
 1 

Author: Jonathan Russo 

Chair: Joshua Abbott 

Committee: Christa Brelsford, Kelli Larson 

 

Predicting Participation in the Las Vegas Water Smart Landscaping (WSL) 

Program 

Abstract: 

 As arid cities’ water scarcity concerns grow, so does the importance of residential 

water conservation.  Understanding the drivers of participation in water conservation 

programs can aid policymakers in designing programs that achieve conservation and 

enrollment targets while achieving cost-effectiveness and distributional goals. In this 

study I identify and analyze the characteristics that drive participation in the Southern 

Nevada Water Authority’s Water Smart Landscaping rebate program – a program that 

pays homeowners to replace their grass lawns with xeric landscaping – and how those 

characteristics change over time as rebate values and water prices vary.  

 In order to determine what characteristics influence participation in this program 

I gathered data from multiple sources.  I use a panel dataset of household water 

consumption that spans 12 years of approximately 300,000 homes.  I merged this dataset 

with home structural characteristics, geographical, and demographic context.  I then use 

these characteristics in a linear probability model, with school enrollment zone fixed 

effects to determine their influence on a household’s probability of participation.  School 

zones are used to control for unobserved characteristics, such as demographics, which are 
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not at a household level. I then utilize these school zone fixed effects in a 2nd stage 

regression to decompose these elements and analyze their effect on participation. 

I find that a household’s water costs, as reflected in the marginal price faced in the 

summer and the differential between summer and winter water bills, as well as yard size 

are primary factors that influence participation.  I also show that changes in rebate value 

and water rates can affect different types of households.  There is also evidence to 

support that neighborhood characteristics affect a household’s likelihood of participating.   
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Predicting Participation in the Las Vegas Water Smart Landscaping (WSL) 

Program 

1. Introduction: 

 Water scarcity has long been a major concern for cities in arid regions.  In the 

face of limited water resources, these cities have two options to ensure water for their 

communities.  One way is to increase the supply by acquiring water rights.  For instance, 

Nevada has water-banking agreements with both Arizona and the Metropolitan District of 

Southern California (Harrison, 2009).  In these types of agreements one entity sells their 

unused water to the other, normally with some drought restrictions to protect the seller.  

However, these types of interstate agreements are rare, as are instate acquisitions of new 

water sources.  This is mainly because the transfer of water from the new source can 

require extensive funding for conveyance infrastructure on top of the costs of locating the 

new source and the transaction costs of negotiating an agreement.   

A second, often preferred, option is to extend the current supply through water 

conservation using price and non-price approaches. While there is a long-standing debate 

as to which of these approaches yields the best outcome, there is still no consensus on 

which is better at achieving water conservation.  Many economists argue the most 

efficient approach is to use prices to stimulate water conservation; however, raising 

prices can have undesirable distributional consequences and be politically difficult to 

achieve.  Non-price policies, such as water-use restrictions, water conservation 

technology adoption, and educational programs, are often the favored choice of water and 

electric utilities, but may fall short in terms of their conservation goals and economic 

cost-effectiveness.  For instance, rebate programs for durable goods can have so-called 
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“additionality problems” in which many of the people who participate would have 

replaced the good even in the absence of the rebate (Olmstead & Stavins, 2009; Bennear 

et al., 2013). Paying households to undertake retrofits that they would have done anyway 

obviously compromises the cost-effectiveness of such programs. Given these challenges, 

what should an arid city do to promote water conservation amongst its residents? 

This question has confronted water managers in the Las Vegas area for decades.  

The city almost reached the limits of its water supply in the mid-1990s, which prompted 

the creation of the Southern Nevada Water Authority (SNWA). The SNWA is now 

considered by many to be a model for best water management practices.  It has created a 

plethora of programs targeted at water conservation utilizing both price and non-price 

approaches.  Their utilization of the wastewater management system has effectively 

conserved indoor water use to the point where the majority of the efforts are now focused 

on outdoor water use.  The Water Smart Landscaping (WSL) program is one of the larger 

and more notable programs that they have created aimed at outdoor water use.  It is also 

the focal point of this study. 

 The WSL program, informally known as “Cash for Grass,” is a voluntary program 

that offers a rebate for the replacement of grass lawns for xeric landscaping.  The purpose 

of this study is to identify what observable structural, social and economic factors 

affected household’s choices to self-select into the program.  I then analyze these 

characteristics to see which are the most influential on participation and affected 

participation rates.  This is done in order to get a better understanding of what types of 

households are being motivated to enroll and how value changes in water price and the 

rebate itself altered the uptake rate of the program and the type of household that was 
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incentivized.  It also gives the ability to understand the spatial footprint of the uptake of 

the program across the city and how this uptake correlates with Census-level 

sociodemographic variables.  Understanding these factors illuminates the sorts of users 

attracted to the WSL rebate program.  It also gives insights into how the design of these 

incentives can be potentially altered to improve program targeting. 

To accomplish this I use a variety of data sources that capture aspects of water use 

and the magnitude of the water bill from household level billing data, structural 

characteristics of homes (i.e. bedrooms, pool), geographic context (i.e. proximity to 

parks), and demographic characteristics (i.e. race, income).  These characteristics are then 

used in a linear probability model (LPM) to measure how they affect the probability of a 

household enrolling in the program.  Since demographic information isn’t available at a 

household level I use elementary school enrollment zones “neighborhoods”, as a spatial 

fixed effect.  School zones are chosen instead of block group units from the Census, due 

to the small amount of participants in WSL.   By using the geographically larger school 

zones I minimize the amount of neighborhood units that did not have a participant.  It 

also allows for a finer degree of econometric control over those unobserved features. I 

then utilize these school zone fixed-effects in a second stage of the model to determine 

how these elements affect a household’s probability of enrollment.   

I also analyze the rebate’s effect and how this changed over time, rebate dummy 

variables are utilized in conjunction with time variables.  I use a flexible spline function 

of time along with dummy variables for discrete changes in rebate prices and terms to 

better understand how the relation between time and rebate value affected participation. 

These changes of value over time also allow me to examine the differences in participants 
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who chose to enroll at different rebate values.  To evaluate these changes, participants are 

grouped into 4 cohorts based on the rebate value that was active at the time of their 

enrollment.  From there I use summary statistics as well, as well as Kruskal-Wallis tests, 

to compare cohorts and identified characteristic changes that differentiate one cohort 

from another. 

Understanding the drivers of households’ participation in water-saving rebate 

programs and how variation in the incentives alters both the rate of composition of 

participants provides the knowledge-base for the creation of better policies.  In an arid 

region, effective water conservation measures are integral to sustainable water practices.   

It is important to not only understand how efficient a policy is at conserving water, but 

how that policy can be implemented to achieve higher rates of participation.   

 

 

Figure 1 Illustrates the overall percentage of households that participated in the WSL program within 
each elementary school zone by 2012 
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2. The Oasis Runs Dry: A Brief History of Water in Las Vegas: 

The Las Vegas area has long been seen as an oasis in the desert.  Even in the early 

1900s its numerous natural springs and close proximity to two rivers provided an 

attractive location for the railroad to create a train station.   The station was the start of 

Las Vegas and its growing community, but the population boom that was to come was 

never expected.  This lack of foresight is most evident in Nevada’s 300,000 acre-feet 

allotment of water per year in the Colorado River Compact (CRC).  At the time of the 

agreement Nevada had a small population that was easily supported by its instate water 

resources.  It also, at the time, had no way to transport the water from the Colorado River 

to Las Vegas.  This led to Nevada accepting the smallest allotment of any of the Compact 

states, since the region’s leaders never expected the population increase that was to come. 

With the addition of the mega-casino in the early 1970s Las Vegas became one of 

the fastest growing cities in the United States. Nevada small allotment under the CRC 

became a liability as Las Vegas began closing in on the supply’s limit (Harrison, 2009). 

Water Resources Management Incorporated, an outside consultancy agency, was 

contracted to assess the water management issues of the area. In 1991, they released their 

results, which concluded that the area would reach its water supply limits by the mid-

1990s. In order to deal with the water shortage five water utility companies and two water 

waste management companies joined together to form one agency. In 1991 the Southern 

Nevada Water Authority (SNWA) was established. 

The SNWA initiated numerous water conservation programs and practices, none 

more important than their utilization of the wastewater treatment system.  They 
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successfully negotiated with the US Bureau of Reclamation to take advantage of the 

return flow credit system that Arizona v California had set a precedent for previously 

(Harrison, 2014).   The return-flow credits allow treated wastewater to be returned to the 

Colorado River system and credits the state’s allotment with the amount of water 

returned.  Consequently, almost all of Las Vegas’ indoor water use that enters the 

treatment system is reclaimed. This outcome has two major benefits. First, it increases the 

water supply because any water returned to Lake Mead does not count against Nevada’s 

water allotment from the CRC. Second, since most indoor water is ultimately recycled it 

incentivized the SNWA to focus their efforts on outdoor water conservation.  

 SNWA created a mixture of regulatory, educational, and incentive based 

programs aimed at reducing outdoor water use.  For instance, water pricing has been 

employed using a tiered water price structure with increasing rates to promote lower 

consumption.  Wastewater enforcement has been combined with increased fines to deter 

poor water management practices.  The SNWA hosts numerous events and has created 

multiple publications all targeted at educating the public on conservation efforts and 

current drought plans.  Rebates are offered for pool covers, smart irrigation clocks, and 

rain sensors.  

SNWA also utilized a block pricing approach for water (see Figure 3).  From 

1996 -2003 price tiers were set at: first 5 kgal, next 10 kgal, next 25 kgal, and over 40 

kgal. Post-2003 the height and placement of tiers changed with the new tiers set with 

increased pricing at: first 5 kgal ($.98 - $1.16), next 5 kgal ($1.42 - $2.08), next 10 kgal 

($1.42 - $3.09), and over 20 kgal ($1.92 - $4.58).  This lowered some of the volumetric 

breakpoints from the previous rate structure and implemented significant increases in 
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price, mainly in the higher tiers.  Prices were also raised in Feb. 2007 and once again in 

May 2008, similarly to the increase in 2003 the largest raises are on the upper tiers. 

 

Figure 2 Value of the rebate offered based on year.  Blue represents the value and time frame of Cohort 1 
or participants who enrolled at the value. Similarly, red represents cohort 2, green represents cohort 3, 
and cohort 4 is orange. 

 

The WSL program was initiated in 1996 as a pilot program offering a cash rebate 

for the replacement of grass with xeric landscaping. The program was opened up to all 

residents in 2000. While the rebates are offered to both commercial and residential 

landowners, this study will focus only on the residential participants, specifically single-

family households.  The rebate varied over time between $.50 and $2.00 per square foot.  

This study evaluates the program over a twelve-year period from 2000 to 2012 (Figure 2 

above).  During this time period, the only significant change to the program were the 

length of time the landscape conversion needed to be kept and rebate price per square 

foot.  At the program’s inception, there was durability requirement.  This changed in 

2003, when conversions were required to be held for 5 years and again in 2004 when the 

term was raised to 10 years or until the property was sold.  In 2009 WSL conversions to 
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xeric landscaping were required to be maintained in perpetuity, regardless of the sale of 

the home.   

 In order to enroll in the program participants must first file an application.  The 

yard is then assessed to confirm the land is eligible.  Once approved a minimum 

conversion of 50% of lawn must be replaced with either xeric landscaping or permeable 

artificial turf.  A final assessment of the home then occurs to verify the conversion has 

taken place and meets all requirements before payment can be given.  The time it takes to 

complete this process is approximately 5 months on average (Brelsford & Abbott, 

2017a).  Currently there is a maximum conversion allowance of 5000 ft2 per year, with 

no property receiving a rebate that exceeds $300,000 in a given year.  

3. Literature Review/ Research Gap: 

A number of studies have examined conservation programs that offer a rebate for 

a durable good, such as and including the “Cash for Grass” WSL program in Las Vegas 

(Brelsford & Abbott, 2017a; Sovocol et al., 2006; Bennear et al., 2013; Alcott, 2011).  

From an economic perspective, much of this research has fallen into two major 

categories. First, many papers examine the effectiveness of policies in achieving 

reductions in conservation of a resource (Brelsford & Abbott, 2017a; Alcott, 2011; Datta 

& Filippini, 2016; Datta & Gulati, 2014; Davis et al., 2014). Others examine the cost-

effectiveness of a policy or set of policies in achieving their conservation goals – 

potentially comparing the relative economic efficiency of alternative approaches  

(Bennear et al., 2013; Brelsford & Abbott, 2017b).   The results of these studies, in many 

instances, contribute to the debate of the efficiency of price versus non-price approaches.  

Many studies show that utilizing price to signal scarcity creates a more efficient outcome 
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than non-price approaches (Olmstead, 2010; Grafton & Ward, 2008; Mansur & 

Olmstead, 2012).  However, the cost of the reduction in consumption is often found to be 

distributed unevenly and is paid mostly by low-income households.  This leads to equity 

issues and is one of the main reasons non-price policies are more common when it comes 

water demand management.  Another issue is raising rates is not politically palatable in 

many areas.  Low water prices are popular, regardless of drought conditions, which make 

raising prices an uphill political battle (Olmstead & Stavins, 2009).    

 There is a substantial amount of research demonstrating that voluntary rebate 

policies are inefficient relative to a direct pricing of water or energy consumption 

(Bennear et al., 2013; Olmstead, 2010, Timmins, 2003).  This is especially true when the 

subsidies are given in return for replacing durable goods, such as retrofitting old 

technology with new more efficient technology (Bennear et al., 2013; Davis et al., 2014). 

The additionality of the rebates in these programs tends to be small.  This is due to the 

overall expected benefit of the rebate being minimized, since many participants would 

have made the replacement with a smaller rebate and in some cases with no rebate at all 

(Boomhower & Davis, 2014).  There is also the concern of the “rebound effect” 

occurring after the change has been made eliminating part of the expected benefits 

(Gillingham et al., 2015).  This happens when behavioral changes occur in response to 

expected gains from using new technology that is more efficient. 

Unlike many conservation programs that offer rebates for replacing durable 

goods, the WSL program doesn’t suffer the same deficiencies.  While irrigation systems 

do require replacement at some point, this does not require a complete landscape change 

and there are no specific time horizons to replace lawns.  “Therefore, compared to many 
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other subsidies for the replacement of durable goods, there is little reason to suspect that 

WSL-rewarded landscape renovations would have occurred in the absence of the 

subsidy” (Brelsford & Abbott, 2017a).   There is also little evidence to suggest any 

significant “rebound effect” from the program (Brelsford & Abbott, 2017a).  These 

characteristics are uncommon in rebate programs and they contribute to the uniqueness of 

the WSL program.   

The overall size of the WSL program is yet another aspect that adds to its rarity 

within conservation programs.  This study consists of close to 300,000 households over a 

span of twelve years with monthly observations for water use on each individual 

residence.  This creates a larger sample size over a longer period of time at a higher 

resolution than most studies on comparable programs.  At its inception, WSL program 

was the first of its kind.  Since its creation numerous other incentive based turf removal 

programs have popped up in other cities located in arid regions across the southwest. 

 One place that the literature falls short is in studies that identify characteristics 

that influence participation.  Much of the existing literature in this area looks at programs 

that involve different types of resources that are not directly comparable to water, such as 

land conservation (Moon, 2013; Sorice et al., 2017; Drescher et al., 2017).  There is a 

scarce amount of research that examines this aspect of water and electricity rebate 

programs.  Understanding which factors affect the likelihood of participation and what 

type of effect they have is a mostly overlooked facet in the research. 

Of the literature that does exist, regardless of resource, a large portion of the 

papers has their focal point on more subjective characteristics, such as trust and social 

norms.  While these characteristics are important and can help complete the picture of the 
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characteristic components that define a participant, little attention is paid to how 

household and geographical attributes affect uptake of participation over time when 

presented with different incentive amounts, which is the focus of this study.   

 The WSL program affords the opportunity to help fill in these gaps in 

understanding not only how rebate values can elicit different rates of participation among 

different type of households, but also its effects on similar households in a 

characteristically different neighborhood.  Due to its strength in additionality and noted 

lack of a “rebound effect” understanding the differences between households that choose 

to participate and those who do not can add valuable information into identifying 

practices that are more effective in influencing higher enrollment.  It can also help in 

identifying what incentives attract specific types of householders, such as homes with 

high outdoor water use.  The results of these examinations can further validate the effects 

of the WSL program.  As more programs are created in the image of the WSL the more 

important it is to address these aspects. 

4. Data: 

To identify significant variables and analyze participation in the WSL program, I 

draw from multiple datasets.  I use a SNWA panel dataset of 1999-2012 monthly parcel 

level residential water consumption spanning 299,872 homes, of which 26,300 are 

eventual participants in the WSL program.  I matched each household’s records with the 

structural characteristics of houses from the Clark County Tax Assessor’s records.  Due 

to unrealistic attributes found in the records, such as more bedrooms than rooms in a 

home, 161 homes are excluded from the study, 22 of which are participants.  This left 

299,708 households in the study, with 26,278 (8.8%) of them being participants.   The 
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dataset was then condensed down from monthly observations over twelve years to one 

yearly observation, per household1. This created a dataset with 3,215,017 observations.   

Table 1:  1st Stage Regression Variables Summary Statistics   N = 3,215,017 
                                         Definitions Mean Std. Dev. Min/Max 

Pervious Area Outdoor porous area, such as grass or soil 
(m2/1000) 

.397 .413 [.001, 132.55] 

Impervious Area Outdoor and indoor non-porous area, such 
as asphalt, not including the 1st floor area 
of the home. (m2/1000) 

.269 .128 [0, 9.65] 

Indoor Area Total area of the home  (m2/1000) .183 .079 [.025, 3.47] 
Pool Dummy variable for presence of a pool .245 .43 [0, 1] 

Bedrooms # of bedrooms  3.38 .809 [0, 12] 

Bath # of bathrooms  2.22 .635 [0, 14] 

Log Value Log value of home.  Value was calculated by 
the C. C. Assessor’s Office 

10.61 .607 [5.3, 16. 43] 

Residency Years elapsed since last sale of home 7.77 7.61 [0, 49] 

Resident 2yr Dummy variable that represents the 1st 2 
years after the sale of the home 

.19 .389 [0, 1] 

Summer Marginal Highest marginal price a resident is 
charged per kgal during the summer 
months (May-Sept.) in a given year. 

2.18 .747 [.847, 3.58] 

Winter Marginal Highest marginal price a resident is 
charged per kgal during the winter months 
(Oct.-April) in a given year. 

2.07 .671 [.855, 3.65] 

Seasonal 
Difference 

The difference between the cost of the avg. 
monthly summer and winter bills in a given 
year 

17.74 32.62 [-513.74, 
5744] 

Consumption Avg. monthly water use in kgal for a given 
year 

14.48 14.83 [0, 3009.82] 

Park 1/4mi Dummy variable that identifies if there is a 
park with a water feature within a 1/4 mile 
of the home 

.063 .243 [0, 1] 

Rebate 2003 Dummy variable that identifies years 
rebate value was $1 

.305 .461 [0, 1] 

Rebate 2007 Dummy variable for the rebate value $2.00 .084 .278 [0, 1] 

Rebate 2008 Dummy variable for the rebate value  $1.50 .424 .494 [0, 1] 

Vintage 1960 Dummy variable which represents homes 
built before 1960 

.045 .208 [0, 1] 

Vintage 1984 Dummy variable for homes built between 
1961-1984 

.24 .43 [0, 1] 

Vintage 1992 Dummy variable for homes built between 
1985-1992 

.135 .341 [0, 1] 

Vintage 1997 Dummy variable for homes built between 
1993-1997 

.174 (.379) [0, 1] 

                                                      
1Billing records are related to the home and not household.  This is due in part to a lack of data on the 
transfer of homes, which would allow for the identification of tenet changes in rental properties.  In 
this paper the terms “home” and “household” will be used synonymously even though there is a lack 
of equivalence. 
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Vintage 2002 Dummy variable for homes built between 
1998-2002 

.356 (.479) [0, 1] 

Vintage 2012 Dummy variable for homes built after 2002 .19 (.392) [0, 1] 

Year Elapsed time in years of the study 2000-
2012, with 2000 = 1 

7.415 (3.64) [1, 13] 

     

 This data was then merged with spatial data including nearby parks and water 

bodies.  This was done under the assumption that public green space and/or bodies of 

water could act as a substitutes or complements to the services provided by a home’s 

private lawn. The mapping data for parks was collected from the Clark County 

Government Center.  Park water features data came from multiple local government 

websites.2  Elementary school enrollment zones data came from the Clark County School 

District.  School zones are chosen as a proxy for “neighborhoods”, since these zones have 

been found to share similar demographic characteristics (Clark, 1987; Richards, 2014). 

The spatial characteristics are then linked to a household’s parcel using ArcView GIS 

software.  Variables are created for park distance from a household, parks with a water 

feature (i.e. Pool, pond, etc.) distance from household, and the number of parks with and 

without water features that fell within specific distances from a residence.  Distance is 

defined as the Euclidian distance from the residence to the park and does not necessarily 

represent a true walking distance.  Households are also matched with their elementary 

school enrollment zone. 

 

 

                                                      
2 Websites used:  www.clarkcountynv.gov,  www.lasvegasnevada.gov,  www.summerlink.com, 
www.cityofnorthlasvegas.com,  www.cityofhenderson.com 

http://www.clarkcountynv.gov/
http://www.lasvegasnevada.gov/
http://www.summerlink.com/
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Table 2: 2nd Stage Regression Variables                                                                                              N = 135 
  Definition Mean Std. Dev. Min/Max 
Poverty Income % of people with an income < 

$25,000 
.226 (.13) [.064, .645] 

Low Income % of people with an income 
between $25,001-$35,000 

.123 (.037) [.045, .208] 

Low Mid Income % of people with an income 
between $35,001-$45,000 

.28 (.048) [.14, .422] 

Middle Income % of people with an income 
between $45,001-$100,000 

.241 (.086) [.054, .428] 

High Mid 
Income 

% of people with an income 
between $100,001-$150,000 

.084 (.051) [.003, .234] 

High Income % of people with an income < 
$150,000 

.047 (.041) [.002, .27] 

HH Size 1&2 % of households whose size is 2 
or less people 

.567 (.094) [.282, .778] 

HH Size 3&4 % of households whose size is 3 
or 4 people 

.303 (.056) [.14, .433] 

HH Size 5&up % of households whose size is 5 
or more people 

.13 (.056) [.048, .351] 

No HS Diploma % of people who have a 12th 
grade education or less, without a 
high school diploma or equivalent 

.204 (.121) [.047, .639] 

HS Diploma % of people who have a H.S. 
diploma or its equivalent. 

.301 (.049) [.164, .417] 

Some College % of people who have some 
college or an associates degree 

.32 (.067) [.118, .444] 

Bachelor Degree % of people with an Bachelors 
Degree 

.116 (.057) [.018, .268] 

Graduate 
Degree 

% of people with a Graduate or 
Professional Degree 

.058 (.035) [.004, .159] 

White % of people who identify their 
race as White & non-Hispanic 

.761 (.16) [.091, .961] 

Black % of people who identify their 
race as Black or African American 

.099 (.144) [0, .834] 

Asian % of people who identify their 
race as Asian 

.046 (.03) [0, .174] 

Other Race % of people who identify their 
race as some other race or 
combination of races. 

.093 (.056) [0, .336] 

Hispanic % of people who identify as 
Hispanic regardless  of race. 

.148 (.106) [.026, .571] 

Owner % of households who own their 
home 

.654 (.21) [.07, .964] 

Renter % of households who rent their 
home 

.346 (.21) [.036, .93] 

Under 18 % of people who are < 18 .255 (.049) [.152, .405] 
Age 18to29 % of people who are between the 

ages of 18 to 29 
.163 (.042) [.047, .291] 

Age 30to44 % of people who are between the 
ages of 30 to 44 

.317 (.033) [.206, .422] 

Age 45to64 % of people who are between the 
ages of 35 to 54 

.163 (.037) [.078, .263] 
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Over 65 % of people who are over 65 .102 (.044) [.037, .377] 

 *All % rates are in relation to elementary school enrollment zones.           

     

 The final datasets I utilize are demographic characteristics from the U.S Census 

Bureau.  I utilized the 2000 Census surveys for block level data on income, education, 

race, age, home ownership, and household size.  Income was composed into six groups 

for simplicity: poverty level (>$25,000), low income ($25,000-$35,000), low middle 

income ($35,000-$45,000), middle income ($45,000-$100,000), high middle income 

($100,000-$150,000), and high income (over $150,000).  Household size was also 

grouped: 1-2 people, 3-4 people, and more than 5 people.  Educational data consists of: 

no High School (HS) diploma or Equivalent, HS diploma or equivalent, some college or 

Associates Degree, Bachelor degree, graduate or professional degree.  Age was separated 

into: under 18, 18 to 29, 30 to 44, 45 to 64, and over 65.  Race & ethnicity was broken 

down into Non-Hispanic White, Black, or Asian, Hispanic of any race, and other.  

Ownership has two categories to identify residents who own their home and those who 

rent.  Utilizing this block level data, weighted averages for these characteristics are 

created for the school zones.  The averages are based on block demographics within the 

enrollment zones.  Each household was then matched with their corresponding school 

zone and the demographic attributes.   

5. Estimation Models & Methodology: 

The nature of this study brings about some methodological concerns that needed 

to be addressed.  The first concern is dealing with the binary outcome variable.  A linear 

probability model (LPM) was used for models 1 - 4 (Cameron & Trivedi, 2010).  While 

logit or probit models were also considered, there are several reasons that made the LPM 
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the more appropriate choice. First, our overriding concern is to provide easily 

interpretable estimates of the average marginal effects of changes in the exogenous 

variables of the model on changes in the probability of WSL participation. The LPM has 

robust properties in this regard, despite the potential for it to predict outside of the (0,1) 

interval for individual probabilities in the presence of continuous covariates. Second, due 

to the large size of the dataset using a logit model with a large number of spatial fixed 

effects led to convergence challenges on a laptop computer.  Third, and most importantly, 

the LPM leads to a natural interpretation for the elementary school zones spatial fixed 

effects included in the models.  Since I use the estimated values of these fixed effects as 

dependent variables in a second stage regression, it was important to have them in easily 

interpretable units.  The fixed effects in a LPM are in units of probability; however this is 

not the case for the logit or probit model.  Cluster-robust standard errors are used for all 

models.  Clusters are defined at a school zone level in order to control for 

heteroskedasticity, as well as, spatial and serial correlation in the unobserved 

characteristics that influence participation. 

Numerous structural characteristics of the home are utilized in the 1st stage of the 

model, which give a detailed picture of the physical house and the composition of its lot.  

However, the only observable household characteristics in this stage pertain to water 

consumption and length of residency within the home.  In order to control for 

unobservable heterogeneity in these neighborhood demographics, I use elementary school 

enrollment zones as a spatial fixed effect.  These dummy variables serve to absorb the 

average values of sociodemographic attributes and other unobserved spatially distributed 

correlates of WSL participation.  I then take these school enrollment zone effects into the 
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2nd stage, where they are regressed on the aforementioned Census demographic variables 

to understand what factors influence these effects. 

 I consider several models of increasing complexity. In the first model the 

probability of participation incorporates the observable structural characteristics of a 

specific home, within a specific spatial zone, over a period of time.  The model takes the 

form: 

𝑃𝑖𝑡 =  𝑋′𝑖𝑡𝛽 + 𝐷′𝑖𝑡𝛿 + Τ′𝑖𝛾 + 𝜀𝑖𝑡         (1) 
 
Where P represents the probability of participation of i, an individual household, at a 

specific period of time t. 𝑋′is a vector of house structure and length of residency 

variables for a home, 𝐷′ is a vector of year-specific dummy variables.  There are 2 main 

sets of dummy variables.  One set indicates the rebate value that was active at a given 

time.  The other set are vintage bins that are based on regulations faced by new 

construction over different time periods as well as past findings about the efficiency of a 

home’s water infrastructure (Brelsford & Abbott, 2017b). Homes are grouped into these 

bins based on their build year.  

 𝑇′ is a vector of time trend variables.  In Model 1 the T are variables years elapsed 

and years elapsed squared.  The second model adds to the first by modifying the time 

trend variables.  In Model 2, I utilize linear splines with three knots placed over the 

twelve-year period of the study, at years 2003, 2007, and 2009.  These years are chosen 

because they coincide with changes in both the rebate value (see Figure 2) and water 

rates.  These spline variables replace the time variables in Model 1. 

 In Model 3, a neighborhood fixed-effect is added to Model 2, which is associated 

with elementary school enrollment zones and takes this form: 
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𝑃𝑖𝑡 = 𝑋′𝑖𝑡𝛽 + 𝐷′𝑖𝑡𝛿 + Τ′𝑖𝛾 + 𝛼𝑠 + 𝜀𝑖𝑡            (2) 

Here 𝛼𝑠 represents the spatial fixed effects of elementary school enrollment zone s.  This 

was done under the assumption that there are unobservable spatial relationships amongst 

households located within these school zones and as such, error terms within these zones 

are likely to be correlated with observed covariates due to these shared characteristics. 

Given that I do not observe household-level sociodemographic data, I utilize these fixed 

effects to absorb the average effects of demographic variability across neighborhoods.    

 The final model in the first stage, Model 4, is similar to Model 3.  It is also a 

fixed-effect LPM except in this model I add household-level economic variables from the 

monthly billing data.    The model’s form is: 

𝑃𝑖𝑡 = 𝑋′𝑖𝑡𝛽 + 𝐷′𝑖𝑡𝛿 + Τ′𝑖𝛾 + 𝐶′𝑖𝑡𝜃 + 𝛼𝑠 + 𝜀𝑖𝑡    (3)         

C represents a vector of economic variables for a household that has a one-year lag. I 

utilize a lag to avoid issues of simultaneity (joint causation) between water consumption 

levels and WSL participation decisions.  The lag also accounts for the fact that 

households, when contemplating long-run investments, like landscape remodeling, are 

likely to draw upon recent historic data to project future benefits and costs of the 

investment. Finally, the lag accommodates the time it takes from the initial application to 

the program to fulfilling the requirements to qualify for the rebate.   

 In the second stage I begin the analysis of the school zone fixed effects from the 

most complete first-stage model (Model 4). The second stage model’s form is: 

𝛼̂𝑠 = 𝜓𝑠 + 𝑍𝑜𝑛𝑒𝑠′𝜆 + 𝜈𝑠          (4) 
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Here 𝜓𝑠.is the intercept. 𝑍𝑜𝑛𝑒𝑠 is a vector of demographic variables that was calculated 

from weighted U.S. census data. The second stage is estimated using heteroskedasticity-

robust standard errors.  

Spatial fixed effects are defined at the school attendance zone, whereas U.S. 

Census data are available at the block-group. In general, each school zone contains 

multiple block-groups. I weight the block-groups in each attendance zone to acquire more 

representative estimates of the presence of a demographic characteristic within a school 

zone.  This is calculated by estimating the number of people or households with a 

demographic characteristic per acre of the Census block-group. Using these estimates in 

conjunction with the amount of acres of each block-group that falls within a specific 

school zone I calculate the expected the number of people/households with the 

characteristic in the zone.  I then use the results with the total population of the zone to 

determine the weighted average.  

 

Figure 3 Shows the block level marginal price of water and the changes of price between 2000-2012.  
Prices before 2003 were set to different tier levels, thus prices during this time are estimated based on 
pre 2003 prices to fit post 2003 tier levels.   



 22 

6.1 Results and Interpretations – Cohort Analysis 

In order to get a better understanding of how changes and rebate value and water 

rates influenced who participated in the program, participants are split up into 4 groups.  

Each group identifies the value of the rebate at the time of enrollment of the participant.  

Thus cohort 1 holds all participants who enrolled at a rebate value of $.50, cohort 2 are 

those who signed up at $1, cohort 3 at $2, and finally cohort at $150. 

In an examination of the WSL cohorts I first look at pervious area, which for 

simplicity I will refer to as “yard size.” A Kruskal-Wallis test shows that there is a 

statistically significant difference in the yard size by different cohorts (𝜒2=111.014, p < 

.01).  Figure 4 shows a small decrease in the mean yard size from cohort 1 – 3, but then a 

slight rebound in cohort 4. Thus as the rebate increased household yards became smaller 

on average.  When the rebate dropped from $2 per sq. ft. to $1.50 in cohort group 4, yard 

size increased, albeit only slightly.  There is a similar trend found in consumption, seen in 

also in Figure 4, which was also found to be significant (𝜒2= 489.53, p < .01).  Since 

yard size is assumed to correlate with water-use, these similarities are not surprising.  The 

size of the yard, assuming the yard contains grass, will determine the amount of water 

needed to maintain it.  However, it is important to recognize that my analysis does not 

take into account the effects of the depletion of potential applicants from the sample pool 

over time.  Further analysis is required to understand what role if any this played in 

altering the composition of the different cohorts.    

 



 23 

 

Figure 4 (Top-left) Shows pervious area cohorts.  (Top-right) Shows indoor area of each cohort. (Bottom-
right) Shows difference in avg. seasonal water bill of cohorts. (Bottom-left) Shows the average monthly 
consumption of cohorts. 

 

Average seasonal difference is used as a proxy for the cost of outdoor water use 

of a home.  Similar to yard size there is a statistically significant difference in outdoor 

water cost between cohorts (𝜒2= 412.748, p < .01).  Figure 4 shows groups 1 and 4 had 

similar average cost associated with outdoor water use, as did cohort 2 and 3. However, 

referring back to the average consumption, cohort 4 consumes less on average compared 

to cohort 1.  This shows that while cohort 4 uses less water on average, their cost of 

outdoor water use is virtually the same as cohort 1.  This similarity in cost is most likely 

due to the increase in price of water, specifically on high water use.  As seen in Figure 3, 

each cohort faced an increasing marginal price on water, with the largest increases 

occurring on water use over 20 kgal.  These increases that target high water consumption 

happen first in 2003, then again in 2007 and 2008.   
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Interestingly, the amount of lawn converted does not follow the same trend as 

yard size.  Figure 5 shows that in cohort 2 the mean amount converted is higher than 

cohort 1.  So while cohort 1 had larger yards on average, cohort 2 converted more of their 

yard.  This may be due to the rebate increase making larger conversions more cost 

efficient; especially since the water prices saw a significant increase in 2003.  Cohorts 3 

sees a dip in conversion area, where as cohort 4 has a slight increase.  

 

 

 
                 Figure 5 Illustrates the average amount of grass converted of a household in each cohort 
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Table 3: 1st Stage Summary Statistics   

 Participants Non-Participants All Households 

Consumption (kgal)  21.64 

(15.61) 

[0, 330.74] 

14.02 

(14.66) 

[0, 3009.82] 

14.48 

(14.83) 

[0, 3009.82] 

Summer Marginal             

(US Dollars) 

2.32 

(.53) 

[.85, 3.58] 

2.17 

(.76) 

[.85, 3.58] 

2.18 

(.75) 

[.85, 3.58] 

Winter Marginal                

(US Dollars) 

2.12 

(.52) 

[.86, 3.65]  

2.04 

(.68) 

[.85, 3.65] 

2.05 

(.67) 

[.85, 3.65] 

Seasonal Difference       

(US Dollars) 

32.88 

(37.79)          

[187.51, 875.73] 

16.79 

(32.26) 

[-513.74, 5744] 

17.74 

(32.62) 

[-513.74, 5744] 

Pervious Area (m2/1000)   .52 

(.47) 

[.013, 17.27] 

 .39 

(.41) 

[.0008, 132.55] 

.4 

(.408) 

[.0008, 132.55] 

Impervious Area (m2/1000)   .32 

(.14) 

[0, 2.14] 

.26 

(.13) 

[0, 9.65] 

.27 

(.13) 

[0, 9.65] 

Indoor Area (m2/1000)   .197 

(.077) 

[.054, 1.23] 

.19 

(.083) 

[.025, 3.47] 

.18 

(.079) 

[.025, 3.47] 

Bedrooms 3.46 

(.804) 

[0, 9] 

3.38 

(.81) 

[0, 12] 

3.38 

(.81) 

[0, 12] 

Bath 2.28 

(.62) 

[0, 7.5] 

2.24 

(.66) 

[0, 14] 

2.22 

(.64) 

[0, 14] 

Build Year 1988.62 

(12.19) 

[1925, 2011] 

1992.35 

(14.85) 

[1912, 2012] 

1989.91 

(14.64) 

[1912, 2012] 

Log value 10.76 

(.54) 

[8.93, 14.18] 

10.66 

(.62) 

[5.298, 16.43] 

10.61 

(.61) 

[5.298, 16.43] 

Park 1/4mi .06 

(.24) 

[0, 1] 

.056 

(.23) 

[0, 1] 

.06 

(.24) 

[0,1] 

* The figures in the rows for each variable are in this order: 

mean, (std. dev.), and [min, max].  All participant statistics are 

based on pre-WSL observations. 
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6.2 Results and Interpretations of 1st Stage: House Structure 

When looking at what differentiates homes of participants from non-participants, 

it is important to note that all observations for participants after enrollment are omitted 

from the data set.  This brings the total number of observations down to 2,158,762 and 

allows for all results to be based on pre-treatment observations. One difference that can be 

gleaned from Table 3 is pervious area. This distinct difference in pervious area size 

between participants and non-participants can also be visualized in Figure 6.   However, 

the amount of indoor area is relatively the same on average.  Participants only have 

slightly larger homes on average, which can be seen in Figure 6.   

 
Figure 6  (Left) Comparison of pervious area between participants and non-participants. (Right) 
Comparison of indoor space between the two groups. 

 

The estimates for the four first-stage models are presented in Table 3. Almost all 

the variables are significant across all 4 models at a 1 percent level, with the exceptions 
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of Pervious Area, Bedrooms, Pool, Park 1/4mi, and Vintage 1984.  Out of those 5 

exceptions, only Vintage 1984 is insignificant across all models.  

 Pervious Area is significant at a 1 percent level in the first 3 models, but loses 

some significance in Model 4.  Its marginal effect also drops slightly in Model 3 due to 

the addition of fixed-effects, but then decreases in Model 4 to approximately one-third 

the effect of the other models.  This is not surprising as Model 4 includes economic 

variables that are capturing water use (particularly the seasonal difference variable), 

which is correlated with the size of pervious area (𝜌= .4).  This allows for the conclusion 

that while Pervious Area is not highly significant in the final model, it still is 

economically relevant.  Indoor Area had a relatively large negative effect on 

participation.  An increase of 1 standard deviation in indoor area, holding constant 

pervious and impervious outdoor area, has a -0.004 effect on the probability of 

participation. By comparison, an increase of 1 standard deviation in pervious outdoor 

area has less than a 0.0004 effect on participation.  While these effects may initially 

appear small, it is important to remember that the overall annual probability of 

participation for a household is 0.0065. 

Vintage bins, aside from Vintage 1984, have a notable effect on participation, 

both positively and negatively.   Using homes built before 1960 as the base of the model, 

it shows that those constructed between 1985 and 1992 are found to have an increase of 

approximately 0.003 on the probability of participation.  Those built between 1993 

through 1997 had a slightly less positive effect of 0.0025.  Homes built after 1997 have a 

negative effect on participation, with homes built between 1998 and 2002 having a -

0.0026 effect of participation and those built after 2002 having the largest negative effect 
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at -0.0079.  This suggests that newer homes are less likely to participate; this is likely 

driven by smaller shares of green landscaping, on smaller lots (Brelsford and Abbott 

2017b) in newer developments. This large negative effect found in Vintage 2012 makes 

sense since this represents homes built after 2003.  In 2003 a law was passed that didn’t 

allow any turf in front yards of new construction.  More efficient plumbing technology 

may have also reduced participation by reducing the household’s indoor water 

consumption.  For perspective, there is a 0.011  difference in probability between a home 

that falls into the Vintage 1992 bin and one that is built after 2003 in Vintage 2012. 

 

Table 3: 1st Stage Estimation Results   

 Model 1 Model 2 Model 3 Model 4 

Pervious Area 0.00345*** 

(0.000657) 

0.00344*** 

(0.000657) 

0.00302*** 

(0.000629) 

0.00107* 

(0.000569) 

Impervious Area 0.0134*** 

(0.00223) 

0.0134*** 

(0.00223) 

0.0102*** 

(0.00137) 

0.00600*** 

(0.00118) 

Indoor Area -0.0303*** 

(0.00326) 

-0.0303*** 

(0.00325) 

-0.0224*** 

(0.00323) 

-0.0299*** 

(0.00375) 

Pool  0.000199 

(0.000358) 

0.000193 

(0.000358) 

-0.00000961 

(0.000339) 

-0.00119*** 

(0.000350) 

Bedrooms 0.00122*** 

(0.000384) 

0.00122*** 

(0.000384) 

0.000681** 

(0.000280) 

0.000566** 

(0.000257) 

Bath  -0.00142*** 

(0.000317) 

-0.00142*** 

(0.000317) 

-0.00109*** 

(0.000249) 

-0.00120*** 

(0.000248) 

Log Value 0.00649*** 

(0.000629) 

0.00651*** 

(0.000629) 

0.00556*** 

(0.00104) 

0.00401*** 

(0.000970) 

Residency  0.000123*** 

(0.0000188) 

0.000125*** 

(0.0000188) 

0.000131*** 

(0.0000175) 

0.0000993*** 

(0.0000172) 

Resident < 2yr 0.00193*** 

(0.000283) 

0.00205*** 

(0.000283) 

0.00206*** 

(0.000284) 

0.00250*** 

(0.000288) 

Park 1/4mi -0.000718 

(0.000601) 

-0.000718 

(0.000601) 

-0.000664 

(0.000561) 

-0.000850* 

(0.000479) 

Rebate 2003 (Dummy for 

rebate for 2003- 2006) 

0.0125*** 

(0.00131) 

0.0129*** 

(0.00111) 

0.0129*** 

(0.00112) 

0.0108*** 

(0.00104) 

Rebate 2007 (Dummy for 

rebate for 2007) 

0.0164*** 

(0.00138) 

0.0150*** 

(0.00141) 

0.0150*** 

(0.00141) 

0.0147*** 

(0.00140) 

Rebate 2008 (Dummy for 

rebate for 2008- 2012) 

0.0185*** 

(0.00158) 

0.0254*** 

(0.00192) 

0.0254*** 

(0.00191) 

0.0264*** 

(0.00196) 

Vintage 1984 0.000537 

(0.000614) 

0.000533 

(0.000613) 

0.000719 

(0.000794) 

0.000746 

(0.000733) 

Vintage 1992 0.00441*** 0.00440*** 0.00289*** 0.00296*** 
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(0.00109) (0.00109) (0.000977) (0.000919) 

Vintage 1997 0.00327*** 

(0.000994) 

0.00326*** 

(0.000997) 

0.00259*** 

(0.000688) 

0.00252*** 

(0.000648) 

Vintage 2002 -0.00210*** 

(0.000534) 

-0.00210*** 

(0.000535) 

-0.00326*** 

(0.000677) 

-0.00261*** 

(0.000612) 

Vintage 2012 -0.00872*** 

(0.000631) 

-0.00875*** 

(0.000630) 

-0.0107*** 

(0.000901) 

-0.00794*** 

(0.000727) 

Year  0.00172*** 

(0.000272) 

 

 

 

 

 

 

Year^2 -0.000195*** 

(0.0000150) 

 

 

 

 

 

 

Year: (.,4)  

 

0.000255*** 

(0.0000967) 

0.000247** 

(0.0000986) 

0.00176*** 

(0.000211) 

Year: (4,8)  

 

-0.000110 

(0.000258) 

-0.0000850 

(0.000248) 

-0.000928*** 

(0.000292) 

Year: (8,10)  

 

-0.00703*** 

(0.000501) 

-0.00701*** 

(0.000499) 

-0.00901*** 

(0.000626) 

Year: (10,.)  

 

-0.00168*** 

(0.000126) 

-0.00168*** 

(0.000125) 

-0.00131*** 

(0.000110) 

Summer Marginal  

 

 

 

 

 

0.00364*** 

(0.000303) 

Winter Marginal  

 

 

 

 

 

0.000909*** 

(0.000208) 

Seasonal Difference  

 

 

 

 

 

0.000113*** 

(0.00000985) 

Consumption  

 

 

 

 

 

-0.0000973*** 

(0.0000145) 

Constant -0.0731*** 

(0.00592) 

-0.0713*** 

(0.00585) 

-0.0595*** 

(0.0100) 

-0.0516*** 

(0.00942) 

Fixed-Effects 
Observations 

 

2,158,762 

 

2,158,762 

X 

2,158,762 

X 

2,148,518 

R2 0.006 0.006 0.006 0.008 
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6.3 Results and Interpretations 1st Stage: Time Trends and Rebates  

 

Figure 7 Shows the combined influence of the summation of the time splines and rebate dummies on the 
probability of participation over time. 

 Figure 7 adds the predicted values from the spline regression in Model 4 on top of 

the contemporaneous dummy variable for the rebate cohort.  This specification allows 

both smooth trends in WSL participation within each cohort and discontinuous jumps 

between cohorts.  From 2000 to 2002 there is a steady increase on the probability of 

participation.  In 2003 there is a steep jump in likelihood of participation that coincides 

with the new rebate of $1.  After this bump, the time trend in participation slows until 

2007, when WSL rebates increase to $2. Here there is another increase in participation 

similar to 2003.  In 2008 the rebate decreases to $1.50, but even though the value drops 

there is another increase in the probability of participation.  After the 2008 rebate there is 

a decrease in probability each year until 2012.  This may imply that participation is likely 

to occur in the presence of a new rebate value that is not necessarily tied to the rebate 

increasing.  This could be due to the shock of the value change on households.  

Households who may have been contemplating participation are motivated by the price 
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change.  However, as the price change gets further removed they are less likely to act.  

During this time period there were other events, such as the 2008 financial crisis, that 

may have also influenced participation.  Since I am unable to separate the effects of these 

events from those of the water policy changes, I cannot make any strong conclusions as 

to the overall effect of the rebate change on participation.  

 

Figure 8 (Left) Displays the difference in the avg. monthly water bill in the summer from the winter. 
(Right) Shows the difference in avg. monthly consumption between the 2 groups. 

 
6.4 Results and Interpretations 1st Stage: Water Consumption   

Water consumption and economic variables play a significant role in explaining 

participation rates.  When looking at consumption, Table 3 shows that participants used 7 

kgal more per month on average before enrollment than non-participants.  This is 

visualized by the right hand-side graph in Figure 8 where the 50-percentile line for 

participants almost perfectly aligned with the 75-percentile line for non-participants.   
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 Another characteristic that stands out is Seasonal Difference, or the cost of 

outdoor water use. Table 2 shows that the mean Seasonal Difference for participants 

(mean = 32.88) is approximately twice that of non-participants (mean = 16.79).  This is 

also reflected in the left hand side graph in Figure 8.  In other words, households that 

chose to participate paid double the amount per month on average for outdoor water use 

than non-participants. 

In Model 4 the effects of water usage and economic variables have been added to 

the regression.  While the highest price of water per kilo-gallon paid has a positive effect 

on enrollment for both winter and summer, the summer price has a notably greater effect 

at 0.0036 for every additional dollar added to the marginal price per kgal.  The difference 

in the average seasonal bill between summer and winter, a proxy for outdoor water costs, 

has a positive effect on participation.   An increase of 1 standard deviation in seasonal 

difference has 0.0037 effect. These results suggest that the cost of outdoor water use is 

primary factor in influencing households to participate.   

Household consumption has a negative effect on participation.  Since the seasonal 

difference is controlling for outdoor water use and marginal pricing, consumption is 

essentially representing indoor water use holding the price of water constant.  An increase 

of 1 standard deviation of consumption decreases the likelihood of participating by 

approximately 0.001.  This makes sense as the main benefits of conversion for a 

household is in the savings received from the reduction in outdoor water use.  Thus 

households with high indoor water use would not have the same incentive to participate. 

In terms of the main driving forces behind participation, it would be fair to say 

that water use and its associated costs would be high on the list.  Both the price of water, 
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especially in the summer, and the costs of outdoor water use have positive effects of 

participation.  These costs can be connected to yard size, which as previously discussed 

in Sec. 6.2 are larger for participants.  This suggests that the program is strongly selecting 

toward homes with high outdoor water use.   

6.5 Results and Interpretations 1st Stage: Residency &Parks 

Length of ownership of a home, which is represented by Residency, is found to be 

significant and positive.  The effect on participation is relatively small, as a decade of 

residency has an effect of less than 0.001.  Resident <2yr, which captures the probability 

of participation within the first two years of purchasing a home, is also positive and has 

relatively large effect on the probability of participation.  A new homeowner in their 

second year of residency has an increased probability of participation of 0.0026.  In a 

comparison of the 2 variables, I find that while every year of residency in a home does 

increase the likelihood of joining the WSL program, a new homeowner has a higher 

probability of enrollment in the first two years than a resident of 25 years. 

These somewhat surprising results of the effects of residency, is similar to those 

found in a study done in Phoenix, AZ (Larson et al., 2017).  Larson et al. found that long-

term residents prefer grass lawns in comparison to residents that were newer to the area.  

The results here somewhat mirror those results, as I find that new homeowners in the 

Vegas area have a notably higher probability of participation and foregoing their grass 

than long term residents do.  I originally assumed that long-term residents would have a 

greater knowledge of local water issues in comparison to new homeowners and therefore 

expected a weaker effect from new ownership.  
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 An alternative hypothesis is this is due to a “remodeling” effect that is associated 

with new home ownership. New homeowners are likely to remodel their homes to suit 

their needs.  In this process homeowners might have a higher willingness to opt for 

conversion as part of the remodel.  Conversions during remodeling may also be 

preferable to new owners whose intentions are to rent or “flip” the home to turn a profit, 

as xeric landscaping requires less maintenance.  While I have discussed the possibilities 

of a “remodeling” effect and a preference of long-term residents for grass lawns as 

separate, I would argue that it is some combination of these factors that drives this “new 

resident” effect on participation. 

 It’s worth noting that in this study I use time elapsed since the date of last sale of 

a home to establish a proxy for residency in the area.  It does not take into account 

whether the homeowner was moving from within the area or from outside of the area. 

Thus, further research should examine the dynamics between various residency attributes, 

landscape choices, and implications for water demand.    

The first stage of the model yields another interesting result, for the outcome of 

Parks ¼ mi.  My initial hypothesis was that parks would act as a substitute for lawns, and 

therefore, households that are within walking distance to parks would be more likely to 

participate in the program.  However, the presence of a park is found to be insignificant 

in earlier iterations of the current models.  What is found to be significant, though only at 

a 10 percent level, is the presence of a park that has a water feature, such as a pool or 

lake, within a ¼ mi. of a home.  However, these parks had a negative effect on 

participation implying that people who chose to live near these types of parks do so 

because they value their green spaces, lawns included.  
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6.6 Results and Interpretations 2nd Stage: Demographics 

Table 4: 2nd Stage Estimation Results 

 Model 1 

Low Income -0.00548 

(0.0124) 

Low Mid Income 0.0126 

(0.0103) 

Middle Income 0.0207 

(0.0137) 

High Mid Income 0.0300** 

(0.0128) 

High Income -0.00944 

(0.0103) 

HH Size 3&4 0.0157 

(0.0145) 

HH Size 5&up -0.0390** 

(0.0183) 

HS Diploma 0.00417 

(0.0136) 

Some College 0.0110 

(0.0113) 

Bachelor Degree 0.0154 

(0.0231) 

Graduate Degree -0.0420* 

(0.0253) 

White -0.0195 
(0.0165) 

Black -0.0108 
(0.0145) 

Asian -0.0531** 
(0.0249) 

Hispanic 0.0144 
(0.0132) 

Own Home -0.00756 

(0.00464) 

Age 18to29 -0.0232 

(0.0303) 

Age 30to44 0.00650 

(0.0206) 

Age 45to64 0.0530** 

(0.0216) 

Over 65 0.000460 

(0.0193) 

Constant -0.000131 

(0.0206) 

Observations 134 

R2 0.544 

Robust standard errors in parentheses 

* p<.1, ** p<.05, *** p<0.01 
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Figure 9 presents the mean annual household probabilities of WSL participation 

associated with living in a specific school zone.  In looking at Figure 1 the zones that 

have a high cumulative percentage of participants match up extremely well with the areas 

of high probability of participation in Figure 9.   

Figure 10 illustrates the fixed-effects for each school zone.  The fixed effects are 

in units of the annual probability of participation and have a mean of zero.  As such, they 

represent the shared “neighborhood” anomaly in the probability of the WSL participation, 

relative to the average neighborhood.  A positive value of 0.01 reflects that homes in a 

particular zone participate at a rate of 0.01 more on average than predicted by observable 

household characteristics alone.  Figure 10 shows that an empirically significant portion 

of the variability in participation rates in Figure 9 is explained by the covariates in the 

first stage regression.  However, there are still some “hot” and “cold” zones. Specifically, 

zones to the Northwest and Southeast participate at a higher rate than predicted by the 

first stage variables alone.  These “hot” broadly coincide with zones of higher than 

normal participation in Figure 9.  Interestingly, the more central zones are comparative 

“cold” spots. 

Figure 10 shows these central “cold” spots cluster around the Vegas Strip.  This 

area is the older part of Las Vegas, with the mean build year of the homes in these zones 

falling between the 1950s and 1970s.  The city was built out from this central area, 

therefore the father out from this central area, the newer the neighborhoods tend to be.  

The majority of the “hot” zones, including the ones in the Northwest and Southeast were 

built after the mid-1990s.  However, since house vintage was controlled for in the 1st 
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stage this leads me to believe there is some other unobserved characteristic driving this 

variability.   

 

 

 

Figure 9 Illustrates the average annual probability of household participation in each school enrollment 
zone 
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Figure 10 Displays the first-stage fixed-effects of each school zone. 

 
In an attempt to explain this spatial variability I regressed the spatial fixed effects 

as a function of Census demographics.  The complete results for the 2nd stage model can 

be found in Table 4. The coefficients in the second stage model are the effects of 

neighborhood-level demographics on the neighborhood anomaly in annual participation.  

Unlike the 1st stage models, here the majority of variables are not significant – perhaps 

due to the small number of observations.   There are a few significant variables, however.  

Individuals in school zones with larger shares of households earning a salary between 

$100,000 and $150,000 are more likely to participate by 0.003 for every 10% increase.  

This effect may be attributed to the type of homes that attract people in this income 

bracket.  Homes that could be afforded in this income range would most likely have a 
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yard that could be converted.  However, the income is perhaps not so high that incentives 

and water price wouldn’t influence their decision to participate. 

Areas that have high amount of large households (5 people or more) had a 

negative effect of 0.0039 on participation for a 1% increase.  This makes sense since 

larger households most likely have children.  Having a grass-covered area for children to 

play without leaving the property could be seen as more important that gains made from 

lawn conversion.  

I also found that areas that had a high population of people between the ages of 45 

and 64 had a positive effect on participation rates.  This had the largest positive effect 

with a 1% increase resulting in a 0.0053 increase.  This could be due to people within this 

age range being better suited to invest in their homes.  Individuals younger than this are 

likely to have young children and other financial commitments (i.e. student loans) that 

take precedence over lawn conversion.  Once an individual is older than 65 they be 

retired or nearing retirement and therefore less likely to make substantial home 

investments.  Moreover, individual within this “middle-age” age range are less likely to 

have young children and are often at the peak of their lifetime earnings.  Therefore, an 

investment like lawn conversion that would lower future water costs, would be appealing. 

The other 2 variables that are found to be significant and have a negative effect 

are area with a larger Asian population and a larger share of residents with graduate 

degrees.  The interpretation of these effects is not clear and may be driven by unobserved 

neighborhood variables correlated with these sociodemographic characteristics more than 

the characteristics themselves.  
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Conclusion: 

The analysis of participation in the WSL program identifies key factors that 

influence a household’s likelihood of enrollment.  Here I find that larger yards, high 

water, the cost of water and specifically, the cost of outdoor water use are all influential 

in who chooses to participate.  I also show how changes in rebate value, both increasing 

and decreasing, as well as water price are correlated with the characteristics of 

households that enroll.  These are the primary drivers of participation found in the first 

stage of this study.  While residency and parks yielded some interesting results, I would 

consider these as suggestive, but worthy of further investigation. 

Though the results do not bring about strong connections between parks and 

residents’ willingness or unwillingness to give up their lawns, there are more avenues that 

can and should be investigated.  This study is limited to only analyzing homes in relation 

to distance to parks and park types, but not all green space are considered.  Also, while 

this study looks at homes that converted from grass to xeric landscaping, there is no data 

that identified a homes landscape choice outside of the program.  Adding these factors 

may shed some light on the effects of greenspace on participation. 

In the 2nd stage I examine school zone “neighborhood” effects.  Here I find there 

is significant evidence to show that neighborhood characteristics affect a household’s 

probability of participation.  Zones that have a high share of people between the age of 45 

and 64, as well as those with a high middle income have a positive effect on participation.  

On the other side of the spectrum, school zones with a high amount of large households 

(over 5 people) have a negative effect.  While these results do explain some of these 

neighborhood effects there is still more that needs to be known in order to complete the 
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picture.  Overall a more in-depth look at these effects and what the drivers are behind 

them needs to be taken in order to better understand how they influence participation. 

One factor of note in this study is that the 2008 financial crisis was not controlled 

for since households were, to a varying extent, likely affected by the event.  This made 

creating a control group to test the effects of the crisis on participation infeasible.  It is 

also unclear what effect it had on participation.  The crisis could have had a positive 

effect as it put pressure on households to save money, thereby increasing participation.  

This hypothesis is consistent with the significant increase in participation in 2008 shown 

in Figure 7.  However, the spike in participation may also have been caused by the 

contemporaneous increase in the rebate.  Nonetheless, the number of foreclosures that 

occurred would suggest that there were also homes with high probabilities of 

participation that did not enroll during this period due to bank ownership.  Thus the 

overall effect of the crisis on participation is unknown. 

While I have focused on the WSL program as a non-price program, the first-stage 

results do suggest how rebate programs can be used jointly with a price based approach 

to achieve higher levels of conservation through increased participation.  The strong 

effects of summer marginal water prices and the difference between summer and winter 

water bills on participation suggest that changes in structure of water rates can 

significantly impact participation in the non-price program. Therefore price and non-price 

policies can be complementary; utilizing the changes in price in conjunction with a rebate 

can increase participation more than would be achievable with the rebate alone.  Potential 

negative distributional effects of price increases on low-income households can be 

mitigated by careful design of block rates while also providing high marginal prices that 
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are likely to primarily affect homes with large outdoor water use. Relatively low-income 

households with large amounts of water intensive landscaping can take advantage of 

generous rebates to replace their landscapes – providing transition mechanism for these 

households to avoid excessive water bills. 

While here I look at the WSL program itself and how value changes of the rebate 

and the price of water affected participation, there is much room for further research.  

The SNWA created numerous programs during this time period and continues to do so.  

It would be worthwhile to extend the analysis to take into account the effect of 

interactions between these programs.  Marketing, educational programs, and other 

information shocks could play a vital role in understanding why people chose to 

participate in the program.  The availability of other rebate programs, such as the pool 

cover rebate, and the order in which they are initiated could also be important in 

understanding participation rates and the efficiency of the program. 

In addition to expanding the effect of other policies on participation, a more in- 

depth look at the participants themselves and the role of social interactions in driving 

their water use is needed.  Social characteristics have been found in numerous studies to 

be an important factor in whether someone chooses to voluntarily participate in a 

conservation program (Allcott, 2011; Attari 2014; Guerin et al., 2000; Lubell et al., 

2017). People’s social network and how they perceive themselves in comparison to their 

neighbors plays a role in decision-making.  Social norms of an individual or a specific 

group of people can be a strong motivator in whether or not they participate in a program.  

The level of trust one has in the administrator of a program can also be a factor.  This 
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attribute would be particularly interesting, since the SNWA has a history of prioritizing 

transparency and building trust with the communities it works with.   

As water scarcity becomes a more pressing issue in arid cities, devising more 

effective water management practices is imperative for achieving sustainability goals. 

Understanding the drivers of participation can help policymakers to craft more effective 

and targeted policies that satisfy water conservation targets in a cost-effective manner.  It 

can also show how multiple policies – including combinations of water pricing and non-

price policies – can be combined to augment participation, improve the selectivity, and 

mitigate undesirable distributional outcomes of individual programs.  This knowledge 

can help water managers sustain their water supplies in an era of increasing scarcity. 
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