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Abstract 

 We review a range of studies on the genetic contribution to behavior in canid spp. 

We begin by identifying factors that make canids a promising model in behavioral 

genetics and proceed to review research over the last decade that has used canids to 

identify genetic contributions to behavior. We first review studies that have selectively 

bred dogs to identify genetic contributions to behavior and then review studies that 

estimate heritability from populations of non-laboratory bred dogs. We subsequently 

review studies that used molecular genetics to identify gene-behavior associations and 

note associations that have been uncovered. We then note challenges in canid behavioral 

genetics research that require further consideration. We finish by suggesting alternative 

phenotyping methods and identify areas in which canids may have as yet unexploited 

advantages, such as in gene environment interaction studies (GXE) where genetic factors 

are found to moderate the effects of environmental variables.  
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The Canid Genome: Geneticists’ best friend?  

Advantages of a Canid Model for Behavioral Genetics 

Animal models have been essential to the development of behavioral genetics and 

genomics. The central importance of the canid genome is exemplified by the fact that the 

dog was the fourth mammal to have its genome sequenced, preceded only by the human, 

mouse, and rat (O’Brien & Murphy, 2003). The priority given to sequencing the genome 

of the dog was based on several advantages of the dog as a model for basic genetics 

research and genetics research on human diseases (Kirkness et al., 2003; O’Brien & 

Murphy, 2003, see the white paper by Ostrander et al., 

http://www.genome.gov/Pages/%20Research/Sequencing/SeqProposals/%20CanineSEQe

dited.pdf)  

One benefit of using canines is the structure of the canid genome. Linkage 

disequilibrium (LD, the deviation in the frequency of haplotypes in a population from the 

frequency expected if the alleles at different loci are associated at random; Griffiths et al., 

2008) is higher in dogs than humans (Lindblad-Toh et al., 2005; Sutter et al., 2004a).  

Sutter et al. (2004a) reported average linkage within dog breeds range in the megabases, 

whereas linkage in human sub-populations average in the kilobases (Reich et al., 2001), 

meaning that haplotypes are much longer in dogs.  Although different breeds vary in LD 

depending on the history of the breed and phenomena such as founder and bottleneck 

effects (Parker et al., 2010), several researchers have hypothesized that the overall higher 

LD of dogs implies that fewer than 30,000 single nucleotide polymorphisms (SNPs) are 

necessary for genome wide association studies (GWAS), compared to 200,000 or more 

SNPs necessary for human GWAS studies (International HapMap Consortium, 2003; 
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Spady & Ostrander, 2008; Sutter et al., 2004a).  Karlsson et al. (2007) demonstrated 

effective use of a set of 27,000 SNPs in dogs. Thus GWAS studies in dogs are more 

economical than in humans (Karlsson et al. 2007; Parker et al., 2010; Shearin & 

Ostrander, 2010; Sutter et al., 2004a).  

In addition, many haplotypes are shared across dog breeds, likely resulting from 

the genetic bottleneck of domestication (Lindblad-Toh et al., 2005; Parker et al., 2010). 

Together, these facts suggest that a single larger genome wide SNP map appropriate for 

use on all breeds could be developed (Spady & Ostrander, 2008; Wayne & Ostrander, 

2007). It is important to note, however, that recent work in humans suggests that rare 

polymorphisms (minor allele frequency <0.5%) may have significant, population 

specific, effects on phenotypes (Nelson et al., 2012; Tennessen et al., 2012). Thus, rare 

genetic variation within breeds may have important effects on phenotypes of interest.  

Another benefit of using canines is the resemblance of many clinical syndromes 

between dog and man. Of the more than 573 diseases that have been documented in dogs, 

over 277 resemble human diseases (Online Mendelian Inheritance in Animals, OMIA, 

http://omia.angis.org.au). Models of inheritance in dogs have allowed the isolation and 

identification of the causal genes for diverse biomedical disorders (Boyko, 2011; 

Karlsson & Lindblad-Toh, 2008; Ostrander et al., 2000a; Parker et al., 2010; Parker & 

Ostrander, 2005; Sutter & Ostrander, 2004b; Tsai, Clark & Murphy, 2007, Wayne & 

Ostrander, 2007). Two databases for inherited disorders in dogs are an important resource 

for research on inherited diseases in dogs: Online Mendelian Inheritance in Animals 

(OMIA, http://omia.angis.org.au) and Inherited Diseases in Dogs 

(http://www.vet.cam.ac.uk/idid: Sargan, 2004). 
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Mendelian inherited diseases can lead to neuropathologies and behavioral 

abnormalities.  Single gene mutations can lead to ataxia, seizures, cerebellar cortical 

degradation, encephalopathies and other neurological disorders (Chen et al., 2008; Olby 

et al., 2004; Penderis et al., 2007). These single gene mutations show high penetrance 

(the proportion of individuals with a specific genotype that manifest that genotype at the 

phenotype level, Griffiths et al., 2008) and have profound effects on behavior. Through 

the analysis of dog pedigrees, search for causal genes can be focused and inform research 

on the relevant human disorders.  

An additional benefit of using dogs is their great morphological and behavioral 

diversity (Jones et al., 2008; Karlsson & Lindblad-Toh, 2008; Ostrander, Galibert & 

Patterson, 2000a; Ostrander & Kruglyak, 2000b; Ostrander & Wayne, 2005; Parker & 

Ostrander, 2005; Parker et al., 2010; Shearin & Ostrander, 2010; Spady & Ostrander, 

2008; Sutter & Ostrander, 2004b; Wayne & Ostrander, 2007). For example, the American 

Kennel Club (AKC) recognizes over 170 phenotypically distinct dog breeds 

(www.akc.org/breeds/complete_breed_list.cfm). Each breed is a genetically isolated 

population, with a unique set of behavioral and morphological characteristics.  

Variance in dog behavior is analogous to that observed in the normal human 

population (Stein, Dodman, Borchelt & Hollander, 1994). Dogs show differences in 

temperament, compulsive disorders, anxiety level, social behavior, aggression, and more 

(for reviews see Jones & Gosling, 2005; Overall, 2000; Overall, Hamilton & Chang, 

2006; Stein et al., 1994). Researchers have investigated complex behavioral 

temperaments in dogs such as general “sociability” or “confidence” (for a review see 

Jones & Gosling, 2005). Others have investigated conditions that may be analogous to 
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human psychiatric conditions (e.g., Canine-Compulsive Disorder may be analogous to 

human Obsessive-Compulsive disorder: Moon-Faelli, Dodman, Famula & Cottam, 2011; 

Overall, 2000). 

Dogs are not the only members of the family Canidae that have served in 

behavioral genetic research. Silver foxes (a morph of the Red fox, Vulpes vulpes) have 

been bred for over 50 years at the Institute for Cytology and Genetics (ICG) in 

Novosibirsk, Russia. Starting in 1959, Dmitry Belyaev selectively bred foxes for tame 

behavior towards humans (for reviews see Kukekova et al., 2008b; Spady & Ostrander, 

2007; Trut, 1999). Within two decades it was clear his experiment was a success, and 

now the ICG possess a strain of foxes that show high levels of sociable behavior towards 

humans, as well as a strain that is highly aggressive towards people. Foxes at the ICG are 

raised under controlled conditions allowing for genetic comparison to be made between 

domesticated foxes, aggressive foxes, F1 hybrids and backcrosses (Kukekova et al., 

2008b). From this population of foxes, much has been learned about the morphological 

changes that can occur under behavioral selection pressures, and current work is aimed at 

identifying the molecular changes associated with domestication (Kukekova et al., 2010).   

Behavioral Genetics: Identifying Heritability  

Laboratory experiments in selective breeding 

Scott and Fuller (1965) conducted over a decade of research identifying heritable 

differences in behavior and cognition on what they termed a “veritable genetic gold 

mine,” - the dog (p. 4). Scott and Fuller studied Basenjis, Beagles, Cocker Spaniels, 

Shetland Sheepdogs and Fox Terriers and their crosses on a battery of tests assessing 

problem solving, social behavior, leash training, fearfulness, timidity, and behavioral 
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development (for reviews see Dewsbury, 2011; Feuerbacher & Wynne, 2011). Rearing 

conditions were uniform across litters through the use of cross-fostering and other 

experimental manipulations of the environment. 

Scott and Fuller noted that genetics did not control behavior in any “ironclad 

way” (p. 426). Unlike responses to single behavioral tests, general behavioral phenotypes 

such as problem solving, that predict performance on numerous related behavioral tests 

that would today be termed “cognitive,” did not demonstrate strong genetic effects. This 

led Scott and Fuller to posit that most genes act on specific traits, such as the heart rate 

response to novel stimuli. They did not believe there were general pleitropic genes (genes 

that influence numerous phenotypes) responsible for large numbers of behaviors that 

might comprise a category such as “problem solving” “general intelligence,” or 

“personality”. Scott and Fuller also emphasized the importance of the environment, 

especially early environments, on later learning and behavior. 

Another early large-scale study on selective breeding utilized the naturally 

occurring nervous strain of Arkansas Pointer Dogs. The nervous strain (E strain) was 

selectively bred to be more timid than the normal strain (A strain: for a review, see 

Dykman et al., 1979). Compared to the A strain the E strain dogs displayed an 

apprehension and catatonic like freezing in the presence of people, and heart arrhythmia, 

but no differences were noted in basal cortisol or ACTH levels (for cortisol 

measurements see Klein, Tomai & Uhde, 1990; Murphree, Peters & Dykman, 1967).  

Murphree, Peters and Dykman (1969) tested approach to and avoidance of people in the 

E strain, A strain, and crossbred dogs with tasks designed by Scott and Fuller (1965).  



The Canid Genome and Behavior    12/20/14 

Hall & Wynne  6/11/12 

8 

Crossbred dogs and nervous dogs all avoided humans and showed reduced exploration in 

comparison to the stable strain.  

Murphree and Newton (1971) attempted to reduce the E strain’s timidity through 

special handling.  They gave half of each of the E strain’s litters special human 

interaction and handling for 40 sessions over six months. This reduced their timidity but 

did not render them normal in behavior. To further distinguish genetic effects from any 

maternal effects, Murphree and Newton bred reciprocal crosses (E mother X A father and 

A mother X E father).  No differences were seen in the reciprocal crosses indicating 

maternal effects did not contribute to timidity in the E strain. One potential biological 

mechanism for these strain differences may be differential serum concentrations of 

insulin-like growth factor 1 (IGF-I; Uhde, Malloy & Slate, 1992).  The severity of fear in 

nervous dogs was significantly associated with IGF-I, with nervous dogs showing lower 

serum concentrations compared to normal dogs (Uhde et al., 1992). 

The selection for tame behavior in Belyaev foxes led to numerous physiological 

changes, such as piebald coats, floppy ears, body size, and curly tails, although there was 

no explicit selection for these traits (Trut, 1999). Selection for tame behavior also 

produced changes in the sensitive period for socialization as measured by the onset of the 

fear response (Belyaev, Plyusnina & Trut, 1985). Plyusnina, Oskina & Trut (1991) 

compared exploratory responses in a novel situation and basal cortisol levels in foxes 

selected for tame behavior and foxes selected for increased aggression.  At 40 days of 

age, aggressive foxes showed a significant increase in basal cortisol levels, whereas no 

such peak occurred in tame foxes.  When the cortisol peak was abolished by the 

experimental injection of an inhibitor of the HPA axis, choloditane, the aggressive foxes 
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fear response in a novel cage was attenuated, but the foxes remained aggressive 

(Plyusnina, Oskina & Trut, 1991). When aggressive foxes were injected with l-

tryptophan (a pre-cursor to serotonin) beginning at 45 days of age, aggression scores 

were significantly attenuated as adults. Thus, the selection pressure for reduced fear to 

humans or increased aggression can produce marked changes in important developmental 

periods.  

Heritability of Behavior in Dog Populations Outside the Laboratory 

Rather than raising and breeding dogs for experimental purposes, more recent 

studies have assessed heritability of behavior in working or pet dog populations. Goddard 

and Beilharz (1985), for example, tested fearful reactions to different stimuli in four 

breeds of guide dogs and their respective crosses. Factor analysis identified 12 principle 

components that were reduced to three discriminant functions related to fearfulness. 

These functions were identified to have genetic components with a high degree of genetic 

variance within breeds. The authors thus concluded that a selective breeding program 

would be useful (Goddard & Beilharz, 1985). 

Other researchers have utilized larger data sets to identify heritability of various 

traits in dogs (Hsu & Serpell, 2003; Saetre, Sandberg, Sundgren, Pettersson, Jazin & 

Bergstöm, 2006). The Swedish Dog Mentality Assessment (DMA) was initiated in 1989 

as a tool for selective breeding in working dogs (Saetre et al., 2006). The DMA has been 

applied to over 24,000 dogs (Saetre, et al., 2006).  Using this data set and the pedigrees of 

the tested dogs, Saetre et al. (2006) noted that the genetic correlation of the score on one 

test was dependent on the score on another test. Contrasting with the hypothesis of Scott 

and Fuller (1965) that genetic effects act on specific behavioral traits, Saetre et al. (2006) 
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identified “shyness-boldness” as a generalized trait underlying many behavioral scores 

with a heritability of .25-.27. “Aggression” was the only other identified trait distinct 

from “shyness-boldness” (Saetre et al., 2006). 

Also utilizing a sample of working dogs, van der Waaij, Wilsson and Strandberg 

(2008) assessed genetic correlations among components of a different behavioral test 

conducted by the Swedish Dog Training Center on two different breeds: German 

Shepherd Dogs and Labrador Retrievers. To allow comparisons of the genetic parameters 

across breeds, the same linear regression model was applied to both data sets. The 

heritabilities of the studied behaviors for Labrador Retrievers and German Shepherd 

Dogs ranged from .03 - .56. The genetic correlations between behavioral tests also 

differed between the two breeds. For example, a negative (-.67) correlation between the 

traits “hardness” and “cooperation” was observed for German Shepherd Dogs, whereas a 

positive (.28) correlation was observed for the same traits in Labrador Retrievers.  This 

implies that a selective breeding program for specific traits may have differential effects 

depending on the breed. It is also important to note that the behavioral scores indicated 

substantial environmental contributions to the variation in phenotypes.  

A similar study in Switzerland, also using German Shepherd Dogs, investigated 

the heritability of various behaviors derived from the Swiss German Shepherd Breeding 

Dog Club behavioral test (Ruefenacht, Gebhardt-Henrich, Miyake & Gaillard, 2002). On 

a sample of nearly 3,500 dogs Ruefenacht et al. (2002) found heritability of the 

behavioral traits to range from .09 - .23, with “sharpness” showing only a .09 heritability 

and reaction to gunfire showing a heritability of .23. Other traits such as “self-

confidence,” “hardness,” and “temperament” showed intermediate heritabilities. 
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 Schmutz and Schmutz (1998) utilized the data collected by the North American 

Versatile Hunting Dog Association (NAVHDA) from their natural ability test to calculate 

the heritability of various hunting-related behaviors in five breeds of hunting dogs. The 

natural ability test attempted to identify a dog’s natural working ability (i.e. prior to 

training) on tasks such as pointing, nose work, retrieval, tracking, cooperation search, and 

desire to work. Heritabilities for a few abilities exceeded .40 (tracking for German 

Shorthaired Pointers); however, heritabilities varied greatly across breeds and tasks. For 

example, the heritability of tracking for Griffons was .13, whereas heritability of pointing 

for German Shorthaired Pointers was .25. Most heritabilities were low and did not reach 

statistical significance.   

Other studies have also identified similar modest levels of heritability for hunting 

behaviors using the hunting behavior test of the Swedish Flatcoated Retriever Club 

(Lindberg, Standberg & Swenson, 2004), and hunting tests conducted in Norway 

(Brenøe, Larsgard, Johannessen & Uldal, 2002). Overall, the detailed testing and record 

keeping of hunting and breeding clubs has allowed researchers to identify the heritability 

of numerous behaviors in different breeding populations.    

Given the millions of people bitten by dogs every year (Gilchrist, Sacks, White & 

Kresnow, 2008), the genetic underpinning of aggression is an important line of 

investigation (Houpt, 2007). One way to phenotype for aggression is behavioral 

observation. Saetre et al. (2006) identified aggression as a separate trait from “shyness-

boldness” using the DMA. However, aggression may be too heterogeneous to function as 

a single classification (van den Berg, Schilder & Knol, 2003). Van den Berg et al. (2003), 

using a modified behavioral aggression test developed by Netto and Planta (1997), 
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presented Golden Retrievers with various subtests differing in stimulus conditions 

designed to elicit aggression. Van den Berg et al. correlated owner reports of aggression 

with the behaviorally assessed aggression scores and found the aggression score 

correlated best with owner reports for dogs reported with conspecific and owner directed 

aggression. Van den Berg et al. also noted that owner-reported aggressive dogs 

comprised a heterogeneous group of animals showing aggression towards conspecifics, 

people or both conspecifics and people. Thus, van den Berg et al. suggested that more 

homogenous groups of dogs based on their aggression type would be more amenable to 

genetic analysis.  

Surveys of owners have been utilized to characterize dogs’ behavior and reactions 

to stimuli (Duffy, Hsu & Serpell, 2008; Hsu & Serpell, 2003; Liinamo et al., 2007; Våge 

et al., 2008; van den Berg, Schilder, de Vries, Leegwater & van Oos, 2006).  These 

methods provide a faster way of phenotyping dogs compared to the completion of a 

standardized behavioral test. Duffy et al. (2008) identified breed differences in aggression 

using the Canine Behavioral Assessment and Research Questionnaire (CBARQ; Hsu & 

Serpell, 2003).  Differences were seen in whether the aggression was directed toward 

familiar people, unfamiliar people, or dogs (Duffy et al., 2008). Van den Berg et al. 

(2006) administered the CBARQ to the owners of the cohort of dogs previously tested on 

the modified Netto and Planta (1997) aggression test summarized above. Van den Berg et 

al. (2008) noted that a factor analysis from the aggression test yielded two factors similar 

to the CBARQ categories: “dog-directed aggression” and “stranger-directed aggression.” 

In addition, Liinamo et al. (2007) noted a low correlation between these two forms of 

aggression, indicating that these concepts are probably partially genetically independent. 
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These data support the original conclusion of van den Berg et al. (2003) that dog directed 

and human directed aggression may be best studied as independent phenotypes.   

Aggression phenotypes have been associated with coat color in English Cocker 

Spaniels (Podberscek & Serpell, 1996; Våge et al., 2008). Solid coat English Cocker 

Spaniels tend to be more aggressive than parti-colored dogs in general, but there also 

appear to be differences in coat color and the type of aggression  (Podberscek & Serpell, 

1996). Behavioral differences correlated with coat color have also been observed in 

Korean native Jindo dogs. White colored Jindo dogs are more fearful, more submissive, 

and scent mark less than fawn colored ones (Kim et al, 2010). 

Molecular Approaches to Behavioral Genetics in the Dog 

Before genetic polymorphisms can be associated with behaviors, the 

polymorphisms must first be identified. The publication of the 7.5x draft of the Boxer 

genome has greatly facilitated the identification of SNPs in the canine genome and has 

led to a comprehensive linkage map (Lindblad-Toh et al., 2005; Parker et al, 2010; Wong 

et al., 2010).  In addition, researchers have sequenced important candidate genes to 

identify SNPs, copy number variants (CNVs), and variable number tandem repeats 

(VNTRs) within breeds, across breeds, and across species (Gronek et al., 2008; 

Hashizume et al., 2005; Hejjas et al., 2009; Irion et al., 2003; Ito et al., 2004; Jörn & 

Frode, 2008; Nara et al., 2005; Nicholas et al., 2009; Niimi et al., 2001; Switonski, 

Sczcerbal & Nowacka-Woszuk, 2009; Takeuchi et al., 2005; Våge & Lingaas, 2008; van 

den Berg et al., 2004; van den Berg, Kwant, Hestand, van Oost & Leegwater, 2005). 

These polymorphisms have been identified in putative candidate genes relating to 

serotonin (van den Berg et al., 2004; van den Berg et al., 2005), dopamine (Niimi et al., 
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2001; Hejjas et al., 2009 DRD4), Tyrosine hydroxylase (Takeuchi et al., 2005) and 

others. 

Candidate Gene Approach 

 As noted above, Liinamo et al., (2007) reported the heritability of human-

directed aggression to be .81 in Golden Retrievers. Given this high heritability as a 

starting point, van den Berg et al. (2008) studied associations between human-directed 

aggression in this breed with SNPs in the serotonin receptor genes (1A, 1B, 2A), and a 

SNP in the serotonin transporter gene (slc6A4). Relationships between gene 

polymorphisms and owner-reported human-directed aggression were sought through 

linkage analysis, an association study, and a quantitative genetic analysis using CBARQ. 

Despite the use of multiple methods, no associations between human-directed aggression 

and any of the genotypes were found (see Table 2 for an overview of the Candidate Gene 

Studies). Although the most parsimonious conclusion is that there is no association 

between the candidate genes and aggression, many other factors may explain the failure 

to detect a genetic association, and these have received extensive treatment in the human 

literature (e.g., Colhoun, McKeigue & Smith, 2003; Cordell & Clayton, 2005). Two of 

the many possible reasons for the lack of association could be that the study was 

underpowered to detect a very small genetic effect, or the owner reports may not have 

provided a sufficiently precise phenotype to appropriately reflect the genetic effect (see 

Miguel et al., 2005 for a commentary on phenotyping issues using Obsessive-Compulsive 

Disorder as an example).  

In English Cocker Spaniels, Våge et al. (2010) tested associations between 16 

neurotransmitter-related genes and owner reported human-directed aggression. 
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Associations were found for the dopamine receptor D1, serotonin receptors 1D and 2C, 

and solute carrier family 6 (slc6A1; a neurotransmitter transporter). In the Shiba Inu, 

Takeuchi et al. (2009b) carried out a factor analysis on an owner survey of characteristic 

behaviors. They utilized the derived Factor 1, “stranger-directed aggression” as the 

phenotype to be associated with polymorphisms in nine neurotransmitter related genes. 

An association with the slc1A2 (a glutamate transporter) was identified; dogs with the 

CC genotype were significantly less likely to be aggressive.  

 Takeuchi et al., (2009a) phenotyped Labrador Retriever guide dogs through a 

factor analysis of the recorded notes of dog trainers. They attempted to associate the 

factor identified as “activity level” with polymorphisms in nine neurotransmitters and 

found it to be significantly associated with a TT polymorphism in the slc1A2 gene and 

with the COMT gene (Takeuchi et al., 2009a). Together, Takeuchi et al. (2009a) and 

Takeuchi et al. (2009b), have associated two slc1A2 polymorphisms with behavior: Shiba 

Inu dogs with the CC polymorphism were more likely to be reported with stranger 

directed aggression and Labrador Retrievers with a TT polymorphism were more likely 

to be reported as more active.  

Konno, Inoue-Murayama and Hasegawa (2011) associated variable number 

tandem repeats (VNTR) in the Androgen receptor (AR) in Japanese Akita Inu dogs with 

aggression scores derived from owner responses to a questionnaire. Using an across 

breed mapping strategy, Ito et al. (2004) identified an association between a VNTR in 

exon 3 of the DRD4 gene and breeds that were rated as more “aggressive” and less 

“reactive” by a group of 191 dog experts. It should be noted, however, that the sample of 

breeds was not large enough to correct for possible population stratifications based on 
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geographical origins of the breeds (Ito et al., 2004), and population stratifications may 

lead to spurious genetic associations (Chang et al., 2009; Quignon et al., 2007). 

Some studies have found an association between DRD4 and behavior within a 

breed (Hejjas et al., 2007a; 2007b; 2009).  A VNTR in exon 1 of DRD4 was associated 

with owner reports of dogs’ activity/impulsivity on a questionnaire (Hejjas et al., 2007a). 

In a population of German Shepherd Dogs, VNTRs in exon 3 of DRD4 were associated 

with owner reported activity/impulsivity ratings in police dogs but not pet dogs (Hejjas et 

al., 2007b). This differential effect, dependent on whether the dogs were kept as pets or 

police dogs, could indicate a gene by environment interaction. Unfortunately, the sample 

size was too small to detect such an effect (Hejjas et al. 2007b).  A third study utilized a 

component of the DMA behavioral test to assess social impulsivity and identified a 

polymorphism in intron 2 and exon 3 of DRD4 that had an additive effect on impulsivity 

in German Shepherd Dogs (Hejjas et al., 2009).  

Genome Wide Association Studies (GWAS) 

GWAS identify associations between genes and behaviors using SNPs spaced 

across the entire genome. This contrasts with the candidate gene approach, which targets 

polymorphisms in a limited number of target genes. Dodman et al. (2010) used a GWAS 

approach on 92 Doberman Pinchers diagnosed with a Canine-Compulsive disorder 

(CCD) (Dodman et al. 2010).  These Doberman Pinchers would compulsively suck their 

flanks or a blanket. Dodman et al. (2010) searched for genetic differences across the 92 

affected dogs and the 68 control Doberman Pinchers. They found a SNP within CDH2 (a 

widely expressed gene related to neuronal adhesion) on chromosome 7 that associated 

significantly with CCD (Dodman et al., 2010).  In addition, the proportion of the 
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population with CCD associated genotypes (the TT or TC genotype) increased when 

more severe forms of CCD behaviors were considered (Dodman et al. 2010).  

Other breeds have also been documented with high incidences of compulsive 

disorders. Bull Terriers show a high incidence rate of compulsive tail chasing (Moon-

Fanelli et al., 2011; Tiira et al., 2011; Tiira et al., 2012) and German Shepherd Dogs may 

also be susceptible (Tiira et al., 2011; Tiira et al., 2012).  A preliminary candidate gene 

study looking for an association between tail chasing and the chromosome 7 locus 

reported to be associated with compulsive flank sucking by Dodman et al., found no 

significant association with tail chasing (Tiira et al., 2011; Tiira et al., 2012).  In addition, 

no significant genetic associations were found with tail chasing in a genome wide study; 

however the sample size included only 24 cases and 24 controls, and thus may have been 

under-powered (Tiira et al., 2011). Tiira et al. (2012) expanded this study focusing on 

CDH2 with dogs of three different breeds, but with a limited sample size, and found no 

association.  

Across breed mapping is a different approach to identifying genetic associations 

with behaviors unique to dog breeds, rather than individual dogs (Chase, Jones, Martin, 

Ostrander & Lark, 2009; Jones et al., 2008).  With this approach, researchers compare a 

large number of breeds with a common set of informative SNPs. The breed of dog is used 

as a “meta-phenotype” to identify multiple fixed phenotypes within the breed (e.g. size, 

height, etc.). These phenotypes are then compared to identify correlated genetic 

differences across breeds. Jones et al. (2008) and Chase et al. (2009) used this approach 

on the same data set for both morphological and behavioral features. In these studies 

behavioral features were determined for each breed by a single experienced rater who 
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assigned a qualitative score for each of the 148 breeds for pointing, boldness, trainability 

and herding (Jones et al., 2008). This across breed mapping approach identified 10 

putative loci for behavioral associations, of which five candidate genes were proposed. 

Chase et al. identified IGF-1 as a possible candidate gene for boldness. This is interesting 

in light of the finding by Uhde et al. (1992), that nervous Pointers have lower serum IGF-

1 concentrations.  DRD1 was also identified as a possible candidate gene for boldness. 

DRD1 has been associated with aggression in English Cocker Spaniels (Våge et al., 

2010). Chase et al. (2009) and Jones et al. (2008) identified other potential candidate 

genes for pointing (CNIH – implicated in cranial nerve development), herding (MC2R – 

melocortin receptor activated by adrenocorticotropic hormone, C18orf1 – implicated in 

schizophrenia) and boldness (PCDH9 – encodes a cadherin-related neuronal receptor). 

Across-breed mapping is a unique approach outside of a traditional GWAS study 

to identify putative candidate genes in dogs. This approach contrasts the approaches 

reviewed above (except Ito et al., 2004) by utilizing fixed traits in a breed instead of 

using the variance of phenotypes within a breed to identify genetic associations.  

Importantly, across breed comparisons may find spurious associations arising from 

population structures (Chase et al., 2009; Hamer & Sirota, 2000; Hejjas et al., 2007b; Ito 

et al., 2004; Jones et al, 2008).  The associations identified with this method require 

further study using breeds in which the putative polymorphism is still segregating. We 

are unaware of any such follow-up studies. In addition, it is important to note that a single 

expert rater determined the behavioral traits that were fixed in each breed for Jones et al. 

(2008) and Chase et al. (2009). This contrasts the method of Ito et al. (2004) that utilized 

the opinion of 191 experts.   
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Foxes 

The similarity of the fox genome to that of the dog (Kukekova et al., 2007; Spady 

& Ostrander, 2007) allowed Kukekova et al. (2007) to adapt dog microsatellite markers 

to the fox to create a meiotic linkage map. Kukekova et al. (2008a) then linked the 

markers to objectively measured behaviors from the tame, aggressive and unselected 

strains of Belyaev foxes as well as tame x aggressive F1 hybrids and a backcross of the 

F1s to tame foxes. Over three hundred fox behaviors and locations within the cage were 

coded from video using a binary scale.  Kukekova et al. (2008a) utilized principle 

component analysis to reduce the original 311 behavioral codes to 50 significant 

behaviors which could be useful for a quantitative genetic analysis (Kukekova et al. 

2008a). 

In a subsequent study, Kukekova et al. (2010) used principle component analysis 

on the behavioral test in Kukekova et al. (2008a) to identify quantitative phenotypes that 

could be associated with genetic markers. PC1, which explained 48% of the variance and 

distinguished domesticated from non-domesticated foxes, was linked to the region 

VVU12. Kukekova et al. (2010) reported that this region is orthologous to a region that 

vonHoldt et al. (2010) identified as a locus for domestication in dogs. In addition, PC2 

was also linked to VVU12. PC2 was similar to the previously described “shyness-

boldness” factor; however, Kukekova et al. (2010) noted that although PC2 is 

independent from PC1 by definition, they are not unrelated. Aggressive foxes that attack 

(i.e. are more bold) are also more aggressive than foxes that do not approach the human 

(i.e. are more shy). Furthermore, tame foxes that approach humans (i.e. are more bold) 
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are tamer than foxes that remain in the back of the cage (i.e. are more shy). Thus, the 

observed “shyness-boldness” trait may be context dependent (Kukekova et al., 2010). 

Challenges of a Canid Model for Behavioral Genetics 

Defining a Behavioral Phenotype 

Before any gene-behavioral phenotype associations can be identified, behavioral 

phenotypes must first be defined. Many human studies have utilized DSM categorizations 

to define behavioral phenotypes of interest. However, no such manual of behavior exists 

for the dog.  

Overall (2000) developed one approach to address this problem by identifying 

behavioral, neurochemical and anatomical parallels between human psychiatric 

conditions and analogous dog behavioral syndromes such as CCD and Panic Disorder. 

Thus pathological cases can be thoroughly investigated and compared to control dogs 

(e.g. Tiira et al., 2011).  

Other researchers have utilized factor analysis or principle component analysis on 

a battery of behavioral tests to define a behavioral phenotype of interest. Although in 

humans the definition of behavioral syndromes through DSM has a long history, there are 

ways in which the factor analytic approach may be preferable. Factor analysis is an 

objective method to identify correlated variables in a hypothesis free manner (Scott & 

Fuller, 1965). This contrasts with the more subjective way symptoms are combined in the 

DSM. In laboratory animal models, factor analyses from a battery of tests have been 

successfully utilized as phenotypes (e.g. Cook et al., 2002; Henderson et al., 2004; 

Holmes et al., 2003). For example, after giving a battery of tests including an open field 

test and an elevated plus maze, Henderson et al. (2004) identified anxiety-like factors in 
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mice that were then utilized as phenotypes to identify genetic associations with the 

different anxiety factors (Henderson et al., 2004).   

The factor analytic method, however, also has limitations that are often 

overlooked. One basic assumption in genetic association studies is that behaviors that 

factor together (are highly correlated) have a common genetic underpinning. While this 

may be true, it is not necessarily the case. A complex behavioral phenotype may have 

multiple causal pathways (equifinality; Gottlieb, Wahlsten, Lickliter, 2007, Skinner, 

1953).  Furthermore, factor analysis does not discriminate common genetic elements 

from common environmental factors; thus, behavioral tests that factor together may not 

arise from a common genetic underpinning, but rather from common environmental 

stimuli across tests.  

The factor analysis and principle component methods reduce a large number of 

behaviors assessed from a battery of behavioral tests to a more tractable smaller set of 

factors that are used as phenotypes. Although this offers attractive phenotypes for gene 

association studies, it is unclear how gene-factor associations translate back to gene-

behavior associations.  

Instead of searching for the genetic underpinnings to complex phenotypes such as 

“shyness-boldness” or “intelligence,” researchers could identify associations between 

specific behavioral responses and genotypes. Such an approach may provide a clearer 

understanding of the effects of a gene at the behavioral, rather than the factor, level.  

Phenotyping using a simple behavioral response does not necessarily imply that only a 

single response to a single test is recorded. The behavioral response could be repeatedly 

assessed across different test parameters until consistent data is observed for each 
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individual, reducing noise variability. For example, a delayed discounting task has been 

used to assess impulsivity in different rat strains (e.g. Wilhelm & Mitchell, 2009) and in 

humans (e.g. Eisenberg et al., 2007). In this task, the individual is given a choice between 

a smaller immediate reward, and a larger reward following a delay. To determine their 

characteristic preference for immediacy or “impulsivity” subjects are given this choice 

with various parameters of the smaller reward and delays to the larger reward, Using a 

delayed discounting procedure in humans, Eisenberg et al. (2007) identified an 

association between impulsivity and a polymorphism in DRD4 and DRD2. Interestingly, 

this effect was not apparent in self-report measures of impulsivity (Eisenberg et al., 

2007). An approach similar to that taken in rats could be profitably deployed in dogs. 

Another approach may be to phenotype behaviors on the basis of their behavioral 

functions rather than their structural or topographic similarity. Here we are defining 

‘function’ in behavior-analytic terms as the reinforcer of that behavior; i.e. the 

consequence that increase the probability the behavior will be emitted in the future. For 

example, van den Berg et al. (2003) utilized the phenotype of ‘aggression’ with limited 

success, and recommended breaking it into sub-categories based on the structure of the 

aggression (e.g., ‘stranger-directed aggression’). Although all aggression towards humans 

may share a similar topography (growling, lunging, biting, etc.), the function of the 

aggression may vary across dogs (i.e. the reinforcer). In different subjects, different 

aspects of the environment may reinforce aggression, even when a similar topography is 

observed across the subjects. For example, some dogs may snarl because in the past such 

snarling has allowed the dog to escape an undesired situation such as grooming (an 

‘escape’ function; Skinner, 1953).  Others may snarl because this behavior has produced 
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high levels of attention (albeit disapproving attention) from the owner (an ‘attention’ 

function; Skinner, 1953).  Finally, some dogs may snarl at an owner to access food he or 

she would have otherwise have withheld (a ‘tangible’ function). Behavioral functional 

analysis is the experimental assessment of the reinforcers that maintain a behavior by 

measuring the effects of removing and providing putative reinforcers (Iwata, Dorsey, 

Slifer, Bauman & Richman, 1982/1994). Numerous studies in humans and animals testify 

to its utility (e.g., Dorey, Rosales-Ruiz, Smith & Lovelace, 2009; Iwata et al., 1994; 

Iwata, Dorsey, Slifer, Bauman & Richman, 1982/1994; Martin, Bloomsmith, Kelley, 

Marr & Maple, 2011).  

Behavioral functional analysis can be used to include the environmental variable 

maintaining a behavior in a genetic association study (see Figure 1). This approach 

segregates behaviors such as aggression by the environmental variable that maintains 

them (i.e. the reinforcer: such as escape from aversive stimuli, owner attention, a tangible 

item, etc.). Potentially, a gene may influence susceptibility to the reinforcer motivating 

the attack, and not necessarily the object to which the aggression is directed (e.g. 

stranger-directed, owner-directed, dog-directed aggression).    

Measuring a Behavioral Phenotype 

Many behavioral-genetic studies have phenotyped dog behavior with owner 

reports. While some of these studies have successfully associated candidate genes with 

behavioral phenotypes so defined it is surely noteworthy that the actual behavior of the 

subject is never directly assessed (see Baumeister, Vohs & Funder, 2007 for a discussion 

on surveys and behavioral measurement). Numerous variables other than the dog’s 

behavior may influence owner reporting of dog behavior, including expectations of 
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typical dog behavior, owner temperament, and recent but untypical interactions with the 

dog. Caution should therefore be exercised when extending gene associations from 

owners’ reported dog behavior to actual dog behavior. Eisenberg et al. (2007) is an 

interesting example of a failure to obtain correlations between individual’s self-reports of 

behavior and genotype, while a significant association between genes and measured 

impulsivity was observed. Similarly, owners’ reports based on recollection of their dog’s 

behavior may not be as powerful as direct behavioral observation.  

In across breed mapping, the assumption that a breed of dog possesses a 

characteristic behavioral phenotype is itself open to question. Unlike many 

morphological features, behavioral phenotypes such as pointing, chasing or herding may 

not apply equally to a whole breed. Rather, the behavioral phenotypes of individuals may 

vary as much within breeds as across the breeds utilized to detect the associations. 

Although the idea of breeds possessing common patterns of behavior is widely held, 

systematic objective studies supporting this belief are sparse (Coppinger & Coppinger, 

2002).  Researchers should validate meta-phenotypes by phenotyping individual subjects 

of the breeds of interest and assessing behavioral variability both within- and across- 

breeds. Behaviors demonstrating higher across breed variability but low within breed 

variability would then be good candidate behaviors for this approach. Across-breed 

genome wide associations are a novel approach that may prove useful in detecting gene-

behavior associations. However, without data demonstrating the validity of the meta-

phenotype and without subsequent successful replications within a single breed, the 

associations identified should be interpreted with caution.  
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Even within a breed, underlying population structure may lead to spurious gene-

behavior associations (Chang et al., 2009; Quignon et al., 2007).  Chang et al. (2009) 

analyzed four breeds, and found significant within-breed stratification in Border Collies. 

This stratification, if left uncontrolled, may lead to spurious gene-behavior associations 

(Chang et al., 2009).  The underlying population structure may have arisen from 

geographical isolation or from different selection practices of different breeders (Chang 

et al., 2009) such as the creation of distinct “show” and “working” lines of a breed. 

Measuring the Environment 

Most behavior genetic studies on dogs have not included measures of potentially 

related environmental conditions. To further advance our understanding of the causes of 

behavior we need an interdisciplinary approach that includes both environmental and 

genetic measures.  

Although it is conceptually and statistically convenient to discuss “genetic 

contributions” as separate effects from “environmental contributions,” biologically they 

are inseparable (Johnston & Edwards, 2002; Meaney, 2010). Thus, trying to detect genes 

that produce behavior independent of all environmental influences may not be effective 

or theoretically useful (Johnston & Edwards, 2002; Meaney, 2010, Turkheimer, 1998). 

 Heritability estimates have been utilized to identify the proportion of variance in 

a population attributed to “genetic” factors that are separate from environmental variables 

(Meaney, 2010).  However, heritability estimates separate environmental and genetic 

effects statistically, but not necessarily biologically (Gottlieb, Wahlsten & Lickliter, 

2007; Gottesman & Hanson, 2005; Lewontin, 1974; Meaney, 2010). DNA sequence 

alone may not be the only factor influencing the function of a gene. For example, early 
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rearing environments (maternal behaviors of rat mothers) appear to influence gene 

expression of rat pups through structural DNA modifications such as DNA methylation 

(for a review see Meaney & Szyf, 2005). These structural changes influence gene 

expression and later adult behavior of the pups. These epigenetic modifications, however, 

are not fixed. Instead, environmental influences such as cross-fostering manipulations or 

pharmacological manipulations can reverse the epigenetic modification and its effects on 

behavior, making genetic effects responsive to the environment in the absence of 

sequence changes. Environmental effects, like epigenetic effects carried on for multiple 

generations, would be masked in heritability estimates, and inflate heritability (Maher, 

2008; Meaney, 2010).  Thus, changes in DNA sequences do not necessarily have to 

account for all of the variance attributed to “genetics” in heritability estimates (Meaney, 

2010). 

Some studies have attempted to separate genetic and environmental effects by 

studying subjects in relatively uniform environments (e.g. pet dogs, working dogs, and 

laboratory reared dogs).  However, these environments can still vary greatly, particularly 

with pet dogs living in diverse human homes. Recent genetic analyses on human subjects 

have taken a slightly different approach and measured both environmental variables and 

genetic factors.  Some of these studies have noted that genes and environments interact 

statistically; thus, the genetic effects depended on the environment (GXE; see Figure 1, 

and for reviews, see Caspi & Moffit, 2006; Caspi et al., 2010).  In humans, a growing 

body of literature has investigated how environmental factors can moderate genetic 

influences. In a landmark study, Caspi et al. (2003) reported that the effect of a 5-HTT 

polymorphism on depression depended on exposure to the risk factor, life stress, in that 
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the short allele increased risk only for individuals exposed to stressful life events. In 

mice, models of gene-environment interactions have also been developed (see Laviola et 

al., 2009 for a review). In dogs, Hejjas et al., 2007b, noted the potential for a similar GXE 

effect. These authors found that the effect of a DRD4 allele appeared to depend on the 

dogs’ everyday environment (police or working dog); however, the sample was too small 

to statistically detect an interaction.  

Behavioral function-based phenotyping, as defined in the previous section, is a 

slightly different approach to looking at gene environment interactions. With function-

based phenotyping, the proximate function of the behavior (i.e. the reinforcer that 

maintains the behavior, such as attention, food, escape from aversive stimuli etc.) is 

experimentally determined and then included as a factor that may interact with genetic 

effects. This compares to the environmental exposure GXE approach, in which exposure 

to a risk or protective factor is measured instead of identifying the consequence of the 

behavior that maintains the behavior. To return to the example of aggression: In a 

behavioral-function-based phenotyping approach, the researcher would identify the 

reinforcer for aggression in each subject, whereas in the environmental exposure gene-

environment interaction approach, the researcher would identify whether each subject 

was exposed to a risk factor of interest (e.g., being chained outside) and not necessarily 

what reinforces the behavior (see Figure 1).  

Function-based phenotyping can also be applied to abnormal behavior. For 

example, repetitive behaviors such as tail chasing may have different sources of 

reinforcement for different animals and this may interact with genetic effects. Tail 

chasing may be maintained by social consequences for some dogs (see Bain & Fan, 
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2012), as owner attention is a common response to tail chasing (Burn, 2011). For other 

dogs, tail chasing may serve as self-stimulation and would persist in the absence of social 

consequences. The function-based approach would identify the function of tail chasing 

and look for potential interactions with genotypes. For example, a given genotype may 

only influence tail chasing that is maintained by non-social consequences. In comparison, 

the environmental exposure GXE approach would assess the presence or absence of 

environmental risk (or protective) factors and its interaction with genotypes. For tail 

chasing, dietary supplements may reduce risk (Tiira et al., 2012). With the environmental 

exposure approach, the presence and absence of dietary supplements would be assessed 

for each subject and tested for an interaction with genotype and may find that a given 

genotype may increase risk only when dietary supplements are not given.  

Importantly, a behavioral function-based phenotyping approach would need to be 

validated. This would require identifying the function of the behavior for a large group of 

subjects and testing for a relationship between the genotype and the function of the 

behavior. Function-based phenotyping would only be useful if replicable associations 

between a genotype and behavior are found to depend on the environmental consequence 

maintaining the behavior.   

Unrecognized benefits of dogs for behavioral genetic work 

Although we have identified areas where we feel that canine behavioral genetics 

confronts challenges that have not yet been successfully overcome, there are also benefits 

of dogs as model animals in behavioral genetic research that have not yet been fully 

exploited. The sheer number of dogs in our society (77 million in the United States alone; 

APPA, www.americanpetproducts.org/press_industrytrends.asp), and the large number 
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for whom lineages over scores of generations are available is a resource which has to date 

been relatively little utilized. Furthermore, dogs lead diverse roles in human society: as 

laboratory animals, pets, and in a variety of working roles. This diversity of environments 

may allow dogs to be a useful model for gene environment interaction studies. For 

example, researchers could capitalize on the varied rearing conditions, housing 

conditions, or quantity and quality of social interactions dogs already experience as 

environmental variables that may be moderated by genetics. In addition, dogs’ roles as 

pets and laboratory animals give the dog a special status relative to animals that are 

primarily studied in the laboratory. Using dogs, the effect of independent variables can be 

studied in the laboratory and outside the laboratory using larger correlational studies 

more typical of human studies. For example, the interaction between early rearing 

environments and genotype can be studied both in the laboratory under controlled 

conditions and in less controlled conditions by using the variance in rearing conditions of 

pet dogs in human homes.  

Dogs can thus be used to test for laboratory-induced effects on genetic 

correlations. For example, small bouts of environmental enrichment have important 

genetic effects on developing mice (Arai & Feig, 2010).  In addition, behavioral 

enrichment decreases ß-Amyloid load in several brain regions of aging laboratory beagle 

dogs and protects against cognitive decline associated with aging (Christie, Opii & Head, 

2009; Cotman & Head, 2008; Pop et al., 2010).  In considering the possible implications 

of these results for the human case, however, it is not clear to what extent these findings 

may be a product of the deprived conditions offered by the laboratory. Enrichment for a 

laboratory dog included two 20-minute walks per week, pair housing, and giving the dogs 
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toys – far less activity and interaction than would be typical of pet dogs. The existence of 

pet dogs offers an important model to test the generality of effects observed in the 

laboratory, and the existence of laboratory dogs allows for correlational data from pet 

dogs to be confirmed through controlled experiments.  

Future studies should also explore the various methods of behaviorally 

phenotyping individuals. We have noted above potential concerns with various methods 

currently used for behaviorally phenotyping dogs (factor analysis, owner surveys, meta-

phenotypes, response to a single behavioral test) and have suggested behavioral function-

based phenotyping may be useful. Future studies will be needed to compare the various 

phenotyping methods using the same group of subjects and will likely provide useful 

information on the effective methods for behaviorally phenotyping dogs, and other 

species including humans, for genetic analysis. 

Conclusions 

Canids are a useful system for studying behavioral genetics for many reasons. 

Prior work has identified numerous gene associations with behaviors and has 

demonstrated the heritability of complex traits. Whereas dogs are unique for their 

morphological and behavioral variances and efficiency in genomic mapping, one as yet 

little-utilized unique quality is their exposure to many different environments. Including 

the influence of the environment in genetic analyses may improve our ability to identify 

how genes influence behavior. As research emphasis turns away from trying to separate 

genes from the environment, and turns toward understanding the roles of genes in the 

context of a specific environment, dogs may grow as a powerful animal model for 

humans. 
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Figure 1. Comparison of different approaches. A: outlines the traditional genetic 

approach. B: outlines a GXE approach and differentiates between GXE studies that 
assess exposure to a risk or protective factor from the function-based approach proposed 
in the text. The upper path of Figure 1B diagrams the Environmental Exposure GXE 
studies, where an exposure to a potential environmental variable is included in the 
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analysis. The lower path of Figure 1B diagrams how a Function-based study may be 
conducted to test for relationships between genotype and the environmental consequences 
maintaining a behavior (i.e the reinforcer). The parentheses indicate a hypothetical 
example in which aggression is the behavior of interest. 1Gershman, Sacks & Wright, 
1994.  
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Genetic Approaches Description and Examples 

Heritability Estimates Heritability of various complex traits of interests can be estimated with known 
pedigrees (Ruefenacht et al., 2002; Saetre et al., 2006; van der Waaij, Wilsson & 
Strandberg, 2008).  

Linkage Analysis  Utilizes pedigree information from phenotyped subjects to trace the linkage of a 
marker to a trait (see van den Berg et al., 2008 for an example of linkage 
analysis using candidate genes).   

Genome Wide Association 
(GWAS) 

An association study that looks for gene-behavior associations with a large 
number of genetic polymorphisms across the genome (see Dodman et al. 2010 
for an example of GWAS followed by a targeted gene analysis; see Tiira et al., 
2011 for a GWAS and candidate gene study).  

Candidate Gene  An association study between a few genes (candidate genes) and a phenotype 
(Hejjas et al., 2007b; Takeuchi et al., 2009b; Våge et al., 2010). 

Across Breed Mapping  Utilizes fixed breed traits to identify associations between these traits and 
genetic polymorphisms (see Jones et al., 2008 and Chase et al., 2009 for a 
GWAS across numerous breeds).  

Gene Environment Interaction 
(GXE) 

A study that tests for an interaction between an environmental variable a and 
genetic polymorphism. For example, the effect of a gene may depend on the 
presence or absence of an environmental exposure (no known studies in dogs, 
see Caspi et al., 2003 for an example in humans: for a review see Caspi & 
Moffit, 2006).  

Phenotyping Tools  

Owner Reports The behavioral phenotype is determined by the owner’s verbal report about the 
dog’s behavior (Duffy, Hsu & Serpell, 2008; Hsu & Serpell, 2003; Takeuchi et 
al., 2009a; Våge et al., 2010) 

Behavioral Test Experimenter introduces a variable and records the dog’s response as the 
phenotype. The phenotype could be the response to the first exposure of the test, 
could be the result of repeated testing or could be comprised from a combination 
of behavioral tests (Netto & Planta, 1997; Saetre et al., 2006).  

Factor Analysis  Statistical methods to identify underlying “factors” that influence responses on 
multiple measured variables (Goddard & Beilharz, 1985; Takeuchi et al., 2009a) 

Breed Fixed Traits  Traits that are no longer segregating within a breed. All members of the breed 
show the trait of interest (Chase et al., 2009; Ito et al., 2004; Jones et al., 2008).  

 
 
Table 1. Tools and Approaches. The tools and approaches to genetic analysis 

reviewed or proposed in this article are summarized with citations of representative 
studies where possible.  
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Behavior Citation Sample Size Breed Approach Genes 
Associated 

Genes not 
Associated in 
Candidate 
approach 

Activity/ 
Impulsivity 

      

Activity-
Impulsivity 

Hejjas et 
al (2007b) 

189 German 
Shepherd 
Dogs 

Candidate 
Gene 

DRD4 - 

Activity- 
Impulsivity 

Hejjas et 
al (2007a) 

59 Belgian 
Tervuren 

Candidate 
Gene 

DAT 
DBH 
DRD4 

TH 

Activity level Takeuchi 
et al. 
(2009a) 

81 Labrador 
Retrievers 

Candidate 
Gene 

slc1A2 
COMT 

DRD2 
TH 
DBH 
htr1A 
ht21b 
DRD4 
MOAB 

Impulsivity Hejjas et 
al. (2009) 

96 
behaviorally 
tested dogs 

German 
Shepherd 
Dogs 

Candidate 
Gene 

DRD4 - 

Aggression       
Human-directed 

 
Våge et al. 
(2010) 

50 
aggressive, 
81 controls 

English 
Cocker 
Spaniels 

Candidate 
Gene 

DRD1 
htr1d 
htr2c 
slc1A1 

DRD2 
DRD3 
DBH 
htr1A, htr1B, 
htr1D 
htr1F 
htr2A 
htr2B 
htr2C 
MAOA 
MAOB 
GAD1 

Aggression 
 

Takeuchi 
et al. 
(2009b 

77 Shiba Inu Candidate 
Gene 

slc1A2 DRD2 
TH 
DBH 
htr1A 
ht21b 
DRD4 
COMT 
MOAB 

 
Aggression Konno et 

al. (2011) 
100 Fawn 

colored 
Akita Inu 

Candidate 
Gene 

AR - 

Human-directed 
 

van den 
berg et al. 
(2008) 

49 
aggressive, 
49 controls 

Golden 
Retriever 

Candidate 
Gene 

- htr1B, htr1A, 
htr2A, slc6A4 

Compulsive 
Behavior 

      

Compulsive Dodman 92 affected, Doberman GWAS CDH2 N/A 
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47 

Disorder et al. 
(2010) 

68 controls Pincher 

Tail Chasing Tiira et al. 
(2011) 

24 cases, 24 
controls 

Bull 
Terrier 

Candidate 
Gene & 
GWAS 

- CDH2 (from 
Candidate 
Gene Study) 

Tail Chasing Tiira et al. 
(2012)  

40 case, 28 
control 
 
11 case, 16 
control 
 
 
7 case, 5 
control  

Bull 
Terrier 
 
German 
Shepard 
Dog 
 
Staffordsh
ire Bull 
Terriers  

Candidate 
Gene  

- CDH2 

 
Table 2. Outcomes of the molecular approach for within breed studies. Table 

summarizes studies using a molecular approach to traits segregating within a breed that 
are discussed in the text. – indicates the absence of any genes. N/A refers to the genes not 
identified in a GWAS study, as these would be too numerous to list.  

 


