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Thin films of Bi2Te3 and Bi2Se3 have been grown on deoxidized GaAs(001) substrates using

molecular beam epitaxy. Cross-sectional transmission electron microscopy established the highly

parallel nature of the Te(Se)-Bi-Te(Se)-Bi-Te(Se) quintuple layers deposited on the slightly wavy

GaAs substrate surface and the different crystal symmetries of the two materials. Raman mapping

confirmed the presence of the strong characteristic peaks reported previously for these materials in

bulk form. The overall quality of these films reveals the potential of combining topological

insulators with ferromagnetic semiconductors for future applications. VC 2011 American Institute of
Physics. [doi:10.1063/1.3655995]

Recent photoemission measurements of the surfaces of

topological insulators (TIs) such as Bi1�xSbx, Bi2Te3 and

Bi2Se3 have confirmed that a conducting surface state with

an odd number of Dirac points exists in these materials.1

Theoretical models of topological insulators have predicted

that this surface state should be robust and “topologically

protected.”1 Moreover, this conducting state is naturally

spin-polarized, which opens up interesting opportunities for

possible applications in spintronics.2 The growth of such top-

ological insulators by molecular beam epitaxy (MBE) is

especially attractive because of the possibility to avoid defect

formation by controlling the growth conditions. Efforts to

fabricate TI thin films by MBE have included growth of

Bi2Te3 on substrates of Si(111),3,4 and growth of Bi2Se3 on

substrates of graphene,3 Si(111),5,6 as well as GaAs(111).7

Because representative spintronic materials, such as GaM-

nAs, are easily grown on GaAs (001) substrates,8 and Fe

films of very high crystalline perfection can also be grown

on GaAs (001) or (110) substrates,9 we are actively pursuing

MBE growth of Bi2Te3, Bi2Se3 and their alloys on GaAs

(001) substrates, with a goal to combine these electronic

materials into multifunctional device configurations in the

future. We demonstrate here that MBE growth of pseudo-

hexagonal Bi2Te3 and Bi2Se3 thin films can also be achieved

on GaAs (001) substrate despite the very different crystal

symmetries along the film growth direction.

The Bi2Te3 and Bi2Se3 films were grown using a dual-

chamber MBE system, with the growth process being moni-

tored in situ by reflection-high-energy electron diffraction

(RHEED). The growth sequence was usually as follows.

First, the epi-ready GaAs (001) semi-insulating substrates

were heated up to 600 �C for surface deoxidation. This deox-

idation process was done either in the II–VI MBE chamber,

which was also equipped with high purity Bi, Te, and Se

evaporators or, alternatively, in the III–V MBE chamber by

depositing a 100-nm GaAs buffer layer on the deoxidized

GaAs substrate, which was then transferred via an ultrahigh-

vacuum load-lock assembly into the II–VI MBE chamber.

The TI growth was initiated by the deposition of a sequence

of either Te-Bi-Te-Bi-Te or Se-Bi-Se-Bi-Se atomic layers at

room temperature. During this process, the (2� 4) RHEED

pattern disappeared, indicating that an amorphous film had

been deposited. The substrate was then gradually heated to

about 300 �C to anneal the film, and a streaky RHEED pat-

tern shown in Fig. 1 became visible, indicating that a quintu-

ple layer (QL) of TI film had been formed.5 It is important to

note that the RHEED pattern showed recurrences six times

during each rotation of the substrate, which confirms the c-

axis growth of the pseudo-hexagonal TI films, with the a-

axis lying along either the [110] or the ½1�10� direction of the

GaAs (001) substrate. Two types of RHEED patterns were

observed in this stage, depending on the length of annealing

FIG. 1. RHEED patterns observed for two specific orientations of GaAs

(001) substrate during MBE growth of (a) Bi2Te3 and (b) Bi2Se3.

a)Author to whom correspondence should be addressed. Electronic mail:

xliu2@nd.edu.
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time. As shown in Fig. 1(a), usually observed in Bi2Te3 case

(QL of Bi2Te3 usually survives for a longer annealing time

than Bi2Se3), longer annealing times yielded an unrecon-

structed pattern with distinct features observed for GaAs

[110] and ½1�10� directions, respectively. We attribute this to

the hexagonal surface symmetry of the TI layer. On the other

hand, short annealing times yielded the same RHEED pat-

terns for both GaAs [110] and ½1�10� directions, as shown in

Fig. 1(b), which is often observed for Bi2Se3. Note that the

RHEED pattern is actually a combination of the two distinct

patterns seen on the [110] and ½1�10� directions in the long

annealing case. We therefore attribute this to the coexistence

of two types of hexagonal surfaces perpendicular to each

other. The MBE growth of Bi2Te3 and Bi2Se3 was then per-

formed under the condition of TTe (or TSe)<Tsubstrate

(300 �C)<TBi (500 �C) with a Se(or Te):Bi beam equivalent

pressure ratio ranging from 15:1 to 25:1. While no notable

differences were observed for the growth of Bi2Te3 and

Bi2Se3 when carried out on substrates with or without the

GaAs buffer layer, the results described here refer only to TI

films grown without the buffer layers. The TI thin films were

grown layer-by-layer, with typical growth rates in this work

of 2 QL/min, as characterized by RHEED oscillations (data

not shown). RHEED patterns shown in Fig. 1 were main-

tained throughout the whole growth process. It should be

emphasized that the same kind of growth is also observed on

the Ga-rich GaAs (001) surfaces, i.e., surfaces with a (4� 6)

RHEED pattern. We therefore attribute the growth of

pseudo-hexagonal Bi2Te3 and Bi2Se3 on the GaAs (001) sub-

strates to the weak Van der Waals coupling between the sub-

strate and the TI films, leading to immediate strain relaxation

as the interface is forming.3–7

The film thicknesses were determined ex situ through

model-fitting10 of the specular x-ray reflectivity (XRR), as

shown by the example (thickness �68 nm) in Fig. 2. These

thickness values were in reasonable agreement with the

growth rates that were estimated in situ from RHEED oscil-

lations. The standard deviation of film thickness obtained by

fitting the XRR data was about 2.3 nm (3% of thickness),

which suggests the root-mean-square roughness average

(RMA) will be of the same order as that reported for the TI

films of comparable thickness grown on other substrates.4

The overall crystallinity of the TI films was initially eval-

uated by high resolution x-ray diffraction (HR-XRD) using

the Cu Ka1 radiation line. Figure 3 shows XRD patterns that

were obtained from: (a) a 233-nm-thick Bi2Te3 film and (b)

a 180 nm-thick Bi2Se3 film, respectively. Strong reflections

only from {003}-type lattice planes are visible, which is

indicative of the highly pronounced c-axis growth of the

film. The full-width-half-maximum for the (0,0,6) plane

indicates that the crystallinity of Bi2Se3 was considerably

better than that of Bi2Te3 (108 versus 763 s). The QL

thicknesses were calculated from the XRD data,

giving dQL¼ 1.006 6 0.015 nm for Bi2Te3 and dQL

¼ 0.9527 6 0.0005 nm for Bi2Se3, respectively (uncertainties

correspond to 1r). Both values are consistent with the values

of 1.016 nm for the bulk Bi2Te3 (Ref. 11) and 0.9545 nm for

bulk Bi2Se3.12

The microstructure of the films was determined using

cross-section transmission electron microscopy (XTEM).

Samples were prepared for TEM examination using standard

mechanical polishing and argon-ion-milling, with the sample

held at liquid-nitrogen temperature during the latter process

in order to avoid unintentional ion-milling artifacts. Gentle

handling was necessary because the TI films had a tendency

to peel away from the substrate during the preparation proce-

dure, consistent with weak bonding between the TI films and

the substrate. Figure 4(a) is an XTEM image showing a

region of the Bi2Se3 film close to the GaAs substrate surface.

Despite the slightly wavy surface of the epi-ready GaAs sub-

strate, highly parallel layers are clearly visible in the Bi2Se3

film, suggesting that the high crystal quality is achieved by

an internal self-correction process that is occurring as the

growth proceeds. Figure 4(b) shows an enlarged view of the

Bi2Se3/GaAs interface, which illustrates the pronounced pla-

narity of the Bi2Se3 lattice planes even in close proximity to

the undulating GaAs surface. In addition, atomically sharp

image of XTEM shows no dislocations and accumulated

strain immediately above GaAs, despite the symmetry mis-

match between the TI films and the GaAs (001) surface. This
FIG. 2. (Color online) Model-fitted specular x-ray reflectivity of the Bi2Te3

film, used for estimating the film thickness. Error bars correspond to 61r.

FIG. 3. X-ray diffraction patterns obtained from (a) 233-nm-thick Bi2Te3

film and (b) 130-nm-thick Bi2Se3 film grown by MBE on GaAs(001)

substrate.
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observation undoubtedly confirms the rapid relaxation of

strain at the interface, which is similar to what is observed

on graphene and Si.3–7 We attribute such unique feature to

the weak van der Waals coupling between adjacent QLs in

the TI films. TEM images also confirmed that the a-axis of

the pseudo-hexagonal TI films lies along either the [110] or

the ½1�10� direction of the GaAs (001) substrate.

Micro Raman spectroscopy with a 532-nm excitation

laser (power �0.8 mW) was also performed. The results,

shown in Fig. 5, reveal three of the characteristic peaks for

Bi2Se3 [at �71 cm�1 (A1
1g), 131 cm�1 (E2

g), and 174 cm�1

(A2
1g)], and two of the characteristic peaks for Bi2Te3 [at

�102 cm�1 (E2
g) and 134 cm�1 (A2

1g)]. The peaks observed

in these two TI materials are consistent with the lattice vibra-

tion modes reported earlier.13 Moreover, Raman mapping

showed that the positions of these Raman peaks measured

within a scan area of 15 lm� 15 lm vary spatially by less

than �1 cm�1, indicating a good uniformity of the films.

In summary, even though there is mismatch between the

hexagonal lattices of Bi2Te3 and Bi2Se3 topological insula-

tors and the cubic symmetry of the GaAs (001) surface, we

have grown high quality epitaxial films of Bi2Te3 and Bi2Se3

on GaAs (001) substrates. The films are highly uniform and

the crystallinity is comparable to that of films grown on sub-

strates with hexagonal surface structure. Future studies of

Bi2Te3 and Bi2Se3 grown on GaAs (001) substrates should

contribute towards a better knowledge of MBE growth of

topological insulators, as well as opening up the opportunity

for future spin-based devices that combine topological insu-

lators with ferromagnetic semiconductors.
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FIG. 5. Representative Raman spectra measured in MBE films of: (a)

Bi2Te3 and (b) Bi2Se3. The film (a) is 136 nm thick and the film (b) is

150 nm thick.

FIG. 4. Transmission electron microscopy (TEM) images showing cross

sections of topological insulator Bi2Se3 grown by MBE on a deoxidized

GaAs(001) substrate.
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