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ZnTe/GaSb distributed Bragg reflectors (DBRs) are proposed and demonstrated for mid-wave

infrared (2–5 lm) optoelectronic applications. The reflectance spectra of ZnTe/GaSb DBRs are

simulated using the transmission matrix method, indicating a peak reflectance higher than 99.9%

for a DBR of 10 quarter-wavelength (k/4) pairs. A series of ZnTe/GaSb DBR structures have been

successfully grown on GaSb (001) substrates using molecular beam epitaxy. X-ray diffraction

results reveal smooth interfaces, uniform thicknesses, and low defect density. The DBR sample of

seven k/4 pairs has a peak reflectance as high as 99.0% centered at 2.5 lm with a 480-nm wide

stopband. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4753819]

The mid-wave infrared (MWIR) wavelength range

between 2 and 5 lm contains absorption lines of several

atmospheric pollutants, such as CO, CH4, NO2, NH3, and

HF. Therefore, semiconductor lasers in this spectral range

are highly attractive light sources for gas detection and spec-

troscopy applications. Since vertical-cavity surface-emitting

lasers (VCSELs) offer low power consumption and ease of

monolithic integration with microelectromechanical system

(MEMS) structure for wavelength tuning,1–4 much research

effort has been devoted to InP-based and GaSb-based near-

infrared (NIR) and MWIR VCSELs.5–8 While InP-based

VCSELs have reached emission wavelengths up to 2.3 lm,9

GaSb-based VCSELs have covered a spectral range beyond

2.6 lm.10 As is well known, the optical cavity in a VCSEL

needs the use of high reflectivity mirrors, usually in the form

of distributed Bragg reflectors (DBRs). Unfortunately,

almost all the III-V semiconductors lattice-matched to InP

and GaSb offer very small refractive index differences,

which are crucial for the realization of thin DBRs with high

reflectivity to reduce the threshold current density. It is there-

fore highly desirable to develop DBR structures that are both

lattice-matched to GaSb and have a high refractive index

contrast along with broad wavelength tunability for mono-

lithically integrated tunable VCSELs technology.

Recently, a new materials platform consisting of 6.1-Å

semiconductors grown on GaSb and InAs substrates was pro-

posed for optoelectronic devices.11,12 This materials platform

consists of both II–VI (MgZnCdHg)(SeTe) and III–V

(InGaAl)(AsSb) compound semiconductors, which have

direct bandgaps spanning the entire energy spectrum from

far-infrared (�0 eV) up to ultraviolet (�3.4 eV). The broad

range of bandgaps and material properties make it very

attractive for a wide range of applications in optoelectronics,

such as photodetectors, solar cells, laser diodes, and light

emitting diodes. Among materials in this platform, ZnTe and

GaSb are known to be closely lattice-matched with a lattice

mismatch of only 0.13%. High quality ZnTe/GaSb and

GaSb/ZnTe heterostructures have already been successfully

demonstrated with very low density of misfit disloca-

tions.13,14 Furthermore, GaSb and ZnTe have a large refrac-

tive index contrast in the MWIR range (for example,

Dn¼ 1.18 at 0.6 eV15). This refractive index contrast is sig-

nificantly higher than those of InGaAs/InAlAs (Dn¼ 0.27)

and AlAsSb/GaSb (Dn¼ 0.6), which have been widely used

for DBRs in VCSELs emitting in the MWIR spectral

range.9,16 As a result, DBR structures consisting of ZnTe and

GaSb can provide very high reflectivity with significantly

fewer pairs of quarter-wavelength (k/4) layers. Conse-

quently, the overall thicknesses of DBR structures can be

greatly reduced. In this work, we propose and demonstrate

the ZnTe/GaSb DBRs that can be potentially used in

VCSELs for MWIR optoelectronic applications.

To properly design the DBR structures, a quantitative

study of the reflectivity of the proposed ZnTe/GaSb k/4

structures was carried out using the transmission matrix

method.17 The transmission matrix formulation is expressed

as follows:

B
C

� �
¼

Y2N

q

cosDq i � sinðDqÞ=nq

i � sinðDqÞ � nq cosDq

� � !
� 1

nsub

� �
;

(1)

Dq ¼ 2pnq � dq=k; (2)

dq ¼
kpeak

4 � nq
; (3)

where N is the number of k/4 pairs, nq and nsub are the refrac-

tive indices of the qth layer and the substrate, respectively, dq

is the thickness of the corresponding k/4 layer, and kpeak is

the peak wavelength of the high reflectance band, which is

set as 2.3 lm for the simulation. The reflectance is given by
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R ¼ 1� C=B

1þ C=B

� �
� 1� C=B

1þ C=B

� �
; (4)

where C=B is also referred to as optical admittance.

In the simulation, measured refractive indices of bulk

ZnTe and GaSb are used.18 Dispersion curves of ZnTe and

GaSb refractive indices in the spectral range from 0.2 to

0.7 eV are parameterized and extracted using the Sellmeier

equation.19 With refractive indices, layer thicknesses, and

the numbers of k/4 pairs as input parameters, reflectance

spectra of the ZnTe/GaSb DBR structures are simulated

using Eq. (4), as shown in Figure 1. The relationship between

the peak reflectance and the number of k/4 pairs is also plot-

ted in Figure 2. It is clearly seen that the reflectance higher

than 99% can be expected from the ZnTe/GaSb DBR con-

sisting of only seven k/4 pairs. For the ZnTe/GaSb DBR of

10 pairs, a reflectance as high as 99.9% can be achieved. It is

worth noting that the reflection spetra show a very wide and

flat stopband, as expected due to the large refractive index

contrast between ZnTe and GaSb. By using ten k/4 pairs, the

bandwidth of primary reflectance band above 99% is

428 nm. Comparisons of main DBR design parameters and

peak reflectance are made among ZnTe/GaSb, AlAsSb/

GaSb, and InGaAs/InAlAs DBRs. As shown in Table I, only

ten k/4 pairs are needed to reach 99.9% reflectance for ZnTe/

GaSb DBRs, while the other two DBRs require as many as

20 and 30 pairs, respectively. As a result, the thickness of

overall ZnTe/GaSb DBR structure can be reduced to 4 lm or

less, vs. 7 to 11 lm for the other two structures.

A set of ZnTe/GaSb DBR samples were grown using a

molecular beam epitaxy (MBE) system consisting of two

separate II–VI and III–V growth chambers connected by an

ultrahigh-vacuum (UHV) transfer module. The DBR struc-

tures were grown on a GaSb (001) substrate with an uninten-

tionally doped GaSb buffer layer. During the growth, ZnTe

epilayers were deposited at 320 �C in the II–VI chamber,

while GaSb epilayers were grown in the III–V chamber

using a temperature ramp method to protect the ZnTe layer

surfaces and to achieve high material quality.14 The wafer

was transferred between II–VI and III–V chamber repeatedly

to complete the whole DBR structure. The detailed growth

conditions, such as growth temperatures, temperature ramp-

ing rate, BEP ratios, and growth rates were reported

previously.14

After completion of the growth, x-ray diffraction (XRD)

patterns of the samples were measured in the vicinity of the

(004) diffraction peak of the GaSb substrate using a PANa-

lytical X’Pert PRO MRD x-ray diffractometer with multi-

crystal monochromator. The copper Ka1 line (1.54 Å) was

used as the incident beam. The (004) x-2h curve for the

DBR sample of four k/4 pairs is shown in Figure 3. Pen-

dell€osung fringes are clearly observed, indicating high inter-

face smoothness, as well as excellent composition and

thickness uniformities of all the layers. The (004) XRD pat-

tern is also simulated using X’Pert Epitaxy software. The

ZnTe and GaSb layer thicknesses are set equal to 190 and

135 nm, respectively, as estimated from the growth rates.

The simulated results show excellent agreement with the ex-

perimental curve.

The reflectance measurements were carried out at normal

incidence using a Globar as the light source. The incident light

passed through an optical microscope and was focused on the

samples surface. The reflectivity spectra were measured by a

Fourier transform infrared (FTIR) spectrometer equipped with

a CaF2 beam-splitter and a liquid-nitrogen-cooled HgCdTe

detector. As seen in Figure 4, the measurement result for the

DBR sample of seven k/4 pairs shows a peak reflectance of

99.0% with a wide stopband of 480 nm centered at 2.5 lm.

FIG. 1. Simulated reflectance spectra for ZnTe/GaSb DBRs with different

numbers of k/4 pairs.
FIG. 2. Peak reflectance versus number of k/4 pairs.

TABLE I. Comparison of different DBRs used for VCSELs emitting at 2.3 lm.

[DBR materials]/substrate

Refractive index

contrast (Dn)

Number of k/4

pairs (N)

Calculated peak

reflectivity (%)

Total thickness

(lm)

[ZnTe/GaSb]/GaSb 1.18 10 99.9 3.6

[AlAsSb/GaSb]/GaSb 0.6 20 99.7 6.6

[InGaAs/InAlAs]/InP 0.27 30 99.4 10.5
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Simulation of reflectance spetra was also performed. By com-

paring the simulation results with the experimental data,

excellent agreement is obtained in terms of peak reflectance,

bandwidth of photonic stopband, and sidelobe positions.

In summary, ZnTe/GaSb DBR structure is proposed for

applications in mid-wave infrared VCSELs and other opto-

electronic devices. Numerical simulation using the transmis-

sion matrix method shows that a peak reflectance as high as

99.9% can be expected from ZnTe/GaSb DBRs with only 10

pairs k/4 layers. Successful growth of high quality ZnTe/

GaSb DBRs has been demonstrated on GaSb (001) substrates

using MBE. High-resolution XRD results show narrow line

widths and distinctive Pendell€osung fringes from ZnTe and

GaSb epilayers, indicating smooth morphology, uniform

thickness, and low defect density. A peak reflectance of

99.0% with a wide stopband of 480 nm centered at 2.5 lm

was experimentally demonstrated for a ZnTe/GaSb DBR

with only seven k/4 pairs.
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FIG. 3. Measured and simulated XRD patterns for a ZnTe/GaSb DBR sam-

ple of four k/4 pairs.

FIG. 4. Measured and simulated reflectance spectra for a ZnTe/GaSb DBR

sample of seven k/4 pairs.
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