm/min. The maximum loading strain was 

10% to ensure that the material deformation remained in the elastic range. To monitor the fluorescence from defects 

in the polymer, the cubic samples of polymer blends were compressed to different strains and observed under the 

fluorescence microscope (Nikon Elipse TE300 inverted video microscope) by exposure to 330-380 nm UV light. An 

image processing program, ImageJ, was used to process the fluorescent micrographs and capture the fluorescence 

intensities. The micrographs were taken at the same location of the specimen surface, with the size of 427 μm × 325 

μm. The integrated fluorescence intensity was calculated through the summation of all pixel values in the 

micrograph. A quasi-linear relation was observed between the fluorescence intensity density and the loading strain 

(see figure 16(a)). Figure 16(b) and figure16(c) show the microscopic images of the specimen surface and the 

corresponding fluorescence responses when the loading strain is 4% and 6%, respectively. The relation between 

fluorescence intensity density and the loading strain can be described using a linear fit: 

 
                 

(4) 
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where I represents the observed fluorescence intensity density, and   is the loading strain. 

 

 

b) 

 

a) c) 

Figure 16. Fluorescence observation of self-sensing smart polymer. a) Integrated intensity density vs. loading 

strain in fluorescence observation, b) Microscopic images and detected fluorescence of specimen at 4% strain, 

and c) Microscopic images and detected fluorescence of specimen at 6% strain. 

To capture the self-sensing performance, simulation was performed using the statistical network model 1, as 

shown in figure 10(b). Uniaxial compressive loads of the same magnitude as that of experiments were applied to the 

network model. The equivalent strain in the network model was calculated, which shows a quasi-linear relation 

between the average equivalent strain and the loading strain (figure 17(a)). The distribution of equivalent strain in 

the network model under different loading strain can be seen in figure 17(b)-(e). The simulation result shows that the 

strain distribution is influenced by the local crosslinking degree. Also, both local and average equivalent strain 

increases linearly with loading. A linear fit is used to describe the relation between average equivalent strain and the 

global loading strain: 

 
 ̅                 

(5) 

where   is the loading strain, and  ̅ is the average equivalent strain in the statistical network model. As shown in 

Eqs. 4 and 5, both the fluorescence intensity and the strain in the network model exhibit a quasi-linear relationship 

with respect to the loading strain (see figure 16(a) and figure 17(a)). A function describing the relation between 

average strain  ̅ in the network model and fluorescence intensity density I from experimental observation can be 

derived by combining Eqs. (4) and (5): 

 
  169.09 ̅+123.17 

(6) 

Thus, the average equivalent strain from the network model based simulation can be used to describe the observed 

fluorescence intensity of the TCE-embedded polymer. 

 

These results indicate that the average equivalent strain obtained from the network model can be used as an 

index to describe the self-sensing fluorescence intensity. This approach of evaluating fluorescence intensity 

numerically using the high efficiency network model can reduce the experimental cost significantly.  
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b) c) 

  
a) d) e) 

Figure 17. Network model based simulation results: a) Average equivalent strain in network model; and equivalent 

strain distribution at different global strain at b) 3%, c) 5%, d) 8%, and e) 10%. 

B. Strain based damage evaluation to predict failure 

In the MD simulation uniaxial tensile tests were implemented on a series of RVE models with different 

crosslinking degrees. The RVE size, molecular constituents and MD simulation conditions have been discussed in 

section II. The simulation results showed that the stress (load) in the RVE model increased in a fluctuating curve 

with strain (see figure 18). One important conclusion from the MD results is that the first significant kink of the 

stress-strain curves takes place where the strain value is around 8% for a range of crosslinking degrees. This 

phenomenon indicates that there is a notable microstructural defect resulting from the rupture of polymer chains at 

the kink point. The relationship between the mechanical response at the kink point and the damage initiation has also 

been observed in experiments and simulations conducted by other researchers. Kingsbury et al. obtained the 

threshold kink point of the stress-strain curve of mechanophore crosslinked polymer in their experiments.
4
 Their 

results also corresponded with the onset of the mechanochemical activation in the fluorescence observation. 

Silberstein et al. found a non-equilibrium state resulting in local force fluctuations in glassy polymers.
5
 The MD 

simulation results showed good agreement between the onset of strain softening (first kink) and the onset of 

mechanophore activation. 

 
Figure 18. Tensile mechanical responses of smart polymer at variable crosslinking degrees based on the MD 

simulation.  



Smart Materials and Structures 

 
 

 

16 

Based on the damage analysis in the MD simulation, there are micro cracks when the local strain is 8%, 

associated with the observed initial kink point of the stress-strain curve. Next, simulations were conducted using the 

network model to observe the strain evolution. Statistical network model 1 (see figure 10(b)) was used under a 

uniaxial tensile load. The equivalent strain distribution from the simulation results is shown in figure 19. It is 

observed that the local equivalent strain increases with loading. The loading strain implemented on the network 

model is 11.2%, when the maximum local equivalent strain exceeds 8%, indicating permanent tensile strain for this 

smart material.  

    

a) b) c) d) 

Figure 19. Equivalent strain distribution in statistical network model 1 at different loading strain: a) 5%, b) 8%, c) 

10%, and d) 11%. 

Experiments were conducted to validate the damage evaluation phenomenon of the smart polymer. A set of 

three uniaxial tensile tests were conducted. The Test Resources Electromechanical System (with the maximum 

loading capability 4.4 kN) was also used to conduct the tensile tests. From the experimental results the material 

showed elastic behavior until failure (see figure 20). The average permanent tensile strain was 10.6% based on 

experimental observation. The error of the permanent tensile strain between experiment and simulation was 5.36%. 

This statistical network model, therefore, was capable of evaluating the damage initiation in the polymer material. 

 

Figure 20. Experimental results of tensile tests. 

VI. Conclusion 

A multiscale approach is developed here to model the mechanical properties of a novel mechanophore 

crosslinked polymer that is capable of detecting damage precursor. A spring-bead based network model is developed 

to represent the self-sensing smart polymeric material. Three different length scales are considered. At the 

microscale, the spring-bead model is constructed based on the MD simulation results to represent crosslinked 

polymer chains. At the mesoscale, a network model is developed to capture the statistical material properties. At the 

macroscale, a coupled network and the FE model is constructed to represent the mechanical response in the 

structure. A series of parametric studies are performed to understand the microstructural behavior of the smart 

material. The results show that the local crosslinking degree has a significant effect on the mechanical properties of 

the material. A high crosslinking degree value leads to low local strain, which demonstrates stronger material 
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performance. A larger difference between neighbor crosslinking degrees can increase the strain gradient, which then 

leads to higher local defects. Results from the simulations and experiments were combined to establish a correlation 

between the mechanophore fluorescence and local strain. A linear relation between average strain in the network 

model and fluorescence intensity density in the experimental observation is also obtained. The computationally 

efficient statistical network model is seen as capable of describing the self-sensing phenomenon using the 

relationship between local equivalent strain in the network model and the observed fluorescence intensity. The 

statistical network model is also used to estimate the damage initiation by analyzing the MD and network simulation 

results. Good agreement was observed between simulation and experiment. Although the thermal and chemical 

properties of the mechanophore are not addressed in the network model to improve simulation efficiency, this study 

shows that the statistical network model can successfully capture the dynamic behavior of the self-sensing smart 

polymer material. 
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