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Abstract. This paper provides an overview of our recent atomic-scale studies of semiconductor 
heterostructures, based primarily on combinations of zincblende compound materials grown by 
molecular beam epitaxy. Interfacial strain due to lattice mismatch inevitably causes growth 
defects to be introduced. Analysis of defect type and distribution using image filtering allows 
residual strain to be estimated. Exploratory investigations using aberration-corrected electron 
microscopy, which enables individual atomic columns to be resolved, are also described. 
 

1.  Introduction 
Compound semiconductors offer a multitude of optoelectronic and photonic device opportunities 
based on their wide range of band gaps that cover wavelengths from far-infrared to near-ultraviolet. 
These possibilities are illustrated in Fig. 1, which depicts the lattice constants and band-gap energies 
of many common semiconductors [1]. Ternary (and quaternary) alloys offer additional flexibility in 
terms of band-gap engineering, as well as potentially allowing for avoidance of any lattice-mismatch 
issues. Nevertheless, the epitaxial growth of compound semiconductor heterostructures with two (or 
more) dissimilar materials presents many challenges. Successful growth requires suitable preparation 
of the substrate surface and careful attention to the growth conditions. For materials with differing 
lattice parameters, there are several additional problems. As well as lattice mismatch, which inevitably 
leads to strain and probable defect formation, valence mismatch and differences in thermal expansion 
are further factors that can seriously impact whether or not high quality materials can be grown.  

The transmission electron microscope (TEM) provides a wide range of techniques for structural 
characterization of compound semiconductors including high-resolution electron microscopy (defect 
identification and strain field analysis), Z-contrast imaging (cation distribution), convergent-beam 
electron diffraction (local lattice parameter), and electron holography (internal electric field). These 
TEM methods provide powerful complementary approaches for characterizing and understanding the 
often-competing effects of growth conditions and compositional differences. In the following, we 
briefly review our recent atomic-scale investigations of heterostructures consisting of II-VI compound 
semiconductors grown epitaxially on several common III-V substrates. 
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2. Experimental details 
Most of the heterostructures described here were grown by molecular beam epitaxy (MBE), as 
described elsewhere [2], using a Riber 32 system consisting of two separate III-V and II-VI chambers 
connected via an ultrahigh-vacuum transfer module. The different III-V substrates were normally 
deoxidized, followed by growth of a thin buffer layer of the same material (except in the case of InP), 
before being cooled down to room temperature and then transferred to the II-VI chamber. Monitoring 
of the II-VI surface reconstruction during growth using reflection-high-energy electron diffraction 
(RHEED) was used to maintain optimal deposition conditions. 

Samples were prepared for cross-sectional TEM observation using standard mechanical polishing 
and dimpling to reduce sample thicknesses to ~10µm, followed by argon-ion-milling at low energy 
(~2.0-3.0keV) with the sample held at liquid-nitrogen temperature to minimize ion-beam damage [3]. 
All samples were prepared for observation along [110]-type zone axes so that the interface normal 
would be perpendicular to the electron-beam direction [4]. The observations described here were made 
either with a JEM-4000EX high-resolution electron microscope (HREM) operated at 400keV 
(structural resolution of ~1.7Å), or a probe-corrected JEM-ARM200F scanning TEM (STEM) 
operated at 200keV (probe size ~0.8Å). Images from the latter instrument were primarily recorded 
using high-angle annular-dark-field (HAADF) and/or bright-field (BF) imaging modes, with 
corresponding detector collection angles of ~90-170mrad and ~0-22mrad, respectively. 

 
3. Results 

 

3.1. High-resolution lattice-fringe imaging 

The characterization of zincblende compound semiconductors by electron microscopy methods has 
attracted much attention over several decades. Here we illustrate some recent developments by 
comparing changes in the microstructure of epitaxial ZnTe layers as a function of lattice mismatch 
with the underlying substrate material, focusing primarily on the stress-relieving defects that are 
present at the hetero-interfaces. Projections of individual atomic columns are clearly resolved in 
probe-corrected HAADF and BF images, as will be shown below. 

In the case of the ZnTe(001)/GaSb(001) heterostructure, where the lattice mismatch was ~0.13%, 
misfit dislocations were occasionally visible at the interface but they were usually highly separated 
(>0.1µm apart). Moreover, the exact position of the interface was otherwise difficult to determine 
except in some diffraction contrast images, which was ascribed to the close similarity in the combined 
atomic numbers of the two elements in each material [3]. Similar results were also obtained in related 
studies of ZnTe(211)/GaSb(211)B heterostructures, as shown by the example in Fig. 2 [5]. 

 
Figure 1.  Schematic showing band gaps of common 
semiconductors vs. corresponding lattice parameter. 
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Figure 2. High-resolution electron micrograph establishing the highly coherent nature of the 
ZnTe(211)/GaSb(211)B interface (arrowed). Black spots correspond to closely-spaced pairs 

of atomic columns that are not separately resolved [5]. 
 
For the ZnTe(001)/InAs(001) sample, where the lattice mismatch between the two materials was 

slightly larger (~0.74%), threading dislocations were observed in the thick ZnTe epilayer and some 
strain-related contrast at the interface was also visible in diffraction-contrast images [6]. However, as 
shown by the lattice-fringe image in Fig. 3, the ZnTe/GaAs interface was invariably abrupt and 
coherent although its exact position was difficult to recognize. 

 

 
 

Figure 3. High-resolution lattice-fringe image of ZnTe/InAs(001) interface. The location of the 
interface (arrowed) is almost impossible to identify in the absence of misfit dislocations. 

 
The interfacial defect density increased substantially as the difference in lattice parameters was 

increased. In the case of the ZnTe(001)/InP(001) sample (lattice mismatch ~3.85%), Burgers’ circuit 
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analysis of HREM images revealed that the most common defects present at the interface were either 
perfect Lomer edge dislocations with a Burgers’ vector of (1/2)a<110> along the interface, or perfect 
60° dislocations with Burgers’ vector of the same length but inclined at an angle of 45° to the interface 
[6]. Aberration-corrected images of these two types of defects are shown below. 

The separation between interfacial defects was found to decrease as the lattice mismatch was 
further increased.  For the ZnTe(001)/GaAs(001) heterostructures (mismatch ~7.38%), the interfacial 
defects were observed to be pseudo-periodic with average separations of ~5.5nm. Figure 4 shows a 
representative region of the ZnTe/GaAs interface, with the positions of misfit dislocations indicated by 
arrows. Burgers’ circuit analysis of individual defects was again used to identify the dislocation type, 
although digital image processing provided a far more efficient approach for analyzing larger fields of 
view. Thus, similar lattice-fringe images were digitized, processed by Fast Fourier Transform (FFT), 
and then filtered by selecting specific (111) diffraction spots for inverse FFT. The location and type of 
the interfacial misfit dislocations could then be easily determined: perfect Lomer edge dislocations 
were identified when two corresponding (111) planes terminated at the same location, whereas 60° 
dislocations were present when a single (111) plane terminated at the interface [5]. Measurements 
showed that the ratio of Lomer dislocations to the total number of dislocations for the ZnTe/GaAs 
sample was about 39%. Further analysis taking the type of defect into account also indicated that the 
residual interfacial strain was ~0.1% for this sample, so that the interface could thus be considered as 
being relaxed to within experimental error [6]. 

 

Figure 4. High-resolution lattice-fringe image showing array of dislocations (pseudo-periodic) 
accommodating the misfit at ZnTe(001)/GaAs(001) interface [6]. 

3.2. Aberration-corrected electron microscopy  

The recent emergence of multiple techniques for aberration correction using either (on-line) hardware 
or (off-line) software approaches, augmented by improved beam coherence and improved mechanical 
and electrical stabilities, has enabled microscope information limits to be pushed routinely to beyond 
the 1 Å resolution barrier [7]. This revolution in aberration correction has dramatically altered the 
landscape for advanced materials research by making it straightforward to achieve atomic-resolution 
imaging on a regular basis from many different types of crystalline materials, including metals, oxides 
and semiconductors. For the specific cases of elemental and compound semiconductors observed in 
the most commonly used <110> orientation, it then becomes possible to resolve the projections of 
individual atomic columns, which are often referred to as ‘dumbbells’ [8]. As an illustrative example, 
Fig. 5 compares HAADF and BF images, recorded simultaneously with a probe-corrected STEM, 
which show the interface region of the ZnTe(001)/InP(001) heterostructure mentioned earlier. 
Individual atomic columns appear with white contrast in the (“Z-contrast”) HAADF image, while they 
are visible with dark contrast in the BF image. The insets show line traces across several In-P 
dumbbells. From inspection, it is clear that the separate In and P atomic columns which are separated 
by 0.146nm are well-resolved in both detector geometries despite the considerable difference in their 
atomic numbers. 

GaAs 

ZnTe 

2 nm 
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Figure 5. Aberration-corrected STEM images of ZnTe/InP(001) interface: (a) HAADF image 
(90~170mrad); (b) BF image (0~22mrad). Inset profiles show resolved In-P dumbbells in both cases. 

Aberration-corrected imaging is already being widely used although compound semiconductors 
have so far attracted relatively less attention [8]. However, it should be abundantly clear that the 
enhanced capability for imaging individual atomic columns should enable improved insights about 
defect microstructure and structural properties to be obtained, as recently demonstrated, for example, 
in AC-STEM studies of CdTe solar cells [9]. As another illustration of these possibilities, Fig. 6 shows 
aberration-corrected STEM images of the two most common types of interfacial defects observed at 
the ZnTe/InP(001) interface, together with the corresponding Burgers’ circuit analysis. By inspection, 
it seems that the BF image displays clearer ‘dumbbell’ contrast but neither image shows well-resolved 
structure at the dislocation cores, which is perhaps attributable to e-beam damage during observation. 

 

Figure 6. Aberration-corrected STEM images of ZnTe/InP(001) interface: (a) BF image showing 
Burgers’ circuit analysis for Lomer edge dislocation; (b) HAADF image showing Burgers’ circuit for 

perfect 60° misfit dislocation. Individual atomic columns have better visibility in BF image. 
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Figure 7 compares AC-STEM HAADF and BF images of a perfect Lomer edge dislocation as 
observed at the ZnTe/GaAs(001) interface. Both images clearly show the ‘dumbbell’ structure for each 
material, while line traces of the GaAs region (not shown here) enable the separate Ga and As atomic 
columns to be identified on the basis of their intensity. The atomic structure of the dislocation core is, 
however, unclear and further observations are needed to establish whether this apparent disorder has 
been caused by sample preparation artifacts and/or electron-beam irradiation or whether misfit 
dislocations at such heterovalent semiconductor interfaces are intrinsically likely to be dissociated.  

 

Figure 7. Aberration-corrected STEM images showing Burgers’ circuit analysis identifying 
perfect Lomer edge dislocation at ZnTe/GaAs(001) interface. Individual atomic columns are 

clearly visible in both images and both materials except close to the dislocation core. 

4. Conclusions 
Atomic-resolution imaging with the electron microscope has been demonstrated to play a valuable role 
in characterizing the defect microstructure of zincblende semiconductors. The increased resolving 
power of aberration-corrected instruments offers further scope for detailed structural investigations at 
the level of individual atomic columns. Complementary theoretical modeling is still sorely needed to 
determine the equilibrium structure for heterovalent semiconductor interfaces [9]. 
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