Supplementary Material to "Transition to turbulence in Taylor-Couette ferrofluidic flow"

Sebastian Altmeyer,^{1,*} Younghae Do,^{2,†} and Ying-Cheng Lai³

¹Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria ²Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu, 702-701, South Korea ³School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, 85287, USA (Dated: March 4, 2015)

Legends for videos in SM

• Movie 1:

Movie 1 demonstrates SWO_{qp} for $s_x = 0.82$ (quasiperiodic regime), isosurfaces of the azimuthal voticity $\eta = \partial_z u_r - \partial_r u_\theta = \pm 100$ (red: $\eta = 100$, yellow: $\eta = -100$).

• Movie 2:

Movie 2 demonstrates SWO_{qp} for $s_x = 0.82$ (quasiperiodic regime), axial velocity profiles u_z for $\theta = 0$ (black) and $\theta = \pi/2$ (red) in the annulus at the midgap.

• Movie 3:

Movie 3 demonstrates SWO_{qp} for $s_x = 0.825$ (quasiperiodic regime), isosurfaces of the azimuthal voticity $\eta = \partial_z u_r - \partial_r u_\theta = \pm 100$ (red: $\eta = 100$, yellow: $\eta = -100$).

• Movie 4:

Movie 4 demonstrates SWO_{qp} for $s_x = 0.825$ (quasiperiodic regime), axial velocity profiles u_z for $\theta = 0$ (black) and $\theta = \pi/2$ (red) in the annulus at the midgap.

• Movie 5:

For $s_x = 0.9$ (turbulent regime), Movie 5 demonstrates isosurfaces of the angular momentum $ru_{\theta} = 80$.

• Movie 6:

For $s_x = 0.9$ (turbulent regime), Movie 6 demonstrates isosurfaces of the azimuthal voticity $\eta = \partial_z u_r - \partial_r u_\theta = \pm 100$ (red: $\eta = 100$, yellow: $\eta = -100$).

• Movie 7:

For $s_x = 0.9$ (turbulent regime), Movie 7 demonstrates axial velocity profiles u_z for $\theta = 0$ (black) and $\theta = \pi/2$ (red) in the annulus at the midgap.

• Movie 8:

Movie 8 demonstrates SWO_p for $s_x = 0.8$ (periodic regime), axial velocity profiles u_z for $\theta = 0$ (black) and $\theta = \pi/2$ (red) in the annulus at the midgap.

• Movie 9:

Movie 9 demonstrates SWO_{qp} for $s_x = 0.815$ (quasiperiodic regime), axial velocity profiles u_z for $\theta = 0$ (black) and $\theta = \pi/2$ (red) in the annulus at the midgap.

• Movie 10:

Movie 10 demonstrates SWO_p: for $s_x = 0.8$ (periodic regime), isosurfaces of the angular momentum $ru_{\theta} = 80$.

• Movie 11:

Movie 11 demonstrates SWO_p for $s_x = 0.8$ (periodic regime), isosurfaces of the azimuthal voticity $\eta = \partial_z u_r - \partial_r u_\theta = \pm 100$ (red: $\eta = 100$, yellow: $\eta = -100$).

• Movie 12:

Movie 12 demonstrates SWO_p for $s_x = 0.8$ (periodic regime), isosurfaces of the relative angular momentum $ru_{\theta} - \int_0^{\tau} ru_{\theta} dt = \pm 5$ (red: $\eta = 5$, yellow: $\eta = -5$).

* Electronic address: sebastian_altmeyer@t-online.de † Electronic address: yhdo@knu.ac.kr