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Traveling Waves in a One-Dimensional Elastic Continuum Model of Cell Layer
Migration with Stretch-Dependent Proliferation∗

Tracy L. Stepien† and David Swigon‡

Abstract. Collective cell migration plays a substantial role in maintaining the cohesion of epithelial cell layers
and in wound healing. A number of mathematical models of this process have been developed, all of
which reduce to essentially a reaction-diffusion equation with diffusion and proliferation terms that
depend on material assumptions about the cell layer. In this paper we extend a one-dimensional
mathematical model of cell layer migration of Mi et al. [Biophys. J., 93 (2007), pp. 3745–3752] to
incorporate stretch-dependent proliferation, and show that this formulation reduces to a generalized
Stefan problem for the density of the layer. We solve numerically the resulting partial differential
equation system using an adaptive finite difference method and show that the solutions converge to
self-similar or traveling wave solutions. We analyze self-similar solutions for cases with no prolifera-
tion, and necessary and sufficient conditions for existence and uniqueness of traveling solutions for
a wide range of material assumptions about the cell layer.

Key words. cell migration, wound healing, mathematical modeling, elastic continuum, free boundary problem,
traveling wave solutions
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1. Introduction. Cells of epithelial layers and other tissues have the ability to repair gaps
in the layer by migration into the damaged area. This migration proceeds in a coordinated
fashion so that no new gaps are formed in the cell layer, a process called collective cell migration
(Friedl and Gilmour [9]; Rørth [18]). Migration is directed by polarization of cells and physical
and biochemical interactions between cells. Epithelial cells are mechanically linked to each
other via adherens junction and desmosomal proteins, integrins, and tight and gap junctions
(Ilina and Friedl [13]).

The closure speed of any gap in the cell layer is affected by the surrounding cells and
environment. For example, cell proliferation does not contribute to closure; rather, damaged
cells are replaced in part to restore the original cell layer density (Farooqui and Fenteany
[7]). Also, growth factor signals lead to directed migration of leader cells but do not affect
the migration and coordination of follower cells (Vitorino and Meyer [27]). In terms of the
environment, adhesion between cells and the substrate as well as the stiffness of the substrate
affect the velocity of cells closing gaps in the layer (Palecek et al. [17], Ghibaudo et al. [12]).
Furthermore, cells throughout the layer actively contribute to the movement of the layer in
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1490 TRACY L. STEPIEN AND DAVID SWIGON

the direction toward the gap, partly evidenced by traction forces applied by migrating cells
on the substrate arising several rows behind the moving edge, and the velocity within a cell
layer was found to be inversely proportional to the distance from the wound edge (Farooqui
and Fenteany [7], Trepat et al. [26]).

Many existing continuum models of cell migration in wound healing are based on reaction-
diffusion equations in which the moving edge of a cell layer is represented as a traveling wave of
cell concentration; see, for example, Sherratt and Murray [20, 21] and Maini, McElwain, and
Leavesley [14]. Some models involve a free boundary problem, which accounts for the influence
of physiological effects on wound closure; Gaffney et al. [11] developed a free boundary problem
for a system of reaction-diffusion equations for cell density and chemical stimulus for corneal
wound healing, and then Chen and Friedman [4] analyzed that model as well as another free
boundary problem that applied to tumor growth [5]. Xue, Friedman, and Sen [28] developed a
model with a free boundary problem for ischemic dermal wounds that was used to predict how
ischemic conditions may impair wound closure. Models of cell migration based on reaction-
diffusion equations do not account for essential mechanical forces, so constitutive assumptions
cannot be validated to describe the material properties of epithelial cell layers.

In this paper we extend the model framework of Mi et al. [15], while maintaining their
basic assumption that the one-dimensional cell layer is represented by an elastic continuum
capable of deformation, motion, and material growth. The motion of the cell layer is assumed
to be driven by the cells at the moving edge through the formation of lamellipodia (Sheetz,
Felsenfeld, and Galbraith [19]). Interior cells are tightly connected to the cells at the boundary,
and tight junctions prevent separation between neighboring cells (Anand et al. [1]). The
interior cells have also been observed forming lamellipodia, but their direction is not as highly
correlated as for the cells at the edge. The cell layer stretches because tension is applied by
the edge cells, and the motion of the cells in the interior is slowed down by the adhesion
between cells and the substrate. Compared to Mi et al. [15], we generalize the formulation
to an arbitrary elasticity function governing the stretchability of the layer and an arbitrary
proliferation function governing the growth and degradation of the layer. We show that for
broad classes of elasticity and proliferation functions the motion of a semi-infinite layer in the
present model converges to a stable traveling wave with a unique velocity. We develop both
the material (Lagrangian) and the spatial (Eulerian) formulations of the problem and find
that the material formulation leads to a simpler algorithm for numerical solutions, while the
analysis of traveling waves is easier in the spatial formulation.

The outline of the paper is as follows: in section 2 we formulate the governing equations of
the model in the material formulation; in section 3 we give numerical solutions of the material
formulation of the problem on a finite domain, which suggests the presence of traveling waves;
and in section 4 we analyze a similarity solution under scaling in the spatial formulation for
a case with no proliferation. Finally, in section 5 we prove the existence and uniqueness
of traveling wave solutions in the spatial formulation for cases with proliferation and use
numerical methods to show that traveling waves are stable as long as they do not contain
local maxima or minima of cell density.

2. Model formulation. In this section we follow the material (Lagrangian) formulation
of the model first introduced by Mi et al. [15]. The main interactions governing the motion of
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TRAVELING WAVES IN A MODEL OF CELL MIGRATION 1491

Figure 1. Schematic representation of the cell layer as a one-dimensional continuum: (top) initial state;
(middle) hypothetical state at time t, accounting for proliferation but not deformation; (bottom) true configu-
ration of the layer at time t.

the cell layer are the force of the lamellipodia, adhesion of the cell layer to the substrate, and
elasticity of the cell layer. Elasticity of the substrate is neglected since the original motivation
for the model comes from in vitro scratch wound assay experiments which studied intestinal
epithelial cells on glass coverslips. This model differs from published viscoelastic continuum
models of epithelial sheets, such as that of Tranquillo and Murray [25], which consider elastic
forces and traction forces arising from the actin filament network between the cells and the
substrate that attaches to the cells.

The material coordinate s is used to label the position of a cell in the original unstressed
layer, and the dependent variable x(s, t) describes the spatial position of a cell s at time t.
In order to describe the growth of the layer, we introduce an auxiliary variable ŝ(s, t) that
describes the hypothetical (would-be) position of a cell s at time t if all deformation in the
layer were instantaneously removed. Thus, ŝ(s, t) describes the local growth of the layer at
the position s. (See Figure 1.)

The introduction of ŝ is necessary because the elastic response of the material depends on
the local strain but not on growth. Material growth (and decay) of the cell layer is described
using the growth gradient, g, defined as

(2.1) g(s, t) =
∂ŝ(s, t)

∂s
.

The strain in the layer is defined as ε = ∂x/∂ŝ − 1, or, more formally, as

(2.2) ε(s, t) =
∂x(s, t)

∂s
g(s, t)−1 − 1.

(Note that ε > 0 corresponds to stretch, and −1 < ε < 0 corresponds to compression.)
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Figure 2. (A) Resultant forces f from (2.4) that will be analyzed in this article as a function of ε. Here,
k = 1. ε > 0 corresponds to stretching of the cell layer, and −1 < ε < 0 corresponds to compression of the
cell layer. (B) Growth functions γ from (2.6) that will be analyzed in this article as a function of ε. ε > 0
corresponds to stretching of the cell layer, and −1 < ε < 0 corresponds to compression of the cell layer. γ > 0
corresponds to cell proliferation, and γ < 0 corresponds to cell apoptosis.

We first discuss equations governing the elastic deformation of the layer. Mi et al. [15]
derived the following governing equation for the motion of the layer:

(2.3) b
∂x

∂s

∂x

∂t
=

∂f

∂s
,

where b is the constant for adhesion between cells and substrate and f(s, t) is the resultant force
on a cross section of the layer. Here we assume that the resultant force depends explicitly
on the strain via a constitutive function φ(ε), i.e., that f(s, t) = φ(ε(s, t)). While (2.3)
is a fundamental physical law, the constitutive function φ(ε) describes the material under
consideration and can vary from one cell layer to the next. It is natural to restrict one’s
attention to functions φ(ε) that are monotone increasing, differentiable, and such that φ(0) =
0. Examples discussed in this paper include (see Figure 2(A))

logarithmic: φ(ε) = k ln(ε+ 1),(2.4a)

linear (Hooke’s law): φ(ε) = kε,(2.4b)

reciprocal (ideal gas law): φ(ε) = k

(
1− 1

ε+ 1

)
,(2.4c)

where k is the residual stretching modulus of the cell layer after cytoskeleton relaxation. The
logarithmic relation yields infinite magnitude of stress both when ε → −1 and when ε → ∞,
giving an appropriate behavior at both large compressions and large extensions (Fung [10]).

The growth gradient g(s, t) obeys the equation

(2.5)
∂g

∂t
= γg,
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TRAVELING WAVES IN A MODEL OF CELL MIGRATION 1493

where γ is the growth rate, given by a constitutive assumption that may depend explicitly on
s, t, g, and/or ε. In this paper we analyze the dependence of growth on stress/strain within
the layer, and hence we assume that γ (like f) depends solely on ε. It has been observed that,
for small deformations, a stretched cell layer is more likely to proliferate than a compressed
layer (Bindschadler and McGrath [3]), and hence we shall assume that γ(0) = 0 and γ(ε) > 0
for small positive ε. Examples of growth rate functions that are discussed in this article (see
Figure 2(B)) include

linear: γ(ε) = ε,(2.6a)

Fisher: γ(ε) =
ε

ε+ 1
,(2.6b)

cubic: γ(ε) = −ε(ε2 − 1).(2.6c)

The set of equations (2.1)–(2.3) and (2.5) together with constitutive functions for φ(ε) and
γ(ε) form a complete description of the system in Lagrangian coordinates and will be called
the material formulation of the model.

3. Numerical solutions on a finite domain. In order to obtain a better idea of the type
of behavior we can expect for the cell layer migration model, we first look for numerical
solutions. The material formulation of model equations is very convenient for numerical
simulations since the domain of the independent variable s can be fixed. In all cases studied
in this section, we assume that the cell layer has finite length and is initially uniform and free
from internal stresses, and that the location of the left boundary of the cell layer (at s = 0)
is fixed (mimicking the way cells are attached to the edge of a slide, or to a fixed structure)
while the right boundary (at s = 1 in dimensionless units) is free to move (mimicking the
edge of the wound or a gap in the layer). At the right boundary there is an applied force F ,
which represents the net external force that develops as a result of lamellipodia formation in
cells of the epithelial layer. The traction forces generated by these lamellipodia and applied
by migrating cells on the substrate arise throughout the layer, but they become strongly
correlated near the moving edge [7, 26]. In this paper we are seeking traveling waves, and
hence F is assumed to be constant. The full material formulation with the above specified
initial and boundary conditions is

∂x(s, t)

∂t
=

1

b

(
∂x(s, t)

∂s

)−1 ∂

∂s
φ

(
1

g(s, t)

∂x(s, t)

∂s
− 1

)
, 0 ≤ s ≤ 1, 0 ≤ t,(3.1a)

∂g(s, t)

∂t
= γ

(
∂x(s, t)

∂s
g(s, t)−1 − 1

)
g(s, t), 0 ≤ s ≤ 1, 0 ≤ t,(3.1b)

x(s, 0) = s, 0 ≤ s ≤ 1,(3.1c)

g(s, 0) = 1, 0 ≤ s ≤ 1,(3.1d)

x(0, t) = 0, 0 ≤ t,(3.1e)

φ (ε(1, t)) = F, 0 < t.(3.1f)

A numerical solution of these initial-boundary value problems (3.1) for a given growth
function γ(ε), elasticity function f = φ(ε), and parameters k, b, and F can be found using an
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1494 TRACY L. STEPIEN AND DAVID SWIGON

adaptive finite difference method based on the method of Mi et al. [15]. We found that using
the original nonadaptive mesh results in exponential growth at the moving edge and widening
of the grid spacing. By adaptively refining the mesh at positions of largest growth, we decrease
numerical errors. (See Appendix A in the Supplementary Material (94140 01.pdf [local/web
970KB]) and Stepien [23] for details and analysis of the solution method.) Parameter values
used were chosen based on estimates from Mi et al. [15].

Figure 3 shows the evolution of the cell layer for zero, linear (2.6a), Fisher (2.6b), and
cubic (2.6c) cell proliferation functions and the logarithmic elasticity function (2.4a). See
Figure B.1 in Appendix B of the Supplementary Material (94140 01.pdf [local/web 970KB])
for additional simulations.

For zero cell proliferation, we observe that the velocity of the moving edge converges to 0,
and the cells move a finite distance to the right for the logarithmic and linear (2.4b) elasticity
functions, as well as the reciprocal elasticity function (2.4c), although the convergence is
much slower in this case. This is a limiting case of the time-dependent solution, and there
is a maximum distance the right edge of the cell layer can reach, which is φ−1(F ) + 1. This
phenomenon of large size wounds being unable to close was described by Mi et al. [15] and
verified experimentally. The initial evolution of the finite size layer and the evolution of a layer
that is semi-infinite (extending to infinity on the left-hand side) is governed by a similarity
solution, which we analyze in the next section.

For the linear, Fisher, and cubic cell proliferation functions, we observe that the velocity
of the moving edge converges to a positive constant, and the curves in the plots of ε versus
ŝ converge to a similar shape. This same behavior occurs for the logarithmic, linear, and
reciprocal elasticity functions (not all results are shown here). This is indicative of a traveling
wave, a wave that travels at constant velocity without change of shape. In section 5, we
analyze the existence of traveling wave solutions using phase plane and bifurcation analysis.

We point out that, for the zero, linear, Fisher, and cubic growth functions, the range of the
numerically realized ε is largest for the reciprocal elasticity function and smallest for the linear
elasticity function. The nonzero growth functions behave similarly within the numerically
realized ε ranges for the logarithmic and linear elasticity functions (see Figure 2(B)).

4. Similarity solutions for a model without growth. In cell layers of finite size, in the
absence of proliferation the leading edge eventually stops moving as the stress in the layer
balances the applied force at the layer’s edge. In this section we show that in semi-infinite
layers, however, the motion of the edge can continue indefinitely, and the solution for such
cases is self-similar.

Consider the material formulation without growth (γ ≡ 0) on a semi-infinite domain
s ∈ (−∞, 0], where the cell layer extends to infinity on the left, and the moving edge is now
labeled s = 0. At the left boundary we replace the boundary condition (3.1e) with the limiting
condition of an unstressed layer, while at the moving end we retain the condition of the applied
force being equal to F . Since ŝ(s, t) = s and g ≡ 1 in the absence of cell proliferation, the
problem reduces as follows:

∂x(s, t)

∂t
=

1

b

(
∂x(s, t)

∂s

)−1 ∂

∂s
φ

(
∂x(s, t)

∂s
− 1

)
, −∞ ≤ s ≤ 0, 0 ≤ t,(4.1a)

x(s, 0) = s, −∞ ≤ s ≤ 0,(4.1b)

D
ow

nl
oa

de
d 

06
/0

9/
15

 to
 1

29
.2

19
.2

47
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://epubs.siam.org/doi/suppl/10.1137/130941407/suppl_file/94140_01.pdf
http://epubs.siam.org/doi/suppl/10.1137/130941407/suppl_file/94140_01.pdf


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TRAVELING WAVES IN A MODEL OF CELL MIGRATION 1495

0 1 2 3
0

2

4

6

8

10

x

t

 A
0.25 0.5 0.75 1

0 2 4 6 8 10
0

2

4

6

8

10

t

υ

−1 −0.5 0
0

0.5

1

1.5

ŝ
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Figure 3. Numerical solution of the model equations with the logarithmic elasticity function (2.4a). The
first column shows the position x of cells with s = 0.25, 0.5, 0.75, 1 as time (in hours) increases. Each curve is
labeled by its initial position between [0, 1] on the x-axis and represents the path of one cell from where it begins
initially to how far right it moves as time increases along the t-axis. The second column shows the velocity υ of
the moving edge as a function of time (in hours). The third column shows the strain ε as a function of position
ŝ. Each curve is labeled by the time and represents the solution translated to the left so that the largest value
of ŝ for each time shown is 0. The last column shows the growth gradient g as a function of position ŝ. Each
curve is labeled by the time and represents the solution translated to the left so that the largest value of ŝ for
each time shown is 0. (A) No growth, γ(ε) = 0, k = 2.947, b = 1, F = 2.5; (B) linear growth function (2.6a),
k = 0.838, b = 1, F = 0.25; (C) Fisher growth function (2.6b), k = 2.947, b = 1, F = 2.5; and (D) cubic
growth function (2.6c), k = 0.838, b = 1, F = 0.25.
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lim
s→−∞

∂x(s, t)

∂s
= 1, 0 ≤ t,(4.1c)

φ (ε(0, t)) = F, 0 < t,(4.1d)

where ε(s, t) is as in (2.2) and φ(ε) is again a constitutive function characterizing the elasticity
of the layer.

We look for a similarity solution of the form

(4.2) x(s, t) = tαw(z), z = t−βs.

Since ε(s, t) = ∂x
∂s − 1 = tα−βw′ − 1, (4.1a) reduces to the ordinary differential equation

(4.3) tα−1+β
(
αw(z) − βzw′(z)

)
=

1

b

(
w′(z)

)−1
w′′(z)Φ

(
tα−βw′(z)− 1

)
,

where we define Φ(ε) = d
dεφ(ε) and

′ = d
dz . The right boundary condition (4.1d) implies that

ε(0, t) = tα−βw′(0) = φ−1(F ) + 1. Since both w′(0) and φ−1(F ) are constants and w′(0) �= 0
by (4.1b), then tα−β must be a constant and hence α = β. Thus (4.3) becomes

(4.4) αt2α−1
(
w(z) − zw′(z)

)
w′(z) =

1

b
w′′(z)Φ

(
w′(z)− 1

)
.

We can make this equation t-independent for any constitutive function φ(ε) if we assume one
of the following relations: w′(z) = 0, w(z) = zw′(z), or α = 1

2 . The first two relations yield
only trivial self-similar solutions, since w′(z) = 0 implies that x does not depend on s, and
w(z) = zw′(z) implies that x does not depend on t. Therefore, we take α = 1

2 and conclude
that the problem (4.1) has a nontrivial similarity solution under the scaling of the form

(4.5) x(s, t) =
√
tw(z), z =

s√
t
,

if and only if the second-order boundary value problem

(4.6) w′′(z) +
b

2Φ
(
w′(z)− 1

) (zw′(z)− w(z)
)
= 0

with boundary conditions (4.1c) and (4.1d) has a solution w(z). Setting y := w′, this becomes
a system of first-order ordinary differential equations,

w′ = y,(4.7a)

y′ =
b

2Φ(y − 1)
(w − zy)y,(4.7b)

subject to the boundary conditions

y(0) = φ−1(F ) + 1,(4.8a)

lim
z→−∞ y(z) = 1.(4.8b)
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Figure 4. Similarity solution under scaling for the material formulation with no growth, γ(ε) = 0, with
k = 0.01, b = 1, and F = 0.005. (A) Solution of the boundary value problem (4.7)–(4.8) in the z-coordinate.
(Note that in this figure the direction of the z-axis is reversed, and hence the moving edge is on the left.)
(B) The numerical solution of (3.1), using an adaptive finite difference method, is plotted against the analytical
solution of the boundary value problem (4.7)–(4.8) for t = 0, 1, 2, 3, 4, 5 hours.

Our assumption that φ(ε) is monotone increasing implies that the term Φ(y − 1) is positive
and bounded away from zero.

Figure 4(A) shows a numerical solution of (4.7)–(4.8) with logarithmic elasticity function
(2.4a), solved via XPPAUT [6]. The solution shows a function w(z) that decreases as z
approaches the moving edge (which is on the left in Figure 4(A)), which corresponds to a
stretched cell layer. Figure 4(B) shows this solution compared to the solution obtained using
the adaptive finite difference method as described in section 3. Since the solution using the
adaptive finite difference method is on a finite domain but the similarity under the scaling
solution is on a semi-infinite domain, they match only for t that is not too large. These
numerical solutions suggest that solutions of (4.7)–(4.8) exist and are unique, and future
studies will focus on examining this analytically.

5. Traveling waves in a model with growth. Experiments with cell-layer migration show
that the leading edge of the cell layer moves with approximately constant velocity (Maini,
McElwain, and Leavesley [14]). The same behavior is also observed in numerical simulations of
the material formulation of the model shown in Figure 3(B)–(D). These observations indicate
that one can expect the model to have stable traveling waves for certain types of end-conditions
and that these waves should be capable of explaining some experimental observations. In this
section we discuss the existence, uniqueness, and stability of traveling waves for various choices
of the growth and elasticity functions. In particular, we state the conditions for existence of
stationary waves (Theorem 2), show that for growth functions with a single root there is a
unique traveling wave (Theorem 3), and give conditions for the existence of traveling waves
for growth functions with multiple simple roots (Theorem 4). In the last case we also show
that there is an upper limit on the speed of any traveling wave in the system (Proposition 5)
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1498 TRACY L. STEPIEN AND DAVID SWIGON

and that there are growth functions and boundary conditions for which a countably infinite
number of traveling waves exist (Proposition 6). Finally, we use numerical simulations to
analyze stability of traveling waves and show that all waves that contain interior local minima
or maxima of density are unstable.

Traveling wave analysis is very difficult to do in the material (Lagrangian) formulation
of the model due to the strong nonlinearity of the governing equations. Instead, we use the
equivalent spatial (Eulerian) formulation of the model, which results in a nonlinear reaction-
diffusion problem with a Stefan boundary condition (free boundary) replacing the fixed bound-
ary condition at the moving edge, and new formulas for the growth functions and stress-strain
relation. The material and spatial formulations are equivalent in the sense that there is a
one-to-one correspondence between their solutions. Our spatial formulation is analogous to a
two-dimensional spatial formulation that was first introduced by Arciero et al. [2].

While, in the material formulation as described in section 2, the primary variable is the
spatial position x of each cell given as a function of the material coordinate s and the time t,
in the spatial formulation, the state of the cell layer is described by giving the density of cells
ρ as a function of the spatial coordinate x and the time t. The density function ρ(s, t) of the
spatial formulation is related to the position and growth functions, x(s, t) and g(s, t), of the
material formulation as

(5.1) ρ (x(s, t), t) = ρ0

(
∂x(s, t)

∂s

)−1

g(s, t),

where ρ0 is the density of the relaxed (stress-free) layer. A procedure for conversion between
material and spatial formulations of the problem is given in Appendix C of the Supplementary
Material (94140 01.pdf [local/web 970KB]). The model equation (2.3) reduces to the equation

(5.2)
∂ρ

∂t
=

1

b

∂

∂x

(
ρp′(ρ)

∂ρ

∂x

)
+ q(ρ), 0 ≤ x ≤ X(t), 0 ≤ t,

where the constitutive function p(ρ) describes the density-dependent pressure within the cell
layer, the growth function q(ρ) describes the density-dependent net rate of change in the
number of cells within the layer due to proliferation and apoptosis, and X(t) is the free
boundary of the domain defined to be the position of the moving edge of the cell layer in
spatial coordinates (corresponding to x(1, t) in material coordinates).

The spatial constitutive functions p(ρ) and q(ρ) are related to the material constitutive
functions f = φ(ε) and γ(ε), respectively, by the following conversion formulas (see Appendix
C in the Supplementary Material (94140 01.pdf [local/web 970KB])):

φ(ε) = −p

(
ρ0

ε+ 1

)
, p(ρ) = −φ

(
ρ0
ρ

− 1

)
,(5.3a)

γ(ε) =
ε+ 1

ρ0
q

(
ρ0

ε+ 1

)
, q(ρ) = ργ

(
ρ0
ρ

− 1

)
,(5.3b)

where we require that the functions p(ρ) and q(ρ) obey p(ρ0) = q(ρ0) = 0, for consistency
with the conditions φ(0) = γ(0) = 0. For simplicity of exposition we assume that p(ρ) is twice
continuously differentiable on (0,∞), and that q(ρ) is continuously differentiable and bounded
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on (0,∞). Note that the monotone increasing φ(ε) on (−1,∞) implies that p′(ρ) > 0 on
(0,∞). Also note that for logarithmic constitutive equation (2.4a) we have p(ρ) = k ln(ρ/ρ0),
and hence (5.2) reduces to the classical diffusion equation

(5.4)
∂ρ

∂t
=

k

b

∂2ρ

∂x2
+ q(ρ).

We assume the same initial and boundary conditions as in the material formulation (see
Appendix C in the Supplementary Material (94140 01.pdf [local/web 970KB])), but we ex-
amine the existence of a traveling wave on a semi-infinite domain x ∈ (−∞,X(t)], which has
a moving boundary located at the position defined by the function X(t). The full spatial
formulation is

∂ρ

∂t
=

1

b

∂

∂x

(
ρp′(ρ)

∂ρ

∂x

)
+ q(ρ), x ≤ X(t), 0 ≤ t,(5.5a)

ρ(x, 0) = ρ0, x ≤ X(0),(5.5b)

p(ρ(X(t), t)) = −F, 0 < t,(5.5c)

X ′(t) = −1

b
p′(ρ(X(t), t))

∂ρ(X(t), t)

∂x
, 0 < t,(5.5d)

lim
x→−∞ ρ(x, t) = ρ0, 0 ≤ t.(5.5e)

Condition (5.5d) is the Stefan condition for the speed of the propagation of the free boundary
(Rubinstĕın [22]). The spatial formulation (5.5) is equivalent to a material formulation based
on (3.1) in which the domain of s is taken to be the semi-infinite interval (−∞, 0] and the
boundary condition (3.1e) is replaced by the limiting condition (4.1c) (as in the formulation
(4.1)).

A traveling wave solution of (5.5) is a solution of the form

(5.6) ρ(x, t) = ρ̌(x− ct),

where c is the speed of the traveling wave and the function ρ̌(z) is defined on the interval
(−∞, 0]. The traveling wave represents a profile of density that moves with a constant speed
c while remaining constant at any given distance from the edge, represented by the point z = 0.
We assume that c ≥ 0, which corresponds to the direction of motion of the edge toward the
cell layer gap, i.e., in the direction of positive x. Note that, in view of the formulation (5.5),
in a traveling wave the moving boundary obeys X(t) = ct. (For simplicity, we shall use the
same notation ρ for both functions in (5.6)—it is easy to discern which function is meant by
the number of arguments.) Substituting (5.6) into (5.5a), we obtain the second-order ordinary
differential equation

(5.7)
d

dz

(
ρp′(ρ)

dρ

dz

)
+ cb

dρ

dz
+ bq(ρ) = 0,

which can be written as a system of first-order ordinary differential equations by setting
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1500 TRACY L. STEPIEN AND DAVID SWIGON

y := dρ/dz:

dρ

dz
= y,(5.8a)

dy

dz
=

−1

p′(ρ)ρ

(
(p′′(ρ)ρ+ p′(ρ))y2 + cby + bq(ρ)

)
.(5.8b)

In view of (5.6), the boundary conditions (5.5c)–(5.5e) take the form

ρ(0) = ρF ,(5.9a)

y(0) = yF ,(5.9b)

lim
z→−∞(ρ(z), y(z)) = (ρ0, 0),(5.9c)

where ρF = p−1(−F ), yF = −cb
p′(p−1(−F )) , and

−1 denotes the inverse function. Any solution

of the boundary value problem (5.8)–(5.9) is a traveling wave solution of (5.5). Note that
the condition q(ρ0) = 0 implies that (ρ0, 0) is an equilibrium point of the system (5.8). Also,
note that the positive value of F , which corresponds to the case in which the layer is being
stretched by the force of lamellipodia, implies that the density at the moving edge is lower
than the starting density; i.e., ρF < ρ0. We will restrict the domain of the dynamical system
(5.8) to (ρ, y) ∈ (0,∞) × (−∞,∞) so that only trajectories with ρ(z) > 0 for −∞ < z ≤ 0
are solutions of the boundary value problem (5.8)–(5.9). This restriction is necessary in order
for the solutions of the boundary value problem to correspond to physically admissible states
of the system in which cell density can never be zero or negative.

It follows from our assumption about q(ρ) that the limit in (5.9c) is a fixed point of the
system (5.8). Therefore, a solution of the boundary value problem (5.8)–(5.9) can exist only if
(ρ0, 0) is a saddle, an unstable node, or an unstable spiral. The determinant Δ and the trace

τ of the Jacobian of (5.8) evaluated at (ρ0, 0) are Δ = bq′(ρ0)
p′(ρ0)ρ0 and τ = −cb

p′(ρ0)ρ0 . Recalling

from the properties of elasticity function p that p′(ρ) > 0 on (0,∞), the system (5.8) has a
saddle equilibrium at (ρ0, 0) if and only if q′(ρ0) < 0. Furthermore, in view of our assumption
that c ≥ 0, we have τ ≤ 0, and hence the system cannot have an unstable node or a spiral
at (ρ0, 0). Let us denote by W u(ρ0, 0) the one-dimensional unstable manifold of the saddle
equilibrium (ρ0, 0). We have essentially proven the following result.

Lemma 1. The boundary value problem (5.8)–(5.9) has a solution if and only if q′(ρ0) < 0
and (ρF , yF ) ∈ W u(ρ0, 0). The solution (if it exists) is the unique continuous segment of
W u(ρ0, 0) that extends between (ρF , yF ) and (ρ0, 0).

We will be focusing our attention solely on cases in which q′(ρ0) < 0. Since both W u(ρ0, 0)
and (ρF , yF ) depend on c, the problem of finding conditions for existence and uniqueness of
traveling wave solutions of (5.5) reduces to the problem of finding conditions for existence and
uniqueness of c for which (ρF , yF ) ∈ W u(ρ0, 0). We first examine separately the existence of
stationary waves, for which c = 0, before turning to nonstationary traveling waves.

5.1. Stationary waves. Stationary waves are solutions of (5.5) in which the density of the
layer is fixed in time and depends on the spatial coordinate only. A trivial stationary wave
solution for the case with F = 0 is ρ(x) = ρ(z) = ρ0. For F > 0 and for nontrivial choices
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of elasticity and growth functions one may be able to find stationary waves with nonconstant
densities.

System (5.8) with c = 0 is conservative with energy

(5.10) E(ρ, y) =
(
p′(ρ)ρy

)2 − 2b

∫ ρ0

ρ
αp′(α)q(α) dα,

and hence any solution of the system (5.8), including the unstable manifold W u(ρ0, 0), lies
on a level set of the function E(ρ, y). For the existence of a stationary wave, i.e., a solution
of the boundary value problem (5.8)–(5.9) with c = 0, it is necessary that the level set
E(ρ, y) = E(ρ0, 0) = 0 also contain the point (ρF , 0). The existence result can therefore be
stated as follows.

Theorem 2. Suppose that q(ρ) is continuous and bounded on (0, ρ0) with q(ρ0) = 0, and
differentiable at ρ0 with q′(ρ0) < 0. Let ρ̂ be the largest nonnegative number such that ρ̂ < ρ0
and

(5.11)

∫ ρ0

ρ̂
αp′(α)q(α) dα = 0.

The boundary value problem (5.8)–(5.9) has a solution with c = 0 if and only if ρ̂ exists and
ρF = ρ̂.

Proof. It is clear that the condition (5.11) with ρF = ρ̂ is necessary for the existence of
the solution. It remains to be shown that (ρ̂, 0) ∈ W u(ρ0, 0), i.e., that there is a connected
component of the level set E(ρ, y) = 0 that contains both the points (ρ̂, 0) and (ρ0, 0).

In view of (5.10), the definition of ρ̂, and the condition q′(ρ0) < 0, we have that E(ρ, 0) < 0
for ρ ∈ (0, ρ0). In addition, E(ρ, y) is monotone increasing in y2 at fixed ρ. It follows that at
every fixed ρ ∈ (0, ρ0) there are precisely two values y+(ρ) and y−(ρ) with y−(ρ) < 0 < y−(ρ)
such that E(ρ, y±(ρ)) = 0:

(5.12) y±(ρ) =
±1

p′(ρ)ρ

√
2b

∫ ρ0

ρ
αp′(α)q(α)dα.

Since y+(ρ) and y−(ρ) depend continuously on ρ (by (5.12)) and are finite (by continuity of
q(ρ)), the points (ρ̂, 0), (ρ0, 0), {(ρ0, y−(ρ)) | ρ ∈ (0, ρ0)}, and {(ρ0, y+(ρ)) | ρ ∈ (0, ρ0)} all
belong to a connected component of the level set E(ρ, y) = 0. Thus, (ρ̂, 0) ∈ W u(ρ0, 0).

The conditions q′(ρ0) < 0 and (5.11) together imply that q(ρ) must have at least two
positive simple roots. One example for which (5.11) is satisfied and a stationary wave exists
is when 0 < ρF < ρ0 and there exists another zero of q(ρ), say ρ1, such that ρF < ρ1 < ρ0,
q(ρ) > 0 for ρ ∈ (ρ1, ρ0), q(ρ) < 0 for ρ ∈ [ρF , ρ1), and

(5.13) −
∫ ρ1

ρF

αp′(α)q(α) dα =

∫ ρ0

ρ1

αp′(α)q(α) dα.

In such a case, the graph of ρp′(ρ)q(ρ) is of the form in Figure 5(A). Furthermore, in the
phase portrait of the system, (ρ1, 0) is a center, and the direction field looks like Figure 5(B).
Note that, although the density is fixed in time, the cells in the layer in this example are not
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 A

ρρ0

equal area

ρp ′(ρ)q(ρ)

ρ1

ρF

ΡF Ρ1 Ρ0

Ρ

y

B

Figure 5. Stationary wave solutions of the spatial formulation with growth. (A) In order to have stationary
waves, the plot of ρp′(ρ)q(ρ) must be of this form, where there is equal area under the curve on the intervals
[ρF , ρ1] and [ρ1, ρ0] and the slope is positive at ρ1 and negative at ρ0. (B) The phase portrait for (5.8) with
c = 0 has a center at (ρ1, 0). The blue lines denote the stable and unstable manifolds of the saddle point (ρ0, 0).
The orange lines denote sample trajectories. The red line is the stationary wave solution, i.e., the portion of
the unstable manifold between (ρ0, 0) and (ρF , 0).

stationary. In the portion of the layer where ρ ∈ (ρ1, ρ0), the layer is growing (since q(ρ) > 0),
while in the boundary layer where ρ ∈ [ρF , ρ1), the layer is shrinking. Thus, there is a net flux
of cells from the interior towards the edge of the layer which is responsible for maintaining
the constant density. This motion of cells is hidden in the spatial formulation, but it would
be apparent immediately if we presented the solution in the material formulation.

5.2. Traveling waves. Traveling wave solutions of (5.5), i.e., solutions of the boundary
value problem (5.8)–(5.9), may not exist for all wave speeds c > 0, so in this section we
examine the conditions for existence and uniqueness of solutions and their dependence on the
elasticity function p(ρ), growth function q(ρ), and the parameter F . The parameter b > 0 is
assumed fixed. Recall that physiologically relevant elasticity functions p(ρ) have root ρ0 and
are monotone increasing on (0,∞). All results that follow require that these conditions be
satisfied.

In accord with Lemma 1, the solution of (5.8)–(5.9) is a segment of the unstable manifold
W u(ρ0, 0) that extends between the points (ρF , yF ) (representing the edge) and (ρ0, 0) (rep-
resenting the infinite boundary). We find this solution by varying the wave speed c, which
affects both W u(ρ0, 0) and yF .

Let yu(ρ̄, c) be the set of all intersections of W u(ρ0, 0) with the half-line {ρ = ρ̄, y ≤ 0},
i.e.,

(5.14) yu(ρ̄, c) = {y ≤ 0 | (ρ̄, y) ∈ W u(ρ0, 0)},
and let ρ̂(c) be the largest number such that 0 ≤ ρ̂(c) < ρ0 and yu(ρ, c) is nonempty for all
ρ ∈ (ρ̂(c), ρ0).

The number of simple roots of growth function q(ρ) and the value of F dictate how many
values of c result in the solution of the boundary value problem (5.8)–(5.9). In particular, for
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certain F > 0, if q(ρ) has one root, c is unique, but if q(ρ) has more than one root, c may not
be unique. In this section we consider the basic choices of growth functions q(ρ) and address
the existence of solutions. We shall look more closely at two cases: (i) the case in which q(ρ)
is positive for ρ ∈ (0, ρ0), and (ii) the case in which q(ρ) has simple roots between 0 and ρ0.
Since the force applied on the boundary corresponds to stretching force, ρF is always lower
than ρ0, and the behavior of q(ρ) above ρ0 will have no effect on the solutions of the boundary
value problem.

We first examine the case in which q(ρ) is positive for 0 < ρ < ρ0. This case represents cell
layers that grow whenever the cell density drops below the stress-free density (i.e., whenever
they are stretched).

Theorem 3. Suppose that q(ρ) is continuous, bounded, and positive on (0, ρ0) with q(ρ0) =
0, and differentiable at ρ0 with q′(ρ0) < 0. Then for any F > 0 such that ρF = p−1(−F ) ∈
(0, ρ0) there exists a unique c(F ) > 0 for which the boundary value problem (5.8)–(5.9) has a
solution, and that solution is unique.

Proof. Let F > 0 be such that ρF = p−1(−F ) ∈ (0, ρ0). The boundary value problem
(5.8)–(5.9) has a solution for some c ≥ 0 if there is a trajectory of (5.8) that terminates at
(ρF , yF ) and converges to (ρ0, 0) as z → −∞, i.e., if yF ∈ yu(ρF , c), where yu is defined by
(5.14).

We will show that (i) ρ̂(c) = 0, (ii) yu(ρ, c) consists of a single point for every ρ ∈ (ρ̂(c), ρ0),
and (iii) yu(ρ, c) increases in c at fixed ρ.

For c = 0, yu(ρ0, 0) consists of points from the level set E(ρ, y) = 0, where E(ρ, y) is
defined in (5.10). The eigenvector associated with the positive eigenvalue of the linearized
system at (ρ0, 0) is given by

(5.15)

( −2p′(ρ0)ρ0

cb−√c2b2 − 4bq′(ρ0)p′(ρ0)ρ0

)
,

and hence, in view of the condition q′(ρ0) < 0, the slope of W u(ρ0, 0) is positive. Thus, for
ρ < ρ0, y

u(ρ, 0) = y−(ρ) as defined in (5.12). Since the expression in (5.12) is single-valued,
yu(ρ, 0) consists of a single point for every ρ ∈ (ρ̂(0), ρ0). Furthermore, in view the condition
that q(ρ) > 0 for ρ ∈ (0, ρ0), the expression in (5.12) is defined for all ρ ∈ (0, ρ0) and hence
ρ̂(0) = 0.

Let U0 be the closed set in the ρy-plane bounded by the lines {y = 0} and {ρ = ρF } and
the curve {y = yu(ρ, 0)} (see Figure 6). Consider the flow of the system with any c > 0. Since
q(ρ) is positive for ρ ∈ [0, ρ0), there are no other fixed points in U0 besides (ρ0, 0). The line
{y = 0} is the ρ-nullcline, and the flow across this line is in the negative y-direction. Thus,
{y = 0} is an entrance boundary of U0. The flow across the boundary {ρ = ρF} is in the
negative ρ-direction, and hence {ρ = ρF} is an exit boundary of U0. The direction field has
the slope

(5.16)
dy

dρ
=

−1

p′(ρ)ρ

((
p′′(ρ)ρ+ p′(ρ)

)
y + cb+ b

q(ρ)

y

)
,

which is decreasing in c at any fixed point (ρ, y). Hence for any c > 0, {y = yu(ρ, 0)} is an
entrance boundary of U0 across the boundary (see Figure 6). Furthermore, the slope of the

D
ow

nl
oa

de
d 

06
/0

9/
15

 to
 1

29
.2

19
.2

47
.3

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1504 TRACY L. STEPIEN AND DAVID SWIGON

y

ρ

ρ = ρF

y = yu(ρ, c)

Uc

ρ0

Figure 6. The set Uc in the proof of Theorem 3 is bounded by the ρ-axis, the vertical line {ρ = ρF}, and
the unstable manifold of the saddle (ρ0, 0), y

u(ρ, c). The arrows indicate the direction of the flow with c∗ > c.

eigenvector associated with the positive eigenvalue of the linearized system at (ρ0, 0) decreases
as c increases from 0. Therefore, for any c > 0, the unstable manifold W u(ρ0, 0) enters U0 at
the point (ρ0, 0) and exits U0 across the boundary {ρ = ρF}. And since dρ/dz < 0 everywhere
in U0, the set yu(ρ, c) contains a unique point y for each ρ, and hence W u(ρ0, 0) exits the set
U0 at a unique point (ρF , y

u(ρF , c)).
Let us now fix c > 0 and consider the set Uc defined in the same way as U0 except with

the boundary {y = yu(ρ, 0)} replaced by the boundary {y = yu(ρ, c)}. Similarly as above, we
can conclude that for each c∗ > c the unstable manifold W u(ρ0, 0) exits the set Uc at a unique
point (ρF , y

u(ρF , c
∗)), where yu(ρF , c

∗) > yu(ρF , c). It follows that yu(ρF , c) is a continuous,
monotonically increasing function of c. Recall from (5.9b) that yF = −cb

p′(ρF ) , and hence yF (c)

continuously monotonically decreases with c such that yF (0) = 0 > yu(ρF , 0) and yF → −∞
as c → ∞. By the intermediate value theorem and the monotonicity of the two functions,
there exists a unique c at which yu(ρF , c) = yF (c). In addition, for such c, there is a unique
trajectory that terminates at (ρF , yF ) and converges to (ρ0, 0) as z → −∞, implying that
there exists a unique solution of the boundary value problem (5.8)–(5.9).

The linear (2.6a) and Fisher (2.6b) growth functions are examples of growth functions that
satisfy the conditions of Theorem 3. Figure 7 and the accompanying movie (94140 02.mov
[local/web 1.56MB]) illustrate the phase portrait of (5.8) with a linear growth function and
a logarithmic elasticity function (2.4a). Figure 8 illustrates the bifurcation diagram for this
case with c as the parameter, where the line represents pairs of values of (c, F ) for which a
solution exists.

We now examine the case when q(ρ) has simple roots between 0 and ρ0 and hence is both
positive and negative in 0 < ρ < ρ0. This case represents cell layers that grow when the cell
density drops somewhat below the stress-free density, but decay (i.e., cells die off) when they
are stressed too much (compressed or stretched).

Theorem 4. Suppose that q(ρ) is continuous and bounded on (0, ρ0) with q(ρ0) = 0, and
differentiable at ρ0 with q′(ρ0) < 0. Let ρ̂ be the smallest nonnegative number such that∫ ρ0
η αp′(α)q(α)dα ≥ 0 for η ∈ [ρ̂, ρ0). Then for any F > 0 such that ρF = p−1(−F ) ∈ (ρ̂, ρ0)D
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Ρ0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

�0.6

�0.4

�0.2
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0.4

0.6

Ρ

y
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12 10 8 6 4 2 0 z

0.2

0.4

0.6

0.8

1.0
ρ

B

Figure 7. Linear growth function (2.6a) is an example of a function that satisfies the conditions of Theorem
3 with logarithmic elasticity function (2.4a). Here, k = 0.838, b = 1, F = 0.25, ρ0 = 1, and speed c = 0.274120.
(A) The phase portrait of the system with the unstable and stable manifolds of the saddle point in green, the line
{ρ = ρF} in orange, the curve {y = −cb/p′(ρ)} in purple, and the solution trajectory in red. The accompanying
movie (94140 02.mov [local/web 1.56MB]) shows the phase portrait as c increases from 0. (B) The traveling
wave profile of the solution trajectory in traveling wave coordinate z; cf. Figure 3(B).

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

ρF

c

Figure 8. The bifurcation diagram for the linear growth function (2.6a) with logarithmic elasticity function
(2.4a), with parameters as in Figure 7. Values of ρF and c that lie along the curve result in unique traveling
waves.

there exists a c(F ) > 0 for which the boundary value problem (5.8)–(5.9) has a solution.
Proof. The proof is similar to that of Theorem 3: we can construct a region analogous

to U0, except that {y = 0} is no longer purely an entrance boundary of U0 for the flow, and
hence W u(ρ0, 0) can exit and then re-enter U0 across {y = 0}. If that happens, yu(ρ, c) no
longer contains a single point.
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Suppose that ρF ∈ (ρ̂, ρ0). In view of (5.12), y−(ρF ) exists and is negative. Let U0

be a closed set in the ρy-plane bounded by the lines {y = 0}, {ρ = ρF }, and the curve
{y = yu(ρ, 0)}. Consider the flow of the system for any c > 0. The line {ρ = ρF } is an exit
boundary of U0, {y = yu(ρ, 0)} is an entrance boundary of U0, the eigenvector of the linearized
system at (ρ0, 0) decreases with c, and dρ/dz < 0. Therefore, W u(ρ0, 0) enters the set U0 at
(ρ, 0) and exits the set at a point on the {ρ = ρF } or {y = 0} boundary. If yu(ρF , c) is
nonempty, then the exit point of W u(ρ0, 0) lies on {ρ = ρF } and is given by (ρF , y

u
min(ρF , c)),

where yumin(ρF , c) = min{yu(ρF , c)}. Otherwise, the exit point of W u(ρ0, 0) lies on {y = 0}.
Note that yu(ρF , 0) is nonempty by the assumption of the theorem.

Let us now fix c > 0 such that yu(ρF , c) is nonempty and consider the set Uc defined
similarly as U0 except with the boundary {y = yu(ρ, 0)} replaced by the boundary {y =
yumin(ρ, c)}. Similarly as above, we can conclude that for c∗ > c sufficiently small the unstable
manifold W u(ρ0, 0) exits the set Uc at a unique point (ρF , y

u
min(ρF , c

∗)), where yumin(ρF , c
∗) >

yumin(ρF , c). It follows that y
u
min(ρF , c) is a continuous, monotonically increasing function of c

on some interval [0, c†], where c† is the largest c such that yu(ρF , c) is nonempty. Recall from
(5.9b) that yF = −cb

p′(ρF ) , and hence yF (c) continuously monotonically decreases with c such

that yF (0) = 0 > yumin(ρF , 0) and yF → −∞ as c → ∞. By the intermediate value theorem
and monotonicity of the two functions, there exists a unique c at which yumin(ρF , c) = yF (c).
In addition, for such c, there is a unique trajectory that terminates at (ρF , yF ) and converges
to (ρ0, 0) as z → −∞, implying that there exists a solution of the boundary value problem
(5.8)–(5.9).

Several additional results can be obtained, as follow.
Proposition 5. Suppose that the hypotheses of Theorem 4 are satisfied with ρ̂ > 0. Then

there exists a c∗ < ∞ such that any solution of boundary value problem (5.8)–(5.9) with
ρF ∈ [ρ̂, ρ0) has c(F ) ≤ c∗.

Proof. Let c∗ = maxρ∈[ρ̂,ρ0]
√

2
b

∫ ρ0
ρ αp′(α)q(α)dα. Then for c > c∗ the line y = yF (c)

does not intersect yu(ρ, 0) at any ρ ∈ (ρ̂, ρ0), and since yu(ρ, 0) < yumin(ρ, c) for all c and ρ,
it follows that y = yF (c) does not intersect the set yu(ρ, c) for any c > c∗ and ρF ∈ (ρ̂, ρ0).
Thus, in view of the proof of Theorem 4, the boundary value problem cannot have a solution
with c > c∗.

Proposition 6. Suppose that the hypotheses of Theorem 4 are satisfied with ρ̂ > 0 and
ρF ∈ (ρ̂, ρ0). The number of c(F ) for which the boundary value problem (5.8)–(5.9) has a
solution is countably infinite.

Proof. If ρ̂ > 0, then the level set E(ρ, y) = 0 (defined in (5.10)) contains a homoclinic
orbit of the system (5.8) with c = 0, which encloses a bounded domain U of the ρy-plane,
consisting of the union of the set U0 defined earlier and its mirror image above the ρ-axis. For
any c > 0 the unstable manifold W u(ρ0, 0) enters U and then remains trapped in it. By the
properties of the flow, W u(ρ0, 0) re-enters U0 across {y = 0} infinitely many times.

Suppose that ρF ∈ (ρ̂, ρ0). There is c > 0, sufficiently small, such that W u(ρ0, 0) crosses
the half-line {ρ = ρF , y < 0} again at a point (ρF , y

u
2 (ρF , c)) such that yu2 (ρF , c) ∈ yu(ρF , c)

and yu2 (ρF , c) > yumin(ρF , c). In addition, yu2 (ρF , c) is also a continuous, monotonically in-
creasing function of c, with yu2 (ρF , c) → yu(ρF , 0) as c → 0, and we can repeat the last part
of the above argument with yumin(ρF , c) replaced by yu2 (ρF , c) and find a (unique) value c2 of
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c such that yF (c2) = yu2 (ρF , c2). For such c2 the segment of W u(ρ0, 0) between (ρ0, 0) and
(ρF , yF (c2)) will be another solution of the boundary value problem (5.8)–(5.9). Since, in
the limit c → 0, the unstable manifold W u(ρ0, 0) converges to a homoclinic orbit of (5.8)
at c = 0, for sufficiently small c > 0, W u(ρ0, 0) crosses the half-line {ρ = ρF , y < 0} at
yu3 (ρF , c), y

u
4 (ρF , c), . . . , where yuj+1(ρF , c) > yuj (ρF , c) for all j. By repeating the above argu-

ment, we can show that each of these additional crossings of W u(ρ0, 0) with {ρ = ρF , y < 0}
will give an additional solution of the boundary value problem (5.8)–(5.9). The solutions will
differ in the number of local maxima and minima of ρ(z).

The conditions of Proposition 6 require that there be at least one other root ρ1 < ρ0 of
the function q(ρ) which gives rise to a stable spiral fixed point of the system. One example
is the case in which the unstable manifold converges to that fixed point in the limit as z →
∞. Figure 9 and the accompanying movie (94140 03.mov [local/web 4.55MB]) illustrate an
example of such a situation: the phase portrait and traveling wave solution profile for the cubic
growth function (2.6c), which satisfies the conditions of Theorem 4, and logarithmic elasticity
function (2.4a). As c decreases, the solution trajectory winds about the spiral fixed point. For
any growth function that satisfies the conditions of Theorem 4, there exists an upper bound
for a countably infinite number of c in which the boundary value problem (5.8)–(5.9) has a
solution. Figure 10 illustrates the bifurcation diagram, showing the values of ρF and c for
which there is a solution to the boundary value problem, for the cubic growth function and
logarithmic elasticity function.

If ρ̂ = 0 in the statement of Theorem 4, then the number of solutions of the boundary
value problem (5.8)–(5.9) is finite since ρ is the cell density and any physically relevant solution
requires ρ > 0, and thus solution trajectories cannot traverse the loops of the stable spiral
that cross the y-axis. Hence in this case, for any ρF ∈ (0, ρ0) there will be a finite number of
c’s for which the boundary value problem (5.8)–(5.9) has a solution. If the other fixed point
of the system (see (5.13)) is nonpositive, then there will be a unique speed c, and there does
not exist an upper bound on the speed c for which there is a solution. Two examples of such
growth functions are q(ρ) = (ρ0 − ρ)(ρ0 + 4ρ) and q(ρ) = −(ρ0 − ρ)(ρ0 − 4ρ).

Let us now examine how many solutions exist for the case when q(ρ) has three simple
roots 0 < ρ2 < ρ1 < ρ0 or 0 < ρ0 < ρ1 < ρ2 such that, in the phase portrait, ρ0 and ρ2 are
saddle points and ρ1 is a stable spiral or node for sufficiently large c. An example of a phase
portrait of a system with q(ρ) that has roots 0 < ρ2 < ρ1 < ρ0 is illustrated in Figures 11
and 13.

If
∫ ρ0
ρ αp′(α)q(α)dα > 0 for all ρ ∈ (0, ρ0), as in Figure 11(A), then there exists a c∗ ∈ R

such that a heteroclinic orbit in the lower half of the ρy-plane connects the two saddle points
ρ0 and ρ2 (see Figure 11(D)). There is a finite number of solutions for ρF ∈ (0, ρ0). For
c > 0 there are a countably infinite number of solutions for ρF ∈ (ρ2, η) where η satisfies∫ η
ρ2
αp′(α)q(α)dα = 0. An example growth function is q(ρ) = (ρ0 − ρ)(ρ0 − 2ρ)(ρ0 − 4ρ), and

Figure 12 illustrates the bifurcation diagram, showing the values of ρF and c for which there
is a solution to the boundary value problem (5.8)–(5.9).

If
∫ ρ0
ρ αp′(α)q(α)dα < 0 for some ρ ∈ (0, ρ0), as in Figure 13(A), then the heteroclinic

orbit that exists for some c∗ ∈ R connecting the two saddle points ρ0 and ρ2 exists in the
upper half of the ρy-plane (see Figure 13(D)), which cannot result in a solution assuming
c > 0. There exists a countably infinite number of solutions for ρF ∈ (η, ρ0), and there exists
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Figure 9. Cubic growth function (2.6c) is an example of a function that satisfies the conditions of Theorem
4 with logarithmic elasticity function (2.4a). Here, k = 0.838, b = 1, F = 0.25, ρ0 = 1, and speed is (A)
c = 0.266062, (B) c = 0.103310, (C) c = 0.0587513, and (D) c = 0.0404030. First column: The phase portrait
of the system with the unstable and stable manifolds of the saddle point in blue, the line {ρ = ρF } in orange, the
curve {y = −cb/p′(ρ)} in purple, and the solution trajectory in red. The accompanying movie (94140 03.mov
[local/web 4.55MB]) shows the phase portrait as c increases from 0. Second column: The corresponding traveling
wave profiles of the solution trajectory in traveling wave coordinate z; cf. Figure 3(D).
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Figure 10. The bifurcation diagram for the cubic growth function (2.6c) with logarithmic elasticity function
(2.4a). Here, ρ0 = 1. Values of ρF and c that lie along the curves result in solutions of the boundary value
problem. The number of loops that the solution trajectory traverses about the stable spiral is labeled. Note that
only a portion of the countably infinite number of curves is shown.

Ρ2 Ρ1 Ρ0
Ρ

q�Ρ�
A

Figure 11. (A) Growth function with three simple roots such that
∫ ρ0
ρ

αp′(α)q(α)dα > 0 for all ρ ∈ (0, ρ0).

(B) The phase portrait of the system for c = 0 with the unstable and stable manifolds of the saddle point (ρ0, 0)
in blue and the unstable and stable manifolds of the saddle point (ρ2, 0) in cyan. (C) The phase portrait of the
system for 0 < c < c∗. (D) The phase portrait of the system for c = c∗. The heteroclinic orbit connecting the
two saddles (ρ0, 0) and (ρ2, 0) is in red. (E) The phase portrait of the system for c > c∗.
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Figure 12. The bifurcation diagram for the function q(ρ) = (1 − ρ)(1 − 2ρ)(1 − 4ρ), with logarithmic
elasticity function (2.4a). Here, for the curve labeled “right,” ρ0 = 1, and for the curves labeled “left,” ρ0 = 1

4
.

Values of ρF and c that lie along the curves result in solutions of the boundary value problem. The number
of loops that the solution trajectory traverses about the stable spiral is labeled. Note that only a portion of the
countably infinite number of curves is shown.
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A

Figure 13. (A) Growth function with three simple roots such that
∫ ρ0
ρ

αp′(α)q(α)dα < 0 for some ρ ∈ (0, ρ0).

(B) The phase portrait of the system for c = 0 with the unstable and stable manifolds of the saddle point (ρ0, 0)
in blue and the unstable and stable manifolds of the saddle point (ρ2, 0) in cyan. (C) The phase portrait of the
system for 0 < c < c∗. (D) The phase portrait of the system for c = c∗. The heteroclinic orbit connecting the
two saddles (ρ0, 0) and (ρ2, 0) is in red. (E) The phase portrait of the system for c > c∗.
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Figure 14. The bifurcation diagram for the function q(ρ) = (1 − ρ)(1 − 8ρ)(3 − 5ρ), with logarithmic
elasticity function (2.4a). Here, for the curves labeled “right,” ρ0 = 1, and for the curves labeled “left,” ρ0 = 1

8
.

Values of ρF and c that lie along the curves result in solutions of the boundary value problem. The number
of loops that the solution trajectory traverses about the stable spiral is labeled. Note that only a portion of the
countably infinite number of curves is shown.

an upper bound on the speed c for which there is a solution. An example growth function is
q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ), and Figure 14 illustrates the bifurcation diagram, showing
the values of ρF and c for which there is a solution to the boundary value problem (5.8)–(5.9).

Our analysis of the number of possible solutions of the boundary value problem (5.8)–(5.9)
directly extends to the case when the growth function q(ρ) has four or more simple roots. These
functions will result in phase portraits with alternating saddles and stable spirals/nodes, and
the number of possible solutions for a chosen ρF is either none, one, a finite number, or a
countably infinite number. This analysis also extends to growth functions q(ρ) with three or
more roots with some repeated (with the exception of ρ0, which must be a simple root). These
growth functions give results similar to those for simple root functions of one lower degree.

5.3. Stability of traveling waves. Especially in those cases of the previous section where
there are multiple traveling wave solutions, it is useful to analyze the stability of the traveling
waves as solutions of the full partial differential equation formulation of the problem (5.5)
under small perturbations. This will give insights into the physiological relevance of the
solutions found in the previous section, as it is unlikely that unstable waves could be observed
experimentally. We proceed to test the stability numerically, taking advantage of the fact that
we have in hand a procedure for solving the material formulation of the problem numerically
(recall section 3).

First, in Table 1, we compare the speed of the leading edge found numerically, as the
velocity of the leading edge in the material formulation at t = 20, and analytically, as the
speed c of the traveling wave solution in the spatial formulation, for the logarithmic elasticity
function and for linear (2.6a), Fisher (2.6b), and cubic (2.6c) growth functions. The relative
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Table 1
Speed of the moving edge to 6 significant digits: The velocity of the moving edge in the material formulation

at t = 20. The analytical speed is the speed c of the traveling wave solution in the spatial formulation. For
the linear and cubic growth functions, k = 0.838, b = 1, and F = 0.25, and for the Fisher growth function,
k = 2.947, b = 1, and F = 2.5.

Growth function Linear Fisher Cubic

Numerical speed 0.275432 1.13160 0.266753

Analytical speed 0.274120 1.12652 0.266062

error between the numerical and analytical speed estimates is less than 1% for all three growth
functions.

Next, we examine whether the density profiles of the numerical solutions of the material
formulation converge to the analytic traveling wave density profile of the spatial formulation.
At a few equally spaced times, we calculate the density of the cell layer from the cell positions
found from a numerical simulation of the material formulation via (5.1) with ρ0 = 1, and
discretize ∂x

∂s and ∂ŝ
∂s using centered difference in the interior and forward (backward) difference

on the left (right) boundary. See Figure 15. The numerical density profiles converge to the
analytical density profile for the linear, Fisher, and cubic growth functions with logarithmic
elasticity function.

−35 −30 −25 −20 −15 −10 −5 0
0

0.2

0.4

0.6

0.8

1

1.2

z

ρ

5

101520

Figure 15. Stability of traveling waves: material formulation to spatial formulation. Fisher growth function
(2.6b) with logarithmic elasticity function (2.4a), k = 2.947, b = 1, F = 2.5, and ρ0 = 1. The density profiles
at t = 5, 10, 15, 20 hours (in blue) found numerically in the material formulation converge to the analytical
traveling wave solution (in red) with c = 1.12652 found in the spatial formulation. Note that linear (2.6a) and
cubic (2.6c) growth functions give similar convergence.

Finally, we use the analytic traveling wave solution of the spatial formulation as an initial
condition for the material formulation numerical simulations. Taking the density profile of
the analytical traveling wave solution for the spatial formulation, we calculate s = s(x, t) via
(5.1) with ρ0 = 1 and assuming ∂ŝ

∂s = 1 (since ŝ is simply a relabeling of cell positions). Thus,
we numerically solve the ordinary differential equation s′ = ρ with initial condition s(0) = 0.
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Figure 16. Stability of traveling waves: spatial formulation to material formulation. Fisher growth function
(2.6b) with logarithmic elasticity function (2.4a), k = 2.947, b = 1, F = 2.5, and ρ0 = 1. The initial cell
positions are found using the analytical traveling wave solution shown in Figure 15. Note that the linear growth
function (2.6a) and the cubic growth function (2.6c) with analytical density profile shown in the second column
of Figure 9(A) give a similar result.

Then we must invert this solution to find x = x(s, t). Using these cell positions x and s as an
initial state, we find the numerical solution to the material formulation. See Figures 16–17.

For the linear and Fisher growth functions with logarithmic elasticity function, the velocity
of the moving edge approximates the speeds listed in Table 1, and the shape of the plot of
ε versus ŝ remains unchanged throughout time, implying that the traveling wave solution
persists.

For the cubic growth function with logarithmic elasticity function, we observe different
behaviors based on how many loops the solution trajectory in phase space traverses about
the stable spiral (cf. Figure 9). If the solution trajectory traverses no loops about the stable
spiral, we observe the same behavior as for the linear and Fisher growth functions; the traveling
wave solution persists. If the solution trajectory traverses one or more loops about the stable
spiral, we observe that the traveling wave solution does not persist but instead converges to
the traveling wave solution for the trajectory that traverses no loops. See Appendix D in
the Supplementary Material (94140 01.pdf [local/web 970KB]) for additional traveling wave
stability figures for the growth functions q(ρ) = (ρ0 − ρ)(ρ0 − 2ρ)(ρ0 − 4ρ) (see Figure D.1,
which corresponds to Figures 11–12) and q(ρ) = (ρ0 − ρ)(ρ0 − 8ρ)(3ρ0 − 5ρ) (see Figures
D.2–D.3, which correspond to Figures 13–14).

The numerical results support the following conjecture.
Conjecture. The traveling wave solutions of the spatial formulation are stable if the solution

trajectory in phase space does not cross the horizontal ρ-axis.

6. Discussion. We have extended the one-dimensional elastic continuum model of cell
layer migration of Mi et al. [15] to include stretch-dependent proliferation, in accord with
experimental observations showing that the rate of proliferation of a cell layer depends on its
stretching. The material formulation of the model with no proliferation (γ ≡ 0) and linear
elasticity function (2.4b), presented here, leads to the same equations as the slowly varying
continuum approximation of the agent-based model of Fozard et al. [8] when neglecting internal
cell viscosity. This material formulation is equivalent to the model of Arciero et al. [2] through
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Figure 17. Stability of traveling waves: spatial formulation to material formulation. Cubic growth function
(2.6c) with logarithmic elasticity function (2.4a), k = 0.838, b = 1, F = 0.25, and ρ0 = 1. The initial cell
positions are found using the analytical traveling wave solution shown in the second column of (A) Figure 9(A),
(B) Figure 9(B), (C) Figure 9(C), and (D) Figure 9(D). For all four panels the density profiles at t = 0.625,
1.25, 2.5, 10 hours (in blue) found numerically in the material formulation converge to the analytical traveling
wave solution (in red) shown in the second column of Figure 9(A).

point-particle interchangeability.
We solved the material formulation with stretch-dependent growth numerically using an

adaptive finite difference method, which is much simpler, in terms of the number of lines of
programming code, and computationally more efficient than the level set method used by
Arciero et al. [2] to solve the spatial formulation. The velocity of the moving edge found in
numerical simulations of the material formulation was used to determine whether traveling
wave solutions might exist for certain cell proliferation rates and cell layer elasticity functions.
However, analysis of the existence of traveling wave solutions was more amenable in the spatial
formulation. For various nonzero cell proliferation rates and cell layer elasticity functions, we
proved that traveling wave solutions with constant wave speed exist in the spatial formulation.
The velocity of the moving edge found numerically approximated the analytical wave speed.
Stability of the traveling wave was determined numerically; the traveling wave is stable if
the corresponding trajectory in phase space does not cross the horizontal ρ-axis. For the
model equations with zero proliferation, similarity solutions under scaling exist with certain
conditions on the constitutive equation for elasticity.

The governing equation of the spatial formulation with logarithmic elasticity function
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(2.4a) and Fisher growth (2.6b) becomes the classical Fisher–Kolmogorov equation. The
typical method of proving the existence of traveling wave solutions for the Fisher–Kolmogorov
equation on an infinite domain is to show the existence of a heteroclinic orbit connecting
two equilibrium points, and the set of admissible traveling wave speeds for such solutions is
bounded below (Murray [16]). Our model includes a Stefan condition on a moving boundary,
and the traveling wave solution is solved on a semi-infinite domain instead of an infinite
domain. The necessary phase space trajectory that identifies a traveling wave solution is no
longer a heteroclinic orbit but a portion of an unstable manifold. We find that, in the cases
described here, there is either a unique admissible traveling wave speed, a finite number of
admissible traveling wave speeds, or a countably infinite number of admissible traveling wave
speeds.

The majority of growth functions discussed in this article are physiologically relevant be-
cause they indicate proliferation when cells are stretched and decay when cells are compressed
while the others are more theoretical in nature. Other physiologically relevant growth func-
tions, in the material formulation, include ones of the following forms: Gaussian centered at
ε = 0 and piecewise linear approximating the Gaussian (resembling the growth rate function
in Stolarska, Kim, and Othmer [24]). Our numerical simulations indicate that the leading
edge of the wound eventually moves at a constant, or slowly increasing, rate for these growth
functions as well; however, the proofs developed in this article do not directly apply. These
functions in the spatial formulation can be considered as approximations of polynomial growth
functions q(ρ), and traveling wave solutions exist in a limiting sense.

In summary, our numerical and analytical results indicate that distinct constitutive equa-
tions for the cell proliferation rate and cell layer elasticity function give rise to very similar
traveling wave solutions, both in shape and in speed. As a result, the inference of material
properties from the shape and speed of such waves is difficult if not impossible. Most cell
migration experiments tend to measure only the velocity of the wound edge and wound clo-
sure time, which data can be matched by models with various distinct constitutive equations.
We suggest that the density of the cell layer should be calculated in future experiments to
help elucidate the material properties, though we also hypothesize that even with this addi-
tional data the accuracy of determination of constitutive equations will not be much improved.
Therefore, more data of various nature and further analysis is needed to determine accurate
constitutive assumptions for the cell proliferation rate and cell layer elasticity functions for
epithelial cell layer migration.
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