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CdSe/CdTe superlattices are grown on GaSb substrates using molecular beam epitaxy. X-ray

diffraction measurements and cross-sectional transmission electron microscopy images indicate

high crystalline quality. Photoluminescence (PL) measurements show the effective bandgap varies

with the superlattice layer thicknesses and confirm the CdSe/CdTe heterostructure has a type-II

band edge alignment. The valence band offset between unstrained CdTe and CdSe is determined as

0.63 6 0.06 eV by fitting the measured PL peak positions using the envelope function

approximation and the Kronig-Penney model. These results suggest that CdSe/CdTe superlattices

are promising candidates for multi-junction solar cells and other optoelectronic devices based on

GaSb substrates. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3697676]

Monolithic integration of II-VI (MgZnCd)(SeTe) and

III-V (AlGaIn)(AsSb) semiconductors on commercially

available GaSb or InAs substrates has been proposed as a

platform for many electronic and optoelectronic devices.1–4

These two families of semiconductor materials have identi-

cal crystalline structures and very similar thermal expansion

coefficients, and they can be grown lattice-matched on GaSb

or InAs substrates with low defect densities. Furthermore,

these materials are ideal for multi-junction solar cells, as

their direct bandgaps allow the use of thin absorbing layers

that can be current-matched to efficiently capture the entire

solar spectrum. Several multi-junction solar cell structures

have been designed with the potential to reach ultra-high

conversion efficiency.1,4

In the proposed solar cell designs, a zinc blende CdSeTe

alloy lattice matched to the GaSb substrates is used as one of

the subcells. However, there have been only a few successful

attempts reported at growing zinc-blende CdSeTe random

alloys on Si substrates, and it is difficult to achieve large Se

compositions because of the high vapor pressure of group VI

elements and the low sticking probability of Se atoms.5–8 In

the current work, CdSe/CdTe superlattices are proposed as an

alternative to the random CdSeTe alloys, and a series of these

superlattice structures are grown on GaSb (001) substrates

using molecular beam epitaxy (MBE). While the ZnSe/ZnTe

system has been intensively investigated,9,10 little work has so

far been done for the CdSe/CdTe system.11–13 In particular,

there was no experimental papers reporting the properties of

CdSe/CdTe superlattices or the valence band offset between

CdSe and CdTe. In order to address these issues, this work

reports the growth and the structural and optical characteriza-

tion of a series of CdSe/CdTe superlattices.

The epitaxial growth of the superlattice samples was

carried out using a dual-chamber Riber 32P MBE system

consisting of III-V and II-VI chambers connected by an ultra

high-vacuum transfer module. The structures were grown on

undoped epi-ready GaSb (001) substrates. First, the substrate

oxide was thermally removed by heating up to 510 �C under

an antimony flux in the III-V chamber, while the process was

monitored using reflection high-energy electron diffraction

(RHEED). Next, a 100 nm GaSb buffer layer was grown at

470 �C. The substrate was then transferred to the II-VI cham-

ber, where a ZnTe buffer layer was grown at 320 �C under a

Zn flux initiated prior to the growth.2 The CdSe/CdTe super-

lattice was then grown at 320 �C using the modulation of Te

and Se shutters while keeping the Cd shutter open. During

the growth, the beam equivalent pressure (BEP) ratio of Te/

Cd and Se/Cd were kept at 2:1 and 4:1, respectively.

Three CdSe/CdTe superlattice structures (labeled A, B,

and C) were grown with the various layer thicknesses shown

in Table I and are expected to have different effective

bandgap energies. During the growth of sample B, the Cd

shutter remained open for 5 s while all the other shutters

were closed after the growth of the CdSe layer, in order to

reduce the intermixing of Se and Te at the CdSe/CdTe inter-

face. The RHEED patterns of samples A and C changed

from streaky to spotty during the growth, suggesting a 3D

growth mode at the end of the growth. In contrast, the

RHEED pattern of sample B remained streaky through to the

end, which suggests that this sample has better crystalline

quality and layer uniformity than the other two samples.

Note that all the CdSe/CdTe superlattices have the same zinc

blende structure as the substrate, as shown by the RHEED

patterns and confirmed by the x-ray diffraction (XRD) and

transmission electron microscopy (TEM) observations.

High-resolution XRD measurements of the samples

were performed for the symmetric (004) and asymmetric

(113) reflections using the Cu Ka1 radiation on a PANalyti-

cal X’Pert PRO Materials Research Diffractometer. Figures

1(a)–1(c) show the (004) x-2h diffraction patterns ofa)Electronic mail: yhzhang@asu.edu.

0003-6951/2012/100(12)/121908/3/$30.00 VC 2012 American Institute of Physics100, 121908-1

APPLIED PHYSICS LETTERS 100, 121908 (2012)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

209.147.144.22 On: Wed, 04 Feb 2015 17:39:22

http://dx.doi.org/10.1063/1.3697676
http://dx.doi.org/10.1063/1.3697676
http://dx.doi.org/10.1063/1.3697676


samples A, B, and C, which respectively consists of 40, 40,

and 50 periods of CdTe and CdSe layers. The lattice con-

stants of GaSb and ZnTe are 6.096 and 6.105 Å, respectively,

and the lattice constants of CdSe and CdTe are 6.052 and

6.482 Å, respectively. Therefore, the CdTe layer is compres-

sively strained to the GaSb substrate or the ZnTe buffer

layer, while the CdSe layer is tensilely strained. The high

structural qualities of the samples are evidenced by the sharp

satellite peaks and the absence of appreciable peak broaden-

ing. The lateral and average vertical lattice constants a// and

a\ of the superlattices shown in Table I are determined from

the zeroth superlattice peaks in the (004) and (113) XRD pat-

terns, and the layer thicknesses are determined from the sep-

aration of the first-order superlattice peaks in the (004) XRD

patterns. Sample A has a ZnTe buffer layer of approximately

200 nm, and the superlattice is strained as shown by its lat-

eral and vertical lattice constants. The ZnTe buffer layers of

samples B and C are about 10 nm thick, and the superlattice

of sample B is strained while that of sample C is almost per-

fectly lattice matched to the substrate. It can also be seen in

Fig. 1 that the superlattice peaks of sample B have the nar-

rowest FWHM, indicating that this sample has minimal

interface roughness as well as the fewest defects.

Specimens of sample B suitable for cross-sectional

TEM observation were prepared by standard mechanical pol-

ishing, dimpling, and a final argon-ion-milling at reduced

energy (2-2.5 keV), with the sample being held at liquid-

nitrogen temperature to minimize artifacts due to thermal or

ion-beam damage during milling. The low magnification

image shown in Fig. 2(a) demonstrates the overall high

structural-quality and regularity of the CdSe/CdTe superlat-

tice. In addition, the satellite diffraction spot adjacent to the

major diffraction spot visible in selected area electron dif-

fraction pattern, as shown in the inset of Fig. 2(a), confirms

the uniformity of the layer thicknesses. The high-resolution

lattice image of this same specimen shown in Fig. 2(b)

TABLE I. Structures and optical transition energies of the studied samples.

Sample a// (Å) a\ (Å)

Thickness (nm)
PL peak position at 10 K

(eV)

Calculated Eg at 0 K

(eV)CdSe CdTe

A 6.103 6.101 10.52 1.51 1.04 1.05

B 6.097 6.120 5.47 0.88 1.18 1.22

C 6.096 6.096 5.99 0.75 1.30 1.26

FIG. 1. X-ray (004) x/2h diffraction patterns of samples A (a), B (b), and

C (c).

FIG. 2. Structural characterization of sample B using TEM. (a) Cross-

sectional image showing regular superlattice periodicity and the absence of

major structural defects, as confirmed by the selected area electron diffrac-

tion pattern shown in the inset. (b) High-resolution lattice image showing

excellent crystallinity.

FIG. 3. Photoluminescence spectra of samples A, B, and C measured at

10 K. The difference in the PL peak positions is a result of the different layer

thicknesses in each superlattice.

121908-2 Li et al. Appl. Phys. Lett. 100, 121908 (2012)
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demonstrates very-high crystalline-quality at the atomic

length scale.

It has been reported that the unstrained CdTe and CdSe

forms a type-II band edge alignment11,12 with the respective

bandgap energies 1.76 eV (Refs. 12 and 20) and 1.61 eV

(Refs. 12, 16, and 24) at 10 K. In the superlattice structures

studied here, the band edges are modified by a combination

of the hydrostatic and shear strains. The hydrostatic strain

shifts the conduction band and valence band edges, while the

shear strain splits the heavy hole and light hole bands. The

superlattice minibands are formed as the hybridization of the

bound states in the quantum wells coupled through the

barriers.

To study the impact of band alignment on the proposed

superlattice materials, photoluminescence (PL) measurements

of samples A, B, and C were performed using a 660-nm diode

laser with an excitation power density of 180 W/cm2. Photolu-

minescence is observed at both room temperature and low

temperature. The 10 K measurement results plotted in Fig. 3

show that the PL spectra of the three samples peak at different

wavelengths due to the different superlattice period of each

sample. The ground state transition energy of sample B shows

the strongest PL intensity and the narrowest FWHM. Further-

more, due to the type-II band edge alignment between CdTe

and CdSe (see Fig. 3 inset), the PL peak energies are consider-

ably lower than the bandgap energy of either CdTe or CdSe.

The conduction and valence band ground state energy

levels of the three samples were calculated using the Kronig-

Penney model,14 with the layer thicknesses given in Table I,

the material parameters shown in Table II, and the valence

band offset DEV as a fitting parameter. The valence band off-

set DEV determined by fitting the calculated ground state

transition energies to the measured PL peak positions is

0.63 6 0.06 eV, which agrees with the theoretical prediction

of 0.57 eV (Ref. 12) within the experimental error. The cal-

culated ground state transition energies of the samples are in

reasonable agreement with the measured PL peak positions

as shown in Table I.

In conclusion, a series of CdSe/CdTe superlattices with

different layer thicknesses are grown on GaSb substrates by

MBE. The superlattices exhibit high structural quality as

shown by the sharp satellite peaks in high-resolution XRD

patterns, smooth interfaces in high-resolution TEM micro-

graphs, and clear electron diffraction patterns. PL measure-

ments show that the ground state transition energies of the

superlattices are smaller than the bandgap of either constitu-

ent material and hence establish the existence of a strong

type-II band alignment. The type-II valence band offset

between unstrained CdSe and CdTe is determined as

0.63 6 0.06 eV by fitting the PL peak positions of superlatti-

ces with different layer thicknesses to the ground state transi-

tion energies calculated using the Kronig-Penney model.
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