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CdSe/CdTe type-II superlattices grown on GaSb substrates by molecular beam epitaxy are studied

using time-resolved and steady-state photoluminescence (PL) spectroscopy at 10 K. The relatively

long carrier lifetime of 188 ns observed in time-resolved PL measurements shows good material

quality. The steady-state PL peak position exhibits a blue shift with increasing excess carrier

concentration. Self-consistent solutions of the Schr€odinger and Poisson equations show that

this effect can be explained by band bending as a result of the spatial separation of electrons and

holes, which is critical confirmation of a strong type-II band edge alignment between CdSe and

CdTe. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745199]

The monolithic integration of 6.1 Å II-VI (MgZnCd)

(SeTe) and III-V (AlGaIn)(AsSb) semiconductors on com-

mercially available GaSb or InAs substrates offers the free-

dom to integrate many photonic and electronic devices onto

a single substrate.1–3 Because these materials can be grown

lattice matched on GaSb or InAs substrates, high quality

materials can be obtained with minimal misfit dislocations to

ensure the best possible device performance. In particular,

CdSe/CdTe superlattices have recently been grown on GaSb

substrates using molecular beam epitaxy.4 The excellent

structural and optical properties of these superlattices make

them suitable for applications such as multi-junction solar

cells, light emitting diodes, and photodetectors. The CdSe/

CdTe heterostructure has a type-II band edge alignment, and

therefore offers some unique optical properties.4 This paper

reports a detailed study of the optical properties of the type-

II superlattices using time-resolved and steady-state photolu-

minescence (PL) spectroscopy. The superlattice sample used

as an example consists of 50 periods of alternating CdSe and

CdTe layers with thicknesses of 6.0 6 0.1 nm and

0.8 6 0.1 nm, respectively, on a ZnTe buffer layer grown

using molecular beam epitaxy on the GaSb substrate.

Detailed growth conditions and structural characterization

results are reported in Ref. 4.

The time-dependent PL decay of the superlattice was

measured at 10 K using time-correlated single photon count-

ing and is shown in Fig. 1 for two optical excitation inten-

sities. The excitation source was a 405 nm pulsed laser with

a 50 ps pulse width and a 2.5 MHz repetition rate, and the de-

tector was a Hamamatsu H10330-75 near infrared photomul-

tiplier tube. Assuming there is no carrier recombination

during the laser pulse, the initial excess carrier concentra-

tions are estimated to be 5� 1018 6 1� 1018 cm�3 (red

curve) and 4� 1017 6 1� 1017 cm�3 (blue curve) using the

measured laser peak powers of 554 6 20 mW and

44 6 2 mW, laser spot diameter of 15 6 2 lm, and the

absorption coefficient of 1.5� 105 cm�1 measured using

UV-visible variable-angle spectroscopic ellipsometry. The

laser spot size is estimated by imaging the focused laser spot

on a reference sample using an Indigo Alpha NIR camera on

a micro-PL setup, with an accuracy of about 1 lm as limited

by the camera pixel size.

The PL decay evolves from a steep initial descent with a

rapidly increasing instantaneous lifetime in the first 75 ns to

a gradual decay with a single exponential tail. The strong de-

pendence of carrier lifetime on the excess carrier concentra-

tion in the initial decay can be partly attributed to

concentration-dependent recombination mechanisms such as

radiative and Auger recombination.5 However, the similarity

in the initial slopes of the PL decay curves, in spite of the

very different initial excess carrier concentrations, suggests

that other mechanisms are also involved in the initial steep

PL decay, e.g., carrier diffusion and the direct band-to-band

FIG. 1. Time-resolved photoluminescence decays measured at 10 K with ini-

tial carrier concentrations of 5� 1018 cm�3 and 4� 1017 cm�3, respectively.

a)Author to whom correspondence should be addressed. Electronic mail:

yhzhang@asu.edu.
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transition in CdSe. The latter was directly observed in

steady-state PL on a similar sample.

The excess carrier concentrations at the onset of the ex-

ponential decay tails are on the order of 1018 cm�3 (red

curve) and 1017 cm�3 (blue curve), respectively. The net

background doping concentration at room temperature is

estimated to be below 1017 cm�3 from the free carrier

absorption measured using an infrared variable angle spec-

troscopic ellipsometer. Therefore, the excess carrier concen-

trations at the onset of the exponential decay tails are

assumed to be much larger than the background carrier con-

centration considering carrier freeze-out at 10 K. In this case,

the constant lifetimes in the exponential decay tails can be

attributed to Shockley-Read-Hall (SRH) recombination, and

the PL intensity has a quadratic dependence on the excess

carrier concentration. The PL decay lifetimes in the expo-

nential decay tails are fit as 174 6 6 ns and 202 6 7 ns for the

initial excess carrier concentrations of 5� 1018 cm�3 and

4� 1017 cm�3, respectively. The slight difference between

the observed lifetimes may be due to the limited time range

taken in the measurements, and the SRH lifetime is taken as

188 6 5 ns from the average of those fit values.

The steady-state PL of the superlattice was measured at

10 K with excess carrier concentrations ranging from approxi-

mately 9� 1015 cm�3 to 6� 1018 cm�3. The sample was

excited by a 488 nm Ar-ion laser with a focused spot diameter

of 134 6 2 lm measured using the knife-edge method, and the

PL signals were collected using a grating monochromator and

measured using a Ge detector cooled to liquid nitrogen tem-

perature. As shown in Fig. 2(a), the PL peak energy of the

superlattice is smaller than the bandgap energy of either CdTe

(1.61 eV)9,12,13 or cubic CdSe (1.76 eV),9,10 suggesting a type-

II band edge alignment. Furthermore, the PL peak shifts to

higher energy as the excess carrier concentration increases.

This blue shift is proposed to be caused by the spatial separa-

tion of electrons and holes generated by the optical excitation

in the type-II superlattice. Figure 2(b) shows the calculated

band edge alignments, the superlattice minibands, and the cor-

responding ground state probability densities of the conduc-

tion band and heavy-hole band at an excess carrier

concentration of 6� 1018 cm�3. (Details of the calculations

are described below.) The electrons and holes are spatially

separated as shown by their probability densities, and their

Coulomb attraction pulls them toward the interfaces of the

two materials. Consequently, the bands are bent down towards

the interfaces, pushing the minibands to higher energies as the

excess carrier concentration increases with increasing excita-

tion power density. A blue shift in the PL peak should, there-

fore, result from the enhanced band bending caused by the

increased excess carrier concentration.

Pronounced band bending of this type has been observed

primarily in type-II quantum wells and quantum dots.6,7 In

superlattices, however, the coupling between the quantum

wells tends to reduce the charge localization and separation

as shown by the probability densities in Fig. 2(b). To confirm

the band bending effect in the type-II superlattices, self-

consistent solutions of the Schr€odinger and Poisson equa-

tions8 are performed to model the increase of the ground state

transition energy with the accumulation of excess carriers.

The modeling starts with the calculation of strain effects

on the band edges. In CdSe/CdTe superlattices, the CdSe

layer is tensilely strained, while the CdTe layer is compres-

sively strained to match the GaSb lattice constant. The strain

effects on the band edges are caused by a superposition of

the hydrostatic strain and shear strain. The hydrostatic strain

shifts the conduction band and valence band edges, while the

shear strain splits the heavy-hole and light-hole bands. The

superlattice minibands are formed from a hybridization of

bound states of the quantum wells coupled through the bar-

riers, which can be obtained by solving the Schr€odinger-like

envelope function equation

� �h2

2

d

dz

1

mðzÞ
d

dz

� �
WðzÞ þ ½VSLðzÞ � VEðzÞ�WðzÞ ¼ EWðzÞ;

(1)

where m(z) is the effective mass in the growth direction z,

W(z) is the wave function of the energy state E, and VSL(z)

FIG. 2. (a) Steady-state photoluminescence spectra measured at 10 K with estimated excess carrier concentrations ranging from 9� 1015 cm�3 to

6� 1018 cm�3. (b) Calculated band edge alignments (black), minibands (green), and the corresponding ground state probability densities of the conduction

band and heavy-hole band (red) at a carrier concentration of 6� 1018 cm�3.
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and VE(z) are, respectively, the band edge alignment of

the superlattice and the electrostatic potential induced by the

charges. For a superlattice of N periods of a period L, the

wave vector q has N values in the first Brillouin zone with a

spacing of 2p/NL according to the envelope function approx-

imation and the cyclic boundary condition. The energy states

corresponding to þq and –q are degenerate. Equation (1) is

solved, respectively, for the conduction band, the heavy-hole

band, and the light-hole band using the propagation matrix

method, in order to obtain the energy states and wave func-

tions corresponding to the wave vectors.

The charges accumulated under optical excitation gener-

ate an electrostatic potential VE(z) as described by the Pois-

son equation (neglecting ionized dopants)

d

dz
eðzÞ d

dz

� �
VEðzÞ ¼ �jej½pðzÞ � nðzÞ�; (2)

where e(z) is the dielectric function and n(z) and p(z) are the

electron and hole concentrations. The electron concentration

n(z) is

nðzÞ ¼
X

m

X
n

jWnmðzÞj
2
Nnm; (3)

where jWnmðzÞj2 and Nnm are the electron probability density

and the sheet concentration in the nth energy state Enm of the

mth miniband in the conduction band. The electron sheet

concentration for the energy level Enm is

Nnm ¼
kBTme

p�h2
lnð1þ e½FN�Enm�=kBTÞ: (4)

The electron quasi-Fermi level FN can thus be found using

Eqs. (3) and (4) assuming the incident light is evenly

absorbed in every period of the superlattices. The hole quasi-

Fermi level FP is obtained similarly considering both the

heavy-hole and light-hole bands. Consequently, the electron,

heavy-hole, and light-hole concentrations are obtained, and

Eq. (2) is solved for the electrostatic potential VE(z). This

procedure of solving the coupled Schr€odinger and Poisson

equations is iterated until it converges.

The material parameters used in the calculations are

shown in Table I. The absorption coefficient and the surface

reflectivity at the 488 nm laser wavelength are 105 cm�1 and

28%, respectively, as estimated from the ellipsometry meas-

urements. The electron and hole concentrations are assumed

for simplicity to be the same in each period of the superlat-

tice that contributes to the PL. The surface recombination is

not expected to be significant because of the strong hole con-

finement in the structure. The carrier lifetime used in the cal-

culations is 188 ns as obtained from the time-resolved PL

measurements, because most of the carrier concentrations

that cause the blue shift in the PL peak position are in the

range of carrier concentrations that exist during the PL decay

tails.

The calculated ground state transition energy is com-

pared with the blue shift in the PL peak position as a function

of the excess carrier concentration in Fig. 3(a). The calcu-

lated ground state transition energy increases by 54 meV,

which is in reasonable agreement with the 40 meV blue shift

observed in the PL peak position. The larger blue shift of the

measured PL peak position at low carrier concentrations

could be caused by filling of the tail states below the band

edges, which is not considered in the calculations. The

smaller blue shift of the measured PL peak position at large

carrier concentrations could be attributed to a decrease of

carrier lifetime due to the increase of wave function overlap

in the type-II superlattice, the direct band-to-band transition

in CdSe or a heating effect at the high excitation levels.

Fig. 3(b) shows the maximum PL peak intensity as a

function of excess carrier concentration. For excess carrier

concentrations of less than 3� 1017 cm�3, the SRH recombi-

nation dominates and, therefore, the PL signal increases

superlinearly with the excess carrier concentration. As the

excess carrier concentration increases, the PL internal quan-

tum efficiency increases until the peak intensity is directly

proportional to excess carrier concentration as shown by the

dashed line, because the competing SRH process is satu-

rated. The PL intensity increases sublinearly when the excess

carrier concentration becomes larger than 9� 1017 cm�3.

This behavior could be caused by spatially direct band-to-

band recombination in CdSe, which is out of the detection

range of the Ge detector, or by the heating effect at the high

excitation levels. These results indicate that the carrier life-

time may start to decrease at the excess carrier concentration

of 3� 1017 cm�3 because the radiative recombination

becomes dominant. Note that the decrease of carrier lifetime

happens at a slightly higher carrier concentration in the PL

decay with an initial excess carrier concentration of

5� 1018 cm�3. This discrepancy could be due to errors in the

estimation of carrier concentrations for these two

measurements.

In summary, the optical properties of a type-II CdTe/

CdSe superlattice have been studied using time-resolved

TABLE I. Material parameters for zinc-blende CdTe and CdSe [a: lattice constant, Eg: bandgap energy, VBO: valence band offset, me: electron effective

mass, mz
hh (mz

lh) and mt
hh (mt

lh): heavy-hole (light-hole) effective mass in the growth direction and in plane, ac, av, and b: deformation potentials, e: dielectric

constant, and C11 and C12: elastic stiffness constants].

a (Å) Eg (eV) VBO (eV) (Ref. 4) me mt
hh mz

hh mt
lh mz

lh

CdSe 6.052 (Ref. 9) 1.76 (Refs. 9 and 10) 0.63 0.12 (Ref. 14) 0.17 (Ref. 17) 0.83 (Ref. 17) 0.36 (Ref. 17) 0.13 (Ref. 17)

CdTe 6.482 (Refs.

9, 11, and 12)

1.61 (Refs.

9, 12, and 13)

0.088 (Ref. 15) 0.14 (Refs.

15 and 16)

0.53 (Refs.

15 and 16)

0.28 (Refs.

15 and 16)

0.11 (Refs.

15 and 16)

ac (eV) (Ref. 18) av (eV) (Ref. 18) b (eV) (Ref. 19) e C11 (1011 dyne/cm2) C12 (1011 dyne/cm2)

CdSe �3.77 �1.81 �0.8 9.6 (Ref. 19) 8.8 (Ref. 11) 5.3 (Ref. 11)

CdTe �5.09 �2.14 �1 10.4 (Refs. 12 and 19) 5.35 (Refs. 11, 12, and 20) 3.68 (Refs. 11, 12, and 20)
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photoluminescence and steady-state photoluminescence. The

photoluminescence decay lifetime due to Shockley-Read-Hall

recombination is obtained as 188 ns. As a result of the type-II

band alignment, the photoluminescence peak position shifts to

shorter wavelengths with an increase of excess carrier concen-

tration. A comparison of the measured blue shift with the

increase in the ground state transition energy obtained from

self-consistent solutions of the Schr€odinger and Poisson equa-

tions suggests that this blue shift is primarily due to band

bending associated with the type II band offsets.
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