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Deep-level transient spectroscopy measurements in InAs quantum dots~QDs! grown in both
n-GaAs andp-GaAs show that tunneling is an important mechanism of carrier escape from the dots.
The doping level in the barrier strongly affects the tunneling emission rates, enabling or preventing
the detection of a transient capacitance signal from a given QD level. The relative intensity of this
signal acquired with different rate windows allows the estimation of tunneling emission energies.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1402642#

Stranski–Krastanow quantum dots~QDs! have recently
attracted much attention due to their unique optical and elec-
tronic properties, which are enabling a wide range of novel
applications.1 The transition energies between QD electron
and hole levels can be directly measured from photolumines-
cence~PL! peaks. However, PL provides little information
on electron and hole levels relative to the barrier band edges.
Space charge techniques such as capacitance–voltage spec-
troscopy (C–V)2–5 and deep-level transient spectroscopy
~DLTS!6–9 allow absolute positioning of the QD levels, pro-
viding complementary information to PL. Carrier capture
and escape dynamics of the dots can also be studied by
means of DLTS. There has been some discrepancy between
different published works on DLTS in the extensively stud-
ied InAs/GaAs self-assembled QDs. Direct measurements of
the energy difference between the dot levels and the energy
band of the barrier7 have been reported, while other works
show evidence of capture barriers into the dots.8 The possi-
bility that some of the DLTS signals detected are originated
from traps near the dots has also been suggested.9 To this
day, only one study has reported clear detection of electron
escape by means of tunneling in InAs QDs.7 In the present
work, DLTS measurements performed on InAs QDs embed-
ded in n- and p-GaAs show that tunneling is an important
escape mechanism in quantum dots. Tunneling emission
rates and energies are estimated by means ofC–V and
DLTS.

QD structures were grown by molecular beam epitaxy.
Two samples with eight 50-nm layers ofn-type ~p-type!
GaAs (n5p51017cm23) terminated with InAs QDs
~;2 ML coverage! were grown over a 300-nm-thick,
n1-doped GaAs buffer layer. A final GaAs capping layer
with the same doping level was deposited. A top Schottky
diode and back ohmic contacts were formed for then-type
sample, and back and top ohmic contacts were formed on the
p-type sample. The DLTS measurements were carried out at
delay timest in the ~0.02–1000! ms range and at a rate
window10 of 4.33t.

Analysis of island sizes and densities using atomic force

microscopy in air give average diameters of 40 nm, 5 nm
heights, and concentrations of 331010cm22 for uncapped
QDs grown under the same conditions. PL spectra for these
structures were obtained at 300 and 77 K using an Ar1 laser
for excitation and a cooled Ge detector with lock-in tech-
niques for signal detection. The extrapolated ground state
emission at 4 K is ;1.15 eV, with full width at half maxi-
mum ;130 meV.

A typical C–V profile obtained at 75 K for then-type
sample is shown in curve A~filled circles! of Fig. 1. Three
plateaus corresponding to three different layers of dots are
observed in addition to the background capacitance from the
doped GaAs layers. Since only one plateau per QD level is
expected,2 we attribute each plateau to the emptying of a
single QD level. Curve C~filled circles! of Fig. 1 shows a
similar behavior for thep-type sample. High leakage current
for this sample allows biasing only to 2 V, therefore, only
two plateaus were observed.

Models of different level of sophistication have been
used to study theC–V profile of single QD layers.3,5 A sim-
pler analysis of theC–V profile is possible by calculating
the charge in the dots as a function of the applied voltage by
using the expression reported in Refs. 3–5 for the density of
electron states in the QD sheet but assuming that the

a!Present address: Institut Jaume Almera~C.S.I.C.!, Barcelona, Spain.

FIG. 1. Capacitance–voltage profile at 75 K forn-InAs QDs~curve A, filled
circles! and p-InAs QDs ~curve C, filled circles!. CalculatedC–V profiles
are shown as solid curves. Curve B shows DLTS-signal intensity vs reverse
bias at 20 K for then-type sample. The dashed line is a guide to the eye.
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depletion-region approximation still holds. The total capaci-
tance is then given by the QD-related capacitance plus the
background capacitance. This method, already applied using
a lever-arm relation for a single layer of dots in Ref. 4, fa-
cilitates the calculation for a multilayered system. Within this
approach we obtain the best fit~solid line! to curve A of Fig.
1 when one QD level with energyEn5250 meV below the
GaAs conduction band and energy dispersionDEn

5140 meV is taken into account. For thep-type sample we
obtain the best fit~solid line! to curve C with one single QD
level with energyEp5110 meV above the GaAs valence
band and energy dispersionDEp5140 meV.

Figure 2~open circles! shows a DLTS spectrum for the
n-type sample, consisting of a quasiflat signal that extends
over the whole range of temperatures. A DLTS peak~not
shown in the graph for scaling reasons! with an activation
energy of 0.40 eV appears for higher temperatures. Since this
peak was only detected for positive or low negative filling
biases, we believe it to be related to deep surface traps and
not to the dots. The spectrum for thep-type sample~filled
circles! shows a flat signal for the lower temperatures, and a
step-like reduction to zero signal at about 55 K. To under-
stand both spectra we must take into account that two carrier-
escape mechanisms exist: thermal escape and tunneling. In
the former, the quantum dot behaves like a deep trap and
hence its thermal emission rateeth is given by eth

5AT2exp(2Ea /KT), whereEa is the activation energy of the
QD level andA is a temperature-independent constant pro-
portional to the capture cross section.10 On the other hand,
assuming a triangular barrier for the carriers trapped in the
QDs, the tunneling escape rate can be written as11

etun5
qF

4~2m* Eh!1/2expS 2
4

3

~2m* !1/2Eh
3/2

q\F D , ~1!

whereEh is the barrier height,F is the electric field at the
dot, q is the electron charge, andm* is the effective mass of
the carriers in the energy band of the barrier material. For
sufficiently low temperatures, the total emission rateen

5eth1etun is dominated by tunneling, which is temperature
independent and therefore yields a flat DLTS signal. The

intensity of this signal depends on the tunneling emission
rate and the rate window. For sufficiently high temperatures,
thermal emission dominates, giving rise to a step-like reduc-
tion of the tunneling flat signal at the temperature of the
DLTS peak that would be present in the absence of carrier
escape by tunneling. This allows estimating the activation
energy of QD levels by Arrhenius plots, determining the po-
sition of the step for different rate windows. The low-
temperature flat signal obtained for thep-type sample origi-
nates by hole tunneling escape from the dots, whereas the
reduction to zero signal at about 55 K arises from thermal
escape. We obtain a value of 100620 meV for the activation
energy of the QD hole level, which is in good agreement
with the C–V results. Slight variations of this value are ob-
tained depending on the applied reverse bias, which can be
explained by variations of the energy level of the dots due to
the electric field. No step-like reduction is detected for the
n-type sample~open circles in Fig. 2! up to 325 K because
the DLTS signal detected at higher temperatures hinders any
other feature. The inset of Fig. 2 plots the intensity of the flat
signal at 20 K for both then-type and thep-type samples as
a function of the delay time. For then-type sample, the flat
signal is detected with the lowest rate window available~de-
lay time of 0.02 ms!. For the next wider rate windows~delay
times of 0.05 and 0.1 ms! the flat signal detected is strongly
reduced, which is a consequence of high rate of electron
escape by tunneling. For the next rate windows available, no
signal at all is detected. To further confirm that the flat signal
obtained for then-type sample is originated by electrons
escaping from the dots, we have measured its intensity at 20
K versus applied reverse bias. A positive filling bias was
used to include the first layer of dots. The result, plotted in
Fig. 1 ~curve B!, shows three plateaus that coincide with the
plateaus of theC–V measurement~curve A!. The intensity
of the flat signal increases when the applied reverse bias is
sufficient to include a given layer of dots. For higher reverse
bias the tunneling escape rate increases due to the increase of
the electric field, and this diminishes the intensity of the flat
signal.

For a carrier captured in a QD level to escape, the level
must be above the Fermi energy in the barrier region. This
happens for a certain onset reverse biasVc that, within the
depletion approximation, satisfies the relation2qc(Vc)
1Eh5q(Vc1c0)2EF , which leads to

Eh2q~Vc1c0!S 12
L

WD 2

1EF50, ~2!

wherec(Vc) is the potential at the dot layer,EF is the Fermi
energy at the barrier,W5@2(c01Vc)ee0 /qNA,D#1/2 is the
depletion-region width,L is the distance from the dots to the
diode junction,NA,D is the doping level at the barrier andc0

is the built-in potential. For this voltageVc , the electric field
F at the dots can be calculated using the depletion approxi-
mation. By inserting the value ofF into Eq. ~1!, the lowest
emission energy that gives rise to tunneling rates detectable
with the shortest rate window available~delay time of 0.02
ms! can be calculated. A lower emission energy would yield
carrier escape rates too fast to be detected with our instru-
mentation. We calculate that our lowest experimentally de-
tectable emission energy is about 0.17 eV for electrons,

FIG. 2. DLTS spectrum (t50.02 ms) for then-type InAs-QD sample~open
circles!, for biasing conditions20.75 V/20.05 V, and for thep-type InAs
QDs ~filled circles!, for biasing conditions20.75 V/20.05 V (t55 ms).
The inset shows the intensity of the flat signal at 20 K for then-type ~open
circles! and thep-type samples~filled circles! vs delay time.
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about 0.15 eV for light holes, and about 0.060 eV for heavy
holes. We have used the valuesme* 50.068,mlh* 50.076 and
mhh* 50.50 for the effective mass of the different carriers.12

Hence, the doping level in then-type barrier does not allow
detection of DLTS signals from shallower QD electron levels
~higher-energy excited states measured by PL!. For the
p-type sample, we attribute the DLTS signal obtained to tun-
neling from a heavy hole level, since its emission energy is
of about 0.10 eV, whereas no light hole levels lower than
0.15 eV can be observed for the experimental conditions of
this work. Different results reported in the literature on InAs
QDs could be accounted for by different doping levels in the
GaAs matrix. Additional investigation on samples with dif-
ferent doping levels should be performed.

Finally, it is possible to evaluate the tunneling emission
energy by measuring the relative intensity of the tunneling-
related flat signal of two different DLTS spectra acquired
with two different rate windows, defined by the time inter-
vals (t1 ,t2) and (t18 ,t28), respectively.10 The relative intensity
of these tunneling signals is given by

I

I 8
5

exp~2etunt2!2exp~2etunt1!

exp~2etunt28!2exp~2etunt18!
. ~3!

The emission energy can then be evaluated by using Eq.~1!
with the value ofetun obtained from Eq.~3!. With this pro-
cedure, and using the data for then-type sample plotted in
the inset of Fig. 2, we estimate tunneling emission times for
then-type sample in the~20–50! ms range, which leads to an
emission energy of 0.2760.04 eV which is close to the value
obtained byC–V. For thep-type sample, we estimate tun-
neling times between~30 and 500! ms, which gives rise to an
emission energy of 0.1360.03 eV, again, close to the value
obtained with theC–V analysis. This value is also close to
the value 0.1060.02 eV obtained for the activation energy
using the position of the step-like reduction in the spectra of
the p-type sample. Table I displays the different energy val-
ues for the electron~hole! levels relative to the GaAs con-
duction~valence! band obtained in this work. The proximity
of energy values determined with different procedures seems
to indicate that both the low-temperature flat signal and the
step originate from the same QD level, in contrast to the
two-level escape mechanism proposed in Ref. 7. Although
Coulomb charging effects prevent the observation of higher
excited states by space charge techniques,13 it is possible that
two or even more QD levels close in energy are responsible
for the C–V and DLTS spectra obtained here. In this case,

the energy values that we calculate would be average values
of the QD levels involved. WhereasC–V provides informa-
tion about discharging of the QD levels with respect to the
position of the Fermi energy, DLTS provides information
about the barrier that the carriers must overcome to escape. It
should be noted that the sum of the hole and electron energy
levels determined withC–V and DLTS plus the ground-state
recombination energy for the dots studied in this work 1.15
eV at 4 K! is close to the GaAs band gap 1.52 eV at 4 K!.
This fact and the closeness of the QD-level energies obtained
by C–V and DLTS do not support the concept of capture
barriers for the carriers into these QDs. This is in agreement
with previous results on temperature-dependent PL14 and
time-resolved PL experiments,15 in which important capture
barriers have only been identified in low-density QDs, but
not in high-density QDs like those studied here.

In conclusion, DLTS signals detected from InAs QDs are
strongly affected by carrier escape by tunneling, with escape
rates strongly dependent on the doping density of the barrier.
The tunneling emission energies do not support the existence
of high capture barriers into these QDs.
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TABLE I. QD energy level obtained byC–V measurements~first column!,
compared with activation energyEa ~second column! and barrier heightEh

~third column! obtained from DLTS.

En,p Ea Eh

InAs/n-GaAs QDs 0.25 eV ¯ 0.27 eV
InAs/p-GaAs QDs 0.11 eV 0.10 eV 0.13 eV

2015Appl. Phys. Lett., Vol. 79, No. 13, 24 September 2001 Ihár̃ez et al.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

209.147.144.21 On: Tue, 10 Feb 2015 00:35:25


